JP2007016001A - Carbon-carbon-coupling method by using high temperature and high pressure water - Google Patents

Carbon-carbon-coupling method by using high temperature and high pressure water Download PDF

Info

Publication number
JP2007016001A
JP2007016001A JP2005201346A JP2005201346A JP2007016001A JP 2007016001 A JP2007016001 A JP 2007016001A JP 2005201346 A JP2005201346 A JP 2005201346A JP 2005201346 A JP2005201346 A JP 2005201346A JP 2007016001 A JP2007016001 A JP 2007016001A
Authority
JP
Japan
Prior art keywords
reaction
carbon
water
temperature
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005201346A
Other languages
Japanese (ja)
Other versions
JP4753175B2 (en
Inventor
Hajime Kawanami
肇 川波
Masahiro Sato
正大 佐藤
Yutaka Ikushima
豊 生島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005201346A priority Critical patent/JP4753175B2/en
Publication of JP2007016001A publication Critical patent/JP2007016001A/en
Application granted granted Critical
Publication of JP4753175B2 publication Critical patent/JP4753175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a carbon-carbon bond of an organic compound by using a high temperature and high pressure water. <P>SOLUTION: This method for reacting the organic compound, which is the method for forming the carbon-carbon bond of the organic compound in a reaction field by using the high temperature and high pressure water as a reaction medium is provided by using the multiple step processes of mixing fields of mixing water with reaction substrates to make suspension including an emulsion state and a dispersion state and reaction fields for reacting the suspension state substrates under the high temperature and high pressure conditions to form the carbon-carbon bond of the organic compounds. Thereby, it is possible to obtain the new carbon-carbon coupling reaction method of the organic compound by utilizing the high temperature and high pressure reaction system installed with the high pressure mixing and high temperature and high pressure reaction fields as multiple steps. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高温高圧水を反応媒体とする反応場で反応させる有機化合物の炭素−炭素結合の形成方法に関するものであり、更に詳しくは、マイクロ空間デバイスの微小空間を混合場及び反応場として用い、水と有機化合物をエマルジョン状態や分散状態を含む懸濁液にする高圧ミキシング工程と、高温高圧条件下で反応させる高温高圧反応工程を多段に設置することで有機化合物の炭素−炭素カップリング反応を短時間に、高収率、高選択率で実施することを可能とする新しい有機化合物の反応方法に関するものである。本発明は、末端にオレフィンを有する化合物とハロゲン化アルキルあるいはハロゲン化アリールを反応させて炭素−炭素結合を形成する方法、末端にエチニル基を有する化合物とハロゲン化アルキルあるいはハロゲン化アリールを反応させて炭素−炭素結合を形成する方法、有機ハロゲン化物と有機ホウ素化合物とのクロスカップリングにより炭素−炭素結合を形成する方法等を含む有用な反応を短時間に、高収率、高選択率で実施することを可能とする、既存の有用な産業生産技術に代替し得る実用化可能な新しい炭素−炭素カップリング技術を提供するものである。   The present invention relates to a method for forming a carbon-carbon bond of an organic compound that is reacted in a reaction field using high-temperature and high-pressure water as a reaction medium, and more specifically, a microspace of a microspace device is used as a mixing field and reaction field. , Carbon-carbon coupling reaction of organic compounds by installing a high-pressure mixing process that makes water and organic compound a suspension containing emulsion and dispersion, and a high-temperature and high-pressure reaction process that reacts under high-temperature and high-pressure conditions in multiple stages The present invention relates to a new organic compound reaction method that can be carried out in a short time with high yield and high selectivity. The present invention relates to a method of forming a carbon-carbon bond by reacting a compound having an olefin at the terminal with an alkyl halide or aryl halide, and reacting a compound having an ethynyl group with an alkyl halide or aryl halide at the terminal. Carrying out useful reactions in a short time, with high yield and high selectivity, including methods for forming carbon-carbon bonds and methods for forming carbon-carbon bonds by cross-coupling of organic halides and organic boron compounds. The present invention provides a new carbon-carbon coupling technology that can be put into practical use and can be substituted for an existing useful industrial production technology.

ヘック(Heck)反応は、R.F.Heckにより、1972年に見出された反応であり、末端にオレフィンを有する化合物とハロゲン化アルキルあるいはハロゲン化アリールをパラジウム触媒の存在下で反応させることで、炭素−炭素結合を形成させる有用な反応である(非特許文献1参照)。このヘック(Heck)反応は、収率、選択率も比較的良く、厳密な取り扱いが必要な触媒等を必要とせず、簡便であるため、近年では、例えば、基礎化学品合成や医薬品合成に用いられる有用な反応となっている。   The Heck reaction is described in R.A. F. A reaction found in 1972 by Heck, a useful reaction for forming a carbon-carbon bond by reacting a compound having an olefin at the terminal with an alkyl halide or aryl halide in the presence of a palladium catalyst. (See Non-Patent Document 1). This Heck reaction is relatively good in yield and selectivity, does not require a catalyst that requires strict handling and is simple, and in recent years, for example, used for basic chemical synthesis and pharmaceutical synthesis. It has become a useful reaction.

また、園頭カップリングは、1975年に見出された反応であり、末端にエチニル基を有する化合物とハロゲン化アルキルあるいはハロゲン化アリールをパラジウム触媒と銅(I)触媒の存在下で反応させることで、炭素−炭素結合を形成させる有用な反応である(非特許文献2参照)。この園頭カップリングは、収率、選択率も比較的良く、厳密な取り扱いが必要な触媒等を必要とせず、簡便であるため、近年では、例えば、基礎化学品合成や医薬品合成に用いられる有用な反応となっている。現在は、銅(I)触媒のみ、あるいはパラジウム触媒のみの条件で園頭カップリングを行う方法が開発されている。   The Sonogashira coupling is a reaction found in 1975, in which a compound having an ethynyl group at the terminal is reacted with an alkyl halide or aryl halide in the presence of a palladium catalyst and a copper (I) catalyst. And a useful reaction for forming a carbon-carbon bond (see Non-Patent Document 2). This Sonogashira coupling is relatively good in yield and selectivity, and does not require a catalyst that requires strict handling and is simple, so in recent years, for example, it is used for basic chemical synthesis and pharmaceutical synthesis. It has become a useful reaction. Currently, a method of performing Sonogashira coupling under the condition of only a copper (I) catalyst or a palladium catalyst has been developed.

また、鈴木カップリングは、有機ハロゲン化物と有機ホウ素化合物とのクロスカップリングをパラジウム触媒存在下で行なう反応であり、1979年に鈴木等によって報告されている(非特許文献3参照)。この反応は、現在では、クロスカップリングによる炭素−炭素結合を合成する有力な手段として広く用いられている。この反応は、収率、選択率ともに良く、温和な条件でも反応するため、取り扱いやすいものの、反応時間は、通常、数時間必要とし、選択性を高く保つために、触媒のパラジウムに別途リガンド試薬を加えたDME等の有機溶媒中での反応が一般である。   Suzuki coupling is a reaction in which an organic halide and an organic boron compound are cross-coupled in the presence of a palladium catalyst, and was reported by Suzuki et al. In 1979 (see Non-Patent Document 3). This reaction is now widely used as a powerful means for synthesizing carbon-carbon bonds by cross-coupling. This reaction is good in yield and selectivity, and reacts even under mild conditions, so it is easy to handle, but the reaction time usually requires several hours. To keep the selectivity high, a separate ligand reagent is added to the catalyst palladium. Reaction in an organic solvent such as DME to which is added is common.

近年、環境問題の高まりから、脱有機溶媒を目指した有機合成方法の開発が盛んであり、例えば、マイクロ波を用いて水中で行なう鈴木カップリングも報告されているが、この反応では、水1に対し、THFを2加えた有機溶媒との混合媒体を用いるため、水中といえども、有機溶媒中で行なっているのと何ら変わりがない。   In recent years, due to growing environmental problems, organic synthesis methods aimed at deorganic solvents have been actively developed. For example, Suzuki coupling performed in water using microwaves has been reported. On the other hand, since a mixed medium with an organic solvent to which 2 THFs are added is used, even in water, there is no difference from what is performed in an organic solvent.

先行技術文献には、有機化合物を微小反応器中で混合し、滞留時間にわたり反応させ、得られたカップリング生成物を反応混合物から単離する有機化合物のカップリング方法が提案されている(特許文献1参照)。しかし、この反応は、有機溶媒中で行われることを前提としており、高温高圧水を反応媒体とする反応では無い。更に、パラジウム触媒が架橋型有機高分子化合物に物理的に担持された触媒組成物の共存下、アリールホウ酸化合物とハロゲン化アリール化合物とを、配位子及び塩基と共に反応させることを特徴とする炭素−炭素カップリング反応方法が提案されている(特許文献2参照)。しかし、この反応では、実施例に見られるように、トルエン:水=4:1であり、水を含む有機溶媒中で反応を行っているに等しい。   The prior art document proposes a method for coupling organic compounds in which organic compounds are mixed in a microreactor, reacted for a residence time, and the resulting coupling product is isolated from the reaction mixture (patent). Reference 1). However, this reaction is premised on being performed in an organic solvent, and is not a reaction using high-temperature and high-pressure water as a reaction medium. Further, carbon comprising reacting an arylboric acid compound and an aryl halide compound together with a ligand and a base in the presence of a catalyst composition in which a palladium catalyst is physically supported on a crosslinked organic polymer compound -A carbon coupling reaction method has been proposed (see Patent Document 2). However, in this reaction, as seen in Examples, toluene: water = 4: 1, which is equivalent to performing the reaction in an organic solvent containing water.

一方、近年の地球環境問題を改善すべく、有機媒体を用いない手法が注目され、研究されており、上記園頭カップリングに対しても、同様に検討が行われている。その手法として、例えば、1)超臨界二酸化炭素を用いる手法、2)イオン性液体を用いる手法、及び3)水を媒体に用いる手法、等が検討されている。上記1)の超臨界二酸化炭素を用いる手法は、二酸化炭素を反応媒体として利用することで、地球温暖化ガスとしての二酸化炭素の活用方法を見出したこと、及び、超臨界流体の性質を用いることで生成物の分離精製過程が簡便になること、などのメリットが有るが、触媒が超臨界二酸化炭素に難溶性であるため、準溶媒を加えたり、特殊な配位子を用いる必要がある等の難点があった(非特許文献3参照)。また、上記2)のイオン性液体を用いる手法の場合は、触媒の溶解性等の問題点は無いものの、イオン性液体から生成物を分離する過程に難が有り、最終的に蒸留やエーテル等による抽出が必要で有るなどの問題点を抱えている(非特許文献4、5参照)。   On the other hand, in order to improve global environmental problems in recent years, a technique not using an organic medium has attracted attention and has been studied, and the above-mentioned Sonogashira coupling is also being examined in the same manner. As the method, for example, 1) a method using supercritical carbon dioxide, 2) a method using ionic liquid, and 3) a method using water as a medium are being studied. The above 1) method using supercritical carbon dioxide uses carbon dioxide as a reaction medium to find out how to use carbon dioxide as a global warming gas, and uses the properties of supercritical fluid. However, the catalyst is insoluble in supercritical carbon dioxide, so it is necessary to add a semi-solvent or use a special ligand. (See Non-Patent Document 3). In addition, in the case of the above method 2) using an ionic liquid, there is no problem such as solubility of the catalyst, but there is a difficulty in the process of separating the product from the ionic liquid. (See Non-Patent Documents 4 and 5).

また、上記3)の水を媒体に用いる手法は、反応時に化合物を水に溶解させる必要が有り、水溶性の有機アミン(ジイソプロピルエチルアミン、ピロリジン等)を加えたりする必要があり(非特許文献6参照)、そのため、結局、有機媒体を用いる手法と変わらない。更に、原料などの有機化合物が水に溶解しないため、2相系で行う手法も開発されているが、反応は24時間以上と長時間必要であり、実用的ではない(非特許文献7参照)。更に、加熱方法にマイクロ波を用いる手法も提案されているが、スケールアップに対応できないことや、再現性が乏しいことなど、問題点は多く残されている(非特許文献8参照)。   In addition, in the above method 3) using water as a medium, it is necessary to dissolve the compound in water during the reaction, and it is necessary to add a water-soluble organic amine (diisopropylethylamine, pyrrolidine, etc.) (Non-Patent Document 6). Therefore, in the end, it is the same as the method using an organic medium. Furthermore, since organic compounds such as raw materials do not dissolve in water, a method of carrying out in a two-phase system has been developed, but the reaction requires a long time of 24 hours or more and is not practical (see Non-Patent Document 7). . Furthermore, although a method using microwaves as a heating method has been proposed, many problems remain such as inability to cope with scale-up and poor reproducibility (see Non-Patent Document 8).

特表2004−505895号公報JP-T-2004-505895 特開2005−60335号公報JP 2005-60335 A R. F. Heck, J. P. Nolley, Jr., J. Org. Chem., 37, 2320 (1972)R. F. Heck, J. P. Nolley, Jr., J. Org. Chem., 37, 2320 (1972) K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 4467 (1975)K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 4467 (1975) N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Letters, 36, 3437, 1979N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Letters, 36, 3437, 1979 S. B. Park, H. Alper, Chem. Commun., 1306 (2004)S. B. Park, H. Alper, Chem. Commun., 1306 (2004) T. Fukuyama, M. Shinmen, S. Nishitani, M. Sato, I. Ryu, Org. Lett., 4, 2002, 1691.T. Fukuyama, M. Shinmen, S. Nishitani, M. Sato, I. Ryu, Org. Lett., 4, 2002, 1691. S. Bhattacharya, S. Sengupta, Tetrahedron Lett., 45, 8733 (2004)S. Bhattacharya, S. Sengupta, Tetrahedron Lett., 45, 8733 (2004) B. Liang, M. Dai, J. Chen, Z. Yang, J. Org. Chem., 70, 391 (2005)B. Liang, M. Dai, J. Chen, Z. Yang, J. Org. Chem., 70, 391 (2005) N. E. Leadbeater, M. Marco, B. J. Tominack, Org. Lett., 5, 3919 (2003)N. E. Leadbeater, M. Marco, B. J. Tominack, Org. Lett., 5, 3919 (2003)

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術における諸問題を解決し得ると共に、環境低負荷型の新しい有機化合物の炭素−炭素カップリング方法を開発することを目標として鋭意研究を積み重ねた結果、水と反応基質を混合してエマルジョン状態や分散状態を含む懸濁液にする混合場と、上記懸濁状態の基質を超臨界水を用いた高温高圧水条件下で反応させる反応場との多段プロセスにより、短時間に、高収率、高選択率で、有機化合物の炭素−炭素結合を形成し得ることを見出し、更に研究を重ねて、本発明を完成するに至った。   Under such circumstances, the present inventors have developed a carbon-carbon coupling method for a new organic compound that can solve the problems in the prior art and is low in environmental load in view of the prior art. As a result of intensive research with the goal of mixing, water and a reaction substrate are mixed to form a suspension containing an emulsion state and a dispersion state, and the suspended substrate is heated to a high temperature using supercritical water. We found that carbon-carbon bonds of organic compounds can be formed in a high yield and high selectivity in a short time by a multistage process with a reaction field that is reacted under high-pressure water conditions. The invention has been completed.

本発明は、水と反応基質を混合してエマルジョン状態や分散状態を含む懸濁液にする混合場と、上記懸濁状態の基質を超臨界水を用いた高温高圧水条件下で反応させる反応場との多段プロセスにより、短時間に、高収率、高選択率で有機化合物の炭素−炭素結合を形成する方法を提供することを目的とするものである。また、本発明は、上記多段プロセスにより有機合成反応における炭素−炭素結合を形成させる有機反応方法を提供することを目的とするものである。   The present invention provides a mixing field in which water and a reaction substrate are mixed to form a suspension including an emulsion state and a dispersion state, and a reaction in which the substrate in the suspension state is reacted under high-temperature and high-pressure water conditions using supercritical water. It is an object of the present invention to provide a method for forming a carbon-carbon bond of an organic compound with a high yield and a high selectivity in a short time by a multistage process with a field. Another object of the present invention is to provide an organic reaction method for forming a carbon-carbon bond in an organic synthesis reaction by the multistage process.

本発明は、原料以外の有機物は一切用いない水のみを反応媒体とする反応系で、従来法とは異なる超臨界水を用いた高温高圧水条件下で反応を行うことで、効率的にヘック(Heck)反応、園頭カップリングあるいは鈴木カップリングに代表される有機化合物の炭素−炭素結合の形成を行うことを可能とする、これらの有用な反応に代替し得る産業生産技術として実用化可能な有機反応方法を提供することを目的とするものである。   The present invention is a reaction system using only water that does not use any organic material other than raw materials as a reaction medium, and the reaction is carried out under high-temperature and high-pressure water conditions using supercritical water different from the conventional method. (Heck) The carbon-carbon bond of organic compounds typified by the reaction, Sonogashira coupling or Suzuki coupling can be formed, and can be put to practical use as an industrial production technology that can replace these useful reactions. It is an object to provide a simple organic reaction method.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)高温高圧水を反応媒体とする反応場で有機化合物の炭素−炭素結合を形成する方法であって、水と反応基質を混合してエマルジョン状態や分散状態を含む懸濁液にする混合場と、上記懸濁状態の基質を高温高圧水条件下で反応させる反応場との多段プロセスにより有機化合物の炭素−炭素結合を形成することを特徴とする有機化合物の反応方法。
(2)マイクロ空間デバイス混合機を用いて、水と反応基質を混合してエマルジョン状態や分散状態を含む懸濁液にするミキシング工程と、上記懸濁状態の基質を高温高圧水条件下で反応させる高温高圧反応工程により有機化合物の炭素−炭素結合を形成する前記(1)に記載の方法。
(3)上記混合場で、水、触媒及び反応基質を混合し、これを上記反応場で、高温高圧水条件下で反応させる前記(1)に記載の方法。
(4)反応基質が、水溶性又は非水溶性の基質である前記(1)に記載の方法。
(5)高温高圧水が、100℃以上420℃以下ないしは200℃以上420℃以下、圧力が常圧以上ないしは10MPa以上40MPa以下の高温高圧水である前記(1)に記載の方法。
(6)反応時間が、0.001秒(1ms)以上、5分以内である前記(1)に記載の方法。
(7)反応系に有機溶媒、界面活性剤、及び/又は塩基が存在しない前記(1)に記載の方法。
(8)末端にオレフィンを有する化合物とハロゲン化アルキルあるいはハロゲン化アリールを反応させて炭素−炭素結合を形成する前記(1)に記載の方法。
(9)末端にエチニル基を有する化合物とハロゲン化アルキルあるいはハロゲン化アリールを反応させて炭素−炭素結合を形成する前記(1)に記載の方法。
(10)オレフィンを有する化合物又はエチニル基を有する化合物、ハロゲン化アルキル、ハロゲン化アリールが、置換基を有する又は置換基を有しない前記(8)又は(9)に記載の方法。
(11)有機ハロゲン化物と有機ホウ素化合物とのクロスカップリングにより炭素−炭素結合を形成する前記(1)に記載の方法。
(12)水酸化ホウ素あるいはアルコキシホウ素を置換基に有するアリールあるいはビニル化合物とハロゲンを有するアリールあるいはビニル化合物とを反応させて炭素−炭素結合を形成する前記(11)に記載の方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for forming a carbon-carbon bond of an organic compound in a reaction field using high-temperature and high-pressure water as a reaction medium, wherein water and a reaction substrate are mixed to form a suspension containing an emulsion state or a dispersion state. A method for reacting an organic compound, comprising forming a carbon-carbon bond of an organic compound by a multi-stage process of a reaction field and a reaction field in which the substrate in a suspended state is reacted under high-temperature and high-pressure water conditions.
(2) Using a micro space device mixer, mixing the water and the reaction substrate to make a suspension containing an emulsion state or a dispersion state, and reacting the substrate in the suspension state under high temperature and high pressure water conditions The method according to (1) above, wherein the carbon-carbon bond of the organic compound is formed by a high temperature and high pressure reaction step.
(3) The method according to (1), wherein water, a catalyst, and a reaction substrate are mixed in the mixing field, and are reacted in the reaction field under high-temperature and high-pressure water conditions.
(4) The method according to (1) above, wherein the reaction substrate is a water-soluble or water-insoluble substrate.
(5) The method according to (1), wherein the high-temperature high-pressure water is high-temperature high-pressure water having a pressure of 100 ° C. or higher and 420 ° C. or lower or 200 ° C. or higher and 420 ° C. or lower and a pressure of normal pressure or higher or
(6) The method according to (1), wherein the reaction time is 0.001 second (1 ms) or more and 5 minutes or less.
(7) The method according to (1) above, wherein an organic solvent, a surfactant, and / or a base are not present in the reaction system.
(8) The method according to (1) above, wherein a compound having an olefin at a terminal is reacted with an alkyl halide or an aryl halide to form a carbon-carbon bond.
(9) The method according to (1) above, wherein a compound having an ethynyl group at the terminal is reacted with an alkyl halide or an aryl halide to form a carbon-carbon bond.
(10) The method according to (8) or (9) above, wherein the compound having an olefin, the compound having an ethynyl group, an alkyl halide, or an aryl halide has a substituent or no substituent.
(11) The method according to (1) above, wherein a carbon-carbon bond is formed by cross coupling of an organic halide and an organic boron compound.
(12) The method according to (11) above, wherein an aryl or vinyl compound having boron hydroxide or alkoxyboron as a substituent is reacted with an aryl or vinyl compound having halogen to form a carbon-carbon bond.

次に、本発明について更に詳細に説明する。
本発明は、高温高圧水を反応媒体とする反応場で有機化合物を製造する方法において、水と反応基質を混合してエマルジョン状態や分散状態を含む懸濁液にする混合場と、上記懸濁状態の基質を高温高圧水条件下で反応させる反応場との多段プロセスにより有機化合物の炭素−炭素カップリング反応を行うことを特徴とするものである。本発明において、上記エマルジョン状態や分散状態を含む懸濁液とは、混合状態全てを含むことと同義であることを意味する。本発明は、基本的には、上記混合場と反応場を含む多段プロセスをマイクロ空間デバイスを用いたマイクロ混合・反応システムで実施することで、あらゆる種類の有機化合物の炭素−炭素結合の形成反応に適用可能であり、有機化合物の種類については特に制限されるものではない。
Next, the present invention will be described in more detail.
The present invention provides a method for producing an organic compound in a reaction field using high-temperature and high-pressure water as a reaction medium, a mixing field in which water and a reaction substrate are mixed to form a suspension containing an emulsion state or a dispersion state, and the suspension A carbon-carbon coupling reaction of an organic compound is performed by a multistage process with a reaction field in which a substrate in a state is reacted under high-temperature and high-pressure water conditions. In the present invention, the suspension containing the emulsion state or the dispersion state means the same as including all the mixed states. In the present invention, basically, a multi-stage process including the mixing field and the reaction field is carried out in a micro mixing / reaction system using a micro space device, thereby forming a carbon-carbon bond reaction of all kinds of organic compounds. The type of organic compound is not particularly limited.

本発明の有効性を実証するために、本発明者らは、有機化合物のカップリング反応、例えば、ヘック(Heck)反応、園頭カップリング及び鈴木カップリングにおける反応機構、反応選択性について種々研究を重ねた結果、高温高圧水条件下で反応させる本発明の方法を用いることで、有機媒体を用いる従来法に比較して、100倍以上反応時間を短縮できる上、収率、選択率良く目的物を合成できること、しかも、媒体が水のみであるため、生成物の分離が容易にできること、を確認した。   In order to demonstrate the effectiveness of the present invention, the present inventors conducted various studies on the reaction mechanism and reaction selectivity in organic compound coupling reactions such as Heck reaction, Sonogashira coupling and Suzuki coupling. As a result, by using the method of the present invention in which the reaction is performed under high-temperature and high-pressure water conditions, the reaction time can be shortened by 100 times or more compared with the conventional method using an organic medium, and the yield and selectivity are improved. It was confirmed that the product can be synthesized and that the product can be easily separated because the medium is only water.

本発明では、マイクロ空間デバイスであるマイクロ空間デバイス混合機及び反応器を用いて、水と反応基質を混合してエマルジョン状態や分散状態を含む懸濁液にするミキシング工程と、上記懸濁状態の基質を高温高圧水条件下で反応させる高温高圧反応工程により有機化合物の炭素−炭素結合の形成を行うことができる。上記ミキシング工程では、例えば、水と基質A及び基質Bを含む水溶液と、触媒水溶液又は無触媒水がミキシングされて、これらの懸濁状態が形成される。このミキシング工程は、好適には高圧で行われる。しかし、これに制限されるものでは無く、任意の常圧ないし高圧の圧力条件で行うことができる。次いで、この懸濁液は、高温高圧水条件下の反応場である高温高圧反応工程に供給され、所定の反応条件で反応が行われる。   In the present invention, using a microspace device mixer and a reactor, which are microspace devices, a mixing step of mixing water and a reaction substrate to form a suspension containing an emulsion state and a dispersion state; Formation of a carbon-carbon bond of an organic compound can be performed by a high-temperature high-pressure reaction step in which a substrate is reacted under high-temperature high-pressure water conditions. In the mixing step, for example, an aqueous solution containing water and the substrate A and the substrate B and an aqueous catalyst solution or non-catalytic water are mixed to form a suspended state. This mixing step is preferably performed at high pressure. However, it is not limited to this, and it can be carried out under any normal or high pressure condition. Next, this suspension is supplied to a high-temperature and high-pressure reaction step, which is a reaction field under high-temperature and high-pressure water conditions, and the reaction is performed under predetermined reaction conditions.

一般の有機合成では、反応媒体に反応基質を溶解させる必要がある。そのため、水を反応媒体にする有機合成では、反応基質は水に溶ける必要があり、基質は、水溶性の基質に制限されるが、本発明では、基質は水に溶ける必要は一切なく、非水溶性の基質であっても使用することができる。本発明では、水と反応基質を混合しエマルジョン状態や分散状態を含む懸濁液になる反応系であれば、液体又は固体の別を問わず基質として使用可能であり、例えば、微粒子あるいはナノ粒子としての基質も使用することができる。   In general organic synthesis, it is necessary to dissolve a reaction substrate in a reaction medium. Therefore, in organic synthesis using water as a reaction medium, the reaction substrate needs to be dissolved in water, and the substrate is limited to a water-soluble substrate, but in the present invention, the substrate does not need to be dissolved in water at all. Even a water-soluble substrate can be used. In the present invention, any reaction system in which water and a reaction substrate are mixed to form a suspension containing an emulsion state or a dispersion state can be used as a substrate regardless of whether it is liquid or solid. For example, fine particles or nanoparticles The substrate can also be used.

本発明において、高温高圧水とは、100℃以上420℃以下、常圧以上40MPa以下であり、より好ましくは、200℃以上420℃以下、10MPa以上40MPa以下、最も好ましくは、200℃以上374℃以下、10MPa以上22MPa以下である高温高圧水を意味するものとして定義される。この高温高圧水としては、好適には、例えば、温水(水)、水蒸気、亜臨界水、超臨界水、超高温高圧水が例示されるが、具体的な高温高圧条件は、反応基質、反応の種類、触媒、目的化合物の種類、収率、選択率などに応じて任意に設定することができる。   In the present invention, the high temperature and high pressure water is 100 ° C. or higher and 420 ° C. or lower, normal pressure or higher and 40 MPa or lower, more preferably 200 ° C. or higher and 420 ° C. or lower, 10 MPa or higher and 40 MPa or lower, most preferably 200 ° C. or higher and 374 ° C. Hereinafter, it is defined as meaning high-temperature high-pressure water that is 10 MPa or more and 22 MPa or less. Suitable examples of the high-temperature and high-pressure water include hot water (water), water vapor, subcritical water, supercritical water, and ultrahigh-temperature and high-pressure water. Can be arbitrarily set according to the type, catalyst, type of target compound, yield, selectivity, and the like.

また、本発明では、反応時間は、0.001秒(1ms)以上、5分以内であるが、これについても、基質の有機化合物、反応の種類、触媒、目的化合物の種類等に応じて任意に設定することができる。本発明の方法では、例えば、高温高圧水を反応媒体として用いて炭素−炭素結合を形成するカップリング反応方法の場合、従来法と比較して反応時間を100分の1以下あるいはそれ以下に短縮することが可能である。   Further, in the present invention, the reaction time is 0.001 second (1 ms) or more and 5 minutes or less, and this is optional depending on the organic compound of the substrate, the type of reaction, the catalyst, the type of the target compound, and the like. Can be set to In the method of the present invention, for example, in the case of a coupling reaction method in which high-temperature and high-pressure water is used as a reaction medium to form a carbon-carbon bond, the reaction time is reduced to 1/100 or less compared to the conventional method. Is possible.

本発明では、(1)有機溶媒を使用しない、(2)水、触媒及び反応基質からなる反応系をミキシング工程で混合し、エマルジョン状態や分散状態を含む懸濁液にする、(3)上記懸濁状態の反応系を亜臨界水、超臨界水等を用いた高温高圧水条件下の高温高圧反応場で反応させる、(4)これらの工程を多段に設けた多段プロセスを用いる、ことで、例えば、以下の(1)〜(23)の反応を進行させることができる。   In the present invention, (1) no organic solvent is used, (2) a reaction system comprising water, a catalyst and a reaction substrate is mixed in a mixing step to form a suspension containing an emulsion state and a dispersion state. By reacting the reaction system in a suspended state in a high-temperature and high-pressure reaction field under high-temperature and high-pressure water conditions using subcritical water, supercritical water, etc. (4) For example, the following reactions (1) to (23) can be allowed to proceed.

上記反応式において、Ra〜Rcは、任意の置換基であり、主に、水酸基、アルキル基、アリール基、アルコキシ基、アミノ基、スルフィド、チオール等の置換基を表す。しかし、本発明では、上記置換基は、これらに制限されるものでは無く、上記反応を進行させることができる限り、適宜の置換基を有する化合物を用いることができる。   In the above reaction formula, Ra to Rc are arbitrary substituents, and mainly represent substituents such as a hydroxyl group, an alkyl group, an aryl group, an alkoxy group, an amino group, a sulfide, and a thiol. However, in the present invention, the substituent is not limited to these, and a compound having an appropriate substituent can be used as long as the reaction can proceed.

本発明の方法は、あらゆる反応に適応が可能であり、例えば、上述の炭素−炭素結合の形成の他に、炭素−窒素結合形成、炭素−酸素結合形成などの反応が考えられる。その種類は特に限定されるものでは無い。本発明において、炭素−炭素結合の形成とは、これらの反応をも含むものとして定義される。そして、例えば、上述の炭素−炭素結合の形成反応の一つであるヘック(Heck)反応を行なう場合、反応基質としては、少なくとも一つは水素が置換されたビニル基を有する化合物と、任意の置換基を有するハロゲン化アルキル、ハロゲン化アリール等が例示される。また、触媒としては、ハロゲン化パラジウム、酢酸パラジウム、パラジウム、ビス(トリフェニルホスフィン)パラジウムなどのパラジウム錯体や金属触媒、その他、触媒として、白金、ニッケル、銅、銀、金、亜鉛、コバルト、ルテニウム、ロジウム、鉄、クロム、チタン、ジルコニウム、ハフニウム、アルミニウム、ガリウム、リン、スカンジウム、イットリウム等からなる錯体あるいは金属触媒が例示される。   The method of the present invention can be applied to all reactions. For example, in addition to the above-described carbon-carbon bond formation, reactions such as carbon-nitrogen bond formation and carbon-oxygen bond formation are conceivable. The kind is not particularly limited. In the present invention, the formation of a carbon-carbon bond is defined as including these reactions. For example, when performing the Heck reaction, which is one of the carbon-carbon bond formation reactions described above, as a reaction substrate, at least one compound having a vinyl group substituted with hydrogen, Examples thereof include alkyl halide having a substituent and aryl halide. Catalysts include palladium complexes such as palladium halide, palladium acetate, palladium, bis (triphenylphosphine) palladium, metal catalysts, and other catalysts such as platinum, nickel, copper, silver, gold, zinc, cobalt, ruthenium. Examples include complexes or metal catalysts composed of rhodium, iron, chromium, titanium, zirconium, hafnium, aluminum, gallium, phosphorus, scandium, yttrium, and the like.

更に、反応系に添加する酸、アルカリ種としては、弗酸、塩酸、臭酸、硫酸、硝酸、過塩素酸、燐酸、炭酸、トリフルオロ酢酸、酢酸等を含む各種カルボン酸等、そして、水酸化ナトリウム、水酸化カリウム等のアルカリ金属及びアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属、アルカリ土類金属の炭酸塩、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド等のアルカリ金属及びアルカリ土類金属のアルコキシド、そして、アンモニア、メチルアミン、ジエチルアミン、ピリジン、ピラジン等のアミン化合物などが例示される。   Furthermore, the acid and alkali species to be added to the reaction system include hydrofluoric acid, hydrochloric acid, odorous acid, sulfuric acid, nitric acid, perchloric acid, phosphoric acid, carbonic acid, trifluoroacetic acid, acetic acid, and other various carboxylic acids, and water. Alkali metal and alkaline earth metal hydroxides such as sodium oxide and potassium hydroxide, alkali metals such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, alkaline earth metal carbonates, sodium methoxide, Examples include alkali metal and alkaline earth metal alkoxides such as potassium methoxide, sodium ethoxide and potassium ethoxide, and amine compounds such as ammonia, methylamine, diethylamine, pyridine and pyrazine.

本発明の方法において、反応温度としては、100℃以上500℃以下、より好ましくは100℃以上420℃以下、最も好ましくは、100℃以上373℃以下が例示され、反応圧力としては、常圧以上50MPa以下、より好ましくは常圧以上40MPa以下、最も好ましくは10MPa以上22MPa以下が例示される。反応時間としては、特に範囲は制限されないが、0.000001秒以上24時間以下、好ましくは、0.001秒以上1時間以下、更に好ましくは、0.001秒以上10分以下、最も好ましくは、0.001秒以上1分以下が例示される。反応生成物としては、本発明の方法が多くの反応に適応可能であることから、特に限定範囲は無いが、代表的な例としては、例えば、任意の置換基を有する1,2−ジフェニルアセチレン、任意の置換基を有するトランス又はシススチルベン、任意の置換基を有する1,1−ジフェニルエテン、任意の置換基を有するビフェニル、任意の置換基を有する1,1,2−トリフェニルエテンなどが例示される。しかし、生成物は、これらの制限されるものでは無い。   In the method of the present invention, the reaction temperature is 100 ° C. or more and 500 ° C. or less, more preferably 100 ° C. or more and 420 ° C. or less, and most preferably 100 ° C. or more and 373 ° C. or less. The reaction pressure is normal pressure or more. Examples are 50 MPa or less, more preferably normal pressure or more and 40 MPa or less, and most preferably 10 MPa or more and 22 MPa or less. The reaction time is not particularly limited, but is 0.000001 seconds to 24 hours, preferably 0.001 seconds to 1 hour, more preferably 0.001 seconds to 10 minutes, most preferably, Examples are 0.001 second to 1 minute. The reaction product is not particularly limited because the method of the present invention can be applied to many reactions. Typical examples include 1,2-diphenylacetylene having an arbitrary substituent. , Trans or cis stilbene having any substituent, 1,1-diphenylethene having any substituent, biphenyl having any substituent, 1,1,2-triphenylethene having any substituent, etc. Illustrated. However, the product is not limited to these.

本発明では、上述のように、例えば、有機溶媒を使用しない反応系を用いて、炭素−炭素結合の形成を好適に行うことができる。本発明では、例えば、水と反応基質を含む反応系をミキシングしてエマルジョン状態や分散状態を含む懸濁液にするミキシング工程が必須であるが、反応媒体として界面活性剤等の乳化剤などを一切加えない水を使用しているため、水と基質、あるいは水と生成物の分離がきわめて容易であり、多くの場合、生成物の相が、水媒体の表面に形成されるので、多くの有機化合物について、反応後の生成物の特別の分離精製工程を省略でき、生成物の分離工程が簡便になるという利点がある。   In the present invention, as described above, for example, a carbon-carbon bond can be suitably formed using a reaction system that does not use an organic solvent. In the present invention, for example, a mixing process in which a reaction system containing water and a reaction substrate is mixed to form a suspension containing an emulsion state or a dispersion state is essential, but an emulsifier such as a surfactant is not used as a reaction medium. Since no added water is used, the separation of water and substrate or water and product is very easy, and in many cases the product phase is formed on the surface of the aqueous medium, so many organic With respect to the compound, there is an advantage that a special separation and purification step of the product after the reaction can be omitted, and the separation step of the product becomes simple.

本発明では、上記反応方法を実施するための反応装置システムとして、水と反応基質を含む反応系を混合してエマルジョン状態や分散状態を含む懸濁液にするミキシング手段と、上記懸濁状態の基質を高温高圧水条件下で反応させる高温高圧反応手段を多段に設けた高温高圧反応システムが使用され、反応基質及び/又は触媒の種類に応じて該ミキシング手段を多段に設置することができる。   In the present invention, as a reactor system for carrying out the above reaction method, mixing means for mixing a reaction system containing water and a reaction substrate into a suspension containing an emulsion state or a dispersion state, A high-temperature and high-pressure reaction system provided with multiple stages of high-temperature and high-pressure reaction means for reacting a substrate under high-temperature and high-pressure water conditions can be used, and the mixing means can be installed in multiple stages according to the type of reaction substrate and / or catalyst.

本発明の反応システムでは、上記ミキシング手段として、好適には、マイクロ空間デバイス混合機を用い、例えば、(1)マイクロ流路を有するミキシングティーで混合する方法、(2)メインストリームに別の成分を多数のサブストリームから導入し混合する方法、(3)2成分をそれぞれ多数のストリームに分割し、それぞれを混合する方法、(4)流れ方向でサブミリオーダー以下に径を絞り、拡散距離を短くし混合する方法、(5)分割・混合を繰り返す方法、(6)小さな流体セグメントを周期的に導入して混合する方法、(7)超音波、マイクロ波、電気エネルギー、熱エネルギー等の外部要因を加え混合する方法等のミキシング手段が用いられる。上記ミキシング手段で調製された反応系の懸濁液は、そのまま反応場に移送し、上記のミキシング手段と同様の手法で高温高圧水と混合させ、所定の温度・圧力条件下で反応が行なわれる。   In the reaction system of the present invention, a micro space device mixer is preferably used as the mixing means, for example, (1) a method of mixing with a mixing tee having a micro flow path, and (2) another component in the main stream. (3) A method of dividing each of the two components into a number of streams and mixing them, (4) A diameter is reduced to sub-millimeter order or less in the flow direction, and a diffusion distance is shortened. (5) Method of repeating division and mixing, (6) Method of periodically introducing and mixing small fluid segments, (7) External factors such as ultrasonic waves, microwaves, electric energy, thermal energy, etc. Mixing means such as a method of adding and mixing is used. The reaction system suspension prepared by the mixing means is transferred to the reaction field as it is and mixed with high-temperature high-pressure water in the same manner as the mixing means, and the reaction is carried out under predetermined temperature and pressure conditions. .

本発明で使用される高温高圧反応システムには、水、反応基質及び触媒等の反応系を構成する各成分を各々収容するタンク、これらの成分を上記ミキシング手段及び/又は高温高圧反応手段に送液するポンプ及び配管系が設置され、更に、上記高温高圧水を製造する加熱ヒーター、反応系を急速冷却するための急速冷却器、反応系の圧力を制御するための圧力制御弁、反応生成物を排出し、分離、回収する手段が、設置され、全体の反応装置が構成される。本発明で使用される高温高圧反応システムの具体的な構成は、これらに制限されるものではなく、これらの基本構成を基礎として、基質の有機化合物、反応の種類等に応じて任意に設計することができる。また、本発明では、好適には、連続式反応装置が使用されるが、回分式反応装置を使用することも適宜可能である。   The high-temperature and high-pressure reaction system used in the present invention includes a tank for storing each component constituting a reaction system such as water, a reaction substrate and a catalyst, and these components are sent to the mixing means and / or the high-temperature and high-pressure reaction means. A liquid pump and a piping system are installed, a heater for producing the high-temperature and high-pressure water, a rapid cooler for rapidly cooling the reaction system, a pressure control valve for controlling the pressure of the reaction system, and a reaction product A means for discharging, separating and recovering is installed, and the entire reaction apparatus is configured. The specific configuration of the high-temperature and high-pressure reaction system used in the present invention is not limited to these, and is arbitrarily designed according to the organic compound of the substrate, the type of reaction, etc. based on these basic configurations. be able to. In the present invention, a continuous reaction apparatus is preferably used, but a batch reaction apparatus can also be used as appropriate.

本発明により、以下のような効果が奏される。
(1)有機溶媒を使用しないで、水を反応媒体として使用し、懸濁状態の反応基質を高温高圧水条件下で反応させることで、秒単位あるいはサブ秒単位の反応時間で、有機化合物の炭素−炭素カップリング反応を行うことが可能な新しい有機反応方法を提供することができる。
(2)水と反応基質を含む反応系をエマルジョン状態や分散状態を含む懸濁液にするミキシング工程と、上記懸濁状態の反応系を高温高圧水条件下で反応させる高温高圧反応工程を多段に設けた反応プロセスからなり、高収率、高選択率で有機化合物の炭素−炭素結合を形成することを可能とする新しい反応プロセスを提供することができる。
(3)上記ミキシング工程を実行するためのマイクロミキシング手段、及び上記高温高圧反応工程を実行するためのマイクロ高温高圧反応場を多段に設けたマイクロ空間デバイスシステムを利用した有機化合物の炭素−炭素カップリング反応方法を提供することができる。
The following effects are exhibited by the present invention.
(1) By using water as a reaction medium without using an organic solvent and reacting a suspended reaction substrate under high-temperature and high-pressure water conditions, the reaction time of the organic compound can be reduced in seconds or subseconds. A new organic reaction method capable of performing a carbon-carbon coupling reaction can be provided.
(2) A multi-stage process comprising mixing a reaction system containing water and a reaction substrate into a suspension containing an emulsion state or a dispersion state, and a high-temperature high-pressure reaction step for reacting the suspension reaction system under high-temperature high-pressure water conditions. It is possible to provide a new reaction process that makes it possible to form a carbon-carbon bond of an organic compound with high yield and high selectivity.
(3) A carbon-carbon cup of an organic compound using a micro space device system in which micro mixing means for executing the mixing step and micro high temperature and high pressure reaction fields for executing the high temperature and high pressure reaction step are provided in multiple stages. A ring reaction method can be provided.

(4)本発明の方法を使用することにより、例えば、反応基質にビニル基を有する化合物と、ハロゲン化アルキルあるいはハロゲン化アリールとを、パラジウム触媒の存在下で反応させるヘック(Heck)反応を行なう場合、また、反応基質にエチニル基とハロゲン化アルキルあるいはハロゲン化アリールとを、パラジウム触媒、銅触媒共存下で反応させる園頭反応を行なう場合、有機ハロゲン化物と有機ホウ素化合物とのクロスカップリングをパラジウム触媒の存在下で行う鈴木カップリングを行う場合等の様々な反応を、有機溶媒を一切使用すること無く、極めて短時間に、高収率・高選択率で行なうことができる。 (4) By using the method of the present invention, for example, a Heck reaction is performed in which a compound having a vinyl group as a reaction substrate is reacted with an alkyl halide or an aryl halide in the presence of a palladium catalyst. In addition, when performing the Sonogashira reaction in which an ethynyl group and an alkyl halide or aryl halide are reacted in the presence of a palladium catalyst and a copper catalyst as a reaction substrate, cross-coupling between an organic halide and an organic boron compound is performed. Various reactions such as the Suzuki coupling performed in the presence of a palladium catalyst can be performed in a very short time and with a high yield and a high selectivity without using any organic solvent.

(5)水系で有機化合物の炭素−炭素結合を高収率、高選択率で形成することを可能とする有機化合物の新しい反応方法を提供することができる。
(6)本発明の方法は、有機溶媒を一切使用せず、水を媒体に用いた反応であるため、反応基質及び/又は生成物の分離、回収が容易であり、しかも、不純物の排出が殆ど無く、水も再利用可能であることから、環境低負荷型の新しい一般化学合成方法を提供することを可能とするものとして有用である。
(5) It is possible to provide a new reaction method of an organic compound that makes it possible to form a carbon-carbon bond of the organic compound with high yield and high selectivity in an aqueous system.
(6) Since the method of the present invention is a reaction using water as a medium without using any organic solvent, the reaction substrate and / or product can be easily separated and recovered, and impurities can be discharged. Since there is almost no water and water can be reused, it is useful to provide a new general chemical synthesis method with a low environmental load.

(7)本発明の方法は、マイクロ空間デバイスを用い、極めて短時間で反応を行なうことができるため、反応システム全体を大幅に小型化することが可能であり、それによって、投入エネルギー等を小さくすることができ、省エネルギーに貢献できる。 (7) Since the method of the present invention can perform a reaction in a very short time using a micro space device, the entire reaction system can be greatly reduced in size, thereby reducing the input energy and the like. Can contribute to energy saving.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.

本実施例では、園頭反応を検討した。そして、本実施例では、図1に示す連続式反応装置を用いた。先ず、エチニルベンゼンとヨウ化ベンゼンをモル比で1:1となるように混合し、その溶液をポンプから0.4mL/分の流速で流した。また、塩化パラジウムを8×10−3mol/L、2mol/LのNaOH水溶液をポンプから2.0mL/分の流速で流し、T字管を介して混合させた後、更に、T字管を通して高温高圧水を混合させ、250℃、16MPaの高温高圧条件で反応させた。反応後、水冷器で冷却し、最終的に圧力制御弁を通して圧力を降下させ、目的化合物の1,2−ジフェニルアセチレンを得た。 In this example, Sonogashira reaction was examined. In this example, the continuous reaction apparatus shown in FIG. 1 was used. First, ethynylbenzene and iodide benzene were mixed at a molar ratio of 1: 1, and the solution was allowed to flow from the pump at a flow rate of 0.4 mL / min. Also, 8 × 10 −3 mol / L, 2 mol / L NaOH aqueous solution of palladium chloride is allowed to flow from the pump at a flow rate of 2.0 mL / min, mixed through the T-shaped tube, and further passed through the T-shaped tube. High-temperature high-pressure water was mixed and reacted at 250 ° C. and 16 MPa for high-temperature and high-pressure conditions. After the reaction, the reaction mixture was cooled with a water cooler, and finally the pressure was lowered through a pressure control valve to obtain the target compound 1,2-diphenylacetylene.

その結果を表1にまとめて示す。その結果、僅か35msで収率が96%、選択率が100%に達することが分かった。ただし、長時間(4秒間)の反応では、逆に収率、選択率が下がることが分かった。その理由は、反応が更に進み、生成した1,2−ジフェニルアセチレンが2量化、3量化を起こし、ヘキサフェニルベンゼン等が生成するためであると考えられる。   The results are summarized in Table 1. As a result, it was found that the yield reached 96% and the selectivity reached 100% in only 35 ms. However, it was found that the yield and selectivity decreased in the long-time reaction (4 seconds). The reason is considered to be that the reaction proceeds further, and the produced 1,2-diphenylacetylene undergoes dimerization and trimerization to produce hexaphenylbenzene and the like.

一方、触媒の単位時間当たりの回転速度(TOF)について、文献(K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 1975, 4467)の既存法と比較すると、本発明の方法は、10万倍以上の4.34×10−6−1であることが分かった。しかも、文献に記載の既存法では、水に有機アミンのピロリジンを25Vol%加えており、純粋に水のみを溶媒として用いたわけでは無いことも考慮すると、本発明は、園頭カップリングの改良手法として、有効であることが分かった。 On the other hand, compared with the existing method of literature (K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 1975, 4467) about the rotational speed per unit time (TOF) of the catalyst, It was found to be 4.34 × 10 −6 h −1 which is 100,000 times or more. Moreover, in the existing method described in the literature, the organic amine pyrrolidine is added to water in an amount of 25 Vol%, and considering that pure water is not used as a solvent, the present invention is an improved method for Sonogami coupling. As effective.

次に、エチニルベンゼンとヨウ化トルエンをモル比で1:1.2に混合した溶液を基質に用い、実施例1と同様の条件で、反応時間を4秒、圧力を16MPaないしは25MPaで、反応温度による目的反応生成物(1,2−ジフェニルアセチレン)の収率と選択率の関係を検討した。その結果をまとめて表2に示す。その結果、反応温度は、16MPaの時は、200〜400℃までの間が良いことが分かり、特に、250℃から300℃の温度領域で最も収率と選択率が良いことが分かった。   Next, a solution in which ethynylbenzene and toluene iodide are mixed at a molar ratio of 1: 1.2 is used as a substrate, under the same conditions as in Example 1, with a reaction time of 4 seconds and a pressure of 16 MPa to 25 MPa. The relationship between the yield and selectivity of the target reaction product (1,2-diphenylacetylene) depending on temperature was examined. The results are summarized in Table 2. As a result, it was found that when the reaction temperature was 16 MPa, the range from 200 to 400 ° C. was good, and in particular, the yield and selectivity were best in the temperature range from 250 ° C. to 300 ° C.

更に、圧力25MPaの際は、16MPaの時に比べ、収率、選択率が低いものの、200〜420℃の範囲で目的化合物が得られることが分かった。また、200℃の反応条件で8〜40MPaで比較した場合、圧力による収率の大きな変化は見られないが、40MPaの高圧条件で収率が低下する傾向が見られ、16MPaで特に選択率が良いことが分かった。これは、高圧条件で好適に生成する不純物によるためであると考えられる。   Furthermore, when the pressure was 25 MPa, the yield and selectivity were lower than when the pressure was 16 MPa, but it was found that the target compound was obtained in the range of 200 to 420 ° C. In addition, when compared at 8 to 40 MPa under the reaction conditions of 200 ° C., no significant change in yield due to pressure is observed, but there is a tendency for the yield to decrease under high pressure conditions of 40 MPa, and the selectivity is particularly high at 16 MPa. I found it good. This is considered to be due to impurities that are suitably generated under high pressure conditions.

実施例2と同様の条件で、反応温度を低温にして、長時間反応させることを検討した。その結果をまとめて表3に示す。その結果、エチニルベンゼンとヨウ化ベンゼンを基質とした場合、4.4秒以上反応を行っても、収率、選択率に大きな変化が見られなかった。その原因としては、長時間の反応では、水に溶解している塩化パラジウムがパラジウム金属として析出してしまうため、触媒として働かなくなってしまうためであることが考えられる。   Under the same conditions as in Example 2, the reaction temperature was lowered and the reaction was conducted for a long time. The results are summarized in Table 3. As a result, when ethynylbenzene and iodide benzene were used as substrates, even if the reaction was carried out for 4.4 seconds or more, there was no significant change in yield and selectivity. The cause is considered that palladium chloride dissolved in water is precipitated as palladium metal in a long-time reaction, and thus does not work as a catalyst.

実施例2と同様の条件で、塩化パラジウムの代わりに他のパラジウムを用いて検討を行った。パラジウムには、酢酸パラジウムを用いた。その結果を表4にまとめて示す。その結果、酢酸パラジウムを用いた場合、収率は低下する傾向にあったが、選択率は向上していることが分かった。但し、水中に溶解した酢酸パラジウムは、塩化パラジウムと比較して、反応後、パラジウム金属として析出しやすい傾向にあることが分かった。   Under the same conditions as in Example 2, other palladium was used instead of palladium chloride. Palladium acetate was used for palladium. The results are summarized in Table 4. As a result, when palladium acetate was used, the yield tended to decrease, but the selectivity was improved. However, it was found that palladium acetate dissolved in water tends to precipitate as palladium metal after the reaction, compared to palladium chloride.

実施例2と同様の条件で、添加するパラジウム量の検討を行った。その結果を表5に示す。その結果、エチニルベンゼンとヨウ化トルエンの場合、基質(エチニルベンゼン)に対して、触媒の濃度が1mol%の場合、収率80.5%、選択率76.7%であったのに対して、触媒の濃度を2mol%、4mol%と増大させたが、収率の大きな変化は見られなかった。   The amount of palladium to be added was examined under the same conditions as in Example 2. The results are shown in Table 5. As a result, in the case of ethynylbenzene and toluene iodide, the yield was 80.5% and the selectivity was 76.7% when the concentration of the catalyst was 1 mol% with respect to the substrate (ethynylbenzene). The catalyst concentration was increased to 2 mol% and 4 mol%, but no significant change in yield was observed.

一方、触媒の濃度を0.5mol%に減らすと、収率が65%に減少することが分かった。これより、触媒の濃度は、基質に対して1mol%以上あれば良いことが分かった。一方、エチニルベンゼンとヨウ化ベンゼンの場合、基質(エチニルベンゼン)に対して、250℃の場合、触媒の濃度が1mol%以上、300℃では、触媒の濃度が0.5mol以上で、触媒量による収率と選択率の大きな変化は無いことが分かった。   On the other hand, it was found that when the concentration of the catalyst was reduced to 0.5 mol%, the yield was reduced to 65%. From this, it was found that the catalyst concentration should be 1 mol% or more with respect to the substrate. On the other hand, in the case of ethynylbenzene and iodide benzene, the concentration of the catalyst is 1 mol% or more at 250 ° C. with respect to the substrate (ethynylbenzene), and the concentration of the catalyst is 0.5 mol or more at 300 ° C., depending on the amount of catalyst. It was found that there was no significant change in yield and selectivity.

実施例2と同様の条件で、添加するアルカリ種による反応性の検討を行った。アルカリ種として、水酸化ナトリウムの他に、炭酸水素カリウムを用いた。その結果を表6にまとめて示す。その結果、収率、選択率共に低下する傾向にあることが分かった。また、弱アルカリの炭酸水素カリウムでも約29%の収率になることが分かった。   Under the same conditions as in Example 2, the reactivity of the added alkali species was examined. As the alkali species, potassium hydrogen carbonate was used in addition to sodium hydroxide. The results are summarized in Table 6. As a result, it was found that both yield and selectivity tend to decrease. It was also found that the yield was about 29% even with weakly alkaline potassium hydrogen carbonate.

実施例1と同様の条件で、ヨウ化ベンゼンの他に、ハロゲン化アリールとして臭化ベンゼン、塩化ベンゼンを用いて検討を行った。その結果を表7にまとめて示す。その結果、塩化ベンゼンを反応基質として用いた場合は、反応しなかったが、臭化ベンゼンを用いた場合は、33%の収率で1,2−ジフェニルアセチレンを得ることに成功した。ハロゲン化アリールを用いる場合、反応性は、ハロゲンに対して、I>Br>>Clの順番であり、一般的なハロゲン化アリールの反応性の傾向と同じであることが分かった。   Under the same conditions as in Example 1, in addition to benzene iodide, a study was performed using bromobenzene and benzene chloride as the aryl halide. The results are summarized in Table 7. As a result, when benzene chloride was used as a reaction substrate, the reaction did not occur, but when benzene bromide was used, 1,2-diphenylacetylene was successfully obtained in a yield of 33%. When aryl halides were used, the reactivity was in the order of I >> Br >> Cl with respect to the halogen, and it was found that the reactivity tendency of general aryl halides was the same.

実施例1と同様の条件で、ヨウ化ベンゼンの他に、置換基を有するヨウ化アリールとしてヨウ化トルエン、ヨウ化アニソールを用いて検討を行った。その結果を表8にまとめて示す。その結果、各種置換基を有するヨウ化アリールを用いても、園頭カップリングは、100msの反応時間であるのにもかかわらず、収率は90%以上で目的物が得られることが分かった。   Under the same conditions as in Example 1, in addition to benzene iodide, a study was performed using toluene iodide and anisole iodide as the aryl iodide having a substituent. The results are summarized in Table 8. As a result, it was found that even when aryl iodides having various substituents were used, the desired product was obtained with a yield of 90% or more, despite Sonogashira coupling having a reaction time of 100 ms. .

本実施例では、基質としてヨードトルエン又はブロモトルエン、及びフェニルアセチレンを使用し、また、連続式反応装置を用いる代わりに、回分式反応装置を用いた。その結果を表9に示す。反応温度に関しては、300℃が最も良いことが分かった。また、圧力は、8.6MPaが良いことが分かった。また、反応時間は、長時間より短時間の方が収率が良く、2分間が最も良いことが分かった。更に、ブロモトルエンでは、目的物を得ることができず、ヨウ化アリールの場合のみ反応することが分かった。更に、パラジウム触媒以外に、銅触媒を用いたが、目的物はほとんど得られなかった。いずれの場合においても、園頭カップリングによって得られた目的物の収率は、最高で27%であり、流通式の場合に比べて、低いことも分かった。これにより、回分式より流通式の方が優れていることが判明した。   In this example, iodotoluene or bromotoluene and phenylacetylene were used as substrates, and instead of using a continuous reactor, a batch reactor was used. The results are shown in Table 9. Regarding the reaction temperature, 300 ° C. was found to be the best. Moreover, it turned out that a pressure is 8.6 Mpa. Also, it was found that the reaction time was better when the reaction time was shorter than the long time, and 2 minutes was the best. Further, it was found that bromotoluene cannot obtain the target product and reacts only in the case of aryl iodide. Furthermore, a copper catalyst was used in addition to the palladium catalyst, but almost no target product was obtained. In any case, the yield of the target product obtained by Sonogashira coupling was 27% at the maximum, which was also found to be lower than in the case of the flow-through type. Thereby, it turned out that the flow type is superior to the batch type.

次に、ヘック(Heck)反応を検討した。反応装置は、図1に示す連続式反応装置を用いた。先ず、エチニルベンゼンとヨウ化ベンゼンをモル比で1:1となるように混合し、その溶液をポンプから0.2mL/分の流速で流した。また、塩化パラジウムを8×10−3mol/L、2mol/LのNaOH水溶液をポンプから2.0mL/分の流速で流し、T字管を介して混合させた後、更にT字管を通して12mL/分の流速で高温高圧水と混合させ、16MPaの圧力、反応時間100msで各種反応温度条件の下、反応を行った。反応後、水冷器で冷却し、最終的に圧力制御弁を通して圧力を降下させ、各目的化合物を得た。その結果を表10にまとめて示した。 Next, the Heck reaction was examined. As the reaction apparatus, the continuous reaction apparatus shown in FIG. 1 was used. First, ethynylbenzene and iodobenzene were mixed at a molar ratio of 1: 1, and the solution was allowed to flow from the pump at a flow rate of 0.2 mL / min. Further, palladium chloride 8 × 10 -3 mol / L, flowing aqueous NaOH 2 mol / L from the pump at 2.0 mL / min flow rate after mixing through a T-tube, further 12mL through T-shaped tube The mixture was mixed with high-temperature and high-pressure water at a flow rate of / min and reacted under various reaction temperature conditions at a pressure of 16 MPa and a reaction time of 100 ms. After the reaction, the reaction product was cooled with a water cooler, and finally the pressure was lowered through a pressure control valve to obtain each target compound. The results are summarized in Table 10.

実施例10と同様の条件で、ヨウ化ベンゼンの他に、臭化ベンゼン、塩化ベンゼンを用いて検討を行った。その結果を表11にまとめて示す。その結果、塩化ベンゼンを反応基質として場合は、反応しなかったが、臭化ベンゼンを用いた場合は、37%の収率でヘック(Heck)反応由来の化合物が得られた。ハロゲン化アリールを用いる場合、反応性はハロゲンに対して、I>Br>>Clの順番であり、一般的なハロゲン化アリールの反応性の傾向と同じであることが分かった。   Under the same conditions as in Example 10, in addition to benzene iodide, a study was performed using benzene bromide and benzene chloride. The results are summarized in Table 11. As a result, when benzene chloride was used as a reaction substrate, the reaction did not occur, but when benzene bromide was used, a compound derived from the Heck reaction was obtained in a yield of 37%. When aryl halides were used, the reactivity was in the order of I> Br >> Cl with respect to the halogen, and it was found that the reactivity tendency of general aryl halides was the same.

図1に示す2段階のマイクロ混合及びマイクロ反応場を装備する連続式反応装置を用いた。先ず、ヨウ化ベンゼンをポンプAから0.07mL/分の流速で流した。また、塩化パラジウムを8×10−3mol/L、2mol/LのNaOH水溶液をポンプBから2.0mL/分の流速で流し、T字管を介して混合させた後、更にT字管を通して12mL/分の流速で高温高圧水と混合させ、16MPaの圧力、反応時間100msで各種反応温度条件の下、反応を行った。反応後、水冷器で冷却し、最終的に圧力制御弁を通して圧力を降下させ、各目的化合物ビフェニルを得た。結果を表12にまとめて示す。その結果、通常、鈴木反応、根岸反応、熊田反応等のそれぞれ炭素−炭素結合反応においては、図3に示したように、ジヒドロホウ素や、亜鉛錯体、マグネシウム錯体を経由して反応するが、本発明の場合、収率は最大で19%と低収率であるものの、高い選択率をもって生成物が得られることが分かった。なお、反応時間は、長くしても収率の向上は見られなかった。 A continuous reactor equipped with a two-stage micromixing and microreaction field shown in FIG. 1 was used. First, benzene iodide was allowed to flow from pump A at a flow rate of 0.07 mL / min. Further, 8 × 10 −3 mol / L, 2 mol / L NaOH aqueous solution of palladium chloride is allowed to flow from pump B at a flow rate of 2.0 mL / min, mixed through a T-shaped tube, and then further passed through a T-shaped tube. The mixture was mixed with high-temperature and high-pressure water at a flow rate of 12 mL / min, and the reaction was carried out under various reaction temperature conditions at a pressure of 16 MPa and a reaction time of 100 ms. After the reaction, the mixture was cooled with a water cooler, and finally the pressure was reduced through a pressure control valve to obtain each target compound biphenyl. The results are summarized in Table 12. As a result, usually, in each carbon-carbon bond reaction such as Suzuki reaction, Negishi reaction, Kumada reaction, etc., as shown in FIG. 3, it reacts via dihydroboron, zinc complex, magnesium complex. In the case of the invention, although the yield is as low as 19% at the maximum, it was found that the product can be obtained with high selectivity. In addition, even if reaction time was lengthened, the improvement of the yield was not seen.

次に、図3のSuzuki Couplingに示す鈴木カップリング反応による炭素−炭素結合反応を検討した。図4に示す3段階のマイクロ混合及びマイクロ反応場を装備する連続式反応装置を用いた。原料がハロゲン化ベンゼンの場合、例えば、ヨウ化ベンゼンは液体であるが、フェニルビス水酸化ホウ素は、固体で、ヨウ化ベンゼンと混合しないため、水酸化カリウムアルカリ水溶液に溶解させた後、ポンプから第1高圧混合機に導入した。また、ヨウ化ベンゼンは液体であるため、ポンプから直接0.07mL/分の流速で第1高圧混合機(T字管)に導入した。   Next, the carbon-carbon bonding reaction by the Suzuki coupling reaction shown in Suzuki Coupling in FIG. 3 was examined. A continuous reaction apparatus equipped with a three-stage micromixing and microreaction field shown in FIG. 4 was used. When the raw material is halogenated benzene, for example, benzene iodide is a liquid, but phenylbisboron hydroxide is a solid and does not mix with benzene iodide. It introduced into the 1st high pressure mixer. Further, since benzene iodide is a liquid, it was introduced directly into the first high-pressure mixer (T-shaped tube) at a flow rate of 0.07 mL / min from the pump.

次に、塩化パラジウムを8×10−3mol/L、2mol/LのNaOH水溶液をポンプから2.0mL/分の流速で流し、T字管を介して混合させた後、更にT字管を通して12mL/分の流速で高温高圧水と混合させ、16MPaの圧力、反応時間100msで各種反応温度条件の下、反応を行った。反応後、水冷器で冷却し、最終的に圧力制御弁を通して圧力を降下させ、各目的化合物ビフェニルを得た。 Next, 8 × 10 −3 mol / L of palladium chloride and 2 mol / L NaOH aqueous solution are flowed from the pump at a flow rate of 2.0 mL / min, mixed through the T-shaped tube, and further passed through the T-shaped tube. The mixture was mixed with high-temperature and high-pressure water at a flow rate of 12 mL / min, and the reaction was carried out under various reaction temperature conditions at a pressure of 16 MPa and a reaction time of 100 ms. After the reaction, the mixture was cooled with a water cooler, and finally the pressure was reduced through a pressure control valve to obtain each target compound biphenyl.

反応温度による転化率、収率の違いを検討した結果を表13にまとめて示す。その結果、原料がヨウ化ベンゼンの場合、反応温度250℃の場合が最も良く(実験番号1〜4)、転化率、収率が96%、選択率が100%であった。また、反応温度300℃の場合、転化率が52%であったが、触媒量を2倍に増やした場合でも54%と殆ど差が無いことが分かった。   Table 13 summarizes the results of studying the difference in conversion rate and yield depending on the reaction temperature. As a result, when the raw material was benzene iodide, the reaction temperature was 250 ° C. (Experiment Nos. 1 to 4), and the conversion and yield were 96%, and the selectivity was 100%. Moreover, when the reaction temperature was 300 ° C., the conversion rate was 52%, but it was found that even when the catalyst amount was doubled, there was almost no difference with 54%.

更に、ヨウ化ベンゼンからより活性の低いブロモベンゼン、クロロベンゼンを原料に用いたところ、ブロモベンゼンの場合、80%の収率、100%の選択率で(実験番号7)、また、クロロベンゼンの場合、68%の収率、100%の選択率で(実験番号10)、ビフェニルが得られることが分かり、I>>Br>Clの順で収率が良くなることが分かった。   Further, when bromobenzene and chlorobenzene having lower activity were used as raw materials from benzene iodide, 80% yield and 100% selectivity (experiment number 7) in the case of bromobenzene, and in the case of chlorobenzene, It was found that biphenyl was obtained with a yield of 68% and a selectivity of 100% (Experiment No. 10), and the yield improved in the order of I >> Br> Cl.

以上詳述したように、本発明は、高温高圧水を用いる炭素−炭素カップリング反応方法に係るものであり、本発明により、有機溶媒を一切使用しないで、水を反応媒体として使用し、エマルジョン状態や分散状態を含む懸濁液の反応基質を高温高圧水条件下で反応させることで、秒単位の反応時間で目的化合物を合成することが可能な新しい有機化合物の炭素−炭素結合形成方法を提供することができる。本発明により、水と反応基質を含む反応系をエマルジョン状態や分散状態を含む懸濁液にする高圧ミキシング工程と、上記懸濁状態の反応系を高温高圧水条件下で反応させる高温高圧反応工程を多段に設けた反応プロセスからなり、高収率、高選択率で目的化合物を合成することを可能とする新しい反応プロセスを提供することができる。   As described above in detail, the present invention relates to a carbon-carbon coupling reaction method using high-temperature and high-pressure water. According to the present invention, water is used as a reaction medium without using any organic solvent, and an emulsion is obtained. A new method for forming a carbon-carbon bond of an organic compound capable of synthesizing a target compound in a reaction time in seconds by reacting a reaction substrate in a suspension containing a state or dispersion state under high-temperature and high-pressure water conditions. Can be provided. According to the present invention, a high-pressure mixing step for converting a reaction system containing water and a reaction substrate into a suspension containing an emulsion state or a dispersion state, and a high-temperature high-pressure reaction step for reacting the suspension state reaction system under high-temperature high-pressure water conditions It is possible to provide a new reaction process that makes it possible to synthesize the target compound with high yield and high selectivity.

また、本発明により、上記高圧ミキシング工程を実行するための高圧ミキシング手段、及び上記高温高圧反応工程を実行するための高温高圧反応場を多段に設けたマイクロ空間デバイスシステムを使用した新しい有機反応方法を提供することができる。本発明の方法は、有機溶媒を一切使用しないで、高温高圧水を反応媒体とする反応場で反応させることで、反応基質、生成物の分離、回収が容易であり、しかも、有害成分の排出がないことから、環境低負荷型の有機化合物の反応方法を提供することを可能とするものとして有用である。   Further, according to the present invention, a new organic reaction method using a high-pressure mixing means for performing the high-pressure mixing step and a micro space device system provided with a high-temperature and high-pressure reaction field for performing the high-temperature and high-pressure reaction step in multiple stages. Can be provided. In the method of the present invention, the reaction substrate and the product can be easily separated and recovered by reacting in a reaction field using high-temperature and high-pressure water as a reaction medium without using any organic solvent. Therefore, it is useful as a method for providing a reaction method of an organic compound having a low environmental load.

本発明の連続式反応装置の一例を示す。An example of the continuous reaction apparatus of this invention is shown. 従来法の炭素−炭素結合形成反応を示す。The carbon-carbon bond formation reaction of the conventional method is shown. 従来法の炭素−炭素結合形成反応を示す(Suzuki Coupling、Negishi Coupling、Kumada Coupling)。A conventional carbon-carbon bond forming reaction is shown (Suzuki Coupling, Nejishi Coupling, Kumada Coupling). マイクロ混合及びマイクロ反応場を多段に装備した連続式反応装置の一例を示す。An example of a continuous reaction apparatus equipped with micro mixing and micro reaction fields in multiple stages is shown. スチルベンの炭素−炭素結合の形成方法を示す。The formation method of the carbon-carbon bond of stilbene is shown.

Claims (12)

高温高圧水を反応媒体とする反応場で有機化合物の炭素−炭素結合を形成する方法であって、水と反応基質を混合してエマルジョン状態や分散状態を含む懸濁液にする混合場と、上記懸濁状態の基質を高温高圧水条件下で反応させる反応場との多段プロセスにより有機化合物の炭素−炭素結合を形成することを特徴とする有機化合物の反応方法。   A method of forming a carbon-carbon bond of an organic compound in a reaction field using high-temperature and high-pressure water as a reaction medium, wherein the water and the reaction substrate are mixed to form a suspension containing an emulsion state or a dispersion state, and A method for reacting an organic compound, wherein a carbon-carbon bond of the organic compound is formed by a multistage process with a reaction field in which the substrate in a suspended state is reacted under high-temperature and high-pressure water conditions. マイクロ空間デバイス混合機を用いて、水と反応基質を混合してエマルジョン状態や分散状態を含む懸濁液にするミキシング工程と、上記懸濁状態の基質を高温高圧水条件下で反応させる高温高圧反応工程により有機化合物の炭素−炭素結合を形成する請求項1に記載の方法。   Using a micro space device mixer, mixing the water and the reaction substrate into a suspension containing an emulsion state and a dispersion state, and reacting the suspended substrate under high temperature and high pressure water conditions The method according to claim 1, wherein the carbon-carbon bond of the organic compound is formed by the reaction step. 上記混合場で、水、触媒及び反応基質を混合し、これを上記反応場で、高温高圧水条件下で反応させる請求項1に記載の方法。   The method according to claim 1, wherein water, a catalyst, and a reaction substrate are mixed in the mixing field, and are reacted in the reaction field under high-temperature and high-pressure water conditions. 反応基質が、水溶性又は非水溶性の基質である請求項1に記載の方法。   The method according to claim 1, wherein the reaction substrate is a water-soluble or water-insoluble substrate. 高温高圧水が、100℃以上420℃以下ないしは200℃以上420℃以下、圧力が常圧以上ないしは10MPa以上40MPa以下の高温高圧水である請求項1に記載の方法。   2. The method according to claim 1, wherein the high-temperature high-pressure water is high-temperature high-pressure water having a temperature of 100 ° C. or higher and 420 ° C. or lower or 200 ° C. or higher and 420 ° C. or lower and a pressure of normal pressure or higher or 10 MPa or higher and 40 MPa or lower. 反応時間が、0.001秒(1ms)以上、5分以内である請求項1に記載の方法。   The method according to claim 1, wherein the reaction time is 0.001 second (1 ms) or more and 5 minutes or less. 反応系に有機溶媒、界面活性剤、及び/又は塩基が存在しない請求項1に記載の方法。   The method according to claim 1, wherein an organic solvent, a surfactant, and / or a base are not present in the reaction system. 末端にオレフィンを有する化合物とハロゲン化アルキルあるいはハロゲン化アリールを反応させて炭素−炭素結合を形成する請求項1に記載の方法。   The method according to claim 1, wherein a compound having an olefin at a terminal is reacted with an alkyl halide or an aryl halide to form a carbon-carbon bond. 末端にエチニル基を有する化合物とハロゲン化アルキルあるいはハロゲン化アリールを反応させて炭素−炭素結合を形成する請求項1に記載の方法。   The method according to claim 1, wherein a compound having an ethynyl group at a terminal is reacted with an alkyl halide or an aryl halide to form a carbon-carbon bond. オレフィンを有する化合物又はエチニル基を有する化合物、ハロゲン化アルキル、ハロゲン化アリールが、置換基を有する又は置換基を有しない請求項8又は9に記載の方法。   The method according to claim 8 or 9, wherein the compound having an olefin, the compound having an ethynyl group, an alkyl halide, or an aryl halide has a substituent or no substituent. 有機ハロゲン化物と有機ホウ素化合物とのクロスカップリングにより炭素−炭素結合を形成する請求項1に記載の方法。   The method according to claim 1, wherein a carbon-carbon bond is formed by cross-coupling of an organic halide and an organic boron compound. 水酸化ホウ素あるいはアルコキシホウ素を置換基に有するアリールあるいはビニル化合物とハロゲンを有するアリールあるいはビニル化合物とを反応させて炭素−炭素結合を形成する請求項11に記載の方法。
The method according to claim 11, wherein an aryl or vinyl compound having boron hydroxide or alkoxy boron as a substituent is reacted with an aryl or vinyl compound having halogen to form a carbon-carbon bond.
JP2005201346A 2005-07-11 2005-07-11 Carbon-carbon coupling method using high temperature and high pressure water Expired - Fee Related JP4753175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201346A JP4753175B2 (en) 2005-07-11 2005-07-11 Carbon-carbon coupling method using high temperature and high pressure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201346A JP4753175B2 (en) 2005-07-11 2005-07-11 Carbon-carbon coupling method using high temperature and high pressure water

Publications (2)

Publication Number Publication Date
JP2007016001A true JP2007016001A (en) 2007-01-25
JP4753175B2 JP4753175B2 (en) 2011-08-24

Family

ID=37753471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201346A Expired - Fee Related JP4753175B2 (en) 2005-07-11 2005-07-11 Carbon-carbon coupling method using high temperature and high pressure water

Country Status (1)

Country Link
JP (1) JP4753175B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060426A (en) * 2011-08-22 2013-04-04 National Institute Of Advanced Industrial Science & Technology High-temperature and high-pressure cross coupling method
JP2018135288A (en) * 2017-02-21 2018-08-30 国立研究開発法人産業技術総合研究所 Circulation continuous processing method and device containing reaction, extraction, and isolation for synthetic reaction in high temperature and high pressure water
JP2021066737A (en) * 2021-01-19 2021-04-30 三菱ケミカル株式会社 Production method of coupling compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273206A (en) * 2001-03-16 2002-09-24 Mitsubishi Chemicals Corp Synthetic reaction device and synthetic reaction method using the same
JP2002292274A (en) * 2001-04-02 2002-10-08 Mitsubishi Chemicals Corp Flow type fine reaction passage, reaction apparatus and reaction method
JP2007015994A (en) * 2005-07-08 2007-01-25 National Institute Of Advanced Industrial & Technology Method for synthesizing organic compound in ultra high rate under high temperature and high pressure water, and system of high temperature and high pressure reaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273206A (en) * 2001-03-16 2002-09-24 Mitsubishi Chemicals Corp Synthetic reaction device and synthetic reaction method using the same
JP2002292274A (en) * 2001-04-02 2002-10-08 Mitsubishi Chemicals Corp Flow type fine reaction passage, reaction apparatus and reaction method
JP2007015994A (en) * 2005-07-08 2007-01-25 National Institute Of Advanced Industrial & Technology Method for synthesizing organic compound in ultra high rate under high temperature and high pressure water, and system of high temperature and high pressure reaction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060426A (en) * 2011-08-22 2013-04-04 National Institute Of Advanced Industrial Science & Technology High-temperature and high-pressure cross coupling method
JP2018135288A (en) * 2017-02-21 2018-08-30 国立研究開発法人産業技術総合研究所 Circulation continuous processing method and device containing reaction, extraction, and isolation for synthetic reaction in high temperature and high pressure water
JP2021066737A (en) * 2021-01-19 2021-04-30 三菱ケミカル株式会社 Production method of coupling compound

Also Published As

Publication number Publication date
JP4753175B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
Rathi et al. Microwave-assisted synthesis–catalytic applications in aqueous media
JP4753174B2 (en) High-temperature and high-pressure reactor used in high-temperature and high-pressure water ultrafast organic compound synthesis method
Shu et al. Use of precatalysts greatly facilitate palladium-catalyzed alkynylations in batch and continuous-flow conditions
IL268432A (en) Continuous flow carboxylation reaction
JP4753175B2 (en) Carbon-carbon coupling method using high temperature and high pressure water
CN111995502B (en) Method for synthesizing perfluorobutyl methyl ether
JP2018076288A (en) Manufacturing method of aromatic compound
JP5935123B2 (en) High temperature high pressure cross coupling method
WO2018164983A1 (en) Mixed oxide catalyst for the oxidative coupling of methane
CN109535005A (en) The preparation method of 2,2`- bis trifluoromethyl -4,4`- benzidine
CN111454286A (en) Synthetic method of difluoroalkenyl boron compound
CN109772326B (en) Catalyst for synthesizing fluorenone, preparation method and application thereof
CN103172480B (en) Method for preparing iodo aromatic hydrocarbon
Bai et al. Ionic liquid-based suzuki coupling reaction: from batch to continuous microflow system
CN104744219B (en) Preparation method of thymol
CN107814691B (en) Method for synthesizing ethylguaiacol
CN106008265B (en) A kind of method of palladium chtalyst benzyl quaternary ammonium salt C-N key fracture Suzuki coupling
Li et al. Homocoupling of heteroaryl/aryl/alkyl Grignard reagents: I 2-promoted, or Ni-or Pd-or Cu-or nano-Fe-based salt catalyzed
CN111072627A (en) Synthesis method of perfluoroalkyl sultone
CN104923237A (en) Phenol ortho-position methylation catalyst and preparation method therefor as well as method for catalytically synthesizing phenol ortho-position methylation compound by using phenol ortho-position methylation catalyst
CN106316824B (en) A kind of new method of synthesis 2- fluorine cyclopropane-carboxylic acids
CN112194559B (en) Synthesis method of chiral and achiral 2,2&#39; -dihalogenated biaryl compound
Ichitsuka et al. A continuous flow process for biaryls based on sequential Suzuki–Miyaura coupling and supercritical carbon dioxide extraction
CN115321497B (en) Carbon nitride material modified by thermal stripping and double covalent bond grafting and preparation method thereof
CN107029759B (en) Ruthenium trichloride reacts the application prepared in imines with alcohol compound in catalysis nitrobenzene compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees