JP2007015199A - Method and apparatus for working optical element mold - Google Patents

Method and apparatus for working optical element mold Download PDF

Info

Publication number
JP2007015199A
JP2007015199A JP2005198222A JP2005198222A JP2007015199A JP 2007015199 A JP2007015199 A JP 2007015199A JP 2005198222 A JP2005198222 A JP 2005198222A JP 2005198222 A JP2005198222 A JP 2005198222A JP 2007015199 A JP2007015199 A JP 2007015199A
Authority
JP
Japan
Prior art keywords
axis
workpiece
processing
tool
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005198222A
Other languages
Japanese (ja)
Inventor
Shuichi Yamaguchi
修一 山口
Atsushi Taguchi
淳 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005198222A priority Critical patent/JP2007015199A/en
Publication of JP2007015199A publication Critical patent/JP2007015199A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Turning (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for working an optical element mold which can form a recess in the shape of a lens with a small radius of curvature. <P>SOLUTION: In a working method for manufacturing a micro-lens mold 1 for molding the optical element having a plurality of independent optical function surfaces by working with the use of a diamond turning tool 3 for cutting a workpiece 1A, the diamond bit 3 is moved in the X-axis direction and simultaneously rotated around the Y-axis, and the workpiece 1A is moved in the Z-axis direction to cut the working surface 2 of the workpiece 1A. After that, the workpiece 1A is moved by a prescribed pitch in the Y-axis direction. The cutting and the movement are repeated to form the recess 2a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は光学素子金型の加工方法及び加工装置に関する。   The present invention relates to a processing method and a processing apparatus for an optical element mold.

従来の加工方法として、特開平8−11223号公報に記載されたフライカット方式による加工方法が知られている。   As a conventional processing method, a processing method using a fly-cut method described in JP-A-8-11223 is known.

この加工方法は次の通りである。   This processing method is as follows.

同時3軸以上の超精密加工機を用いて、ダイヤモンドバイトを主軸に取り付けて回転させる一方、ワーク(被加工物)を軸に水平な面又は直交する面に固定する。ダイヤモンドバイトを所定のピッチでZ方向へスキャンさせながらワークをX、Y方向へ移動させてワーク表面の所定部分を取り除き、所望のレンズ形状に対応する凹部を形成する。
特開平8−11223号公報
A diamond tool is attached to the main shaft and rotated using an ultra-precision processing machine with three or more axes simultaneously, while the work (workpiece) is fixed to a horizontal surface or a surface orthogonal to the shaft. While the diamond tool is scanned in the Z direction at a predetermined pitch, the workpiece is moved in the X and Y directions to remove a predetermined portion of the surface of the workpiece, thereby forming a recess corresponding to a desired lens shape.
JP-A-8-11223

小さな曲率半径の凹部の形成するためには、ダイヤモンドバイトの回転半径を小さくする必要がある。   In order to form a concave portion having a small curvature radius, it is necessary to reduce the turning radius of the diamond tool.

しかし、上記加工方法にはダイヤモンドバイトを取り付けた主軸とワークとの干渉等の問題があるため凹部の曲率半径を小さくするには限界があった。   However, there is a limit in reducing the radius of curvature of the recess because the above-described processing method has problems such as interference between the main shaft to which the diamond tool is attached and the workpiece.

この発明はこのような事情に鑑みてなされたもので、その課題は曲率半径の小さい凹部を形成することができる光学素子金型の加工方法及び加工装置を提供することである。   The present invention has been made in view of such circumstances, and an object thereof is to provide a processing method and a processing apparatus for an optical element mold capable of forming a recess having a small curvature radius.

上記課題を解決するため請求項1記載の発明は、被加工物を切削する工具を用いて加工して、複数の独立した光学機能面を有する光学素子を成形するための金型を作成する加工方法において、前記被加工物の加工面に対して直交するZ軸の方向への前記被加工物の移動と、このZ軸と水平面上で直交するX軸の方向への前記工具の移動と、前記Z軸及びX軸と直交するY軸周りへの前記工具の回転とを同時に行なって前記被加工物の加工を行う加工工程と、前記Y軸の方向へ前記被加工物を前記工具に対して相対的に移動させる移動工程とを繰り返し行うことを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is a process for forming a mold for forming an optical element having a plurality of independent optical functional surfaces by processing using a tool for cutting a workpiece. In the method, movement of the workpiece in the direction of the Z axis perpendicular to the machining surface of the workpiece, movement of the tool in the direction of the X axis perpendicular to the Z axis on the horizontal plane, A machining step of machining the workpiece by simultaneously rotating the tool about a Y axis orthogonal to the Z axis and the X axis; and the workpiece in the direction of the Y axis with respect to the tool The moving step of relatively moving is repeatedly performed.

請求項2記載の発明は、被加工物を切削する工具を用いて加工して、複数の独立した光学機能面を有する光学素子を成形するための金型を作成する加工方法において、前記被加工物の加工面に対して直交するZ軸の方向への前記被加工物の移動と、このZ軸と水平面上で直交するX軸の方向への前記工具の移動とを同時に行なって前記被加工物の加工を行う加工工程と、前記Z軸及び前記X軸と直交する前記Y軸の方向へ前記被加工物を前記工具に対して相対的に移動させる移動工程とを繰り返し行うことを特徴とする。   The invention according to claim 2 is a processing method for forming a mold for forming an optical element having a plurality of independent optical functional surfaces by processing using a tool for cutting a workpiece. The workpiece is moved by simultaneously moving the workpiece in the direction of the Z axis perpendicular to the machining surface of the workpiece and moving the tool in the direction of the X axis perpendicular to the Z axis on the horizontal plane. It is characterized by repeatedly performing a machining step for machining a workpiece and a moving step for moving the workpiece relative to the tool in the direction of the Y axis perpendicular to the Z axis and the X axis. To do.

請求項3記載の発明は、請求項2記載の光学素子金型の加工方法において、前記工具の刃先の逃げ角は前記被加工物の加工面と前記工具との当接時における最大接線角より大きいことを特徴とする。   According to a third aspect of the present invention, in the method of processing an optical element mold according to the second aspect, the clearance angle of the cutting edge of the tool is greater than the maximum tangent angle at the time of contact between the processed surface of the workpiece and the tool. It is large.

請求項4記載の発明は、被加工物を保持し、前記被加工物の加工面に対してほぼ直交するZ軸の方向と、前記Z軸の方向と直交するY軸の方向とに移動可能な被加工物保持部と、前記Z軸及びY軸と直交するX軸の方向へ移動可能であり、前記被加工物を研削する工具とを有する加工装置において、前記被加工物の加工時に、前記被加工物保持部の前記Z軸の方向への移動と同時に、前記工具を前記X軸の方向へ移動させ、その後前記被加工物保持部を前記Y軸の方向へ移動させる制御手段を備えていることを特徴とする。   The invention according to claim 4 holds the workpiece and is movable in the Z-axis direction substantially orthogonal to the machining surface of the workpiece and the Y-axis direction orthogonal to the Z-axis direction. In a processing apparatus having a workpiece holding part and a tool that is movable in the X-axis direction orthogonal to the Z-axis and the Y-axis and grinds the workpiece, when processing the workpiece, Simultaneously with the movement of the workpiece holding part in the Z-axis direction, control means is provided for moving the tool in the X-axis direction and then moving the workpiece holding part in the Y-axis direction. It is characterized by.

請求項5記載の発明は、請求項4記載の加工装置において、前記制御手段は、前記被加工物保持部を前記Z軸の方向へ移動させると同時に、前記Y軸と直交する平面内で前記工具の先端部が円弧状の軌跡を描くように前記工具を前記Y軸周りへ回転させることを特徴とする。   According to a fifth aspect of the present invention, in the processing apparatus according to the fourth aspect, the control means moves the workpiece holding portion in the direction of the Z-axis and at the same time in a plane perpendicular to the Y-axis. The tool is rotated around the Y axis so that the tip of the tool draws an arcuate locus.

この発明によれば曲率半径の小さい凹部を形成することができる。   According to the present invention, it is possible to form a recess having a small curvature radius.

以下、この発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1はこの発明の一実施例に係る光学素子金型の加工方法の実施に使用される加工装置の斜視図、図2はその加工方法によって作成されたマイクロレンズ金型の正面図である。   FIG. 1 is a perspective view of a processing apparatus used for carrying out a method for processing an optical element mold according to one embodiment of the present invention, and FIG. 2 is a front view of a microlens mold created by the processing method.

この加工装置はZ軸スライド6とY軸スライド7とX軸スライド5とB軸回転テーブル8とを備えている。   This processing apparatus includes a Z-axis slide 6, a Y-axis slide 7, an X-axis slide 5, and a B-axis rotary table 8.

この実施形態の加工装置は例えばNC加工装置であり、例えばNCコントローラ(制御手段)10からの指示によって、Z軸スライド6、Y軸スライド7、X軸スライド5及びB軸回転テーブル8を駆動するモータ(図示せず)の起動・停止や回転速度を制御し、Z軸スライド6、Y軸スライド7、X軸スライド5及びB軸回転テーブル8をプログラムで決められた任意の位置に移動させることができる。   The machining apparatus according to this embodiment is, for example, an NC machining apparatus, and drives the Z-axis slide 6, the Y-axis slide 7, the X-axis slide 5, and the B-axis rotary table 8 according to instructions from an NC controller (control means) 10, for example. Control the start / stop and rotation speed of a motor (not shown), and move the Z-axis slide 6, Y-axis slide 7, X-axis slide 5 and B-axis rotary table 8 to any position determined by the program. Can do.

Z軸スライド6は図示しないベッド上に配置されている。Z軸スライド6はベッド上をZ軸方向へ移動可能である。Z軸スライド6の位置は例えばレーザ干渉計(図示せず)で検出され、検出結果がNCコントローラ10にフィードバックされる。   The Z-axis slide 6 is disposed on a bed (not shown). The Z-axis slide 6 can move in the Z-axis direction on the bed. The position of the Z-axis slide 6 is detected by, for example, a laser interferometer (not shown), and the detection result is fed back to the NC controller 10.

Y軸スライド7はZ軸スライド6上に配置されている。Y軸スライド7はY軸方向(高さ方向)へ移動可能である。Y軸スライド7の位置は例えばレーザ干渉計で検出され、検出結果がNCコントローラ10にフィードバックされる。Y軸スライド7のZ軸方向の先端部には主軸スピンドル9が設けられている。   The Y-axis slide 7 is disposed on the Z-axis slide 6. The Y-axis slide 7 is movable in the Y-axis direction (height direction). The position of the Y-axis slide 7 is detected by, for example, a laser interferometer, and the detection result is fed back to the NC controller 10. A spindle spindle 9 is provided at the tip of the Y-axis slide 7 in the Z-axis direction.

主軸スピンドル9の中央部(被加工物保持部)にはマイクロレンズ金型(光学素子金型)1(図2参照)の基材となる被加工物1Aがねじ(図示せず)等によって固定されている。   A workpiece 1A serving as a base material of a microlens mold (optical element mold) 1 (see FIG. 2) is fixed to a central portion (workpiece holding portion) of the spindle spindle 9 with a screw (not shown) or the like. Has been.

X軸スライド5は図示しないベッド上にY軸スライド7に隣接配置されている。X軸スライド5はベッド上をX軸方向へ移動可能である。X軸スライド5の位置は例えばレーザ干渉計で検出され、検出結果がNCコントローラ10にフィードバックされる。   The X-axis slide 5 is disposed adjacent to the Y-axis slide 7 on a bed (not shown). The X-axis slide 5 can move on the bed in the X-axis direction. The position of the X-axis slide 5 is detected by, for example, a laser interferometer, and the detection result is fed back to the NC controller 10.

B軸回転テーブル8はX軸スライド5上に配置されている。B軸回転テーブル8は矢印Bに示すようにZ軸及びX軸と直交するY軸周りへ回転可能である。B軸回転テーブル8の回転角度は回転角度検出器(図示せず)によって検出され、検出結果がNCコントローラ10にフィードバックされる。   The B-axis rotary table 8 is disposed on the X-axis slide 5. The B-axis rotary table 8 can rotate about the Y axis orthogonal to the Z axis and the X axis as indicated by an arrow B. The rotation angle of the B-axis rotary table 8 is detected by a rotation angle detector (not shown), and the detection result is fed back to the NC controller 10.

B軸回転テーブル8の中央部にはダイヤモンドバイト(工具)3を保持するダイヤモンドバイトホルダ4が設けられている。ダイヤモンドバイト3は例えば単結晶ダイヤモンドバイトである。ダイヤモンドバイト3の刃先は被加工物1Aの加工点以外と干渉しない形状である。   A diamond tool holder 4 for holding a diamond tool (tool) 3 is provided at the center of the B-axis rotary table 8. The diamond tool 3 is, for example, a single crystal diamond tool. The cutting edge of the diamond cutting tool 3 has a shape that does not interfere with anything other than the processing point of the workpiece 1A.

ダイヤモンドバイト3を用いて被加工物1Aの加工面(XY面)2を切削して、マイクロレンズのレンズ形状に対応する凹部2aが形成される。刃先3−1の形状の精度はそのままマイクロレンズ金型1の形状の精度を決定づける。したがって、刃先3−1の真円度精度が高いダイヤモンドバイト3を用いるか、各スライド5,6,7の蛇行や熱変形に起因する加工誤差等を補正するために補正加工機能を加工装置に持たせる必要がある。補正加工機能は、加工面2を加工した後に凹部2aの形状を測定し、形状誤差を考慮して元の加工プログラムを修正し、2回目以後の加工の誤差を解消しようとする機能である。   The processing surface (XY surface) 2 of the workpiece 1A is cut using the diamond tool 3 to form a recess 2a corresponding to the lens shape of the microlens. The accuracy of the shape of the cutting edge 3-1 determines the accuracy of the shape of the microlens mold 1 as it is. Therefore, a diamond tool 3 having a high roundness accuracy of the cutting edge 3-1 is used, or a correction processing function is provided in the processing device to correct processing errors caused by meandering or thermal deformation of the slides 5, 6, and 7. It is necessary to have it. The correction processing function is a function of measuring the shape of the recess 2a after processing the processing surface 2, correcting the original processing program in consideration of the shape error, and trying to eliminate the processing error after the second time.

ダイヤモンドバイト3をダイヤモンドバイトホルダ4に固定したとき、ダイヤモンドバイト3の高さ方向(Y軸方向)の位置は主軸スピンドル9の中心軸の高さ方向の位置と一致する。   When the diamond tool 3 is fixed to the diamond tool holder 4, the position of the diamond tool 3 in the height direction (Y-axis direction) coincides with the position of the center axis of the main spindle 9 in the height direction.

この加工装置を用いたシェーパ加工には、同時2軸シェーパ加工と同時3軸シェーパ加工とがある。シェーパ加工とは被加工物1Aを固定し、ダイヤモンドバイト3を移動させる加工方法である。   Shaper processing using this processing apparatus includes simultaneous biaxial shaper processing and simultaneous triaxial shaper processing. The shaper processing is a processing method in which the workpiece 1A is fixed and the diamond tool 3 is moved.

図3はシェーパ加工を説明するための図である。   FIG. 3 is a diagram for explaining the shaper processing.

まず、同時2軸シェーパ加工について説明する。   First, simultaneous biaxial shaper processing will be described.

(1)マイクロレンズ金型1の凹部2aの曲率半径に応じてダイヤモンドバイト3をX軸の方向へ移動させ、かつこの移動と同時に、被加工物1AをZ軸方向へ移動させるように各スライド5,6を駆動するモータを制御して被加工物1Aの加工面2を切削する。 (1) Each slide so that the diamond cutting tool 3 is moved in the X-axis direction according to the radius of curvature of the concave portion 2a of the microlens mold 1 and at the same time, the workpiece 1A is moved in the Z-axis direction. The processing surface 2 of the workpiece 1A is cut by controlling the motor that drives the motors 5 and 6.

(2)被加工物1Aを予め決められた所定量だけ切削した後、被加工物1Aをダイヤモンドバイト3に接触させずに所定ピッチだけY軸方向へ移動させるようにY軸スライド7を駆動するモータを制御する。 (2) After the workpiece 1A is cut by a predetermined amount, the Y-axis slide 7 is driven so that the workpiece 1A is moved in the Y-axis direction by a predetermined pitch without contacting the diamond tool 3. Control the motor.

(3)(1)と同様にダイヤモンドバイト3をX軸の方向へ移動させ、かつこの移動と同時に、被加工物1AをZ軸方向へ移動させるように各スライド5,6を駆動するモータを制御して被加工物1Aの加工面2を切削する。 (3) Similarly to (1), the diamond tool 3 is moved in the X-axis direction, and simultaneously with this movement, a motor that drives the slides 5 and 6 so as to move the workpiece 1A in the Z-axis direction. The processed surface 2 of the workpiece 1A is cut by control.

以下、上記工程(1)〜(3)を繰返してマイクロレンズ金型1が作成される。   Thereafter, the microlens mold 1 is created by repeating the steps (1) to (3).

この同時2軸シェーパ加工ではダイヤモンドバイト3の刃先3−1の逃げ角を被加工物1Aの加工面2とダイヤモンドバイト3との当接時の最大接線角より大きくする必要がある。   In this simultaneous biaxial shaper processing, it is necessary to make the clearance angle of the cutting edge 3-1 of the diamond cutting tool 3 larger than the maximum tangent angle at the time of contact between the processing surface 2 of the workpiece 1A and the diamond cutting tool 3.

単結晶ダイヤモンドバイトの場合、刃先3−1の真円度を保ちながら20°以上の逃げ加工を行うことはダイヤモンドの結晶方位との関係で非常に難しく、刃先3−1の強度が低下して刃先3−1の摩耗が早くなる。したがって、最大接線角が20°を超えるときにはX軸、Z軸方向への移動だけでなくY軸周りの回転も同時に行う同時3軸シェーパ加工の方が好ましい。   In the case of a single crystal diamond tool, it is very difficult to perform relief processing of 20 ° or more while maintaining the roundness of the cutting edge 3-1, due to the crystal orientation of the diamond, and the strength of the cutting edge 3-1 is reduced. Wear of the cutting edge 3-1 is accelerated. Therefore, when the maximum tangent angle exceeds 20 °, simultaneous three-axis shaper machining is preferable, in which not only movement in the X-axis and Z-axis directions but also rotation around the Y-axis is performed simultaneously.

次に、同時3軸シェーパ加工について説明する。   Next, simultaneous three-axis shaper processing will be described.

(1)マイクロレンズ金型1の凹部2aの曲率半径に応じてダイヤモンドバイト3をX軸の方向へ移動させ、かつこの移動と同時に、Y軸周りにB軸回転テーブル8を回転させるようにX軸スライド5とB軸回転テーブル8とを駆動するそれぞれのモータを制御し、更にZ軸スライド6を駆動するモータを同時に起動して被加工物1Aの加工面2を切削する。 (1) The diamond cutting tool 3 is moved in the X-axis direction according to the radius of curvature of the concave portion 2a of the microlens mold 1, and simultaneously with this movement, the B-axis rotary table 8 is rotated around the Y-axis. The respective motors that drive the shaft slide 5 and the B-axis rotary table 8 are controlled, and the motor that drives the Z-axis slide 6 is simultaneously activated to cut the machining surface 2 of the workpiece 1A.

(2)被加工物1Aを予め決められた所定量だけ切削した後、被加工物1Aをダイヤモンドバイト3に接触させずに所定ピッチだけY軸方向へ移動させるようにY軸スライド7を駆動するモータを制御する。 (2) After the workpiece 1A is cut by a predetermined amount, the Y-axis slide 7 is driven so that the workpiece 1A is moved in the Y-axis direction by a predetermined pitch without contacting the diamond tool 3. Control the motor.

(3)(1)と同様にダイヤモンドバイト3をX軸の方向へ移動させ、かつこの移動と並行して、Y軸周りにB軸回転テーブルを回転させるようにX軸スライド5とB軸回転テーブル8とを駆動するそれぞれのモータを制御し、更にZ軸スライド6を駆動するモータを同時に起動して被加工物1Aの加工面2を切削する。 (3) Similar to (1), the diamond bit 3 is moved in the X-axis direction, and in parallel with this movement, the X-axis slide 5 and the B-axis are rotated so that the B-axis rotary table is rotated around the Y axis. The respective motors that drive the table 8 are controlled, and the motor that drives the Z-axis slide 6 is simultaneously activated to cut the machining surface 2 of the workpiece 1A.

以下、上記工程(1)〜(3)を繰返してマイクロレンズ金型1が作成される。   Thereafter, the microlens mold 1 is created by repeating the steps (1) to (3).

本発明者は金型加工結果のデータをとるために以下の実験を行った。   The present inventor conducted the following experiment in order to obtain data of the die machining result.

マイクロレンズ金型1の材料としては、スタバックス(ウッデホルム社製の13Cr系ステンレス鋼)にNi−P(無電解ニッケルめっき)を施した被加工物1Aを用いた。凹部2aの半径及び深さがそれぞれ8mm及び0.25mmのいわゆる4目玉のマイクロレンズ金型1を作成した。   As a material of the microlens mold 1, a workpiece 1A obtained by applying Ni-P (electroless nickel plating) to Starbucks (13Cr stainless steel manufactured by Woodeholm) was used. A so-called four-eye microlens mold 1 having a recess 2a radius and depth of 8 mm and 0.25 mm, respectively, was prepared.

以下、加工条件とともに加工結果を記載する。   Hereinafter, the processing results are described together with the processing conditions.

加工条件:1.単結晶ダイヤモンドバイト、刃先半径1mm
2.仕上げ送り速度 X軸、Z軸 100mm/min
B軸 3rpm
3.仕上げ切り込み量 2μm
4.仕上げ加工ピッチ(Y軸方向) 8μm
5.切削油 白灯油
6.加工時間 100分
加工結果:1.面粗さ 6.7nmRa(理論面粗さは(仕上げ加工ピッチ)2/8*(刃先半径))=8nmRa)
2.うねり 0.06nmRa
3.アス 0.14μm
4.形状精度 0.1μm
5.位置精度(凹部間の位置関係) 0.5μm以下であった。
Processing conditions: Single crystal diamond tool, radius 1mm
2. Finish feed rate X axis, Z axis 100mm / min
B axis 3rpm
3. Finish cut depth 2μm
4). Finishing pitch (Y axis direction) 8μm
5. Cutting oil White kerosene
6). Processing time 100 minutes Processing result: 1. Surface roughness 6.7NmRa (theoretical surface roughness (finishing pitch) 2/8 * (edge radius)) = 8NmRa)
2. Swell 0.06nmRa
3. As 0.14 μm
4). Shape accuracy 0.1μm
5. Position accuracy (positional relationship between recesses) 0.5 μm or less.

この実施形態によれば、上述のようにダイヤモンドバイトによるワークの削り方が従来例と異なるので、ダイヤモンドバイトを取り付けた主軸とワーク(被加工物)との干渉等の問題が生じず、曲率半径の小さい凹部2aを形成することができる。また、上記加工結果からフライカット方式より高い面精度を得ることができる。更に、上記加工結果から位置精度をサブミクロン単位まで高めることができる。   According to this embodiment, since the method of cutting the workpiece with the diamond cutting tool is different from the conventional example as described above, there is no problem such as interference between the spindle to which the diamond cutting tool is attached and the workpiece (workpiece), and the radius of curvature is reduced. Can be formed. Moreover, higher surface accuracy than the fly-cut method can be obtained from the above processing results. Furthermore, the positional accuracy can be increased to the submicron unit from the processing result.

図1はこの発明の一実施例に係る光学素子金型の加工方法の実施に使用される加工装置の斜視図である。FIG. 1 is a perspective view of a processing apparatus used for carrying out an optical element mold processing method according to an embodiment of the present invention. 図2はその加工方法によって作成されたマイクロレンズ金型の正面図である。FIG. 2 is a front view of a microlens mold created by the processing method. 図3はシェーパ加工を説明するための図である。FIG. 3 is a diagram for explaining the shaper processing.

符号の説明Explanation of symbols

1:マイクロレンズ金型(光学素子金型)、1A:被加工物、2:加工面、3:ダイヤモンドバイト(工具)、3−1:刃先、5:X軸スライド、6:Z軸スライド、7:Y軸スライド、8:B軸回転テーブル、10:NCコントローラ(制御手段)。   1: Micro lens mold (optical element mold), 1A: work piece, 2: processing surface, 3: diamond tool (tool), 3-1: cutting edge, 5: X-axis slide, 6: Z-axis slide, 7: Y-axis slide, 8: B-axis rotary table, 10: NC controller (control means).

Claims (5)

被加工物を切削する工具を用いて加工して、複数の独立した光学機能面を有する光学素子を成形するための金型を作成する加工方法において、
前記被加工物の加工面に対して直交するZ軸の方向への前記被加工物の移動と、このZ軸と水平面上で直交するX軸の方向への前記工具の移動と、前記Z軸及びX軸と直交するY軸周りへの前記工具の回転とを同時に行なって前記被加工物の加工を行う加工工程と、
前記Y軸の方向へ前記被加工物を前記工具に対して相対的に移動させる移動工程とを繰り返し行うことを特徴とする光学素子金型の加工方法。
In a processing method for forming a mold for forming an optical element having a plurality of independent optical functional surfaces by processing using a tool for cutting a workpiece,
Movement of the workpiece in the direction of the Z axis perpendicular to the machining surface of the workpiece, movement of the tool in the direction of the X axis perpendicular to the Z axis on the horizontal plane, and the Z axis And a machining step of machining the workpiece by simultaneously performing rotation of the tool about the Y axis perpendicular to the X axis;
A method of processing an optical element mold, comprising repeatedly performing a moving step of moving the workpiece relative to the tool in the Y-axis direction.
被加工物を切削する工具を用いて加工して、複数の独立した光学機能面を有する光学素子を成形するための金型を作成する加工方法において、
前記被加工物の加工面に対して直交するZ軸の方向への前記被加工物の移動と、このZ軸と水平面上で直交するX軸の方向への前記工具の移動とを同時に行なって前記被加工物の加工を行う加工工程と、
前記Z軸及び前記X軸と直交する前記Y軸の方向へ前記被加工物を前記工具に対して相対的に移動させる移動工程とを繰り返し行うことを特徴とする光学素子金型の加工方法。
In a processing method for forming a mold for forming an optical element having a plurality of independent optical functional surfaces by processing using a tool for cutting a workpiece,
The movement of the workpiece in the direction of the Z axis perpendicular to the machining surface of the workpiece and the movement of the tool in the direction of the X axis perpendicular to the Z axis on the horizontal plane are performed simultaneously. A processing step of processing the workpiece;
A method of processing an optical element mold, comprising repeatedly performing a moving step of moving the workpiece relative to the tool in a direction of the Y axis perpendicular to the Z axis and the X axis.
前記工具の刃先の逃げ角は前記被加工物の加工面と前記工具との当接時における最大接線角より大きいことを特徴とする請求項2記載の光学素子金型の加工方法。   3. The method of processing an optical element mold according to claim 2, wherein a clearance angle of the cutting edge of the tool is larger than a maximum tangent angle at the time of contact between the processing surface of the workpiece and the tool. 被加工物を保持し、前記被加工物の加工面に対してほぼ直交するZ軸の方向と、前記Z軸の方向と直交するY軸の方向とに移動可能な被加工物保持部と、前記Z軸及びY軸と直交するX軸の方向へ移動可能であり、前記被加工物を研削する工具とを有する加工装置において、
前記被加工物の加工時に、前記被加工物保持部の前記Z軸の方向への移動と同時に、前記工具を前記X軸の方向へ移動させ、その後前記被加工物保持部を前記Y軸の方向へ移動させる制御手段を備えていることを特徴とする加工装置。
A workpiece holding section that holds the workpiece and is movable in a Z-axis direction substantially orthogonal to the processing surface of the workpiece and a Y-axis direction orthogonal to the Z-axis direction; In a processing apparatus having a tool capable of moving in the direction of the X axis perpendicular to the Z axis and the Y axis, and grinding the workpiece,
During the processing of the workpiece, the tool is moved in the X-axis direction simultaneously with the movement of the workpiece holding portion in the Z-axis direction, and then the workpiece holding portion is moved in the Y-axis direction. A processing apparatus comprising control means for moving in a direction.
前記制御手段は、前記被加工物保持部を前記Z軸の方向へ移動させると同時に、前記Y軸と直交する平面内で前記工具の先端部が円弧状の軌跡を描くように前記工具を前記Y軸周りへ回転させることを特徴とする請求項4記載の加工装置。   The control means moves the workpiece holding portion in the Z-axis direction and simultaneously moves the tool so that the tip of the tool draws an arc-shaped locus in a plane orthogonal to the Y-axis. The processing apparatus according to claim 4, wherein the processing apparatus is rotated about the Y axis.
JP2005198222A 2005-07-07 2005-07-07 Method and apparatus for working optical element mold Withdrawn JP2007015199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198222A JP2007015199A (en) 2005-07-07 2005-07-07 Method and apparatus for working optical element mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198222A JP2007015199A (en) 2005-07-07 2005-07-07 Method and apparatus for working optical element mold

Publications (1)

Publication Number Publication Date
JP2007015199A true JP2007015199A (en) 2007-01-25

Family

ID=37752768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198222A Withdrawn JP2007015199A (en) 2005-07-07 2005-07-07 Method and apparatus for working optical element mold

Country Status (1)

Country Link
JP (1) JP2007015199A (en)

Similar Documents

Publication Publication Date Title
US8424427B2 (en) Method and apparatus for roll surface machining
TWI359711B (en) Raster cutting technology for ophthalmic lenses
JP4786432B2 (en) Precision roll lathe
JP4837448B2 (en) Precision roll lathe
JP4777149B2 (en) Roll processing method
JP4953599B2 (en) Grinding method and grinding apparatus for workpiece profile
US10569348B2 (en) Groove-forming method, control device for machine tool and tool path generating device
JP5355206B2 (en) Processing apparatus and processing method
JP5478296B2 (en) Fresnel lens, Fresnel lens mold, Fresnel lens manufacturing method, and Fresnel lens mold manufacturing method
JP4576255B2 (en) Tool whetstone shape creation method
JP2010017769A (en) Method of machining sheet-like workpiece
JP2006289566A (en) Grinding processing method and grinding processing device of forming die of micro lens array
JP4732862B2 (en) Machine tool and workpiece machining method in machine tool
JP2010029947A (en) Compound end mill and processing method using compound end mill
JP2006320970A (en) Machining device
JP4712586B2 (en) NC machine tool
WO2021192144A1 (en) Method for manufacturing fresnel lens mold, machining apparatus, and cutting tool
JP2007090489A (en) Die cutting method and device therefor
JP2006289871A (en) Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element
JP2007015199A (en) Method and apparatus for working optical element mold
JP2011011295A (en) Fine recessed part working method and fine recessed part working machine
JP2001353645A (en) Cutting edge forming method and grinding machining device of machining tool
JP2004344957A (en) Method for manufacturing compound laser beam machine and precision worked product
JPH07124813A (en) Forming method of fresnel shape
JP2002160103A (en) Curved surface machine method and its device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007