JP2007009689A - Ground improvement method and ground improvement machine - Google Patents

Ground improvement method and ground improvement machine Download PDF

Info

Publication number
JP2007009689A
JP2007009689A JP2006284503A JP2006284503A JP2007009689A JP 2007009689 A JP2007009689 A JP 2007009689A JP 2006284503 A JP2006284503 A JP 2006284503A JP 2006284503 A JP2006284503 A JP 2006284503A JP 2007009689 A JP2007009689 A JP 2007009689A
Authority
JP
Japan
Prior art keywords
mixing
improvement
fluidity
depth
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006284503A
Other languages
Japanese (ja)
Inventor
Masaki Makino
昌己 牧野
Hirokuni Ito
浩邦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kato Construction Co Ltd
Original Assignee
Kato Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kato Construction Co Ltd filed Critical Kato Construction Co Ltd
Priority to JP2006284503A priority Critical patent/JP2007009689A/en
Publication of JP2007009689A publication Critical patent/JP2007009689A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground improvement method having a high quality and excellent economical efficiency by actively changing fluidity at each treating depth. <P>SOLUTION: The ground improvement method mixes and agitates soil with a solidifier while excavating the present place ground. A mixing agitating head given a backhoe is penetrated into the ground and the ground is improved and treated as the ground improvement method. (a) The treating depth fluidity characteristic of treating ground is predetermined so that the fluidity of the treating ground is improved with the increase of the treating depth, a fluidity characteristic value as a target when the treating depth of an object region is specified is obtained from the characteristic and the fluidity of the treating ground immediately after treatment in the object region reaches the fluidity characteristic value in this case. (b) The rotational speed of a mixing agitating blade in the case of an actual mixing agitation is not made lower than half the rotational speed of the mixing agitating blade in the case of a non-loading. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水とセメント等の固化材とを混ぜ合わせたミルク状固化材もしくは粉体状固化材を地中に噴射しながら現位置土(原土)の掘削と混合撹拌処理を施すことにより、その処理土の強度を増加させるようにした地盤改良工法とその工法に用いる地盤改良機械に関するものである。   The present invention performs excavation of the current soil (raw soil) and mixing and stirring treatment while injecting a milky solidified material or a powdered solidified material mixed with water and a solidified material such as cement into the ground. The present invention relates to a ground improvement method for increasing the strength of the treated soil and a ground improvement machine used for the method.

セメントに代表されるような固化材と水とを予め混練したミルク状固化材を地中噴射しながら処理対象となる原土と混合撹拌する地盤改良工法においては、そのミルク状固化材量の決定は処理品質や経済性および施工性の上で重要な要素となる。そこで従来は、処理対象となる現場の土(現位置土もしくは原土)を先ず採取し、目標強度を達成するであろうと思われる固化材量を決定した上で、水との混合比率を変えた複数のミルク状固化材のパターンでの強度を測定して相関グラフを作成し、最終的にはそのグラフをもとに、目標強度を達成できて且つ最も経済性に優れた固化材量を求めるようにしている。   Determination of the amount of milky solidification material in the ground improvement method in which a milky solidification material kneaded in advance with a solidification material such as cement is mixed and stirred with the raw soil to be treated while being injected into the ground. Is an important factor in terms of processing quality, economy and workability. Therefore, in the past, the site soil (current soil or raw soil) to be treated was first collected, the amount of solidified material that would achieve the target strength was determined, and the mixing ratio with water was changed. Measure the strength of multiple milk-like solidified material patterns and create a correlation graph. Based on the graph, finally, you can achieve the target strength and obtain the most economical amount of solidified material. I want to ask.

例えば特許文献1では、図28に示すように、処理対象となる特定の原土での目標強度を160kN/m2とした場合、水(W)と固化材(C)との混合率W/Cの値をそれぞれ70%、90%および110%と経験的に推測した上で、それぞれの強度を測定してグラフ化し、同グラフから目標強度160kN/m2を満足し得る固化材量として、W/C=70%のときには71kg/m3、W/C=90%のときには93kg/m3、W/C=110%のときには111kg/m3をそれぞれ求めるようにしている。そして、現場での施工性や経済性を考慮して、特に水分量が小さいほど強度発現が顕著となることから、多くの場合には水分量の最も少ない固化材量で目標強度を達成できるものとして、W/C=70%の場合の71kg/m3を最終的に選定するようにしている。 For example, in Patent Document 1, as shown in FIG. 28, when the target strength of a specific raw soil to be treated is 160 kN / m 2 , the mixing ratio W / of the water (W) and the solidified material (C). After empirically estimating the values of C as 70%, 90%, and 110%, respectively, the respective strengths were measured and graphed. From the graph, the amount of solidified material that can satisfy the target strength of 160 kN / m 2 , 71 kg / m 3 is obtained when W / C = 70%, 93 kg / m 3 when W / C = 90%, and 111 kg / m 3 when W / C = 110%. And considering the workability and economic efficiency at the site, the strength development becomes more remarkable as the water content is smaller, so in many cases, the target strength can be achieved with the amount of solidified material with the smallest water content. As a result, 71 kg / m 3 when W / C = 70% is finally selected.

ただし、上記のような固化材量の決定はあくまで原土サンプルを使用した室内土質試験での目標強度に基づくものであって、実際の現場での改良深度や施工性等を忠実に反映したものではないことから、多くの場合には室内強度の75〜50%程度とみなして実際の施工を行うことになる。
特願2002−82436号
However, the determination of the amount of solidified material as described above is based solely on the target strength in the indoor soil test using the raw soil sample and faithfully reflects the depth of improvement and workability, etc. at the actual site. Therefore, in many cases, the actual construction is performed assuming that the strength of the room is about 75 to 50%.
Japanese Patent Application No. 2002-82436

しかしながら、上記のように原土のサンプルを採取した上で混合すべき固化材量を決定したとしても、現場での実際の原土の性状によっては粘着性が高すぎて十分な混合撹拌が行えなかったり、特に深度が3m程度よりも大きくなる場合には土圧による拘束圧もかかり、機械負荷が大きすぎて十分な混合撹拌ができずに混合むらが生じるなど品質の低下を招くことがある。また、逆に要求品質を満たすような混合撹拌を行おうとすると必要以上に時間がかかり、不経済となって好ましくない。   However, even if the amount of solidification material to be mixed is determined after collecting a sample of the raw soil as described above, the adhesiveness is too high depending on the actual properties of the raw soil at the site, and sufficient mixing and stirring can be performed. In particular, when the depth is greater than about 3 m, a restraint pressure due to earth pressure is also applied, and the mechanical load may be too large to perform sufficient mixing and stirring, resulting in uneven mixing, which may lead to quality deterioration. . On the other hand, it is not preferable to perform mixing and stirring so as to satisfy the required quality because it takes more time than necessary, which is uneconomical.

本発明はこのような課題に着目してなされたもので、地盤改良による機械負荷を考慮して予め改良処理深度−流動性特性または改良処理深度−原土の湿潤密度−流動性特性を定めておき、これらの特性から求めた目標とする流動性特性値となるように改良処理を行うことにより、例えばミルク状固化材と原土とを均一に混合撹拌することができ、しかもその混合撹拌によって処理土が流動化を呈する状態とすることで後処理としての締め固めを必要としない地盤改良工法と地盤改良機械を提供するものである。   The present invention has been made paying attention to such a problem. In consideration of the mechanical load due to ground improvement, an improved treatment depth-fluidity characteristic or an improved treatment depth-wet density-fluidity characteristic of the soil is determined in advance. In addition, by performing an improvement treatment so as to achieve the target fluidity characteristic value obtained from these characteristics, for example, the milk-like solidified material and the raw soil can be mixed and stirred uniformly, and by the mixing and stirring, It is intended to provide a ground improvement method and a ground improvement machine that do not require compaction as a post-treatment by setting the treated soil to a fluidized state.

すなわち、一般に、土壌は含水比の大きさに応じて「固体−(収縮限界)−半固体−(塑性限界)−塑性体−(液性限界)−液体」のように変化し、含水比が小さく比較的安定した状態であっても、含水比が大きくなるのに伴い液状化を呈する軟弱土へと変化してゆく。これは、土壌の力学的性質を支配している主要因子が含水量であることを示していることにほかならない。その一方、ミルク状固化材を地中に噴射しながら原土と混合撹拌する地盤改良工法は、ミルク状固化材との混合撹拌による水分補給によって処理土が流動化する故に、一般的には後処理として処理土の締め固めを必要としない工法であると言われているが、先にも述べたように原土の土質性状によっては混合むらや空隙の発生が余儀なくされる。   That is, in general, soil changes as “solid- (shrinkage limit) -semi-solid- (plastic limit) -plastic body- (liquid limit) -liquid” depending on the water content ratio, and the water content ratio is Even in a small and relatively stable state, it changes to soft soil that exhibits liquefaction as the water content ratio increases. This indicates that water content is the main factor governing soil mechanical properties. On the other hand, the ground improvement method that mixes and stirs with the raw soil while injecting the milk-like solidified material into the ground is generally treated later because the treated soil is fluidized by water replenishment by mixing and stirring with the milk-like solidified material. Although it is said that it is a construction method that does not require compaction of the treated soil as a treatment, as described above, depending on the soil properties of the raw soil, mixing unevenness and voids are inevitably generated.

そこで、土質試験によって得られた原土の含水比や液性限界等の諸性状数値により原土の硬軟の程度や粘着度の強弱を把握し、その程度に応じ改良深度ごとに機械負荷のかからない流動性を確保できる程度にまでミルク状固化材に含まれる水分量を大きくすることで、混合撹拌直後に処理土を積極的に流動化させ品質を向上させるのが本発明の目的である。   Therefore, the degree of hardness of the soil and the strength of the adhesion are ascertained from various properties such as the water content ratio and liquid limit of the soil obtained by soil tests, and no mechanical load is applied at each improvement depth according to the degree. It is an object of the present invention to improve the quality by actively fluidizing the treated soil immediately after mixing and stirring by increasing the amount of water contained in the milk-like solidified material to such an extent that fluidity can be secured.

さらに、常に処理土が流動化することによって処理土の強度発現に最も影響を与える混合度合いを最適化するべく深度別に流動性を変化させ、最も経済的な流動性のもとで施工を行い、高品質で且つ経済性に優れた地盤改良工法と地盤改良機械を提供することを目的とする。   Furthermore, the fluidity is changed according to the depth in order to optimize the degree of mixing that most affects the strength expression of the treated soil by always fluidizing the treated soil, and the construction is performed under the most economical fluidity. An object of the present invention is to provide a ground improvement method and a ground improvement machine that are high quality and excellent in economic efficiency.

請求項1に記載の発明は、深度が15m以下の現位置土を掘削しながら固化材と混合撹拌して現位置土の強度増加を図る地盤改良工法において、母機として機能する建設機械のアーム先端に、上下方向に周回移動する混合撹拌翼を備えた混合撹拌ヘッドを装着し、この混合撹拌ヘッドを地中に貫入して改良処理を施すにあたり、下記(a),(b)の条件を満たすように改良処理を施すことを特徴とする。   According to the first aspect of the present invention, in the ground improvement method for increasing the strength of the current position soil by mixing and stirring with the solidified material while excavating the current position soil having a depth of 15 m or less, the tip of the arm of the construction machine functioning as a mother machine In addition, a mixing and stirring head equipped with a mixing and stirring blade that orbits in the vertical direction is installed, and the following conditions (a) and (b) are satisfied when the mixing and stirring head penetrates into the ground and is subjected to an improvement treatment. The improvement process is performed as described above.

(a)少なくとも経済性および施工性の面で良好とされる改良処理直後の処理土の流動性の度合いと改良処理深度との関係として、改良処理深度が大きくなるほど処理土の流動性が高くなるようにその改良処理深度−流動性特性を予め定めておき、この改良処理深度−流動性特性に基づき、処理対象領域の改良処理深度を指定したときの目標とする流動性特性値を求め、処理対象領域での改良処理直後における処理土の流動性が上記流動性特性値となるようにすること。   (A) As the relationship between the degree of fluidity of the treated soil immediately after the improvement treatment and the improvement treatment depth, which are considered to be favorable at least in terms of economy and workability, the fluidity of the treated soil increases as the improvement treatment depth increases. Thus, the improved processing depth-fluidity characteristic is determined in advance, and based on this improved processing depth-fluidity characteristic, a target fluidity characteristic value is obtained when the improved processing depth of the processing target area is designated, and processing is performed. The fluidity of the treated soil immediately after the improvement treatment in the target area should be the above fluidity characteristic value.

(b)実際の混合撹拌時における混合撹拌翼の周回平均速度が無負荷時における混合撹拌翼の周回速度の二分の一の大きさを下回らないこと。   (B) The average rotational speed of the mixing and stirring blade during actual mixing and stirring should not be less than one half of the rotational speed of the mixing and stirring blade during no load.

また、請求項2に記載の発明は、上記改良処理深度−流動性特性に代えて、少なくとも経済性および施工性の面で良好とされる改良処理直後の処理土の流動性の度合いと改良処理深度との関係として、改良処理深度が大きくなるほど処理土の流動性が高くなり且つ原土の湿潤密度が大きくなるほど処理土の流動性が高くなるようにその改良処理深度−原土の湿潤密度−流動性特性を予め定めておき、この改良処理深度−原土の湿潤密度−流動性特性に基づき、処理対象領域の改良処理深度と原土の湿潤密度を指定したときの目標とする流動性特性値を求め、処理対象領域での改良処理直後における処理土の流動性が上記流動性特性値となるように改良処理を行うことを特徴とする。   In addition, the invention according to claim 2 is characterized in that, instead of the improved treatment depth-fluidity characteristic, the degree of fluidity of the treated soil immediately after the improved treatment and the improved treatment, which are good at least in terms of economy and workability. In relation to the depth, the fluidity of the treated soil increases as the depth of the improved treatment increases, and the fluidity of the treated soil increases as the wet density of the raw soil increases. Based on this improved treatment depth-wet soil wet density-fluidity characteristics, the target fluidity characteristics when the improved treatment depth and wet soil density of the target area are specified A value is obtained, and the improvement processing is performed so that the fluidity of the treated soil immediately after the improvement processing in the processing target region becomes the fluidity characteristic value.

この場合、上記流動性の度合いを示す指標としては、例えばJIS R 5201に準拠したフロー試験(テーブルフロー試験)におけるフロー値や、同じくJIS A 1101のスランプ試験に準拠したスランプ値、あるいは粘性度合い等のパラメータを使用することができる。   In this case, as an index indicating the degree of fluidity, for example, a flow value in a flow test (table flow test) in accordance with JIS R 5201, a slump value in accordance with a slump test in JIS A 1101, or a degree of viscosity, etc. Parameters can be used.

さらに、実際の施工時には、地盤改良処理品質の向上の観点から、予め定めた養生期間経過後の目標強度を満足させるのに必要な固化材の添加量にて改良処理を行うものとする。また、請求項3,4に記載のように、混合撹拌翼の周回速度や混合撹拌ヘッドによる改良処理深度をリアルタイムで計測しながら改良処理を行うことが望ましい。   Furthermore, at the time of actual construction, from the viewpoint of improving the quality of ground improvement processing, the improvement processing shall be performed with the addition amount of the solidifying material necessary to satisfy the target strength after the predetermined curing period has elapsed. In addition, as described in claims 3 and 4, it is desirable to perform the improvement process while measuring the revolution speed of the mixing stirring blade and the improvement processing depth by the mixing stirring head in real time.

また、請求項1〜4に記載の発明において、より効率的な地盤改良処理を行う上では、請求項5に記載のように、平面視にて略矩形波状の移動軌跡のもとで混合撹拌ヘッドを連続的に移動させて改良処理を行うものとする。   Moreover, in the invention of Claims 1-4, in performing a more efficient ground improvement process, as described in Claim 5, mixing stirring is carried out under the movement locus | trajectory of a substantially rectangular wave in planar view. It is assumed that the improvement process is performed by continuously moving the head.

より具体的には、請求項6に記載のように、略矩形波状の移動軌跡となる混合撹拌ヘッドの動きは、平面視におけるアーム長さ方向での往動動作と復動動作および双方の動作位置間でのシフト動作を1サイクルとしてこれらを複数サイクル繰り返すものとし、上記混合撹拌ヘッドのシフト動作は、平面視における混合撹拌ヘッドの処理幅寸法以内のものとして行うものとする。   More specifically, as described in claim 6, the movement of the mixing and agitation head, which is a substantially rectangular wave-shaped movement locus, is a forward movement operation and a backward movement operation in the arm length direction in a plan view. The shift operation between the positions is set as one cycle, and these are repeated a plurality of cycles. The shift operation of the mixing and stirring head is performed within the processing width dimension of the mixing and stirring head in a plan view.

この場合、平面視にて略矩形波状の移動軌跡に代えて、請求項7に記載のように、平面視にて略ジグザグ状の移動軌跡のもとで混合撹拌ヘッドを連続的に移動させるか、請求項8に記載のように、平面視にて略N字状の移動軌跡のもとで混合撹拌ヘッドを連続的に移動させて改良処理を行うようにしてもよい。   In this case, whether the mixing and stirring head is continuously moved under a substantially zigzag movement locus in a plan view, instead of the movement locus having a substantially rectangular wave shape in a plan view, as described in claim 7. Further, as described in claim 8, the improvement processing may be performed by continuously moving the mixing and stirring head under a substantially N-shaped movement locus in plan view.

また、請求項1〜8のいずれかに記載の地盤改良工法に用いる地盤改良機械としては、請求項9に記載のように、混合撹拌ヘッドによる改良処理深度、混合撹拌ヘッドの鉛直度および混合撹拌翼の周回速度のうち少なくともいずれか一つを計測する手段を備えていることが望ましく、特に、混合撹拌ヘッドによる改良処理深度を計測する手段と混合撹拌ヘッドの鉛直度を計測する手段はその両者を併用することが望ましい。さらに、請求項10に記載のように、混合撹拌ヘッドによる改良処理深度、混合撹拌ヘッドの鉛直度および混合撹拌翼の周回速度をそれぞれ計測する手段を共に備えていることがより望ましい。   Moreover, as the ground improvement machine used for the ground improvement construction method according to any one of claims 1 to 8, as described in claim 9, the improvement treatment depth by the mixing stirring head, the verticality of the mixing stirring head, and the mixing stirring It is desirable to have a means for measuring at least one of the circulatory speeds of the blades. In particular, the means for measuring the improved processing depth by the mixing and stirring head and the means for measuring the vertical degree of the mixing and stirring head are both. It is desirable to use together. Furthermore, as described in claim 10, it is more desirable to have both means for measuring the improvement processing depth by the mixing and stirring head, the verticality of the mixing and stirring head, and the circumferential speed of the mixing and stirring blade.

請求項1,2に記載の発明によれば、予め改良処理深度−流動性特性または改良処理深度−原土の湿潤密度−流動性特性を定めておき、これらの特性から求めた目標とする流動性特性値、すなわち改良処理深度に応じた流動性特性値となるように地盤改良処理を行うことにより、処理機械が無理なく作動するので処理品質のばらつきがなく、混合むらや空隙の発生をなくして処理品質を向上させることができるほか、単位時間当たりの作業量を大きく確保することができることによって経済性にも優れ、コストダウンを図ることができる。   According to the first and second aspects of the present invention, the improved treatment depth-fluidity characteristics or the improved treatment depth-wet density of the soil-fluidity characteristics are determined in advance, and the target flow obtained from these characteristics is determined. By performing the ground improvement process so that it has a fluidity characteristic value, that is, a fluidity characteristic value according to the improved treatment depth, the processing machine operates without any problem, so there is no variation in processing quality, and no mixing irregularities or voids are generated. In addition to improving the processing quality, a large amount of work per unit time can be secured, so that the economy is excellent and the cost can be reduced.

また、請求項3,4に記載の発明によれば、混合撹拌翼の周回速度あるいは混合撹拌ヘッドによる改良処理深度を計測しながら改良処理を行うことで、処理品質が一段と向上する。   In addition, according to the third and fourth aspects of the present invention, the processing quality is further improved by performing the improvement processing while measuring the circumferential speed of the mixing stirring blade or the improvement processing depth by the mixing stirring head.

請求項5〜8に記載の発明によれば、処理機械たる混合撹拌ヘッドを地中において平面視にて略矩形波状、ジグザグ状もしくは略N字状に移動させて改良処理を行うようにしたことにより、混合撹拌ヘッドの地中への貫入と引き上げとを繰り返し行う従来工法に比べて一段と効率よく作業を行える。   According to the fifth to eighth aspects of the invention, the mixing and stirring head, which is a processing machine, is moved in a substantially rectangular wave shape, zigzag shape or substantially N shape in a plan view in the ground to perform the improvement process. Thus, the work can be performed more efficiently than the conventional method in which the mixing and stirring head is repeatedly penetrated into the ground and pulled up repeatedly.

請求項9,10に記載の発明によれば、混合撹拌ヘッドによる改良処理深度、混合撹拌ヘッドの鉛直度および混合撹拌翼の周回速度のうち少なくともいずれか一つを計測する手段を備えているため、改良処理深度や混合撹拌度合いが安定化して処理品質が一段と向上し、特に混合撹拌ヘッドの鉛直度を計測する手段を備えている場合には鉛直精度の優れた施工を行える。   According to the ninth and tenth aspects of the present invention, there is provided means for measuring at least one of the improved processing depth by the mixing and stirring head, the verticality of the mixing and stirring head, and the circumferential speed of the mixing and stirring blade. The improved processing depth and the degree of mixing and agitation are stabilized, and the processing quality is further improved. In particular, when a means for measuring the verticality of the mixing and agitation head is provided, construction with excellent vertical accuracy can be performed.

図1〜5は本発明の好ましい実施の形態として地盤改良のための施工システムを示し、特に図1〜3は建設機械であるバックホウ1をベースマシン(母機)とする地盤改良機械の全体構造を、図4,5はその細部の構造をそれぞれ示している。なお、図1と図2は同一のものであるが、図面の錯綜化を避けるために二つの図に分けて描いてある。   1 to 5 show a construction system for ground improvement as a preferred embodiment of the present invention, and particularly FIGS. 1 to 3 show the overall structure of a ground improvement machine using a backhoe 1 as a base machine (base machine) as a construction machine. 4 and 5 show details of the structure, respectively. Although FIG. 1 and FIG. 2 are the same, they are divided into two drawings in order to avoid complication of the drawings.

図1に示すように、ベースマシンであるバックホウ1のアーム2の先端には、土壌の掘削と混合撹拌のためにチェーン駆動式のいわゆるトレンチャー式と称される処理機械としての油圧駆動式の混合撹拌ヘッド3が着脱可能に装着されている。   As shown in FIG. 1, at the tip of the arm 2 of the backhoe 1 that is a base machine, a hydraulic drive type mixing machine as a processing machine called a chain drive type so-called trencher type for excavating soil and mixing agitation. A stirring head 3 is detachably mounted.

トレンチャー式の混合撹拌ヘッド3は、図4,5に示すようにフレーム4の上部の駆動論であるチェーンスプロケット5と下部の従動輪6との間にエンドレスなドライブチェーン7を巻き掛けるとともに、そのドライブチェーン7の外周に等ピッチで複数の混合撹拌翼8,8…を装着したものであり、各混合撹拌翼8には図5に示すように複数のカッター刃9が突設されている。上記フレーム4の先端には固化材吐出口10が設けられており、例えば図示しないグラウトポンプ等によって配管11を通して圧送されてきたスラリ状もしくは粉体状の固化材が吐出されるようになっている。そして、フレーム4の上部に設けられた油圧モータ12を起動することにより各混合撹拌翼8,8…がドライブチェーン7とともに周回移動し、それに併せてバックホウ1の推力にて混合撹拌ヘッド3を地中に貫入することにより、土壌の掘削と先に述べた固化材吐出口10から吐出されるスラリ状固化材もしくは粉体状固化材との混合撹拌が行われる。   As shown in FIGS. 4 and 5, the trencher-type mixing and stirring head 3 wraps an endless drive chain 7 between a chain sprocket 5, which is the driving theory of the upper part of the frame 4, and a driven wheel 6 on the lower part, A plurality of mixing agitating blades 8, 8... Are mounted on the outer periphery of the drive chain 7 at an equal pitch, and a plurality of cutter blades 9 are projected from each mixing agitating blade 8 as shown in FIG. A solidified material discharge port 10 is provided at the front end of the frame 4 so that, for example, a slurry-like or powdery solidified material that has been pumped through a pipe 11 by a grout pump (not shown) or the like is discharged. . Then, by starting the hydraulic motor 12 provided at the upper part of the frame 4, the mixing stirring blades 8, 8... Move together with the drive chain 7, and at the same time, the mixing stirring head 3 is grounded by the thrust of the backhoe 1. By penetrating into the soil, excavation of the soil and mixing and stirring with the slurry-like solidified material or the powdery solidified material discharged from the solidified material discharge port 10 described above are performed.

ここで、油圧モータ12と同軸上にはロータリーエンコーダ等の回転センサ13が設けられており、この回転センサ13をもってチェーン駆動用の油圧モータ12の回転数N(rpm)が検出されるようになっている。また、上記ドライブチェーン7を駆動するための駆動輪はそのドライブチェーン7と噛み合うチェーンスプロケット5である必要があるが、従動輪6については必ずしもチェーンスプロケットである必要はない。   Here, a rotation sensor 13 such as a rotary encoder is provided coaxially with the hydraulic motor 12, and the rotation sensor 13 detects the rotation speed N (rpm) of the chain driving hydraulic motor 12. ing. The drive wheel for driving the drive chain 7 needs to be a chain sprocket 5 that meshes with the drive chain 7, but the driven wheel 6 does not necessarily need to be a chain sprocket.

このような混合撹拌ヘッド3による地盤改良工法に際しては、先ず従来と同様に、地盤改良の対象となる土壌を採取して事前に配合試験を行って、図28のグラフに基づいて目標強度を達成するのに必要な水/セメント比(W/C)を決定し、その上で固化材添加量すなわち例えばセメント添加量を決定する。なお、この固化材添加量は、予め定めた養生期間経過後の目標強度を満足させるのに必要な固化材添加量であることは言うまでもない。   In the ground improvement method using the mixing and stirring head 3 as described above, first, the soil to be ground improvement is collected and subjected to a blending test in advance, and the target strength is achieved based on the graph of FIG. The water / cement ratio (W / C) required to do this is determined, and then the solidifying material addition amount, for example, the cement addition amount is determined. In addition, it cannot be overemphasized that this solidification material addition amount is a solidification material addition amount required in order to satisfy the target intensity | strength after predetermined curing period progress.

さらに、施工すべき改良処理深度の大きさにかかわらず、上記のように原位置土の掘削と混合撹拌処理を司ることになるトレンチャー式の混合撹拌ヘッド3の負荷が常に65%以下となるように、その改良処理深度に応じ改良処理直後における処理土の流動性を変化させて改良処理を行うものとする。より具体的には、混合撹拌時における混合撹拌ヘッド3の負荷抵抗率をAv、無負荷時における混合撹拌翼8の周回速度すなわちドライブチェーン7の周回速度をB(m/sec)、混合撹拌時におけるドライブチェーン7の周回平均速度をC(m/sec)とした場合に、下記(1)式より算出される混合撹拌ヘッド3の負荷抵抗率Avの値が65%以下となるように、改良処理深度に応じて改良処理直後における処理土の流動性を変化させて改良処理を行うものとする。   Furthermore, the load of the trencher type mixing and agitating head 3 that controls the in-situ excavation and mixing and agitation processing as described above is always 65% or less regardless of the depth of the improvement processing depth to be constructed. Furthermore, the improvement process shall be performed by changing the fluidity of the treated soil immediately after the improvement process according to the improvement process depth. More specifically, Av represents the load resistivity of the mixing and stirring head 3 during mixing and stirring, B (m / sec) represents the circumferential speed of the mixing and stirring blade 8 when no load is applied, that is, the circumferential speed of the drive chain 7, and When the average speed of the drive chain 7 at C is C (m / sec), the load resistivity Av of the mixing and stirring head 3 calculated from the following formula (1) is reduced to 65% or less. The improvement treatment is performed by changing the fluidity of the treated soil immediately after the improvement treatment according to the treatment depth.

Av={(B−C)/B}×100(%)‥‥(1)
ただし、
Av:混合撹拌時における混合撹拌ヘッドの負荷抵抗率
B:無負荷時における混合撹拌翼の周回速度
C:混合撹拌時における混合撹拌翼の周回平均速度
上記の無負荷時におけるドライブチェーンの周回速度B(m/sec)は、先の回転センサ13によって検出される油圧モータ12の回転数をN(rpm)、ドライブチェーン駆動用のチェーンスプロケット5の円周寸法をK(m)とすれば、下記(2)式によって算出される。
Av = {(BC) / B} × 100 (%) (1)
However,
Av: Load resistivity of the mixing agitation head during mixing agitation B: Circulation speed of the mixing agitation blade at no load C: Circulation average speed of the mixing agitation blade at the time of mixing agitation B (M / sec) is the following, assuming that the rotational speed of the hydraulic motor 12 detected by the previous rotation sensor 13 is N (rpm) and the circumferential dimension of the drive chain drive chain sprocket 5 is K (m). Calculated by equation (2).

B(m/sec)=(N×K)/60‥‥(2)
また、上記の混合撹拌時におけるドライブチェーン7の周回平均速度C(m/sec)は、無負荷時と異なり混合撹拌抵抗を受けて変動するので、例えば予め試運転等を行って所定時間(例えば10分間)でのドライブチェーン7の速度C1(m/sec)を記憶もしくは記録した上で、その所定時間内でのドライブチェーン7の平均速度C(m/sec)として算出して予め求めておくものとする。
B (m / sec) = (N × K) / 60 (2)
Further, the average rotational speed C (m / sec) of the drive chain 7 at the time of the above mixing and stirring varies due to the mixing and stirring resistance unlike the case of no load. For example, a trial run or the like is performed in advance for a predetermined time (for example, 10). The speed C1 (m / sec) of the drive chain 7 in minutes) is stored or recorded, and is calculated in advance as the average speed C (m / sec) of the drive chain 7 within the predetermined time. And

上記(1)式によって算出される混合撹拌ヘッド3の負荷抵抗率Avの値が65%以下という条件を満たすように施工を行うためには、実際の混合撹拌時におけるドライブチェーン7(混合撹拌翼8)の周回速度C1が無負荷時におけるドライブチェーン7の周回速度B(m/sec)の二分の一の大きさを下回らないように施工することにほかならないことから、後述するように実際の混合撹拌時におけるドライブチェーン7の周回速度C1を例えばバックホウ1のキャビン内等にリアルタイムで可視表示して、オペレータに対し実際の施工時の周回速度C1が無負荷時の周回速度B(m/sec)の二分の一の大きさを下回らないで施工するように促す。   In order to perform construction so that the value of the load resistivity Av of the mixing and stirring head 3 calculated by the above formula (1) satisfies the condition that it is 65% or less, the drive chain 7 (mixing and stirring blades) at the time of actual mixing and stirring is used. Since the construction is such that the rotational speed C1 of 8) is not less than half the rotational speed B (m / sec) of the drive chain 7 when there is no load, the actual speed will be described later. The rotation speed C1 of the drive chain 7 at the time of mixing and stirring is visually displayed in real time, for example, in the cabin of the backhoe 1, and the rotation speed C1 at the time of actual construction is shown to the operator as the rotation speed B (m / sec at no load). ) Encourage the construction work to be carried out without being less than half the size.

より具体的には、例えば図3に示すように、平面視にて幅がL、長さがMの矩形状に区割りされた一つの領域(以下、これを1区割りという)Eを1単位として地盤改良処理を行う場合、図6の(A)に示すように混合撹拌ヘッド3を地表よりも上方に上昇させた状態でいわゆる空運転を行い、実質的に無負荷の状態で混合撹拌翼8,8…をドライブチェーン7とともに周回移動させて、その時のドライブチェーン7の周回速度Bを上記(2)式に基づいて計測する。ここでは周回速度Bとして例えば1.4(m/sec)を計測したと仮定する。   More specifically, as shown in FIG. 3, for example, one area E (hereinafter referred to as one division) E divided into a rectangular shape having a width L and a length M in plan view is taken as one unit. When performing the ground improvement process, as shown in FIG. 6A, a so-called idling operation is performed in a state where the mixing and stirring head 3 is raised above the ground surface, and the mixing and stirring blade 8 is in a substantially no-load state. , 8... Are rotated together with the drive chain 7 and the peripheral speed B of the drive chain 7 at that time is measured based on the above equation (2). Here, it is assumed that, for example, 1.4 (m / sec) is measured as the circulation speed B.

次いで、指定された1区割りEについて、同図(B)に示すように所定の改良処理深度のもとで実際の施工を行い、所定時間内(例えば10分間)もしくは1区割りEについての処理が終了するまでの実際のドライブチェーン7の周回速度C1(m/sec)をリアルタイムで且つ連続して計測し、その値を記憶もしくは記録する。その上で、作業終了後にそれらの周回平均速度C(m/sec)を算出する。ここでは、その周回平均速度Cが1.2(m/sec)であったと仮定する。   Next, with respect to the designated 1 division E, the actual construction is performed at a predetermined improvement processing depth as shown in FIG. 3B, and the processing for the predetermined division E (for example, 10 minutes) or 1 division E is performed. The actual rotational speed C1 (m / sec) of the drive chain 7 until the end is measured continuously in real time, and the value is stored or recorded. After that, after the work is finished, the lap average speed C (m / sec) is calculated. Here, it is assumed that the circular average speed C was 1.2 (m / sec).

こうして求めたドライブチェーン7の周回速度B=1.4(m/sec)および周回平均速度C=1.2(m/sec)の値をもとに、検証の意味で先の(1)式に基づいて混合撹拌ヘッド3の負荷抵抗率Avを算出する。すなわち、負荷抵抗率Avは
Av={(1.4−1.2)/1.4}×100=14.3(%)
となる。
Based on the values of the rotational speed B = 1.4 (m / sec) and the average rotational speed C = 1.2 (m / sec) of the drive chain 7 thus obtained, the above equation (1) is used for verification. Based on the above, the load resistivity Av of the mixing and stirring head 3 is calculated. That is, the load resistivity Av is Av = {(1.4−1.2) /1.4} × 100 = 14.3 (%)
It becomes.

そして、ここで算出した負荷抵抗率Av=14.3%の値は、先に述べたような負荷抵抗率Avが65%以下という要求条件を満たしていることになる。言い換えるならば、上記(1)式よりして実際の施工時にそのドライブチェーン7の周回速度C1が無負荷時のドライブチェーン7の周回速度Bの二分の一の値を下回らないように配慮さえすれば、負荷抵抗率Avとして65%以下という要求条件を常に満たしていることになる。   The value of load resistivity Av = 14.3% calculated here satisfies the requirement that the load resistivity Av is 65% or less as described above. In other words, from the above equation (1), even during the actual construction, care should be taken so that the rotational speed C1 of the drive chain 7 does not fall below one half of the rotational speed B of the drive chain 7 when there is no load. For example, the load resistivity Av always satisfies the requirement of 65% or less.

そこで、上記の例では、以降の実際の施工すなわち地盤改良処理に際して、オペレータに対し施工条件として無負荷時のドライブチェーン7の周回速度B=1.4(m/sec)の二分の一に相当するデータとして0.7(m/sec)という管理目標値を提示し、当該管理目標値以上となるようなドライブチェーン7の周回速度で処理するように指示する。その一方で、施工中のドライブチェーン7の周回速度C1をリアルタイムで計測した上で後述するようにバックホウ1のキャビン等に可視表示するものとし、その結果としてオペレータは可視表示されたデータを目視確認しながら上記管理目標値である0.7(m/sec)以上となるように施工を行えば、要求される混合撹拌ヘッド3の負荷抵抗率Avを充足することができる。   Therefore, in the above example, in the subsequent actual construction, that is, the ground improvement process, it corresponds to a half of the rotation speed B of the drive chain 7 at no load as the construction condition for the operator = 1.4 (m / sec). The management target value of 0.7 (m / sec) is presented as the data to be processed, and the processing is instructed to be processed at the rotational speed of the drive chain 7 that is equal to or higher than the management target value. On the other hand, the rotational speed C1 of the drive chain 7 under construction is measured in real time and then displayed visually in the cabin of the backhoe 1 as will be described later. As a result, the operator visually confirms the visually displayed data. However, if the construction is carried out so that the management target value is 0.7 (m / sec) or more, the required load resistivity Av of the mixing and stirring head 3 can be satisfied.

さらに、実際の施工時に少なくとも経済性と施工性を両立し得るであろう改良処理深度と改良処理直後における処理土の流動性との相関として、図7に示すような改良処理深度−流動性特性のグラフを予め用意しておくものとする。このグラフは、過去の施工実績すなわち種々の土質や改良処理深度等、過去に蓄積した施工データから経験的に定めたものであり、横軸は改良処理深度を、縦軸は改良処理直後の流動性の指標であるテーブル試験のフロー値(JIS R 5201に準拠)をそれぞれ指示している。ここでは、改良処理深度3mのときのフロー値の許容下限値を100mm、同じく許容上限値を140mmとするとともに、改良処理深度15mのときのフロー値の許容下限値を180mm、同じく許容上限値を220mmとした上で、上記許容下限値同士および許容上限値同士を結ぶように所定勾配の二本の平行線を引き、それら二本の平行線の範囲内を、改良処理直後の流動性の指標であるフロー値の許容範囲として設定してある。同図から明らかなように、改良処理深度が大きくなるほど処理直後の処理土の流動性が高くなるように設定してある。   Furthermore, as a correlation between the improved treatment depth that would at least achieve both economic efficiency and workability during actual construction and the fluidity of the treated soil immediately after the improved treatment, the improved treated depth-fluidity characteristics as shown in FIG. This graph is prepared in advance. This graph is empirically determined from past construction data such as past construction results, that is, various soil types and improvement processing depths. The horizontal axis shows the improvement processing depth, and the vertical axis shows the flow immediately after the improvement processing. The flow value of the table test (conforming to JIS R 5201), which is an index of sex, is indicated. Here, the allowable lower limit value of the flow value at the improved processing depth of 3 m is set to 100 mm, and the allowable upper limit value is set to 140 mm. The allowable lower limit value of the flow value at the improved processing depth of 15 m is set to 180 mm, and the allowable upper limit value is also set. After setting the length to 220 mm, draw two parallel lines with a predetermined gradient so as to connect the allowable lower limit values and the allowable upper limit values, and within the range of the two parallel lines, an index of fluidity immediately after the improvement process Is set as an allowable range of flow values. As is clear from the figure, the fluidity of the treated soil immediately after the treatment is set higher as the improved treatment depth becomes larger.

なお、同図のグラフから明らかなように、改良処理深度が3m未満の場合にはそのフロー値の許容範囲は改良処理深度が3mのときと同じに設定してあり、同様に改良処理深度が15mを越える場合にはブリージング防止の観点からそのフロー値の許容範囲は改良処理深度が15mのときと同じに設定してある。   As can be seen from the graph of the figure, when the improvement processing depth is less than 3 m, the allowable range of the flow value is set to be the same as when the improvement processing depth is 3 m. In the case of exceeding 15 m, the allowable range of the flow value is set to be the same as that when the improvement processing depth is 15 m from the viewpoint of preventing breathing.

そして、先に述べた混合撹拌ヘッド3の負荷抵抗率Avの値が65%以下という条件を満たすように施工を行うべく、実際の施工箇所(地盤改良の対象となる地盤)の深度に応じて図7のグラフから該当するフロー値を選択し、そのフロー値条件を満たすように改良処理深度ごとに改良処理直後の処理土の流動性を変化させて施工を行うものとする。この流動性の選択は、図28に基づいて最初に決定した水/セメント比(W/C)に基づく固化材添加量(セメント添加量)に優先するものとする。例えば改良処理深度が15mの場合には、図7のグラフからフロー値として180mm〜220mmの範囲を選択し、その許容範囲の中央値である200mmを目標値として流動性を調整するものとする。   And according to the depth of an actual construction location (the ground which is the target of ground improvement) in order to perform construction so as to satisfy the condition that the value of the load resistivity Av of the mixed stirring head 3 described above is 65% or less. The corresponding flow value is selected from the graph of FIG. 7, and the construction is performed by changing the fluidity of the treated soil immediately after the improvement processing for each improvement processing depth so as to satisfy the flow value condition. This selection of fluidity has priority over the amount of solidifying material added (cement added amount) based on the water / cement ratio (W / C) initially determined based on FIG. For example, when the improved processing depth is 15 m, the flow value is selected from the range of 180 mm to 220 mm as the flow value from the graph of FIG. 7, and the fluidity is adjusted using the median value of 200 mm as the target value.

すなわち、常に処理土が流動化することによってその処理土の強度発現に最も影響を与える混合度合いを最適化するべく改良処理深度別に改良処理直後の流動性を積極的に変化させ、最も経済的な流動性のもとで施工を行うものとする。   In other words, the fluidity immediately after the improvement treatment is positively changed according to the improvement treatment depth in order to optimize the mixing degree that has the greatest influence on the strength expression of the treatment soil by always fluidizing the treatment soil, and the most economical. Construction shall be performed under fluidity.

こうすることにより、混合撹拌ヘッド3が無理なく且つ安定して混合撹拌処理を行うことになるので、品質のばらつきが少なく、単位時間当たりの作業量を大きく確保することができて、結果的にコストダウンを図ることができるようになる。   By doing so, the mixing and stirring head 3 performs the mixing and stirring process without difficulty and stably, so that there is little variation in quality, and a large amount of work per unit time can be secured. Cost can be reduced.

なお、当然のことではあるが、超軟弱な地盤を施工する場合には、スラリ状固化材ではなく粉体状の固化材を直接地中に吐出して施工を行うものとする。   As a matter of course, when an extremely soft ground is to be constructed, it is assumed that the construction is performed by directly discharging the powdered solidified material into the ground instead of the slurry solidified material.

また、希に施工対象箇所が超々軟弱な地盤であるような場合には、図7に示すグラフのフロー値の許容範囲を満たそうとすると必要とする固化材添加量が極端に増大することが予想される。そのような場合には経済性を重視し、例外としてフロー値が図7に示すグラフの許容範囲を上方側に逸脱した状態で施工を行うこともある。   In addition, in the case where the construction target location is rarely very soft ground, the required amount of solidifying material added may extremely increase when trying to satisfy the allowable range of the flow value of the graph shown in FIG. is expected. In such a case, emphasis is placed on economy, and as an exception, construction may be performed in a state where the flow value deviates upward from the allowable range of the graph shown in FIG.

図8は、本実施の形態の変形例として図7のものに代えて用いられる相関グラフを示し、図7では改良処理深度と処理土の流動性の指標であるテーブルフロー値との相関を示しているのに対して、図8では改良処理深度と処理土の流動性の指標であるテーブルフロー値、および原土の物性(物性値)の指標である湿潤密度ρt(t/m3)との相関を示している。 FIG. 8 shows a correlation graph used in place of that of FIG. 7 as a modification of the present embodiment, and FIG. 7 shows the correlation between the improved processing depth and the table flow value that is an indicator of the fluidity of the treated soil. On the other hand, in FIG. 8, the table flow value which is an index of the improved processing depth and the fluidity of the treated soil, and the wet density ρt (t / m 3 ) which is an index of the physical properties (physical property values) of the raw soil The correlation is shown.

このグラフもまた、過去の施工実績すなわち種々の土質や改良処理深度等、過去に蓄積した施工データから経験的に定めたものであり、横軸は改良処理深度を、縦軸は改良処理直後の流動性の指標であるテーブル試験のフロー値のほか原土の物性値である湿潤密度ρt(t/m3)をそれぞれ指示している。 This graph is also empirically determined from past construction data, such as past construction results, that is, various soil types and improvement processing depths. The horizontal axis shows the improvement processing depth, and the vertical axis shows the immediately after the improvement processing. In addition to the flow value of the table test, which is an index of fluidity, the wet density ρt (t / m 3 ), which is a physical property value of the raw soil, is indicated.

実際の施工に際し流動性の指標であるフロー値は、施工性の面からは混合撹拌抵抗が小さくなる高めの値が望ましく(混合撹拌抵抗と処理土のフロー値は反比例する)、また品質的にも混合撹拌性を良くするためにはフロー値として高めの値が望ましいと言える(処理土のフロー値と施工性は正比例する)。しかしながら、高めのフロー値にて目標強度を満足させるには固化材を多量に使用することになり、不経済となる(処理土のフロー値と目標強度を満足させるのに必要な固化材添加量は反比例する)。よって、施工的にも品質的にも且つ経済的にも望ましい流動値たるフロー値を決定するにあたって、先に述べた図8の相関グラフを使用するものとする。   The flow value, which is an index of fluidity in actual construction, is preferably a high value that reduces the mixing agitation resistance from the viewpoint of workability (the mixing agitation resistance and the flow value of the treated soil are inversely proportional), and in terms of quality In order to improve the mixing and stirring property, it can be said that a higher value is desirable as the flow value (the flow value of the treated soil is directly proportional to the workability). However, in order to satisfy the target strength at a higher flow value, a large amount of solidifying material is used, which is uneconomical (addition amount of solidifying material necessary to satisfy the flow value of the treated soil and the target strength) Is inversely proportional). Therefore, the above-described correlation graph of FIG. 8 is used in determining a flow value that is a desirable flow value in terms of construction, quality, and economy.

先に述べたように、図8の相関グラフは、改良処理深度および流動性の指標であるテーブルフロー値以外に原土の物性値として原土の湿潤密度ρtを併用している点で図7のものと異なっている。   As described above, the correlation graph of FIG. 8 uses FIG. 7 in that the wet density ρt of the raw soil is used as a physical property value of the raw soil in addition to the table flow value that is an index of the improved processing depth and fluidity. Different from the ones.

実際の施工時の混合撹拌抵抗は、改良処理深度および原土の湿潤密度ρtに正比例して増減することが知られている。また、混合撹拌性は混合撹拌抵抗に正比例するとともに、原土の湿潤密度ρtと目標強度を満足させるのに必要な固化材添加量は反比例することもまた知られている。   It is known that the mixing stirring resistance at the time of actual construction increases and decreases in direct proportion to the improved treatment depth and the wet density ρt of the raw soil. It is also known that the mixing stirrability is directly proportional to the mixing stir resistance, and the amount of solidifying material added necessary to satisfy the wet density ρt of the raw soil and the target strength is inversely proportional.

そこで、先の場合と同様に、混合撹拌ヘッド3の負荷抵抗率Avの値が65%以下という条件を満たすように施工を行うべく、実際の施工箇所(地盤改良の対象となる地盤)の深度と原土の湿潤密度ρtの値に応じて図8のグラフから該当するフロー値を選択し、そのフロー値条件を満たすように改良処理深度ごとに改良処理直後の処理土の流動性を変化させて施工を行うものとする。   Therefore, as in the previous case, in order to perform the construction so that the load resistivity Av value of the mixing and stirring head 3 satisfies the condition that it is 65% or less, the actual construction location (the ground subject to ground improvement) is the depth. 8 is selected from the graph of FIG. 8 according to the value of wet density ρt of the raw soil, and the fluidity of the treated soil immediately after the improvement treatment is changed for each improvement treatment depth so as to satisfy the flow value condition. It shall be constructed.

こうすることにより、先の場合と同様に、混合撹拌ヘッド3が無理なく且つ安定して混合撹拌処理を行うことになるので、品質のばらつきが少なく、単位時間当たりの作業量を大きく確保することができて、コストダウンを図ることができることはもちろんのこと、施工性、処理品質および経済性を共に満足することができるようになる。   By doing so, as in the previous case, the mixing and stirring head 3 performs the mixing and stirring process without difficulty and stably, so that there is little variation in quality and a large amount of work per unit time is ensured. As a result, not only can the cost be reduced, but also the workability, processing quality and economy can be satisfied.

図1〜3に示すバックホウ1のキャビン内の例えばインストルメントパネルには施工管理装置としての計測表示盤14が着脱可能に装着される。この計測表示盤14は、図9に示すように演算処理部15のほか施工に必要な各種データを可視表示する第1,第2の表示部16,17および設定器18を備えていて、後述するように施工に必要な各種データがリアルタイムで第1,第2の表示部16,17に可視表示されるようになっているとともに、必要に応じて上記各種データの算出に必要なデータを設定器18からマニュアル操作にてプリセットできるようになっている。本実施の形態では、先に述べた混合攪拌ヘッド3のドライブチェーン7を駆動するためのチェーンスプロケット5の円周寸法Kの値等が設定器18でプリセットされて演算処理部15に取り込まれる。なお、計測表示盤14は計時機能部19を有していて、例えば任意のタイミングで図示外のスタートボタンを押圧操作してから現在時刻までの時間、およびスタートボタンを押圧操作してから同じく図示外のストップボタンを押圧操作するまでの時間を計時可能となっている。   A measurement display panel 14 as a construction management device is detachably mounted on, for example, an instrument panel in the cabin of the backhoe 1 shown in FIGS. As shown in FIG. 9, the measurement display panel 14 includes first and second display units 16 and 17 and a setting device 18 that display various data necessary for construction in addition to the arithmetic processing unit 15. Various data necessary for construction are displayed on the first and second display units 16 and 17 in real time, and the data necessary for calculating the various data is set as necessary. It can be preset from the device 18 by manual operation. In the present embodiment, the value of the circumferential dimension K of the chain sprocket 5 for driving the drive chain 7 of the mixing and agitation head 3 described above is preset by the setting device 18 and taken into the arithmetic processing unit 15. Note that the measurement display board 14 has a time measuring function unit 19, for example, the time from pressing the start button (not shown) to the current time at an arbitrary timing, and the same time after pressing the start button. It is possible to measure the time until the outer stop button is pressed.

また、バックホウ1にはアーム2の回転角度を検出するための角度センサ20や、ブーム21の回転角度を検出するための角度センサ22、および混合撹拌ヘッド3の首振り旋回方向(θ方向)での鉛直度合いを検出するための角度センサ23がそれぞれ設けられていて、これらの各角度センサ20,22,23の検出出力は先に述べた混合撹拌ヘッド3側の回転センサ13の検出出力(ドライブチェーン駆動用の油圧モータ12の回転数N(rpm))とともに計測表示盤14の演算処理部15に入力される。なお、上記の角度センサ20,22,23としてはいわゆるトルクバランス方式と称される公知の構造のものが使用される。   Further, the backhoe 1 includes an angle sensor 20 for detecting the rotation angle of the arm 2, an angle sensor 22 for detecting the rotation angle of the boom 21, and the swirl turning direction (θ direction) of the mixing and stirring head 3. The angle sensors 23 for detecting the vertical degree of each are provided, and the detection output of each of the angle sensors 20, 22, 23 is the detection output (drive) of the rotation sensor 13 on the side of the mixing and stirring head 3 described above. The rotation number N (rpm) of the chain driving hydraulic motor 12 is input to the arithmetic processing unit 15 of the measurement display panel 14. In addition, as said angle sensor 20,22,23, the thing of the well-known structure called what is called a torque balance system is used.

上記の計測表示盤14の演算処理部15では、回転センサ13や角度センサ20,22,23からの検出出力ならびにプリセットデータをもとに所定の演算を行って、例えば図1に示すように、その演算結果であるチェーン速度と1区割りE当たりの累積移動距離および深度とがそれぞれ数値と累積積算波形の二つの形態としてリアルタイムで第1の表示部16に可視表示され、同時に図2に示すように混合撹拌ヘッド3の鉛直度合いがリアルタイムで第2の表示部17に可視表示される。   The arithmetic processing unit 15 of the measurement display panel 14 performs a predetermined calculation based on the detection output from the rotation sensor 13 and the angle sensors 20, 22, and 23 and the preset data, for example, as shown in FIG. As a result of the calculation, the chain speed and the accumulated travel distance and depth per division E are visually displayed on the first display unit 16 in real time as two forms of a numerical value and an accumulated cumulative waveform, respectively, as shown in FIG. Further, the vertical degree of the mixing and stirring head 3 is visually displayed on the second display unit 17 in real time.

ここで、チェーン速度は先に述べたように混合撹拌翼8,8…の周回速度にほかならないから、回転センサ13の回転出力N(rpm)とチェーンスプロケット5の円周K(m)とをもとに先の(2)式に基づいて算出される。   Here, since the chain speed is nothing but the circulating speed of the mixing stirring blades 8, 8,..., The rotational output N (rpm) of the rotation sensor 13 and the circumference K (m) of the chain sprocket 5 are calculated. Based on the previous equation (2).

一方、1区割りE当たりの累積移動距離は、図3に示した1区割りEの地盤改良処理に要したドライブチェーン7の現在までの総移動距離にほかならず、上記のチェーン速度(混合撹拌翼8,8…の周回速度)と1区割りEの地盤改良処理に要した時間とを乗じることによって算出される。つまり、1区割りEの地盤改良に際してドライブチェーン7が混合撹拌翼8,8…とともに絶えず周回移動しているものとみなして、その1区割りEの処理開始時にオペレータがスタートボタンを押してから現在(現在時刻)までの累積作業時間を計時し、その累積作業時間(秒)にチェーン速度(m/sec)を乗じることによって算出される。なお、上記累積作業時間は図示しないリセットボタンの操作により任意のタイミングでリセット可能である。   On the other hand, the cumulative travel distance per section E is not only the total travel distance of the drive chain 7 required for the ground improvement processing of the section E shown in FIG. , 8...) And the time required for the ground improvement process for the first division E. That is, it is assumed that the drive chain 7 is constantly moving around with the mixing agitating blades 8, 8... When the ground improvement in the first section E is performed, and the current (current) It is calculated by measuring the accumulated work time up to (time) and multiplying the accumulated work time (seconds) by the chain speed (m / sec). The accumulated work time can be reset at an arbitrary timing by operating a reset button (not shown).

また、深度H(m)は図1に示すように地面から混合撹拌ヘッド3の先端(下端)までの掘り下げ施工深さであり、次の式(3)によって算出される。なお、この深度についても図示しないリセットボタンの操作により任意のタイミングでリセット可能である。   Further, as shown in FIG. 1, the depth H (m) is the depth of construction from the ground to the tip (lower end) of the mixing and stirring head 3, and is calculated by the following equation (3). This depth can also be reset at an arbitrary timing by operating a reset button (not shown).

H=D1−D2−α‥‥(3)
D1=L1×sinθ1
D2=L2×sinθ2
ただし、
D1:アーム2の角度による垂直方向の距離
D2:ブーム21の角度による垂直方向の距離
L1:混合撹拌ヘッド3の上端からアーム2とブーム21の接続部までの距離(定数)
L2:アーム2とブーム21の接続部からブーム21の車両固定部までの距離(定数)
C:リセットボタン操作によるオフセット量
ここで、先に述べたように幅M×長さLの1区割りEの施工に当たっては、図3に示すようにその1区割りEの領域を例えば(1)〜(9)の細領域に分けた上で、その都度所定量ずつオーバーラップさせながら施工を行うものとする。
H = D1-D2-α (3)
D1 = L1 × sin θ1
D2 = L2 × sin θ2
However,
D1: Vertical distance depending on the angle of the arm 2 D2: Vertical distance depending on the angle of the boom 21 L1: Distance (constant) from the upper end of the mixing and stirring head 3 to the connecting portion of the arm 2 and the boom 21
L2: Distance from the connecting portion of the arm 2 and the boom 21 to the vehicle fixing portion of the boom 21 (constant)
C: Offset amount by reset button operation Here, as described above, in the construction of one section E of width M × length L, as shown in FIG. It is assumed that the work is carried out while being overlapped by a predetermined amount each time after being divided into the narrow areas of (9).

より具体的には、図10に示すようにその1区割りEの始端部に有効処理幅Wの混合撹拌ヘッド3を貫入したならばその混合撹拌ヘッド3を幅方向Lにおいて矢印a1方向に連続移動させながら地盤改良処理として掘削と混合撹拌処理を行うものとする。そして、矢印a1方向のストロークエンドに達したならば、混合撹拌ヘッド3を抜き上げることなくそのまま図11の矢印b1方法に有効処理幅Wの半分の長さだけシフトさせ、引き続き混合撹拌ヘッド3を図12の矢印a2方向に連続移動させて同様に処理を行う。混合撹拌ヘッド3が矢印a2方向のストロークエンドに達したならば、混合撹拌ヘッド3を同図の矢印b2方向に有効処理幅Wの半分の長さだけシフトさせ、以降は図13に示すように同様の動作を1区割りEの終端部に至るまで繰り返す。   More specifically, as shown in FIG. 10, if the mixing and stirring head 3 having an effective processing width W is inserted into the first end portion of the first section E, the mixing and stirring head 3 is continuously moved in the width direction L in the direction of the arrow a1. As a ground improvement process, excavation and mixing agitation will be performed. Then, when the stroke end in the direction of the arrow a1 is reached, the mixing agitating head 3 is shifted by half the effective processing width W to the method of the arrow b1 in FIG. The same processing is performed by continuously moving in the direction of arrow a2 in FIG. When the mixing and stirring head 3 reaches the stroke end in the direction of the arrow a2, the mixing and stirring head 3 is shifted in the direction of the arrow b2 in the figure by half the effective processing width W, and thereafter, as shown in FIG. The same operation is repeated until the end of the first division E.

この場合、オペレータはバックホウ1のキャビンに設置された計測表示盤14の第2の表示部17(図2および図9参照)を確認しながら、混合撹拌ヘッド3が常に鉛直方向(図2における第2の表示部17の0度の方向)を指向するようにその姿勢を制御する。   In this case, while the operator confirms the second display portion 17 (see FIGS. 2 and 9) of the measurement display panel 14 installed in the cabin of the backhoe 1, the mixing and stirring head 3 is always in the vertical direction (the first display in FIG. 2). The orientation of the display unit 17 is controlled so as to be oriented in the direction of 0 degrees of the second display unit 17.

すなわち、図10〜13における矢印a1方向の混合撹拌ヘッド3の移動を往動動作、矢印a2方向の混合撹拌ヘッド3の移動を復動動作、矢印b1,b2方向の混合撹拌ヘッド3の移動をシフト動作とすると、これらの往動動作と復動動作およびシフト動作を1サイクルとしてこれら動作を複数回繰り返すことで平面視にて略矩形波状の移動軌跡のもとで混合撹拌ヘッド3を動かして施工を行うものとする。そして、上記シフト動作の際に混合撹拌ヘッド3の有効処理幅Wの半分の長さだけシフトさせることにより、1区割りEのどの部分についても少なくとも2回の混合撹拌処理が施されることになり、処理品質の向上と均一化が図れるようになる。   That is, the movement of the mixing and stirring head 3 in the direction of the arrow a1 in FIGS. 10 to 13 is the forward movement, the movement of the mixing and stirring head 3 in the direction of the arrow a2 is the backward movement, and the movement of the mixing and stirring head 3 in the directions of the arrows b1 and b2. When the shift operation is performed, the forward and backward operations, the shift operation, and the shift operation are set as one cycle, and these operations are repeated a plurality of times to move the mixing and agitation head 3 along a movement path of a substantially rectangular wave in plan view. Construction shall be performed. Then, by shifting by half the effective processing width W of the mixing / stirring head 3 during the shift operation, at least two mixing / stirring processes are performed for any part of the section E. As a result, the processing quality can be improved and uniformized.

ここで、1区割りEについての最初の往動動作と最後の往動もしくは復動動作の際には、混合撹拌ヘッド3の移動速度を通常の二分の一程度として極低速で処理を行うものとする。こうすることにより、混合撹拌ヘッド3の一回の通過にもかかわらず二回通過した場合と同等の処理を行える。その結果として、図10〜13の(B)に示すように、処理後の1区割りEのなかには3回の混合撹拌処理が行われた部分e1が一部存在するものの、1区割りEの全領域について平均的に少なくとも2回の混合撹拌処理が施されたことになる。   Here, at the time of the first forward movement and the final forward movement or backward movement of the first section E, the moving speed of the mixing and stirring head 3 is set to about one half of the normal speed, and processing is performed at an extremely low speed. To do. By carrying out like this, the process equivalent to the case where it passes twice in spite of one pass of the mixing stirring head 3 can be performed. As a result, as shown in (B) of FIGS. 10 to 13, although there is a part e <b> 1 in which the mixed stirring process is performed three times in the first division E after the treatment, the entire area of the first division E On average, at least two mixing and stirring processes were performed.

ここで、上記のように平面視にて略矩形波状の混合撹拌ヘッド3の移動軌跡のもとで混合撹拌処理を行うのに代えて、図14〜17に示すように平面視にて略ジグザグ状の移動軌跡のもとで混合撹拌処理を行うようにしても同等の効果が得られる。   Here, instead of performing the mixing and stirring process under the movement locus of the substantially rectangular wave-shaped mixing and stirring head 3 in a plan view as described above, a substantially zigzag in a plan view as shown in FIGS. The same effect can be obtained even if the mixing and stirring process is performed under the movement trajectory.

また、図18に示すように混合撹拌ヘッド3の有効長さt1よりも改良処理深度tが大きい場合には、その混合撹拌ヘッド3の上端部、より具体的にはチェーン駆動用のチェーンスプロケット5の半径寸法t2程度が地表に出るまで、混合撹拌ヘッド3全体を積極的に上下動させながら施工を行うものとする。こうすることにより、改良処理深度tよりも混合撹拌ヘッド3の有効長さt1が小さいにもかかわらず、深さ方向においてより均一な施工を行えるようになる。   As shown in FIG. 18, when the improvement processing depth t is larger than the effective length t1 of the mixing and stirring head 3, the upper end of the mixing and stirring head 3, more specifically, the chain sprocket 5 for driving the chain. It is assumed that the construction is carried out while positively moving the entire mixing and stirring head 3 up and down until the radial dimension t2 of about 2 mm comes to the surface. By carrying out like this, even if the effective length t1 of the mixing stirring head 3 is smaller than the improvement processing depth t, a more uniform construction can be performed in the depth direction.

図19〜図23には別の施工例を示す。この施工例では、混合撹拌ヘッド3の移動軌跡が平面視にて略N字状のものとなるように施工を行うようにしたものである。   19 to 23 show other construction examples. In this construction example, the construction is performed so that the moving trajectory of the mixing and stirring head 3 is substantially N-shaped in a plan view.

図19に示すように、1区割りEの施工にあたり、目印となる4本のポール29,29‥を立てた上で、1レーン目として施工基本速度の1/2の速度で混合撹拌ヘッド3にて混合撹拌処理を行う。施工基本速度の1/2の速度で施工を行うことで、1レーン目の施工領域e11について実質的に2回混合撹拌処理を行った場合と同等の効果が得られることになる。
続いて、図20に示すように、同様にポール29,29‥を目印として、1レーン目の施工領域e11と半分がオーバーラップするように、施工基本速度にて斜めに2レーン目の領域e12について施工を行う。これにより、上記のオーバーラップ領域e13では合計で3回の混合撹拌処理が行われたことになる。
As shown in FIG. 19, in the construction of the first section E, the four poles 29, 29. To mix and stir. By performing the construction at a speed that is 1/2 of the construction basic speed, the same effect as that obtained when the mixing and stirring treatment is substantially performed twice for the construction area e11 in the first lane can be obtained.
Next, as shown in FIG. 20, similarly, the poles 29, 29,... Are marked, and the second lane region e12 is slanted at the basic construction speed so that the half overlaps with the first lane construction region e11. Construct about. As a result, a total of three mixing and stirring processes are performed in the overlap region e13.

続いて、図21に示すように、2レーン目の施工領域e12と半分がオーバーラップするように、3レーン目の領域e14について施工基本速度で真っ直ぐに施工を行う。これにより、上記のオーバーラップ領域e15では合計で2回の混合撹拌処理が行われたことになる。そして、以降は図20,21と全く同様の施工を順次繰り返す。   Subsequently, as shown in FIG. 21, the construction is performed straight at the construction basic speed for the area e14 in the third lane so that the half of the construction area e12 in the second lane overlaps. As a result, a total of two mixing and stirring processes are performed in the overlap region e15. Thereafter, the same construction as in FIGS. 20 and 21 is sequentially repeated.

ここで、1日分の作業の終わりのレーンである領域e20の施工に際しては、図22に示すように施工基本速度の1/2の速度で施工を行う。こうすることにより、その直前に施工が完了した隣りのレーンとのオーバーラップ領域e19では、実質的に合計3回の混合撹拌処理が施されたことになる。   Here, when constructing the area e20, which is the lane at the end of the work for one day, construction is performed at a speed that is ½ of the basic construction speed as shown in FIG. By doing so, in the overlap region e19 with the adjacent lane where the construction was completed immediately before that, the mixing and stirring treatment was substantially performed three times in total.

一方、翌日の最初の1レーン目の領域e21の施工については、一部固化が進行している前日の最終施工レーンの領域e20に隣接して、図19の場合と同様に施工基本速度の1/2の速度で施工を行い、以降は図20〜図23と全く同様の施工を順次繰り返す。   On the other hand, for the construction of the area e21 in the first lane on the next day, adjacent to the area e20 of the last construction lane on the previous day where partial solidification is in progress, the construction basic speed is 1 as in the case of FIG. Construction is performed at a speed of / 2, and thereafter, construction exactly the same as in FIGS. 20 to 23 is sequentially repeated.

この施工方法においても、処理後の1区割りEのなかには3回の混合撹拌処理が行われた部分が一部存在するものの、1区割りEの全領域について平均的に少なくとも2回の混合撹拌処理が施されたことになる。   In this construction method as well, although there is a part where the mixed stirring process is performed three times in the first section E after the treatment, at least two mixed stirring processes are averaged over the entire area of the first section E. It has been given.

図24〜図26は、本発明の第2の実施の形態を示す。   24 to 26 show a second embodiment of the present invention.

先の第1の実施の形態では、混合撹拌ヘッド3に設けた回転センサ13にてチェーン駆動用の油圧モータ12の回転数N(rpm)を検出し、その検出出力に基づきドライブチェーン7の周回速度C1を算出した上で、そのドライブチェーン7の周回速度C1をもって施工管理を行っているのに対して、この第2の実施の形態では、バックホウ1に搭載されている油圧パワーユニット30から混合撹拌ヘッド3への作動油の吐出圧力をもって施工管理を行うようにしたものである。なお、深度管理については先の第1の実施の形態と同様である。   In the first embodiment, the rotation speed 13 of the chain driving hydraulic motor 12 is detected by the rotation sensor 13 provided in the mixing and stirring head 3, and the rotation of the drive chain 7 is determined based on the detected output. In contrast to calculating the speed C1 and managing the construction at the rotational speed C1 of the drive chain 7, in the second embodiment, mixing and stirring is performed from the hydraulic power unit 30 mounted on the backhoe 1. The construction management is performed with the discharge pressure of the hydraulic oil to the head 3. The depth management is the same as that in the first embodiment.

図24のほか図25に示すように、混合撹拌ヘッド3の油圧モータ12はバックホウ1に搭載されている油圧パワーユニット30からの作動油の供給をもって駆動されるものであることから、その油圧パワーユニット30の主要素である油圧ポンプには圧力センサ31が付設されていて、その圧力センサ31をもって混合撹拌ヘッド3の油圧モータ12に供給される作動油の吐出圧力が検出されるようになっている。   As shown in FIG. 25 in addition to FIG. 24, the hydraulic motor 12 of the mixing and stirring head 3 is driven by the supply of hydraulic oil from the hydraulic power unit 30 mounted on the backhoe 1. A pressure sensor 31 is attached to the hydraulic pump, which is the main element, and the discharge pressure of hydraulic oil supplied to the hydraulic motor 12 of the mixing and stirring head 3 is detected by the pressure sensor 31.

上記油圧パワーユニット30の油圧ポンプは一般的に可変容量型のものが使用されていることから、その吐出圧力P(MPa)と流量Q(リットル/min)との相関であるP−Q特性は図25のようになる。そして、可変容量型の油圧ポンプはその吐出する油量が負荷に応じて変化することから、後述するように図25の吐出圧力Pに基づいて、先の実施の形態と同様に混合撹拌ヘッド3の負荷抵抗率を算出しようとするものである。   Since the hydraulic pump of the hydraulic power unit 30 is generally a variable displacement pump, the PQ characteristic that is the correlation between the discharge pressure P (MPa) and the flow rate Q (liters / min) is shown in FIG. Like 25. Since the amount of oil discharged from the variable displacement hydraulic pump changes according to the load, the mixing and agitation head 3 is based on the discharge pressure P shown in FIG. It is intended to calculate the load resistivity.

なお、上記油圧パワーユニット30の作動油吐出圧力Pは、図24に示すように、計測表示盤14の第2の表示部16に数値と累積積算波形の二つの形態としてリアルタイムで可視表示される。   Note that the hydraulic oil discharge pressure P of the hydraulic power unit 30 is visually displayed in real time as two forms of a numerical value and a cumulative integrated waveform on the second display unit 16 of the measurement display panel 14, as shown in FIG.

そして、施工すべき改良処理深度の大きさにかかわらず、上記のように原位置土の掘削と混合撹拌処理を司ることになるトレンチャー式の混合撹拌ヘッド3の負荷が常に65%以下となるように、その改良処理深度に応じ改良処理直後における処理土の流動性を変化させて改良処理を行うものとする。より具体的には、混合撹拌時における混合撹拌ヘッド3の負荷抵抗率をAp、無負荷時における油圧パワーユニット30の作動油吐出圧力をPa(MPa)、混合撹拌時における油圧パワーユニット30の作動油吐出圧力をPd(MPa)とした場合に、下記(4)式より算出される混合撹拌ヘッド3の負荷抵抗率Apの値が65%以下となるように、改良処理深度に応じて改良処理直後における処理土の流動性を変化させて改良処理を行うものとする。   And the load of the trencher type mixing and agitation head 3 that controls the in-situ excavation and the mixing and agitation process as described above is always 65% or less regardless of the depth of the improvement process depth to be constructed. Furthermore, the improvement process shall be performed by changing the fluidity of the treated soil immediately after the improvement process according to the improvement process depth. More specifically, the load resistivity of the mixing and stirring head 3 at the time of mixing and stirring is Ap, the hydraulic oil discharge pressure of the hydraulic power unit 30 at the time of no load is Pa (MPa), and the hydraulic oil discharge of the hydraulic power unit 30 at the time of mixing and stirring. When the pressure is Pd (MPa), the load resistivity Ap of the mixing and stirring head 3 calculated from the following equation (4) is 65% or less so that the value immediately after the improvement process depends on the improvement process depth. It shall be improved by changing the fluidity of the treated soil.

Ap={1−(Pa/Pd)}×100(%)‥‥(4)
ただし、
Ap:混合撹拌時における混合撹拌ヘッドの負荷抵抗率
Pa:無負荷時における油圧パワーユニットの作動油吐出圧力
Pd:混合撹拌時における油圧パワーユニットの作動油吐出圧力
この場合において、無負荷時における油圧パワーユニット30の作動油吐出圧力Pa(MPa)は、図26の(A)に示すように混合撹拌ヘッド3を地上に引き上げた状態でいわゆる空運転としてその周回駆動を行い、その時の作動油吐出圧力Pa(MPa)を測定して予め記録しておく。
Ap = {1- (Pa / Pd)} × 100 (%) (4)
However,
Ap: Load resistivity of the mixing agitation head at the time of mixing agitation Pa: Hydraulic oil discharge pressure of the hydraulic power unit at the time of no load Pd: Hydraulic oil discharge pressure of the hydraulic power unit at the time of mixing agitation In this case, the hydraulic power unit 30 at no load As shown in FIG. 26A, the hydraulic oil discharge pressure Pa (MPa) is rotated as a so-called idle operation with the mixing and stirring head 3 pulled up to the ground, and the hydraulic oil discharge pressure Pa ( MPa) is measured and recorded in advance.

また、上記の混合撹拌時における油圧パワーユニット30の作動油吐出圧力Pd(MPa)は、無負荷時と異なり混合撹拌抵抗を受けて変動するので、例えば図26の(B)に示すように予め1区割りE分の試運転等を行って実際の混合撹拌時における油圧パワーユニット30の作動油吐出圧力Pd(MPa)をリアルタイムで記憶もしくは記録した上で、予めそれらの平均値を求めておく。   Further, the hydraulic oil discharge pressure Pd (MPa) of the hydraulic power unit 30 at the time of mixing and stirring fluctuates due to the mixing and stirring resistance unlike when no load is applied, and therefore, for example, as shown in FIG. A trial operation for the section E is performed, and the hydraulic oil discharge pressure Pd (MPa) of the hydraulic power unit 30 at the time of actual mixing and stirring is stored or recorded in real time, and an average value thereof is obtained in advance.

上記(4)式によって算出される混合撹拌ヘッド3の負荷抵抗率Apの値が65%の以下という条件を満たすように施工を行うためには、実際の混合撹拌時における油圧パワーユニット30の作動油吐出圧力Pdが特定の圧力値を超えないように施工を行うことにほかならないことから、後述するように実際の混合撹拌時における油圧パワーユニット30の作動油吐出圧力Pdを例えばバックホウ1のキャビン内等にリアルタイムで可視表示して、同時に上記の特定の圧力値をオペレータに対して提示するものとする。   In order to perform the construction so that the value of the load resistivity Ap of the mixing and stirring head 3 calculated by the above formula (4) satisfies the condition of 65% or less, the hydraulic oil of the hydraulic power unit 30 at the time of actual mixing and stirring is used. Since the construction is such that the discharge pressure Pd does not exceed a specific pressure value, the hydraulic oil discharge pressure Pd of the hydraulic power unit 30 at the time of actual mixing and agitation is set, for example, in the cabin of the backhoe 1 as described later. The above-mentioned specific pressure value is presented to the operator at the same time.

より具体的には、例えば図26の(A)に示すように、いわゆる空運転を行って実質的に無負荷の状態で混合撹拌翼8,8…をドライブチェーン7とともに周回移動させた時の作動油吐出圧力Paが例えば10MPaをであったと仮定する。   More specifically, for example, as shown in FIG. 26A, when the so-called idling operation is performed and the mixing stirring blades 8, 8... It is assumed that the hydraulic oil discharge pressure Pa is, for example, 10 MPa.

これを先の式(4)に当てはめると、負荷抵抗率Apが65%となる作動油吐出圧力Pdは28.6MPaとなる。そこで、オペレータに対して28.6MPaという圧力を管理限界値として提示し、先に述べたように実際の混合撹拌時にキャビン内にリアルタイムで可視表示されることになる油圧パワーユニット30の作動油吐出圧力Pdが上記の管理限界値に越えることがないよう施工を行うように指示する。これにより、オペレータはキャビン内にリアルタイムで可視表示されることになる油圧パワーユニット30の作動油吐出圧力Pdを目視確認しながら、その値が上記の管理限界値に越えないように施工を行えば、要求される混合撹拌ヘッド3の負荷抵抗率Apとして65%以下という条件を充足することができる。   When this is applied to the above equation (4), the hydraulic oil discharge pressure Pd at which the load resistivity Ap is 65% is 28.6 MPa. Therefore, a pressure of 28.6 MPa is presented to the operator as a control limit value, and the hydraulic oil discharge pressure of the hydraulic power unit 30 that will be displayed in real time in the cabin during actual mixing and stirring as described above. Instruct to perform construction so that Pd does not exceed the above control limit value. As a result, the operator can visually confirm the hydraulic oil discharge pressure Pd of the hydraulic power unit 30 to be visually displayed in real time in the cabin, and perform the construction so that the value does not exceed the control limit value, The required load resistivity Ap of the mixing and stirring head 3 can satisfy the condition of 65% or less.

例えば図25のほか図26に示すように、無負荷時における油圧パワーユニット30の作動油吐出圧力Paが10MPa、実際の混合撹拌時における油圧パワーユニット30の作動油吐出圧力Pdが23.5MPaであった場合、これを先の(4)式の当てはめると混合撹拌ヘッド3の負荷抵抗率Apは下記(5)式のようになる。なお、上記の23.5MPaという数値は、オペレータが予め提示されている管理限界値(=28.6MPa)を意識してこれを越えないように施工を行った結果にほかならない。   For example, as shown in FIG. 26 in addition to FIG. 25, the hydraulic oil discharge pressure Pa of the hydraulic power unit 30 at no load was 10 MPa, and the hydraulic oil discharge pressure Pd of the hydraulic power unit 30 at the time of actual mixing and stirring was 23.5 MPa. In this case, when the above equation (4) is applied, the load resistivity Ap of the mixing and stirring head 3 is represented by the following equation (5). The above numerical value of 23.5 MPa is nothing but the result of the operator performing the construction so as not to exceed the control limit value (= 28.6 MPa) presented in advance.

Ap={1−(10/23.5)}×100(%)=57.4%‥‥(5)
このように、負荷抵抗率Ap=57.4%という数値は、その値Apが65%以下という要求条件を十分に満たしていることになる。
Ap = {1- (10 / 23.5)} × 100 (%) = 57.4% (5)
Thus, the numerical value of the load resistivity Ap = 57.4% sufficiently satisfies the requirement that the value Ap is 65% or less.

ここで、施工管理装置である計測表示盤14の第1の表示部16として、実質的に図1に示した第1の実施の形態のものと図24に示した第2の実施の形態のものとを併用し、図27に示すように、チェーン速度、1区割り累積移動距離、深度および作動油吐出圧力のそれぞれについて、数値と累積積算波形の二つの形態で可視表示することも可能である。   Here, as the first display unit 16 of the measurement display board 14 which is a construction management device, the first embodiment substantially shown in FIG. 1 and the second embodiment shown in FIG. As shown in FIG. 27, it is also possible to visually display the chain speed, the one-division cumulative movement distance, the depth, and the hydraulic oil discharge pressure in two forms of a numerical value and a cumulative cumulative waveform, as shown in FIG. .

本発明の好ましい実施の形態として地盤改良のための施工システムの概略を示す全体説明図。BRIEF DESCRIPTION OF THE DRAWINGS Whole explanatory drawing which shows the outline of the construction system for ground improvement as preferable embodiment of this invention. 同じく地盤改良のための施工システムの概略を示す全体説明図。The whole explanatory view showing the outline of the construction system for ground improvement similarly. 図1,2の平面説明図。Plane explanatory drawing of FIGS. 図1,2に示す混合撹拌ヘッドの拡大図で、(A)は正面説明図、(B)は側面説明図。It is an enlarged view of the mixing and stirring head shown in FIGS. 1 and 2, (A) is a front explanatory view, and (B) is a side explanatory view. (A)は図4に示すドライブチェーンを展開した説明図、(B)は混合撹拌翼単独での説明図。(A) is explanatory drawing which expand | deployed the drive chain shown in FIG. 4, (B) is explanatory drawing only with a mixing stirring blade. 図1,2に示す施工システムでの施工手順を示す説明図。Explanatory drawing which shows the construction procedure in the construction system shown to FIG. 改良処理深度とテーブル試験のフロー値との相関を示すグラフ。The graph which shows the correlation with the improvement processing depth and the flow value of a table test. 改良処理深度とテーブル試験のフロー値および原土の湿潤密度との相関を示すグラフ。The graph which shows the correlation with the improvement processing depth, the flow value of a table test, and the wet density of a raw soil. 図1,2に示す計測表示盤の機能ブロック回路図。The functional block circuit diagram of the measurement display board shown to FIG. 図1,2に示す施工システムでのより詳細な施工手順を示す説明図。Explanatory drawing which shows the more detailed construction procedure in the construction system shown to FIG. 図10に続く施工手順の説明図。Explanatory drawing of the construction procedure following FIG. 図11に続く施工手順の説明図。Explanatory drawing of the construction procedure following FIG. 図12に続く施工手順の説明図。Explanatory drawing of the construction procedure following FIG. 図1,2に示す施工システムでの別の施工手順を示す説明図。Explanatory drawing which shows another construction procedure in the construction system shown to FIG. 図14に続く施工手順の説明図。Explanatory drawing of the construction procedure following FIG. 図15に続く施工手順の説明図。Explanatory drawing of the construction procedure following FIG. 図16に続く施工手順の説明図。Explanatory drawing of the construction procedure following FIG. 図1,2に示す施工システムでのさらに別の施工手順を示す説明図。Explanatory drawing which shows another construction procedure in the construction system shown to FIG. 図1,2に示す施工システムでのさらなる別の施工手順を示す説明図。Explanatory drawing which shows the further another construction procedure in the construction system shown to FIG. 図19に続く施工手順の説明図。Explanatory drawing of the construction procedure following FIG. 図20に続く施工手順の説明図。Explanatory drawing of the construction procedure following FIG. 図21に続く施工手順の説明図。Explanatory drawing of the construction procedure following FIG. 図22に続く施工手順の説明図。Explanatory drawing of the construction procedure following FIG. 本発明の第2の実施の形態として地盤改良のための施工システムの概略を示す全体説明図。Whole explanatory drawing which shows the outline of the construction system for the ground improvement as the 2nd Embodiment of this invention. 図1に示すバックホウの油圧パワーユニットにおけるポンプ圧力Pと流量Qとの相関を示すP−Q線図。The PQ diagram which shows the correlation with the pump pressure P and the flow volume Q in the hydraulic power unit of the backhoe shown in FIG. 図24に示す施工システムでの施工手順を示す説明図。Explanatory drawing which shows the construction procedure in the construction system shown in FIG. 図24に示す施工管理装置の表示部の変形例を示す説明図。Explanatory drawing which shows the modification of the display part of the construction management apparatus shown in FIG. 目標強度と固化材添加量との関係を示すグラフ。The graph which shows the relationship between target intensity | strength and solidification material addition amount.

符号の説明Explanation of symbols

1…建設機械としてのバックホウ(ベースマシンもしくは母機)
2…アーム
3…混合撹拌ヘッド(処理機械)
7…ドライブチェーン
8…混合撹拌翼
13…回転センサ(検出手段)
14…計測表示盤
15…演算処理部
16…第1の表示部(表示手段)
17…第2の表示部(表示手段)
20…角度センサ(検出手段)
22…角度センサ(検出手段)
23…角度センサ(検出手段)
30…油圧パワーユニット
31…圧力センサ(検出手段)
1 ... Backhoe as a construction machine (base machine or mother machine)
2 ... Arm 3 ... Mixing and stirring head (processing machine)
7 ... Drive chain 8 ... Mixing stirring blade 13 ... Rotation sensor (detection means)
DESCRIPTION OF SYMBOLS 14 ... Measurement display board 15 ... Operation processing part 16 ... 1st display part (display means)
17 ... 2nd display part (display means)
20. Angle sensor (detection means)
22 ... Angle sensor (detection means)
23. Angle sensor (detection means)
30 ... Hydraulic power unit 31 ... Pressure sensor (detection means)

Claims (10)

深度が15m以下の現位置土を掘削しながら固化材と混合撹拌して現位置土の強度増加を図る地盤改良工法において、
母機として機能する建設機械のアーム先端に、上下方向に周回移動する混合撹拌翼を備えた混合撹拌ヘッドを装着し、この混合撹拌ヘッドを地中に貫入して改良処理を施すにあたり、
下記(a),(b)の条件を満たすように改良処理を施すことを特徴とする地盤改良工法。
(a)少なくとも経済性および施工性の面で良好とされる改良処理直後の処理土の流動性の度合いと改良処理深度との関係として、改良処理深度が大きくなるほど処理土の流動性が高くなるようにその改良処理深度−流動性特性を予め定めておき、この改良処理深度−流動性特性に基づき、処理対象領域の改良処理深度を指定したときの目標とする流動性特性値を求め、処理対象領域での改良処理直後における処理土の流動性が上記流動性特性値となるようにすること。
(b)実際の混合撹拌時における混合撹拌翼の周回平均速度が無負荷時における混合撹拌翼の周回速度の二分の一の大きさを下回らないこと。
In the ground improvement method to increase the strength of the in-situ soil by mixing and stirring with the solidified material while excavating the in-situ soil with a depth of 15 m or less,
At the tip of the arm of the construction machine that functions as a mother machine, a mixing agitation head equipped with a mixing agitation blade that moves around in the vertical direction is installed.
A ground improvement method characterized by performing an improvement process so as to satisfy the following conditions (a) and (b).
(A) As the relationship between the degree of fluidity of the treated soil immediately after the improvement treatment and the improvement treatment depth, which are considered to be favorable at least in terms of economy and workability, the fluidity of the treated soil increases as the improvement treatment depth increases. Thus, the improved processing depth-fluidity characteristic is determined in advance, and based on this improved processing depth-fluidity characteristic, a target fluidity characteristic value is obtained when the improved processing depth of the processing target area is designated, and processing is performed. The fluidity of the treated soil immediately after the improvement treatment in the target area should be the above fluidity characteristic value.
(B) The average rotational speed of the mixing and stirring blades during actual mixing and stirring should not be less than one half of the rotational speed of the mixing and stirring blades when there is no load.
上記改良処理深度−流動性特性に代えて、
少なくとも経済性および施工性の面で良好とされる改良処理直後の処理土の流動性の度合いと改良処理深度との関係として、改良処理深度が大きくなるほど処理土の流動性が高くなり且つ原土の湿潤密度が大きくなるほど処理土の流動性が高くなるようにその改良処理深度−原土の湿潤密度−流動性特性を予め定めておき、
この改良処理深度−原土の湿潤密度−流動性特性に基づき、処理対象領域の改良処理深度と原土の湿潤密度を指定したときの目標とする流動性特性値を求め、
処理対象領域での改良処理直後における処理土の流動性が上記流動性特性値となるように改良処理を行うことを特徴とする請求項1に記載の地盤改良工法。
Instead of the above improved processing depth-fluidity characteristics,
As the relationship between the degree of fluidity of the treated soil immediately after the improvement treatment and the improvement treatment depth, which are considered to be favorable at least in terms of economy and workability, the fluidity of the treated soil increases as the improvement treatment depth increases and the raw soil In order to increase the fluidity of the treated soil as the wet density of the soil increases, the improved treatment depth-wet density of the raw soil-fluidity characteristics are determined in advance.
Based on this improved treatment depth-wet density of the soil-fluidity characteristics, obtain the target fluidity characteristic value when the improved treatment depth of the treatment target area and the wet density of the raw soil are specified,
The ground improvement method according to claim 1, wherein the improvement treatment is performed so that the fluidity of the treated soil immediately after the improvement treatment in the treatment target region becomes the fluidity characteristic value.
上記混合撹拌翼の周回速度を計測しながら改良処理を行うことを特徴とする請求項1または2に記載の地盤改良工法。   The ground improvement method according to claim 1 or 2, wherein the improvement treatment is performed while measuring the circumferential speed of the mixing stirring blade. 上記混合撹拌翼による改良処理深度を計測しながら改良処理を行うことを特徴とする請求項1または2に記載の地盤改良工法。   The ground improvement method according to claim 1 or 2, wherein the improvement treatment is performed while measuring the improvement treatment depth by the mixing stirring blade. 平面視にて略矩形波状の移動軌跡のもとで混合撹拌ヘッドを連続的に移動させて改良処理を行うことを特徴とする請求項1〜4のいずれかに記載の地盤改良工法。   The ground improvement construction method according to any one of claims 1 to 4, wherein the improvement process is performed by continuously moving the mixing and stirring head under a movement path having a substantially rectangular wave shape in plan view. 略矩形波状の移動軌跡となる混合撹拌ヘッドの動きは、平面視におけるアーム長さ方向での往動動作と復動動作および双方の動作位置間でのシフト動作を1サイクルとしてこれらを複数サイクル繰り返すものとし、
上記混合撹拌ヘッドのシフト動作は、平面視における混合撹拌ヘッドの処理幅寸法以内のものとして行うことを特徴とする請求項5に記載の地盤改良工法。
The movement of the mixing and agitation head, which is a substantially rectangular wave-shaped movement trajectory, repeats a plurality of cycles, with the forward movement operation and the backward movement operation in the arm length direction in a plan view and the shift operation between both operation positions as one cycle. Shall be
6. The ground improvement method according to claim 5, wherein the shifting operation of the mixing and stirring head is performed within a processing width dimension of the mixing and stirring head in a plan view.
平面視にて略矩形波状の移動軌跡に代えて、平面視にて略ジグザグ状の移動軌跡のもとで混合撹拌ヘッドを連続的に移動させて改良処理を行うことを特徴とする請求項5または6に記載の地盤改良工法。   6. The improvement process is performed by continuously moving the mixing and stirring head under a substantially zigzag-like movement locus in a plan view instead of a substantially rectangular wave-like movement locus in a plan view. Or the ground improvement construction method of 6. 平面視にて略矩形波状の移動軌跡に代えて、平面視にて略N字状の移動軌跡のもとで混合撹拌ヘッドを連続的に移動させて改良処理を行うことを特徴とする請求項5または6に記載の地盤改良工法。   The improvement processing is performed by continuously moving the mixing and stirring head under a substantially N-shaped movement locus in a plan view instead of a substantially rectangular wave-like movement locus in a plan view. The ground improvement construction method according to 5 or 6. 請求項1〜8のいずれかに記載の地盤改良工法に用いる地盤改良機械であって、
上記混合撹拌ヘッドによる改良処理深度、混合撹拌ヘッドの鉛直度および混合撹拌翼の周回速度のうち少なくともいずれか一つを計測する手段を備えていることを特徴とする地盤改良機械。
A ground improvement machine for use in the ground improvement method according to any one of claims 1 to 8,
A ground improvement machine characterized by comprising means for measuring at least one of the improvement processing depth by the mixing stirring head, the verticality of the mixing stirring head, and the circumferential speed of the mixing stirring blade.
上記混合撹拌ヘッドによる改良処理深度、混合撹拌ヘッドの鉛直度および混合撹拌翼の周回速度をそれぞれ計測する手段を備えていることを特徴とする請求項9に記載の地盤改良機械。   The ground improvement machine according to claim 9, further comprising means for measuring an improvement treatment depth by the mixing agitation head, a vertical degree of the mixing agitation head, and a circumferential speed of the mixing agitation blade.
JP2006284503A 2003-08-19 2006-10-19 Ground improvement method and ground improvement machine Withdrawn JP2007009689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284503A JP2007009689A (en) 2003-08-19 2006-10-19 Ground improvement method and ground improvement machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003294806 2003-08-19
JP2006284503A JP2007009689A (en) 2003-08-19 2006-10-19 Ground improvement method and ground improvement machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004151253A Division JP3920278B2 (en) 2003-08-19 2004-05-21 Ground improvement method and ground improvement machine

Publications (1)

Publication Number Publication Date
JP2007009689A true JP2007009689A (en) 2007-01-18

Family

ID=37748537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284503A Withdrawn JP2007009689A (en) 2003-08-19 2006-10-19 Ground improvement method and ground improvement machine

Country Status (1)

Country Link
JP (1) JP2007009689A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6113341B1 (en) * 2016-08-22 2017-04-12 株式会社加藤建設 Ground improvement device
JP6197135B1 (en) * 2017-03-13 2017-09-13 株式会社加藤建設 Ground improvement device and improved wall construction method
JP2021188451A (en) * 2020-06-03 2021-12-13 中村土木株式会社 Concrete structure construction method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6113341B1 (en) * 2016-08-22 2017-04-12 株式会社加藤建設 Ground improvement device
JP2018031116A (en) * 2016-08-22 2018-03-01 株式会社加藤建設 Soil improvement device
JP6197135B1 (en) * 2017-03-13 2017-09-13 株式会社加藤建設 Ground improvement device and improved wall construction method
JP2018031248A (en) * 2017-03-13 2018-03-01 株式会社加藤建設 Soil improvement device and construction method of improved wall body
JP2021188451A (en) * 2020-06-03 2021-12-13 中村土木株式会社 Concrete structure construction method
JP7222949B2 (en) 2020-06-03 2023-02-15 中村土木株式会社 Concrete structure construction method

Similar Documents

Publication Publication Date Title
JP4478187B2 (en) Ground improvement machine
KR101765312B1 (en) Apparatus and method for soft soil improving ungi automated management system
JP3920278B2 (en) Ground improvement method and ground improvement machine
JP2007009689A (en) Ground improvement method and ground improvement machine
JP2012117334A (en) Excavation bucket with agitation device
JP2007308880A (en) Soil improving device and soil improving machine
JP3432802B2 (en) Trencher type ground improvement machine, its construction management device and ground improvement method
JP2007016586A (en) Bottoming control method in foundation improvement and foundation improving device
JP3849693B2 (en) Stirring evaluation method and excavator for underground continuous wall method
KR100647056B1 (en) Material feeder
JP5603632B2 (en) Mud agitator
JP3430148B2 (en) Ground improvement construction method and construction management device
JPH07103550B2 (en) Pile or continuous wall and its construction method
JP4459272B2 (en) Ground agitator management system
JP5139406B2 (en) Ground improvement machine
JPH09137449A (en) Automatic construction control method of soilcement column in foundation ground
JP3260337B2 (en) Ground improvement device and ground improvement method
JP4157152B1 (en) Ground agitator management system
JP2008019554A (en) Construction method for soil cement and soil cement
JP3673800B2 (en) Ground improvement method and apparatus
JP3593112B2 (en) Ground improvement method
JPH06136741A (en) Ground improving method and its device
JPH09111749A (en) Multi-shaft kneader auger machine
JP2002371544A (en) Method and device for kneading earth and solidifying material
JP2010018982A (en) Control system for ground agitation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061019

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20070308

Free format text: JAPANESE INTERMEDIATE CODE: A761