JP2007009064A - Powdery coating material composition, method for forming coat, and coated product - Google Patents

Powdery coating material composition, method for forming coat, and coated product Download PDF

Info

Publication number
JP2007009064A
JP2007009064A JP2005191739A JP2005191739A JP2007009064A JP 2007009064 A JP2007009064 A JP 2007009064A JP 2005191739 A JP2005191739 A JP 2005191739A JP 2005191739 A JP2005191739 A JP 2005191739A JP 2007009064 A JP2007009064 A JP 2007009064A
Authority
JP
Japan
Prior art keywords
powdered
fired product
mass
coating composition
powder coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005191739A
Other languages
Japanese (ja)
Other versions
JP4879523B2 (en
Inventor
Michio Komuro
美智男 小室
Toru Nakatsuka
徹 中塚
Kazuo Sugaya
一雄 菅谷
Keiko Kondo
圭子 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIMPLE TOKYO KK
Nippon Paint Co Ltd
Okamura Corp
Original Assignee
SIMPLE TOKYO KK
Nippon Paint Co Ltd
Okamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIMPLE TOKYO KK, Nippon Paint Co Ltd, Okamura Corp filed Critical SIMPLE TOKYO KK
Priority to JP2005191739A priority Critical patent/JP4879523B2/en
Publication of JP2007009064A publication Critical patent/JP2007009064A/en
Application granted granted Critical
Publication of JP4879523B2 publication Critical patent/JP4879523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powdery coating material composition which develops the high deodorizing action and purifying action unobtainable in a liquid coating material that uses a solvent such as water or an organic solvent and which has the excellent coat performance and coatability, to provide a method for forming a coat, and to provide a coated product. <P>SOLUTION: The powdery coating material composition, containing a thermosetting resin, a hardener and a porous calcined matter containing a powdery charcoal and clay, is characterized in that the powdery coating material composition is a blend in a ratio of 100 parts by mass of the sum total of the above thermosetting resin and the above hardener and 10-200 parts by mass of the above porous calcined matter. The method for forming a coat film comprises using this powdered coating material composition. The coated product is a product obtained by this method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高脱臭作用および高浄化作用を発現し、さらに塗膜性能および塗装性が良好な粉体塗料組成物、塗膜形成方法および塗装物に関する。   The present invention relates to a powder coating composition, a coating film forming method, and a coated article that exhibit a high deodorizing action and a high purification action, and further have good coating film performance and paintability.

近年、一般住宅、オフィスビル、劇場や映画館、デパート等の建築物や、自動車や電車等の車両等における冷暖房設備が充実し、これらの生活空間においてはその冷暖房効果を高めるために従来に比べて気密性が高められている。このため、風通しや換気の悪い部分での結露やカビの発生が問題になったり、あるいは、壁材、天井材、間仕切り材、壁クロス材等の建築用内装材や、自動車や電車等の乗り物の車室内で用いられる車両用内装材や、屋内や車室内等に配置される家具や日用品等の調度品用材料等、人間の生活空間で用いられる種々の内装材や調度品等(内装材)から揮発されるホルムアルデヒド等よるシックハウス症候群等が社会問題となっている。   In recent years, air conditioning facilities have been enhanced in buildings such as ordinary houses, office buildings, theaters, movie theaters, department stores, and vehicles such as automobiles and trains. Airtightness is improved. For this reason, the occurrence of condensation or mold in poorly ventilated or ventilated parts becomes a problem, or interior materials for buildings such as wall materials, ceiling materials, partition materials, wall cloth materials, vehicles such as cars and trains, etc. Various interior materials and furniture used in human living spaces, such as interior materials for vehicles used in the interior of a car, furniture for furniture, daily necessities, etc. ), Sick house syndrome caused by formaldehyde volatilized from the environment has become a social problem.

そこで、従来より、このような問題を解決するために、各種悪臭を除去するための脱臭機能や空気浄化機能、調湿機能を保持する塗料が各種検討されており、例えば、特許文献1や特許文献2のように、液体塗料組成物中に種々の炭成分や多孔性焼成物を配合し、塗料に脱臭作用、空気浄化作用、調湿作用等の機能性を付与する方法が提案されている。   Therefore, conventionally, in order to solve such problems, various paints having a deodorizing function, an air purification function, and a humidity control function for removing various malodors have been studied. For example, Patent Document 1 and Patents As in Document 2, a method has been proposed in which various charcoal components and porous fired products are blended in a liquid coating composition to impart functionalities such as a deodorizing action, an air purification action, and a humidity control action to the paint. .

特許文献1には、粉末状炭70〜90重量部と粘土10〜30重量部との混練物を成形し、得られた成形体を焼成して実質的に白色の多孔性焼成物を調製し、この多孔性焼成物を200メッシュ以上に粉砕して得られた多孔性焼成物の粉末を、単独であるいは竹炭等の炭粉末と共に、フェノール樹脂系塗料やポリビニルアルコール(具体的には、日本合成社製商品名「ゴーセノール」)の100重量部中に10〜30重量部の割合で配合し、容易に任意の色調に調製して使用できる天井、壁、サッシ等の内装材用の塗料、自動車内部用の塗料、照明器具、冷蔵庫、テレビ、パソコン等の電気機器用の塗料等とすることが開示されている。   In Patent Document 1, a kneaded product of 70 to 90 parts by weight of pulverized charcoal and 10 to 30 parts by weight of clay is molded, and the obtained molded body is fired to prepare a substantially white porous fired product. The powder of the porous fired product obtained by pulverizing the porous fired product to 200 mesh or more, alone or together with charcoal powder such as bamboo charcoal, phenol resin paint or polyvinyl alcohol (specifically, Nippon Synthetic Paints for interior materials such as ceilings, walls, sashes, etc., which can be easily prepared and used in any color tone, in a proportion of 10 to 30 parts by weight in 100 parts by weight of the product name “GOHSENOL” manufactured by the company It is disclosed that it is used as an internal paint, a lighting device, a paint for an electric device such as a refrigerator, a television, a personal computer, or the like.

また、特許文献2には、最低造膜温度−5℃以上20℃未満である非透湿性水系エマルジョン樹脂と、微粉末炭と無機バインダーとの混練物を焼成して得られ、平均粒径0.5mm以下で実質的に白色の多孔性焼成物とを含み、水系塗料組成物中に上記多孔性焼成物が10〜50質量%の割合で配合されていると共に揮発性有機化合物の含有量が1質量%以下の割合で配合することにより、内装材用塗料として優れた基本性能を備え、しかも、有害物質吸着性や消臭性等の吸着性能に優れた内装材用塗料組成物が開示されている。
特開2002−167287号公報 特開2004−323795号公報
Patent Document 2 discloses that a kneaded product of a non-moisture permeable water-based emulsion resin having a minimum film forming temperature of −5 ° C. or higher and lower than 20 ° C., pulverized charcoal and an inorganic binder is obtained. 0.5 mm or less and a substantially white porous fired product, and the porous fired product is blended in a proportion of 10 to 50% by mass in the water-based coating composition and the content of the volatile organic compound is By blending at a ratio of 1% by mass or less, a coating composition for interior materials is disclosed that has excellent basic performance as a coating material for interior materials, and also has excellent adsorption performance such as adsorptive to harmful substances and deodorizing properties. ing.
JP 2002-167287 A JP 2004-323795 A

しかしながら、特許文献1の塗料では、塗料の種類は特に限定されるものでないが、フェノール樹脂系等の一般的な塗料を用いることができ、実施例では酢酸ビニルを重合して得られるポリ酢酸ビニルを鹸化させた水酸基を持った水溶性のビニル樹脂である「ゴーセノール」(日本合成化学工業社製)を使用しているが、これらは水あるいは有機溶剤を溶媒とした液体塗料であり、粉体塗料としての使用については、記載はされていない。   However, in the paint of Patent Document 1, the kind of paint is not particularly limited, but a general paint such as a phenol resin can be used, and in the examples, polyvinyl acetate obtained by polymerizing vinyl acetate. "GOHSENOL" (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), a water-soluble vinyl resin with a hydroxyl group saponified from, is a liquid paint using water or an organic solvent as a solvent, There is no description of its use as a paint.

また、特許文献2の内装用塗料組成物においても非透湿性水系エマルジョン樹脂を使用しているが、粉体塗料としての使用については、記載はされていない。   The interior paint composition of Patent Document 2 also uses a non-moisture permeable water-based emulsion resin, but does not describe use as a powder paint.

このように、特許文献1および2に記載の塗料では、水または有機溶剤の液体を溶媒として使用しているため、含有している多孔性焼成物の孔内に溶媒が浸入することにより、多孔性焼成物が有する機能が十分に発揮されない不具合があり、脱臭作用および浄化作用が十分には得られないという不都合があった。   As described above, in the paints described in Patent Documents 1 and 2, water or an organic solvent liquid is used as the solvent. Therefore, when the solvent enters the pores of the porous fired product, There is a problem that the function of the fired fired product is not sufficiently exhibited, and the deodorizing action and the purifying action cannot be sufficiently obtained.

また、水または有機溶剤の溶媒を使用した液体塗料であるために、塗料中に分散されている多孔性焼成物が経時的に二次凝集を起し、この二次凝集物を含有する塗料を塗装することにより塗膜表面に多孔性焼成物の凝集塊が偏在し、塗膜表面を引っ掻いたり、擦ったりすると凝集魂が脱落したり、形成された塗膜の塗膜硬度が低かったり、密着性も低下したりする現象が起きる。また、液体塗料中に多孔性凝集物の二次凝集物が存在することにより、スプレー塗装するとスプレーノズルの詰まりが起きやすく、工業用塗装ラインで連続的に塗装する場合には不適当である等の問題があった。   In addition, since it is a liquid paint using water or a solvent of an organic solvent, the porous fired product dispersed in the paint causes secondary agglomeration over time, and a paint containing this secondary agglomerate is used. By painting, the aggregate of porous fired products is unevenly distributed on the surface of the coating, and if the surface of the coating is scratched or rubbed, the agglomeration soul may drop off, or the coating film formed may have a low coating hardness or adhesion. The phenomenon that the nature also falls occurs. In addition, due to the presence of secondary aggregates of porous aggregates in the liquid paint, spray nozzles tend to clog spray nozzles, which is inappropriate for continuous coating on industrial coating lines, etc. There was a problem.

このようなことから、本発明の目的は、水や有機溶剤等の溶媒を使用した液体塗料では得られない高脱臭作用および高浄化作用を発現し、さらに塗膜性能および塗装性が良好な粉体塗料組成物、塗膜形成方法および塗装物を提供することにある。   For these reasons, the object of the present invention is to develop a powder having a high deodorizing action and a high cleaning action that cannot be obtained with a liquid paint using a solvent such as water or an organic solvent, and having good coating film performance and paintability. It is providing the body coating composition, the coating-film formation method, and a coated material.

以上の課題に鑑み、本発明者らは鋭意研究した結果、熱硬化性樹脂と、硬化剤と、粉末状炭および粘土の各原料成分を混練し、該混練物を成形し、該成形体を焼成して得られる多孔性焼成物を含有する粉体塗料とを用いることにより、水や有機溶剤等を使用した液体塗料では得られない高脱臭作用および高浄化作用を発現し、塗膜性能および塗装性能が良好であることを見出し、本発明に至った。   In view of the above problems, as a result of intensive studies, the present inventors kneaded thermosetting resin, curing agent, raw material components of powdered coal and clay, molded the kneaded product, By using a powder paint containing a porous fired product obtained by firing, a high deodorizing action and a high purification action that cannot be obtained with a liquid paint using water or an organic solvent, etc. The inventors have found that the coating performance is good and have reached the present invention.

より具体的には、本発明は次のような粉体塗料組成物、塗膜形成方法および塗装物を提供する。   More specifically, the present invention provides the following powder coating composition, coating film forming method and coated article.

(1) 熱硬化性樹脂と、硬化剤と、粉末状炭および粘土を含む多孔性焼成物と、を含有する粉体塗料組成物であって、上記熱硬化性樹脂および上記硬化剤との合計量100質量部に対して、上記多孔性焼成物を10〜200質量部の割合で配合されている粉体塗料組成物。   (1) A powder coating composition containing a thermosetting resin, a curing agent, and a porous fired product containing powdered charcoal and clay, and the total of the thermosetting resin and the curing agent The powder coating composition which mix | blends the said porous baked material in the ratio of 10-200 mass parts with respect to 100 mass parts of quantity.

本発明によれば、粘土をバインダーとして粉末炭を成形して得られた多孔性焼成物が配合されているので、溶媒として水や有機溶剤等を使用した液体塗料では得られない高脱臭作用および高浄化作用を発現し、さらに塗膜性能および塗装性が良好な塗装物を得ることができる。すなわち、多孔性焼成物は、マイナスイオンを発生するが、発生効率を高めるため、有効表面積を増大させるために、孔径の範囲は1〜50nmで、10nm程度の孔径、通称、メソ孔を多数有しているが、水または有機溶剤等の溶媒を使用した液体塗料では、溶媒に溶解した樹脂が多孔性焼成物の孔内に浸入し、有効面積を減少させ、脱臭作用および浄化作用を低下させることになるが、本発明の粉体塗料組成物では、製造過程として、予備混合、溶融混練、粉砕、分級、充填の工程を順次経るが、樹脂と多孔性焼成物の分布状態の決定に最も寄与する溶融混練工程で、樹脂の溶融粘度が比較的高いため、多孔性焼成物における孔内への浸入が少ないため、有効面積を減少させることが少なく、高脱臭作用および高浄化作用の発現が高いと考えられる。また、その配合割合は、上記熱硬化性樹脂および上記硬化剤との合計量100質量部に対して、10〜200質量部であるので、密着性、硬度、外観等の塗膜性能に優れることになる。   According to the present invention, since a porous fired product obtained by molding powdered charcoal using clay as a binder is blended, a high deodorizing action that cannot be obtained with a liquid paint using water or an organic solvent as a solvent, and It is possible to obtain a coated product exhibiting a high purification effect and having good coating film performance and paintability. In other words, the porous fired product generates negative ions, but in order to increase the generation efficiency and increase the effective surface area, the pore diameter range is 1 to 50 nm, and there are many pore diameters of about 10 nm, commonly known as mesopores. However, in liquid paints using solvents such as water or organic solvents, the resin dissolved in the solvent penetrates into the pores of the porous fired product, reducing the effective area and reducing the deodorizing and purifying effects. However, in the powder coating composition of the present invention, the pre-mixing, melt-kneading, pulverization, classification, and filling steps are sequentially performed as the manufacturing process, which is the most effective in determining the distribution state of the resin and the porous fired product. In the melt-kneading process that contributes, the melt viscosity of the resin is relatively high, so there is little penetration into the pores in the porous fired product, so there is little reduction in the effective area, and high deodorizing action and high purification action are manifested. High Erareru. Moreover, since the compounding ratio is 10-200 mass parts with respect to 100 mass parts of total amounts with the said thermosetting resin and the said hardening | curing agent, it is excellent in coating-film performance, such as adhesiveness, hardness, an external appearance. become.

また、塗料の形態が粉体状であって溶媒を用いないので、水や有機溶剤等の溶媒を使用した液体塗料のように多孔性焼成物の二次凝集を起こすことはない。   In addition, since the paint is in the form of powder and does not use a solvent, secondary agglomeration of the porous fired product does not occur unlike a liquid paint using a solvent such as water or an organic solvent.

尚、多孔性焼成物は、粉末炭と粘度とを主原料成分とし、さらに麦飯石等のその他原料成分を目的に応じて適宜添加して混練し、得られた混練物を焼成し、その後、この焼成物を粉砕することで得られ、粉末炭が有する脱臭作用、浄化作用、調湿作用等の機能性を有している。   Incidentally, the porous fired product is mainly composed of powdered charcoal and viscosity, and other raw material components such as barley stone are appropriately added and kneaded according to the purpose, and the obtained kneaded product is fired, It is obtained by pulverizing this fired product, and has functions such as a deodorizing action, a purifying action, and a humidity control action that the powdered coal has.

本発明における「脱臭作用」とは、多孔性焼成物が有するポーラスな構造による臭気の吸着を高めることにより、さらにプラスイオンが帯電しているとされる不快な臭気が、多孔性焼成物が発するマイナスイオンと接触することにより、マイナスイオンを吸着して帯電を消失することをいう。また「浄化作用」とは、プラスイオンが帯電しているとされるホルムアルデヒド、有機溶剤等の揮発性化学物質が、多孔性焼成物が発するマイナスイオンと接触することにより、マイナスイオンを吸着して帯電を消失することをいう。   The “deodorizing action” in the present invention means that the porous baked product emits an unpleasant odor that positive ions are charged by increasing the adsorption of odor due to the porous structure of the porous baked product. By contacting with negative ions, the negative ions are adsorbed and the charge is lost. “Purification” means that volatile chemical substances such as formaldehyde and organic solvents that are considered to be charged with positive ions come into contact with the negative ions generated by the porous fired product and adsorb negative ions. It means that the charge disappears.

(2) 上記多孔性焼成物は、粉末状炭と粘土とを含む原料組成物を混練した混練物を焼成して得られる上記(1)に記載の粉体塗料組成物。   (2) The powder coating composition according to (1), wherein the porous fired product is obtained by firing a kneaded product obtained by kneading a raw material composition containing powdered charcoal and clay.

(3) 上記粉末状炭と上記粘土との使用割合は、上記粉末状炭が70〜90質量部、上記粘土が10〜30質量部である上記(1)または(2)に記載の粉体塗料組成物。   (3) The use ratio of the powdered charcoal and the clay is such that the powdered charcoal is 70 to 90 parts by mass and the clay is 10 to 30 parts by mass, the powder according to (1) or (2) Paint composition.

本発明によれば、多孔性焼成物は粉末状炭が粘土で覆われていることになるので、実質的に白色を呈することになる。また、粉末状炭が70〜90質量部と多いので、脱臭作用、浄化作用、調湿作用等の機能性に優れる。   According to the present invention, the porous fired product is substantially white in color because powdered charcoal is covered with clay. Moreover, since there are many powdered charcoal with 70-90 mass parts, it is excellent in functionality, such as a deodorizing effect | action, a purification effect, and a humidity control effect | action.

(4) 上記多孔性焼成物は、さらに原料成分として粉末状麦飯石、粉末状トルマリンおよび粉末状貴陽石からなる群より選ばれる一種類以上を含有する上記(1)から(3)いずれか記載の粉体塗料組成物。   (4) Any of (1) to (3) above, wherein the porous fired product further contains at least one selected from the group consisting of powdered barleystone, powdered tourmaline and powdered precious stone as a raw material component. Powder coating composition.

上記麦飯石は、水および空気の浄化作用を有するので、粉末状麦飯石を含有することで塗膜の水および空気に対する浄化作用を高めることができる。また、トルマリン、貴陽石は、マイナスイオンを発生させる効果があり、特にマイナスイオンの発生量の多い貴陽石を混合することによりマイナスイオン発生の相乗効果が起こり、トルマリン、貴陽石が発生させるマイナスイオンの発生量を増やす作用を有するので、粉末状トルマリン、粉末状貴陽石を含有することで塗膜のマイナスイオンの発生をより高めることができる。さらに、多孔性焼成物の有するポーラスな構造による水および空気の高い吸着効果とマイナスイオンを発生させるトルマリン、貴陽石とが混合していることにより脱臭作用の相乗効果が発揮され、これらによって塗膜の脱臭、浄化、調湿等の性能がさらに高められることになる。   Since the said barley stone has the purification action of water and air, the purification action with respect to the water and air of a coating film can be improved by containing powdered barley stone. In addition, tourmaline and precious stones have the effect of generating negative ions. In particular, mixing precious stones with a large amount of negative ions produces a synergistic effect of generating negative ions, and negative ions generated by tourmaline and precious stones. Therefore, the generation of negative ions in the coating film can be further enhanced by containing powdered tourmaline and powdered precious stone. Furthermore, a high water and air adsorption effect due to the porous structure of the porous fired product and a synergistic effect of deodorizing action are exhibited by mixing tourmaline and precious stones that generate negative ions. Performances such as deodorization, purification, and humidity control are further enhanced.

(5) 上記多孔性焼成物は、さらに原料成分として粉末状黒鉛硅石を含有する上記(4)に記載の粉体塗料組成物。   (5) The powder coating composition according to (4), wherein the porous fired product further contains powdered graphite meteorite as a raw material component.

上記黒鉛硅石はグラファイトシリカともいわれ、マイナスイオンの発生、遠赤外線の放出の性能を有するので、粉末状黒鉛硅石を含有することで塗膜のマイナスイオンの発生、遠赤外線の放出をさらに高めることができる。これによって、塗膜の脱臭、浄化、調湿等の性能がより一層高められることになる。   The graphite meteorite, also called graphite silica, has the ability to generate negative ions and emit far-infrared rays. By containing powdered graphite meteorite, the generation of negative ions and far-infrared emission in the coating can be further enhanced. it can. This further enhances the performance of the coating film such as deodorization, purification, and humidity control.

(6) 上記多孔性焼成物は、さらに原料成分として粉末状貝殻または粉末状サンゴを含有する上記(4)に記載の粉体塗料組成物。   (6) The powder coating composition according to (4), wherein the porous fired product further contains powdered shells or powdered corals as a raw material component.

上記貝殻やサンゴは天然炭酸カルシウムとして塗料の体質顔料の役目を果たし、塗膜の補強、増量を図ることができる。貝殻の種類は、特に限定されるものでなく、アコヤ貝、カラス貝等の一般的な貝を用いることができる。   The above shells and corals serve as extender pigments as natural calcium carbonate, and can reinforce and increase the coating film. The type of the shell is not particularly limited, and common shells such as pearl oysters and crows can be used.

(7) 上記多孔性焼成物の平均粒径が3〜100μmの範囲である上記(1)から(6)いずれか記載の粉体塗料組成物。   (7) The powder coating composition according to any one of (1) to (6), wherein the average particle diameter of the porous fired product is in the range of 3 to 100 μm.

本発明によれば、粉体塗料組成物中に含有される多孔性焼成物により塗膜にブツ等が生じることなく、平滑で均一な塗膜が得られる。平均粒径が3μmを下回る多孔性焼成物を配合すると分級や分散不良を起しやすく、塗膜の仕上がりがユズ肌状になったり、分級や分散不良による多孔性焼成物粒子の凝集体が塗膜のブツになることがある等で好ましくなく、また、100μmを上回ると、塗膜の薄膜部に多孔性焼成物粒子のブツが発生し、平滑で均一な艶消し塗膜表面を得にくいので好ましくない。尚、本発明における平均粒径は、体積平均粒径(体積で重みづけされた平均径)のことを示す。   According to the present invention, a smooth and uniform coating film can be obtained without causing any flaws or the like on the coating film due to the porous fired product contained in the powder coating composition. If a porous calcined product with an average particle size of less than 3 μm is blended, classification and poor dispersion are likely to occur, the finish of the coating film becomes crusty, or an aggregate of porous calcined product particles due to poor classification and dispersion is applied. It is not preferable because the film may become uneven, and if it exceeds 100 μm, unevenness of the porous fired particles is generated in the thin film portion of the coating, and it is difficult to obtain a smooth and uniform matte coating surface. It is not preferable. In addition, the average particle diameter in this invention shows a volume average particle diameter (average diameter weighted with the volume).

(8) 上記粉体塗料組成物の平均粒径が3〜50μmの範囲である上記(1)から(7)いずれか記載の粉体塗料組成物。   (8) The powder coating composition according to any one of (1) to (7), wherein the powder coating composition has an average particle size in the range of 3 to 50 μm.

本発明によれば、粉体塗料組成物が被塗基材に対して効率よく塗着し、平滑で均一な塗膜が得られる。平均粒径が3μmを下回る場合は、塗料製造工程が複雑化する場合があり、また、被塗基材に対する粉体塗料の塗着効率が低下する場合がある。一方、平均粒径が50μmを上回る場合は、膜厚が薄い場合に塗りムラが目立ち、塗膜性能が低下することがある。尚、本発明における平均粒径は、体積平均粒径(体積で重みづけされた平均径)のことを示す。   According to the present invention, the powder coating composition is efficiently applied to the substrate to be coated, and a smooth and uniform coating film is obtained. When the average particle size is less than 3 μm, the coating production process may be complicated, and the coating efficiency of the powder coating on the substrate to be coated may be reduced. On the other hand, when the average particle diameter exceeds 50 μm, uneven coating is noticeable when the film thickness is thin, and the coating film performance may be lowered. In addition, the average particle diameter in this invention shows a volume average particle diameter (average diameter weighted with the volume).

(9) 被塗基材に、上記(1)から(8)いずれか記載の粉体塗料組成物を乾燥膜厚5〜500μmの範囲の塗膜を形成する塗膜形成方法。   (9) A coating film forming method for forming a coating film having a dry film thickness of 5 to 500 μm on the substrate to be coated with the powder coating composition described in any one of (1) to (8) above.

(10) 上記塗膜は、上記粉体塗料組成物を静電塗装で上記被塗基材に塗着した後、焼付けて形成されるものである上記(9)に記載の塗膜形成方法。   (10) The coating film forming method according to (9), wherein the coating film is formed by baking the powder coating composition on the substrate to be coated by electrostatic coating.

(11) 上記(9)または(10)に記載の塗膜形成方法により粉体塗料組成物を用いて塗膜が形成された塗装物。   (11) A coated product in which a coating film is formed using a powder coating composition by the coating film forming method described in (9) or (10) above.

本発明の粉体塗料組成物および該粉体塗料組成物を用いた塗膜形成方法によれば、水や有機溶剤等の溶媒を使用した液体塗料では得られない高脱臭作用および高浄化作用を発現し、さらに塗膜性能および塗装性が良好な塗装物を得ることができる。また、密着性、硬度、外観等の塗膜性能に優れる。   According to the powder coating composition of the present invention and the coating film forming method using the powder coating composition, a high deodorizing action and a high purification action that cannot be obtained with a liquid paint using a solvent such as water or an organic solvent. It is possible to obtain a coated product that is expressed and has good coating film performance and paintability. Moreover, it is excellent in coating film performance, such as adhesiveness, hardness, and external appearance.

また、多孔性焼成物は樹脂と溶融混練されており、水または有機溶剤等の溶媒を使用していないので、液体塗料で問題となる多孔性焼成物の二次凝集(多孔性焼成物が凝集して凝集塊を生じること)が起きないために、塗膜外観、密着性、塗膜硬度(以下、総称して「塗膜性能」ともいう。)が良好であり、スプレー塗装をしてもスプレーノズルの詰まりが起きにくく、工業用塗装ラインで連続的に塗装する場合にも適している。   In addition, since the porous fired product is melt-kneaded with the resin and does not use a solvent such as water or an organic solvent, secondary agglomeration of the porous fired product, which is a problem in liquid paint (the porous fired product is agglomerated) The coating film appearance, adhesion, and coating film hardness (hereinafter collectively referred to as “coating film performance”) are good, and spray coating is possible. Clogging of spray nozzles is unlikely to occur, making it suitable for continuous painting on industrial coating lines.

そのため、本発明により得られる塗膜は上記の高脱臭作用、高浄化作用を発現し、塗膜性能、塗装性が良好なため、室内の壁部材、天井部材、パーティション等の室内装備品、家具、事務機器、車両等の社内装備品、家電製品、通信機器等の脱臭作用や浄化作用が要求される分野において好ましく使用される。   Therefore, since the coating film obtained by the present invention exhibits the above-mentioned high deodorizing action and high purification action, and the coating film performance and paintability are good, indoor equipment such as indoor wall members, ceiling members, partitions, furniture, etc. It is preferably used in fields requiring deodorizing action and purification action, such as office equipment, in-house equipment such as vehicles, home appliances, and communication equipment.

以下、本発明を詳細に説明する。尚、以下に説明する部材等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。   Hereinafter, the present invention will be described in detail. The members and the like described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.

<粉体塗料組成物>
本発明に係る粉体塗料組成物は、熱硬化性樹脂と、硬化剤と、「粉末状炭および粘土とを含む原料組成物を混練し、該混練物を成形し、該成形体を焼成して得られる多孔性焼成物(以下、多孔性焼成物ともいう。)」とを含有し、かつ、上記熱硬化性樹脂および上記硬化剤の合計量100質量部に対して上記多孔性焼成物を10〜200質量部含有するものである。
<Powder coating composition>
The powder coating composition according to the present invention comprises kneading a raw material composition containing a thermosetting resin, a curing agent, and “pulverized charcoal and clay”, molding the kneaded product, and firing the molded body. A porous fired product (hereinafter also referred to as a porous fired product) ”, and the porous fired product with respect to a total amount of 100 parts by mass of the thermosetting resin and the curing agent. It contains 10 to 200 parts by mass.

本発明の粉体塗料組成物に用いる多孔性焼成物の原料に用いる粉末状炭としては、種々の炭の粉末を用いることができ、その例として、木炭、竹炭、パーム炭、貝殻炭等の粉末が挙げられる。好ましくは、竹炭が挙げられる。これらの粉末状炭は、必要に応じて、一種類用いることも、複数種類を併用することもできる。また、その粒径は、必要に応じて適宜設定することができるが、一般に、0.025〜0.5mm(500〜60メッシュ)が好ましい。   As the powdered charcoal used as the raw material of the porous fired product used in the powder coating composition of the present invention, various charcoal powders can be used, and examples thereof include charcoal, bamboo charcoal, palm charcoal, and shell charcoal. A powder is mentioned. Preferably, bamboo charcoal is used. These powdered charcoal can be used singly or in combination of a plurality of types as required. The particle size can be appropriately set as necessary, but generally 0.025 to 0.5 mm (500 to 60 mesh) is preferable.

上記多孔性焼成物の原料に用いる粘土は、粉末状炭との焼成物を形成するための無機バインダーの役割を担うもので、磁器用粘土あるいは陶器用粘土等を適宜用いることができ、その例として、磁器土、蛙目粘土、蝋石、カオリン等が挙げられる。これらの粘土は、必要に応じて、一種類用いることも、複数種類を併用することもできる。この粘土の使用割合は、必要に応じて適宜設定することができるが、目的の多孔性焼成物を粉末状炭と粘土とから構成する場合には、一般に、粉末状炭70〜90質量部に対して粘土が10〜30質量部であるのが好ましい。   The clay used as the raw material of the porous fired product plays the role of an inorganic binder for forming a fired product with powdered charcoal, and porcelain clay or earthenware clay can be used as appropriate. Examples include porcelain earth, glazed clay, wax stone, and kaolin. These clays can be used singly or in combination as required. The use ratio of this clay can be appropriately set as required. However, when the target porous fired product is composed of powdered charcoal and clay, generally, the powdered charcoal is 70 to 90 parts by mass. On the other hand, the clay is preferably 10 to 30 parts by mass.

また、多孔性焼成物の原料として、さらに粉末状麦飯石、粉末状トルマリンまたは粉末状貴陽石からなる群より選ばれる一種類以上を用いてもよい。この場合には、より好ましくは、粉末状炭と、粉末状麦飯石、粉末状トルマリンまたは粉末状貴陽石からなる群より選ばれる三種類とからなる各原料成分の合計質量の70〜93質量%が粉末状炭、1〜35質量%が粉末状麦飯石、1〜20質量%が粉末状トルマリン、および1〜20質量%が粉末状貴陽石の割合であって、かつ粉末状炭と、粉末状麦飯石、粉末状トルマリンまたは粉末状貴陽石からなる群より選ばれる一種類以上とからなる各原料成分の合計量100質量部に対して粘土が15〜40質量部の割合である。一般に、上記粉末状炭と、粉末状麦飯石、粉末状トルマリンまたは粉末状貴陽石の少なくとも一種類からなる各原料成分が上記範囲内にあり、かつ、粘土の使用割合も上記範囲内にある場合には、より一層好適に本発明の目的を達成することができる。   Further, as a raw material for the porous fired product, one or more kinds selected from the group consisting of powdered barleystone, powdered tourmaline, or powdered precious stone may be used. In this case, more preferably 70 to 93% by mass of the total mass of each raw material component consisting of powdered charcoal and three types selected from the group consisting of powdered barleystone, powdered tourmaline or powdered precious stone. Is powdered charcoal, 1 to 35% by weight is powdered barley stone, 1 to 20% by weight is powdered tourmaline, and 1 to 20% by weight is powdery gypsumite, and powdered charcoal and powder The clay is in a ratio of 15 to 40 parts by mass with respect to 100 parts by mass of the total amount of each raw material component consisting of one or more kinds selected from the group consisting of powdered barleystone, powdered tourmaline, or powdered precious stone. In general, when each raw material component consisting of at least one of the above powdered charcoal and powdered barley stone, powdered tourmaline or powdered precious stone is within the above range, and the use ratio of clay is also within the above range Therefore, the object of the present invention can be achieved more suitably.

そして、粉末状炭の機能を促進かつ持続させる効果を得るために必要に応じて原料として用いる粉末状麦飯石、粉末状トルマリン(別名:電気石)または粉末状貴陽石(地殻変動にともなう高温熱水作用によって形成された鉱石で、含水ケイ酸アルミニウムを主成分とする)の少なくとも一種類を挙げることができる。これらの粒径は、必要に応じて適宜設定することができるが、一般に粉末状炭と同様、0.025〜0.5mm(500〜60メッシュ)が好ましい。なお、粉末状麦飯石、粉末状トルマリンおよび粉末状貴陽石は、いずれか一種類用いることも、複数種類を併用することもできる。   Then, powdered barley stone, powdered tourmaline (also known as tourmaline) or powdered precious stone (high-temperature heat accompanying crustal deformation) used as a raw material as necessary to obtain the effect of promoting and sustaining the function of powdered coal It is an ore formed by water action and includes at least one of hydrous aluminum silicate as a main component. These particle diameters can be appropriately set as necessary, but generally 0.025 to 0.5 mm (500 to 60 mesh) is preferable as in the case of powdered coal. In addition, any one kind of powdered barley stone, powdered tourmaline, and powdered guinea stone can be used, or a plurality of kinds can be used in combination.

上記多孔性焼成物の原料には、必要に応じて、上記の粉末状炭と、粉末状麦飯石、粉末状トルマリンまたは粉末状貴陽石からなる群より選ばれる一種類以上と、粘土との各原料成分に加えて、粉末状黒鉛硅石(別名:グラファイトシリカ)を用いることができる。この粉末状黒鉛硅石の粒径は、必要に応じて適宜設定することができるが、一般に粉末状炭と同様、0.025〜0.5mm(500〜60メッシュ)が好ましい。また、粉末状黒鉛硅石の使用割合は、必要に応じて適宜設定することができるが、一般に、粉末状炭と、粉末状麦飯石、粉末状トルマリンまたは粉末状貴陽石からなる群より選ばれる一種類以上とからなる各原料成分の合計量100質量部に対して3〜5質量部である。   For the raw material of the porous fired product, each of the above-mentioned powdered charcoal and one or more selected from the group consisting of powdered barleystone, powdered tourmaline or powdered precious stone, and clay In addition to the raw material components, powdered graphite meteorite (also known as graphite silica) can be used. The particle size of the powdered graphite meteorite can be appropriately set as necessary, but generally 0.025 to 0.5 mm (500 to 60 mesh) is preferable as in the case of powdered coal. The proportion of the powdered graphite meteorite used can be appropriately set as necessary, but is generally selected from the group consisting of powdered charcoal, powdered barleystone, powdered tourmaline, or powdered gypsumite. It is 3-5 mass parts with respect to 100 mass parts of total amounts of each raw material component which consists of more than types.

また、上記多孔性焼成物の原料には、必要に応じて、上記の粉末状炭と、粉末状麦飯石、粉末状トルマリンまたは粉末状貴陽石からなる群より選ばれる一種類以上と、粘土との各原料成分に加えて、粉末状貝殻もしくは粉末状サンゴを用いることができる。貝殻の種類は、特に限定されるものではなく、アコヤ貝、カラス貝等の一般的な貝が採用される。さらに、粉末状貝殻もしくは粉末状サンゴの粒径は、必要に応じて適宜設定することができるが、一般に粉末状炭と同様、0.025〜0.5mm(500〜60メッシュ)が好ましい。また、粉末状貝殻もしくは粉末状サンゴの使用割合は、必要に応じて適宜設定することができるが、一般に、粉末状炭と、粉末状麦飯石、粉末状トルマリンまたは粉末状貴陽石からなる群より選ばれる一種類以上とからなる各原料成分の合計量100質量部に対して3〜5質量部である。   In addition, the raw material of the porous fired product, if necessary, one or more selected from the group consisting of the above powdered charcoal, powdered barley stone, powdered tourmaline or powdered precious stone, clay, In addition to each raw material component, powdered shells or powdered corals can be used. The type of shell is not particularly limited, and common shells such as pearl oysters and crows are used. Further, the particle size of the powdered shell or coral can be appropriately set as necessary, but generally 0.025 to 0.5 mm (500 to 60 mesh) is preferable as in the case of powdered charcoal. The proportion of the powdered shell or powdered coral can be set as needed, but generally, from the group consisting of powdered charcoal and powdered barley stone, powdered tourmaline or powdered precious stone. It is 3-5 mass parts with respect to 100 mass parts of total amounts of each raw material component which consists of one or more selected.

上記多孔性焼成物の製造は、まず、上記の粉末状炭、および粘土、必要に応じて用いる粉末状麦飯石、粉末状トルマリンまたは粉末状貴陽石からなる群より選ばれる少なくとも一種類、さらには、必要に応じて粉末状黒鉛硅石、粉末状の貝殻、粉末状のサンゴを加えた原料組成物の所定量を混練して混練物を調製する。この各原料成分の混練順序は特に制限する必要はなく、任意の順序で、あるいは全原料成分を同時に混練することができる。   The production of the porous fired product is, first, at least one selected from the group consisting of the above powdered charcoal and clay, powdered barley stone, powdered tourmaline or powdered precious stone used as necessary, and A kneaded product is prepared by kneading a predetermined amount of a raw material composition to which powdered graphite meteorite, powdered shell, and powdered coral are added as necessary. The order of kneading these raw material components is not particularly limited, and all the raw material components can be kneaded in any order or simultaneously.

また、この原料組成物の混練は、それ自体公知の混練手段を適宜用いて行うことができ、その例として、土捏機、各種ミキサー等が挙げられる。この各原料成分の混練に際しては、混練が不十分であったり、混練物中に空気が混入したりすると焼成時にひび割れを起こして灰状となり、多孔性焼成物が得られない場合がある。そのため、混練物中に空気が包含されないように空気を抜きながら、全体が粘土状になるよう十分に混練することが好ましく、必要に応じて真空状態で混練することがより好ましい。   Moreover, kneading | mixing of this raw material composition can be performed suitably using a well-known kneading means per se, for example, a earthen machine, various mixers, etc. are mentioned. In kneading these raw material components, if the kneading is insufficient or air is mixed in the kneaded product, it may crack during firing and become ash, and a porous fired product may not be obtained. Therefore, it is preferable to sufficiently knead the entire kneaded product so that air is not included in the kneaded product so that the whole becomes clay-like, and more preferably kneaded in a vacuum state as necessary.

また、この原料組成物の混練物(以下原料混練物ともいう)は適度の塑性を有していて、次に行われる成形に際して良好な成形性を示すように一定量の水分を含有していることが望ましい。一般に、この水分は、原料に用いる粘土中に含まれる水分により賄われるが、必要に応じて、混練物の調製に際し水を添加することもできる。混練物の水分含有量は、混練物が良好な成形性を示す適度の塑性を有する範囲であれば特に制限する必要はないが、一般に混練物の総質量の3〜50質量%が好ましい。   In addition, the kneaded product of the raw material composition (hereinafter also referred to as the raw material kneaded material) has an appropriate plasticity, and contains a certain amount of water so as to exhibit good moldability in the subsequent molding. It is desirable. In general, this moisture is covered by the moisture contained in the clay used as a raw material, but it is also possible to add water when preparing the kneaded material, if necessary. The moisture content of the kneaded product is not particularly limited as long as the kneaded product has an appropriate plasticity exhibiting good moldability, but generally 3 to 50% by mass of the total mass of the kneaded product is preferable.

上記調製した原料混練物を、次いで所望の形状に成形する。成形する形状は、上記多孔性焼成物の用途において求められる形状その他必要に応じて任意の形状とすることができ、その例として、例えば球状、板状、棒状等が挙げられる。本発明の粉体塗料組成物に用いる場合は、球状が好ましい。また、原料混練物の成形は、それ自体公知の成形手段を適宜用いて行うことができ、その例として、押出成形、金型成形、手成形等が挙げられる。   The raw material kneaded material prepared above is then formed into a desired shape. The shape to be molded can be any shape as required in the application of the porous fired product, and other shapes as required. Examples thereof include a spherical shape, a plate shape, and a rod shape. When used in the powder coating composition of the present invention, a spherical shape is preferred. The raw material kneaded product can be molded by appropriately using a known molding means per se, and examples thereof include extrusion molding, mold molding, and manual molding.

上記所望の形状に成形した原料混練物の成形体を、次いで一般に600℃以上の温度、好ましくは600〜1500℃の温度で焼成することで目的の多孔性焼成物が得られる。なお、焼成の際には、必要に応じて成形体を圧縮しつつ焼成を行うことができる。圧縮することにより焼成物を硬くすることができる。無論、圧縮せずにそのまま焼成しても良く、この場合には焼成物は比較的脆くなる。   The molded body of the raw material kneaded product formed into the desired shape is then fired at a temperature of generally 600 ° C. or higher, preferably 600 to 1500 ° C., to obtain the desired porous fired product. In addition, in the case of baking, baking can be performed, compressing a molded object as needed. The fired product can be hardened by compression. Of course, you may bake as it is, without compressing, and in this case, a baked product becomes comparatively brittle.

また、この焼成は、一般に、上記成形体をまず600〜1000℃の温度で最初の焼成を行い、得られた成形体焼成物を一旦常温に冷却した後、1000〜1500℃の温度で再度の焼成を行う2段焼成で行うことができる。焼成時間は、必要に応じて適宜設定することができるが、一般に、最初の焼成が4〜30時間、再度の焼成が5〜30時間が好ましい。この2段焼成によれば、最初の焼成の具合に対応して再度の焼成の温度・時間を調整できる利点があり、また一旦常温に冷却することにより焼成物が崩れて灰状になるのを防ぐ利点もある。   In general, the firing is generally performed by first firing the molded body at a temperature of 600 to 1000 ° C., and once the molded body fired product is cooled to room temperature, the molded body is again heated at a temperature of 1000 to 1500 ° C. It can carry out by the two-stage baking which performs baking. The firing time can be appropriately set as necessary, but in general, the first firing is preferably 4 to 30 hours and the second firing is preferably 5 to 30 hours. According to this two-stage firing, there is an advantage that the temperature and time of the second firing can be adjusted according to the condition of the first firing, and the fired product collapses and becomes ash by cooling to room temperature once. There is also an advantage to prevent.

また、上記成形体を、600〜1500℃の範囲で低温側から高温側まで昇温しつつ連続的に焼成を行う1段焼成で行うこともできる。焼成に際しての焼成温度の昇温は、連続的に昇温することも、段階的に昇温することもでき、また、昇温の度合いも必要に応じて適宜設定することができるが、一般に、平均昇温速度が70〜100℃/分であることが好ましい。   Moreover, the said molded object can also be performed by the 1 step | paragraph baking which continuously bakes, raising temperature from the low temperature side to the high temperature side in the range of 600-1500 degreeC. The temperature rise of the firing temperature at the time of firing can be raised continuously or stepwise, and the degree of temperature rise can be appropriately set as necessary. It is preferable that an average temperature increase rate is 70-100 degreeC / min.

一般に、上記のように、一定の焼成温度範囲で原料混練物成形体を2段焼成あるいは1段焼成することにより好適に本発明の目的を達成することができる。また、この焼成は、それ自体公知の炉ないし窯を用いて行うことができ、その例として、土釜、炭化プラント、鉄釜プラント等が挙げられる。なお、ベルトコンベヤ等を用いて成形体を上記炉ないし窯中に送りこむことで連続的に目的の多孔性焼成物を製造することもできる。この際、一部の成形体を耐火容器に入れて送りこむことで実質的に白色の多孔性焼成物とその他の色の焼成物とを同時に製造することもできる。さらに、成形体の焼成は、一般に、大気中の雰囲気下に行われる。焼成終了の際は、2〜5日程度かけて十分冷却してから焼成物を炉ないし窯内から取り出すのが好ましい。   Generally, as described above, the object of the present invention can be suitably achieved by performing two-stage firing or one-stage firing of a raw material kneaded product molded body within a certain firing temperature range. Moreover, this baking can be performed using a publicly known furnace or kiln, and examples thereof include a clay pot, a carbonization plant, and an iron kettle plant. In addition, the target porous baked product can also be continuously produced by feeding the formed body into the furnace or kiln using a belt conveyor or the like. At this time, a substantially white porous fired product and fired products of other colors can be simultaneously produced by feeding a part of the molded body into a refractory container. Furthermore, firing of the molded body is generally performed in an atmosphere in the air. At the end of firing, it is preferable that the fired product is taken out of the furnace or kiln after sufficiently cooling for about 2 to 5 days.

上記のようにして得られた多孔性焼成物は、多孔性炭素質のマトリックス中に、粘土の微粒子、および必要に応じて粉末状麦飯石、粉末状トルマリンまたは粉末状貴陽石の少なくとも一種類、場合によってはさらに黒鉛硅石、貝殻、サンゴも加わった微粒子が分散され、これらの各構成成分が焼結されている構造を有する成形された状態の多孔質体であり、その色調が実質的に白色であるものである。   The porous calcined product obtained as described above contains, in a porous carbonaceous matrix, fine particles of clay, and if necessary, at least one kind of powdered barley stone, powdered tourmaline, or powdered precious stone, In some cases, it is a molded porous body having a structure in which fine particles added with graphite meteorite, shells, and corals are dispersed and each of these components is sintered, and the color tone is substantially white. It is what is.

上記多孔性焼成物は、上記のような焼結構造を有するから、炭より機械的強度が優れている。また、多孔性焼成物は、上記のように原料混練物は容易に所望の形状に成形し得るものであるので、該原料混練物を所望の形状に成形することにより、容易に所望の形状の成形体として得ることができる。また、上記多孔性焼成物は、優れた脱臭作用、浄化作用を有し、他にも調湿作用、断熱作用、遮音作用、防火作用、殺菌作用等の諸機能をも有する。   Since the porous fired product has a sintered structure as described above, it has better mechanical strength than charcoal. Moreover, since the raw material kneaded material can be easily formed into a desired shape as described above, the porous fired product can be easily formed into a desired shape by forming the raw material kneaded material into a desired shape. It can be obtained as a molded body. The porous fired product has an excellent deodorizing action and purifying action, and also has various functions such as a humidity control action, a heat insulation action, a sound insulation action, a fire prevention action, and a sterilization action.

また、多孔性焼成物は、その用途等に応じて、得られた成形体焼成物の状態のものを、そのまま用途に供することも、また、得られた成形体焼成物の状態のものを粉砕し、粉末状にして用途に供することもでき、用途に供する形状は必要に応じて適宜選択することができる。成形体の状態の多孔性焼成物の粉砕は、それ自体公知の粉砕手段を適宜用いて容易に行うことができ、その例として、各種粉砕機、石臼、ミキサー等が挙げられる。   Moreover, according to the use etc., the porous fired product can be used as it is in the state of the obtained molded product fired product, or it can be used as it is, or the product of the obtained molded product fired product state can be crushed. And it can also be made into a powder form and can be used for a use and the shape to be used for a use can be suitably selected as needed. The pulverization of the porous fired product in the form of a formed body can be easily performed by appropriately using a known pulverization means as appropriate, and examples thereof include various pulverizers, stone mortars, mixers and the like.

ここで、多孔性焼成物を粉体塗料組成物の原料として用いる場合には、多孔性焼成物は好ましい平均粒径(体積平均粒径)が3〜100μm程度、より好ましくは20〜80μm程度に粉砕されるのが好ましい。この範囲の粒径に調整することで、多孔性焼成物による塗膜にブツ等が生じることなく、平滑で均一な艶消し塗膜が得られる。平均粒径が3μmを下回る多孔性焼成物を配合すると分級や分散不良を起しやすく、塗膜の仕上がりがユズ肌状になったり、多孔性焼成物粒子の凝集体が塗膜のブツになることがある等で好ましくなく、また、100μmを上回ると、塗膜の薄膜部に多孔性焼成物粒子のブツが発生し、平滑で均一な艶消し塗膜表面を得にくいので好ましくない。   Here, when the porous fired product is used as a raw material for the powder coating composition, the porous fired product preferably has an average particle size (volume average particle size) of about 3 to 100 μm, more preferably about 20 to 80 μm. It is preferable to grind. By adjusting to a particle size in this range, a smooth and uniform matte coating film can be obtained without causing the coating film made of the porous fired product to have a flaw. When a porous fired product having an average particle size of less than 3 μm is blended, classification and poor dispersion are likely to occur, and the finish of the coating film becomes crusty, or aggregates of porous fired product particles become a part of the coating film. In some cases, it is not preferable, and if it exceeds 100 μm, the porous fired product particles are generated in the thin film portion of the coating film, and it is difficult to obtain a smooth and uniform matte coating film surface.

また、多孔性焼成物には、必要に応じて混練物の原料として酸化チタンを併用することができる。酸化チタンは、抗菌、消臭・防臭、防汚、防藻、防錆・劣化防止、塩害対策、カビ防止、油の付着や便器等の黄ばみ防止、水質保全・浄化等に効果があり、これを併用することで本発明の効果をさらに強力に発揮することができる。酸化チタンの割合は、特に限定されるものではないが、多孔性焼成物100質量部に対して1〜10質量部が好ましい。   Moreover, titanium oxide can be used together with the porous fired product as a raw material of the kneaded material, if necessary. Titanium oxide is effective for antibacterial, deodorant / deodorant, antifouling, anti-algae, rust / deterioration prevention, salt damage prevention, mold prevention, oil adhesion and yellowing of toilets, water quality preservation and purification, etc. By using together, the effect of the present invention can be exhibited more powerfully. Although the ratio of a titanium oxide is not specifically limited, 1-10 mass parts is preferable with respect to 100 mass parts of porous baked products.

本発明の粉体塗料組成物は、従来公知の成分である熱硬化性樹脂、および硬化剤を主成分とし、上記多孔性焼成物を含有し、必要に応じてその他顔料や添加剤を適宜含有させてなるものである。   The powder coating composition of the present invention comprises a thermosetting resin, which is a conventionally known component, and a curing agent as a main component, the above-mentioned porous fired product, and optionally other pigments and additives as necessary. It is something to be made.

多孔性焼成物の含有量は、前述の通り、熱硬化性樹脂および硬化剤の合計量100質量部に対して10〜200質量部であるが、好ましくは20〜150質量部、さらに好ましくは50〜100質量部である。含有量が200質量部を超えると塗膜性能が低下し、一方10質量部未満では高脱臭作用および高浄化作用が得られない。   As described above, the content of the porous fired product is 10 to 200 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting resin and the curing agent, preferably 20 to 150 parts by mass, and more preferably 50. -100 mass parts. When the content exceeds 200 parts by mass, the coating film performance is deteriorated. On the other hand, when the content is less than 10 parts by mass, a high deodorizing action and a high purification action cannot be obtained.

熱硬化性樹脂としては、室温で固体であるものが使用でき、例えばエポキシ樹脂、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂とポリエステル樹脂とをブレンドしたポリエステル・エポキシ樹脂、エポキシ樹脂とアクリル樹脂とをブレンドしたアクリル・エポキシ樹脂、およびフッ素樹脂等が挙げられる。   As the thermosetting resin, those that are solid at room temperature can be used. For example, epoxy resin, acrylic resin, polyester resin, polyester / epoxy resin blended with epoxy resin and polyester resin, and epoxy resin blended with acrylic resin. Examples include acrylic / epoxy resins and fluororesins.

上記エポキシ樹脂の例としては、グリシジルエステル樹脂、ビスフェノールAまたはビスフェノールFとエピクロロヒドリンとの縮合物であるグリシジルエーテル樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、含臭素エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂等、1分子内に2個以上のオキシラン基を含有する化合物等が挙げられる。   Examples of the epoxy resin include glycidyl ester resin, glycidyl ether resin which is a condensate of bisphenol A or bisphenol F and epichlorohydrin, alicyclic epoxy resin, aliphatic epoxy resin, bromine-containing epoxy resin, phenol novolac Examples thereof include compounds containing two or more oxirane groups in one molecule, such as type epoxy resins and cresol novolac epoxy resins.

また、上記アクリル樹脂の例としては、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸iso−ブチル、(メタ)アクリル酸tert−ブチル、グリシジル(メタ)アクリレート、2−メチルグリシジル(メタ)アクリレート等の(メタ)アクリル系モノマーおよび、スチレン、その他のラジカル重合性モノマーを共重合させたもの等が挙げられる。   Examples of the acrylic resin include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, (meth ) A copolymer of (meth) acrylic monomers such as tert-butyl acrylate, glycidyl (meth) acrylate, 2-methylglycidyl (meth) acrylate, styrene, and other radical polymerizable monomers.

さらに、上記ポリエステル樹脂の例としては、エチレングリコール、ジエチレングリコール、プロパンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールと、マレイン酸、テレフタル酸、イソフタル酸、コハク酸、グルタミン酸、アジピン酸、セバチン酸、β−オキシプロピオン酸等のカルボン酸あるいは無水カルボン酸とをエステル重合させたもの等が挙げられる。   Furthermore, examples of the polyester resin include ethylene glycol, diethylene glycol, propanediol, pentanediol, hexanediol, neopentylglycol, trimethylolpropane, pentaerythritol, and other polyhydric alcohols, maleic acid, terephthalic acid, isophthalic acid, Examples thereof include those obtained by ester polymerization of carboxylic acid such as succinic acid, glutamic acid, adipic acid, sebacic acid, β-oxypropionic acid or carboxylic anhydride.

上記エポキシ樹脂、アクリル樹脂、およびポリエステル樹脂は、適宜ブレンドしてポリエステル・エポキシ樹脂、あるいはアクリル・エポキシ樹脂等として使用することができる。   The above-mentioned epoxy resin, acrylic resin, and polyester resin can be appropriately blended and used as polyester / epoxy resin, acrylic / epoxy resin, or the like.

また、上記フッ素樹脂の例としては、フッ化ビニリデン、3フッ化エチレン、フッ化ビニル等のフッ素系モノマーと、2−ヒドロキシエチル(メタ)アクリレート等の水酸基含有アルキルモノマーと、さらに上記アクリル樹脂に用いられるモノマーとを共重合させたもの等が挙げられる。具体例としては、「ルブロンL−2」(ダイキン工業社製)がある。   Examples of the fluororesin include fluorine monomers such as vinylidene fluoride, trifluoride ethylene, and vinyl fluoride, hydroxyl-containing alkyl monomers such as 2-hydroxyethyl (meth) acrylate, and the acrylic resin. The thing etc. which copolymerized the monomer used are mentioned. A specific example is “Lublon L-2” (manufactured by Daikin Industries).

上記硬化剤の例としては、ε−カプロラクタムでブロックされた脂環族ポリイソシアネート等のブロックポリイソシアネート化合物、ウレトジオン型ポリイソシアネート化合物、セバチン酸等の脂肪族多価カルボン酸類、アミノプラスト樹脂類、脂肪族酸無水物類、アミン系化合物類、ポリアミド系樹脂類、イミダゾール化合物類、イミダゾリン化合物類、フェノール樹脂類、エポキシ樹脂、その他、トリグリシジルイソシアネート、トリグリシジルイソシアヌレート、ジシアンジアミド、ヒドロキシアルキルアミド、グリコールウリル等を挙げることができ、これら硬化剤は使用する熱硬化性樹脂の官能基に応じて適宜選定することができる。   Examples of the curing agent include block polyisocyanate compounds such as alicyclic polyisocyanates blocked with ε-caprolactam, uretdione type polyisocyanate compounds, aliphatic polyvalent carboxylic acids such as sebacic acid, aminoplast resins, fats Aliphatic acid anhydrides, amine compounds, polyamide resins, imidazole compounds, imidazoline compounds, phenol resins, epoxy resins, others, triglycidyl isocyanate, triglycidyl isocyanurate, dicyandiamide, hydroxyalkylamide, glycoluril These curing agents can be appropriately selected according to the functional group of the thermosetting resin to be used.

上記熱硬化性樹脂と上記硬化剤との粉体塗料成分における質量比率は、硬化性の観点から、40:60〜96:4の範囲が好ましい。また、上記熱硬化性樹脂および硬化剤は、それぞれ2種以上のものを混合して使用することも好ましい。さらに、塗膜の隠蔽性や塗膜物性の観点から、粉体塗料成分100質量部中で熱硬化性樹脂と硬化剤との合計量は40〜95質量部であることが好ましい。なお、熱硬化性樹脂と硬化剤とに加えて熱可塑性樹脂を用いることもできる。   The mass ratio of the thermosetting resin and the curing agent in the powder coating component is preferably in the range of 40:60 to 96: 4 from the viewpoint of curability. Moreover, it is also preferable to use a mixture of two or more of the thermosetting resin and the curing agent. Furthermore, from the viewpoint of coating concealability and coating film physical properties, the total amount of the thermosetting resin and the curing agent in 100 parts by mass of the powder coating component is preferably 40 to 95 parts by mass. In addition to the thermosetting resin and the curing agent, a thermoplastic resin can also be used.

また、本発明の粉体塗料組成物に隠蔽性、意匠性等を考慮して顔料を使用する場合は、顔料が粉体塗料組成物全成分100質量部中、5〜60質量部を占めることが好ましい。顔料が5質量部未満では塗膜の隠蔽性が劣り、60質量部を超えると塗膜性能が低下することがある。顔料の例としてはアルミニウムフレーク、干渉マイカ、着色マイカ等の各種光輝性顔料、二酸化チタン、弁柄、黄色酸化鉄、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン、キナクリドン系顔料、アゾ系顔料などの着色顔料、タルク、シリカ、炭酸カルシウム、沈降性硫酸バリウムなどの体質顔料、その他防錆顔料等を挙げることができる。   In addition, when a pigment is used in the powder coating composition of the present invention in consideration of concealability, design, etc., the pigment occupies 5 to 60 parts by mass in 100 parts by mass of all components of the powder coating composition. Is preferred. When the pigment is less than 5 parts by mass, the concealability of the coating film is poor, and when it exceeds 60 parts by mass, the coating film performance may be deteriorated. Examples of pigments include various bright pigments such as aluminum flakes, interference mica, and colored mica, and colored pigments such as titanium dioxide, petals, yellow iron oxide, carbon black, phthalocyanine blue, phthalocyanine green, quinacridone pigments, and azo pigments. And extender pigments such as talc, silica, calcium carbonate, precipitated barium sulfate, and other anti-rust pigments.

さらに、上記添加剤としては、例えばジメチルシリコーンやメチルシリコーンなどのシリコーン類、アクリルオリゴマー等の表面調整剤、ベンゾインやベンゾイン誘導体等の発泡防止剤、ワキ防止剤、硬化触媒、硬化促進剤、可塑剤、帯電防止剤、微粒子状酸化アルミニウム等の帯電制御剤、紫外線吸収剤、光安定剤、酸化防止剤、顔料分散剤、難燃剤、流動性付与剤等を挙げることができる。   Furthermore, examples of the additives include silicones such as dimethyl silicone and methyl silicone, surface conditioners such as acrylic oligomers, antifoaming agents such as benzoin and benzoin derivatives, anti-waxing agents, curing catalysts, curing accelerators, and plasticizers. , Antistatic agents, charge control agents such as particulate aluminum oxide, ultraviolet absorbers, light stabilizers, antioxidants, pigment dispersants, flame retardants, fluidity-imparting agents and the like.

<粉体塗料組成物の製造方法>
次に、本発明の粉体塗料組成物の製造方法を以下に述べる。
<Method for producing powder coating composition>
Next, the manufacturing method of the powder coating composition of this invention is described below.

まず上記多孔性焼成物、熱硬化性樹脂、硬化剤およびその他の成分を乾燥状態で予備混合する。そして、粉体塗料を製造する際に一般的に行われている方法と同様にして、この混合物を溶融混練機により加熱溶融しながら混練し、押出し成形する。この際の加熱溶解温度は、使用する熱硬化性樹脂の種類に応じて適宜決定されるが、一般的に80〜140℃程度であるのが好ましい。その後、この成形体を冷却して粗粉砕する。こうして得られた粗粉砕粒子をさらに微粉砕した後、分級機を用いて微小粒子と粗大粒子を取り除き、所定の粒度分布の粉体塗料組成物とする。   First, the porous fired product, thermosetting resin, curing agent and other components are premixed in a dry state. The mixture is kneaded while being heated and melted by a melt kneader in the same manner as a method generally used for producing a powder coating material, and is extruded. The heating and melting temperature at this time is appropriately determined according to the type of thermosetting resin to be used, but is generally preferably about 80 to 140 ° C. Thereafter, the compact is cooled and coarsely pulverized. After the coarsely pulverized particles thus obtained are further finely pulverized, the fine particles and coarse particles are removed using a classifier to obtain a powder coating composition having a predetermined particle size distribution.

上記製造方法によって製造された本発明の粉体塗料組成物は、平均粒径(体積平均粒径)が3〜50μmであることが好ましく、さらには15〜40μmであることがより好ましい。なお、上記体積平均粒径は一般的に粉体塗料の分野で用いられているレーザー光散乱法による粒子径測定装置によって決定することができる。平均粒径が3μmを下回ると、粒子が静電的な反発を受け塗装膜厚の制御が難しく、また回収再利用の際のサイクロンによる補集効率の低下による塗着効率の低下、保護マスクの透過による安全作業性の低下などの問題が生じることがある。一方、50μmを超えると塗膜レベリング性が低下し塗膜外観に劣ることがある、また薄塗りできなくなるという問題が生じることがある。また目的とする塗膜の膜厚により粉体塗料組成物の平均粒径が決まり、たとえば膜厚約40〜50μmの場合は、粉体塗料組成物の平均粒径25〜30μmとするのが好ましい。平均粒径は小さい方が塗膜外観が向上し、薄塗りも可能となるが、スプレー塗装時などに目詰りを起して作業性が低下すると共に塗料の付着率も低下する。   The powder coating composition of the present invention produced by the above production method preferably has an average particle size (volume average particle size) of 3 to 50 μm, more preferably 15 to 40 μm. The volume average particle diameter can be determined by a particle diameter measuring apparatus using a laser light scattering method generally used in the field of powder coatings. When the average particle size is less than 3 μm, it is difficult to control the coating film thickness due to electrostatic repulsion, and the coating efficiency decreases due to the decrease in the collection efficiency due to the cyclone during recovery and reuse. Problems such as reduced safety workability due to permeation may occur. On the other hand, when it exceeds 50 μm, the coating film leveling property is lowered and the coating film appearance may be inferior. The average particle diameter of the powder coating composition is determined by the film thickness of the target coating film. For example, when the film thickness is about 40 to 50 μm, the average particle diameter of the powder coating composition is preferably 25 to 30 μm. . The smaller the average particle size, the better the appearance of the coating film and the thin coating is possible. However, clogging occurs during spray coating and the like, and the workability is lowered and the adhesion rate of the paint is also lowered.

<塗膜形成方法>
本発明の塗膜形成方法は、被塗基材に、上記の粉体塗料組成物を乾燥膜厚で5〜500μmの塗膜を形成する。本発明で使用する被塗基材に制限はないが、合金化亜鉛めっき材、鋳鉄材、溶融亜鉛めっき材、マグネシウム合金材、アルミニウム・ダイキャスト材、これらの金属を脱脂や化成処理等により表面処理した各種金属板または加工品、導電性プライマー等を塗布して導電処理したプラスチック板または加工品等が挙げられる。
<Method for forming coating film>
In the coating film forming method of the present invention, a coating film having a dry film thickness of 5 to 500 μm is formed on the substrate to be coated. Although there is no restriction | limiting in the base material to be used by this invention, alloyed galvanized material, cast iron material, hot dip galvanized material, magnesium alloy material, aluminum die-cast material, surface these metals by degreasing, chemical conversion treatment, etc. Examples thereof include various treated metal plates or processed products, and plastic plates or processed products subjected to conductive treatment by applying a conductive primer or the like.

本発明の粉体塗料組成物を被塗基材に塗装するには、静電塗装法、流動浸漬法、吹き付け法、インモールド等の公知慣用の種々の方法で行うことができるが、粉体塗装ガンを用いた静電粉体塗装法を採用することが好ましい。静電粉体塗装法は、被塗基材である金属素材を接地した後、コロナ帯電型塗装ガン、摩擦帯電型塗装ガン、例えばメサック社製の静電電界クラウド流動浸漬塗装装置等の粉体塗装装置を用いて粉体塗料組成物をスプレーする。   The powder coating composition of the present invention can be applied to a substrate to be coated by various known and conventional methods such as electrostatic coating, fluid dipping, spraying, and in-mold. It is preferable to employ an electrostatic powder coating method using a coating gun. In the electrostatic powder coating method, a metal material as a substrate to be coated is grounded, and then a powder such as a corona charging type coating gun, a friction charging type coating gun, such as an electrostatic electric field cloud fluidized immersion coating device manufactured by Mesak Co., Ltd. The powder coating composition is sprayed using a coating apparatus.

上記コロナ帯電型塗装ガンを使用する場合、コロナ放電処理により粉体塗料組成物に加える荷電圧は、好ましくは−50〜−100KV、さらに好ましくは塗着効率と外観の観点から−60〜−90KVに設定する。一方、摩擦帯電型塗装ガンを使用する場合、粉体塗料組成物の内部発生電流値は、塗着効率と外観の観点から、1.0〜8.0μAとなるよう摩擦帯電処理することが好ましい。   When the corona charging type coating gun is used, the load voltage applied to the powder coating composition by corona discharge treatment is preferably -50 to -100 KV, more preferably -60 to -90 KV from the viewpoint of coating efficiency and appearance. Set to. On the other hand, when using a frictional charging type coating gun, it is preferable that the internally generated current value of the powder coating composition is frictionally charged so as to be 1.0 to 8.0 μA from the viewpoint of coating efficiency and appearance. .

また、上記各塗装ガンの好ましい吐出量は、50〜400g/分、吐出圧は、4.9×10〜4.9×10Paである。さらに、塗装ガン先端から被塗基材までの距離は、10〜50cmが好ましく、これらの範囲で塗装することにより、粉体塗料組成物の粒子を塗着効率良く、導電性被塗基材に静電的に付着させて粉体塗膜層を形成させることができる。 Moreover, the preferable discharge amount of each said coating gun is 50-400 g / min, and discharge pressure is 4.9 * 10 < 4 > -4.9 * 10 < 5 > Pa. Furthermore, the distance from the tip of the coating gun to the substrate to be coated is preferably 10 to 50 cm. By coating within these ranges, the particles of the powder coating composition can be coated efficiently and applied to the conductive substrate. The powder coating layer can be formed by electrostatic adhesion.

<塗装物>
そして、この粉体塗膜層を140〜260℃の温度で所定の時間焼き付けることにより、本発明の塗装物が得られる。焼付後の塗膜厚(設定膜厚)は、5〜500μm、好ましくは40〜100μmである。
<Painted object>
And the coated material of this invention is obtained by baking this powder coating-film layer for the predetermined time at the temperature of 140-260 degreeC. The film thickness (set film thickness) after baking is 5 to 500 μm, preferably 40 to 100 μm.

以下、本発明を実施例および比較例を挙げてさらに具体的に説明するが、本発明はこれらの実施例にのみ限定されるものではない。尚、配合量は特に断りのない限り質量部を表す。また、原材料、塗料、機器の名称は、特に断りのない限り商品名を表す。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited only to these Examples. In addition, unless otherwise indicated, a compounding quantity represents a mass part. The names of raw materials, paints, and equipment represent product names unless otherwise specified.

<実施例1〜13>および<比較例1〜5>
以下のようにして、先ず、多孔性焼成物A〜Iを調製し、得られた多孔性焼成物を用いて粉体塗料組成物No.1〜16を調製し、こられの粉体塗料組成物を鋼板材に塗装して実施例1〜13、および比較例1〜5の塗装試験片を作成した。
<Examples 1 to 13> and <Comparative Examples 1 to 5>
First, porous baked products A to I were prepared as follows, and the powder coating composition No. 1 to 16 were prepared, and these powder coating compositions were coated on a steel plate material to prepare coating test pieces of Examples 1 to 13 and Comparative Examples 1 to 5.

[多孔性焼成物の調製]
表1に示す種類と配合量の粉末状炭、粉末状麦飯石、粉末トルマリン、粉末状貴陽石、水分含有量30質量%の粘土を調合して、下記の調製例により多孔性焼成物A〜Iを調製した。
[Preparation of porous fired product]
The types and blending amounts of powdered charcoal, powdered barley stone, powdered tourmaline, powdered precious stone, and clay with a water content of 30% by mass shown in Table 1 were blended, and porous calcined products A to A were prepared according to the following preparation examples. I was prepared.

(調製例A)
原料の竹炭粉末(平均粒径0.05mm)100質量部に、水分含有量30質量%の粘土30質量部を加え、真空混練機(「VM−3型」、アンテック社製)にて、空気を抜きながら60分間混練し、次いで真空状態でさらに60分間混練して原料混練物を得た。この原料混練物を、金型で圧縮しながら球状に成形し、続いて該成形体を、炭化プラント(「RPG−08DX型」、福澤工業社製)にて、大気中雰囲気下、600℃から昇温速度100℃/分で1400℃まで昇温し、この1400℃で24時間保持して焼成し、その後室温まで3日間かけて冷却し成形体の多孔性焼成物(φ20mm、11g)を得た。この成形体の多孔性焼成物を粉砕し、粉末状(250メッシュ、平均粒径約60μm)の多孔性焼成物Aを得た。
(Preparation Example A)
To 100 parts by mass of raw bamboo charcoal powder (average particle size 0.05 mm), 30 parts by mass of clay having a water content of 30% by mass was added, and the air was evacuated with a vacuum kneader (“VM-3 type”, manufactured by Antec Corporation). The mixture was kneaded for 60 minutes and then kneaded for 60 minutes under vacuum to obtain a raw material kneaded product. The raw material kneaded product is molded into a spherical shape while being compressed with a mold, and then the molded product is obtained from a temperature of 600 ° C. in an atmosphere in a carbonization plant (“RPG-08DX type”, manufactured by Fukuzawa Kogyo Co., Ltd.). The temperature was raised to 1400 ° C. at a rate of temperature increase of 100 ° C./min, and the mixture was calcined by holding at 1400 ° C. for 24 hours, and then cooled to room temperature over 3 days to obtain a porous fired product (φ20 mm, 11 g). It was. The porous fired product of this molded body was pulverized to obtain a porous fired product A in a powder form (250 mesh, average particle size of about 60 μm).

(調製例B)
原料の竹炭粉末(平均粒径0.05mm)99質量部、麦飯石粉末(平均粒径0.05mm)1質量部からなる混合物100質量部に対して、水分含有量30質量%の粘土30質量部を加え、真空混練機にて、空気を抜きながら60分間混練し、次いで真空状態でさらに60分間混練して原料混練物を得た。この原料混練物を、調製例Aと同様にして成形体の多孔性焼成物(φ20mm、10g)を得た。この成形体の多孔性焼成物を粉砕し、粉末状(250メッシュ、平均粒径約60μm)の多孔性焼成物Bを得た。
(Preparation Example B)
30 parts by mass of clay with a water content of 30% by mass with respect to 100 parts by mass of a mixture consisting of 99 parts by mass of raw bamboo charcoal powder (average particle diameter 0.05 mm) and 1 part by mass of barley stone powder (average particle diameter 0.05 mm) The mixture was added and kneaded in a vacuum kneader for 60 minutes while removing air, and then kneaded for 60 minutes in a vacuum state to obtain a raw material kneaded product. This raw material kneaded product was used in the same manner as in Preparation Example A to obtain a porous fired product (φ20 mm, 10 g) of a molded body. The porous fired product of this compact was pulverized to obtain a porous fired product B in the form of powder (250 mesh, average particle size of about 60 μm).

(調製例C)
原料の竹炭粉末(平均粒径0.05mm)90質量部、麦飯石粉末(平均粒径0.05mm)7質量部およびトルマリン粉末(平均粒径0.05mm)3質量部からなる混合物100質量部に対して、水分含有量30質量%の粘土30質量部を加え、真空混練機にて、空気を抜きながら60分間混練し、次いで真空状態でさらに60分間混練して原料混練物を得た。この原料混練物を、調製例Aと同様にして成形体の多孔性焼成物(φ20mm、10g)を得た。この成形体の多孔性焼成物を粉砕し、粉末状(250メッシュ、平均粒径約60μm)の多孔性焼成物Cを得た。
(Preparation Example C)
100 parts by mass of a mixture comprising 90 parts by mass of raw bamboo charcoal powder (average particle size 0.05 mm), 7 parts by mass of barley stone powder (average particle size 0.05 mm) and 3 parts by mass of tourmaline powder (average particle size 0.05 mm) On the other hand, 30 parts by mass of a clay having a water content of 30% by mass was added, kneaded for 60 minutes while venting air in a vacuum kneader, and then kneaded for 60 minutes in a vacuum state to obtain a raw material kneaded product. This raw material kneaded product was used in the same manner as in Preparation Example A to obtain a porous fired product (φ20 mm, 10 g) of a molded body. The porous fired product of this molded body was pulverized to obtain a porous fired product C in a powder form (250 mesh, average particle size of about 60 μm).

(調製例D)
調製例Cにおいて、原料混練物を得る配合量として原料の竹炭粉末(平均粒径0.05mm)96質量部、麦飯石粉末(平均粒径0.05mm)2質量部およびトルマリン粉末(平均粒径0.05mm)2質量部からなる混合物100質量部に対して、水分含有量30質量%の粘土30質量部に変えた以外は調製例Cと同様にして成形体の多孔性焼成物(φ20mm、10g)を得た。この成形体の多孔性焼成物を粉砕し、粉末状(250メッシュ、平均粒径約60μm)の多孔性焼成物Dを得た。
(Preparation Example D)
In Preparation Example C, raw material bamboo charcoal powder (average particle size 0.05 mm) 96 parts by mass, barley stone powder (average particle size 0.05 mm) 2 parts by mass and tourmaline powder (average particle size) 0.05 mm) A porous fired product (φ20 mm, φ20 mm) in the same manner as in Preparation Example C, except that the mixture was changed to 30 parts by mass of clay having a water content of 30% by mass with respect to 100 parts by mass of the mixture consisting of 2 parts by mass. 10 g) was obtained. The porous fired product of this compact was pulverized to obtain a porous fired product D in the form of powder (250 mesh, average particle size of about 60 μm).

(調製例E)
調製例Cおいて、原料混練物を得る配合量として原料の竹炭粉末(平均粒径0.05mm)90質量部、麦飯石粉末(平均粒径0.05mm)6質量部、トルマリン粉末(平均粒径0.05mm)3質量部および粉末状貴陽石(平均粒径0.003mm)1質量部からなる混合物100質量部に対して、水分含有量30質量%の粘土30質量部に変えたこと以外は、調製例Cと同様にして成形体の多孔性焼成物(φ20mm、10g)を得た。この成形体の多孔性焼成物を粉砕し、粉末状(250メッシュ、平均粒径約60μm)の多孔性焼成物Eを得た。
(Preparation Example E)
In Preparation Example C, raw material bamboo charcoal powder (average particle size 0.05 mm) 90 parts by mass, barley stone powder (average particle size 0.05 mm) 6 parts by mass, tourmaline powder (average particle) Other than changing to 30 parts by mass of clay having a water content of 30% by mass with respect to 100 parts by mass of a mixture comprising 3 parts by mass of 0.05 mm in diameter and 1 part by mass of powdered precious stone (average particle size 0.003 mm) Produced a porous fired product (φ20 mm, 10 g) in the same manner as in Preparation Example C. The porous fired product of this molded body was pulverized to obtain a porous fired product E in the form of powder (250 mesh, average particle size of about 60 μm).

(調製例F)
調製例Cおいて、原料の竹炭粉末を木炭粉末(平均粒径0.05mm)に変えたこと以外は、調製例Cと同様にして成形体の多孔性焼成物(φ20mm、11g)を得た。この成形体の多孔性焼成物を粉砕し、粉末状(250メッシュ、平均粒径約60μm)の多孔性焼成物Fを得た。
(Preparation Example F)
In Preparation Example C, a porous fired product (φ20 mm, 11 g) was obtained in the same manner as Preparation Example C, except that the raw bamboo charcoal powder was changed to charcoal powder (average particle size 0.05 mm). . The porous fired product of this compact was pulverized to obtain a porous fired product F in the form of powder (250 mesh, average particle size of about 60 μm).

(調製例G)
調製例Aおいて、原料の竹炭粉末(平均粒径0.05mm)100質量部と、水分含有量30質量%の粘土14質量部に変えたこと以外は、調製例Aと同様にして成形体の多孔性焼成物(φ20mm、9g)を得た。この成形体の多孔性焼成物を粉砕し、粉末状(250メッシュ、平均粒径約60μm)の多孔性焼成物Gを得た。
(Preparation Example G)
A molded body in the same manner as in Preparation Example A, except that in Preparation Example A, the raw material bamboo charcoal powder (average particle size 0.05 mm) was changed to 100 parts by mass and the water content was changed to 14 parts by mass. Porous fired product (φ20 mm, 9 g) was obtained. The porous fired product of this molded body was pulverized to obtain a porous fired product G in the form of powder (250 mesh, average particle size of about 60 μm).

(調製例H)
調製例Eおいて、原料の竹炭粉末(平均粒径0.05mm)90質量部、麦飯石粉末(平均粒径0.05mm)6質量部、トルマリン粉末(平均粒径0.05mm)3質量部および粉末状貴陽石(平均粒径0.003mm)1質量部からなる混合物100質量部に対して、水分含有量30質量%の粘土15質量部に変えたこと以外は、調製例Eと同様にして成形体の多孔性焼成物(φ20mm、11g)を得た。この成形体の多孔性焼成物を粉砕し、粉末状(250メッシュ、平均粒径約60μm)の多孔性焼成物Hを得た。
(Preparation Example H)
In Preparation Example E, raw material bamboo charcoal powder (average particle size 0.05 mm) 90 parts by mass, barley stone powder (average particle size 0.05 mm) 6 parts by mass, tourmaline powder (average particle size 0.05 mm) 3 parts by mass And in the same manner as in Preparation Example E, except that 100 parts by mass of a mixture consisting of 1 part by mass of powdered precious stone (average particle size 0.003 mm) was changed to 15 parts by mass of clay having a water content of 30% by mass. Thus, a porous fired product (φ20 mm, 11 g) was obtained. The porous fired product of this molded body was pulverized to obtain a porous fired product H in a powder form (250 mesh, average particle size of about 60 μm).

(調製例I)
調製例Eおいて、竹炭粉末(平均粒径0.05mm)90質量部、麦飯石粉末(平均粒径0.05mm)6質量部、トルマリン粉末(平均粒径0.05mm)3質量部および粉末状貴陽石(平均粒径0.003mm)1質量部からなる混合物100質量部に対して、水分含有量30質量%の粘土38質量部に変えたこと以外は、調製例Eと同様にして成形体の多孔性焼成物(φ20mm、12g)を得た。この成形体の多孔性焼成物を粉砕し、粉末状(250メッシュ、平均粒径約60μm)の多孔性焼成物Iを得た。
(Preparation Example I)
In Preparation Example E, 90 parts by mass of bamboo charcoal powder (average particle size 0.05 mm), 6 parts by mass of barley stone powder (average particle size 0.05 mm), 3 parts by mass of tourmaline powder (average particle size 0.05 mm) and powder Molded in the same manner as in Preparation Example E, except that 100 parts by mass of a mixture of 1 part by mass of precious stone (average particle size 0.003 mm) was changed to 38 parts by mass of clay having a water content of 30% by mass. A porous fired product (φ20 mm, 12 g) was obtained. The porous fired product of this compact was pulverized to obtain a porous fired product I in the form of powder (250 mesh, average particle size of about 60 μm).

尚、平均粒径および粒度分布は、粒度分析計(「SKレーザー」、セイシン企業社製)を用いて測定した。   The average particle size and particle size distribution were measured using a particle size analyzer (“SK Laser”, manufactured by Seishin Enterprise Co., Ltd.).

Figure 2007009064
Figure 2007009064

[粉体塗料組成物の調製]
表2に示す種類と配合量の熱硬化性樹脂、硬化剤、多孔性焼成物に、酸化チタン30部(「CR−50」、石原産業社製)、カーボンブラック0.001部(「MA−100」、三菱化学社製)、および添加剤としてベンゾイン0.5部、アンチクレーター剤0.5部(「アクロナール4F」、BASF社製。アクリルオリゴマー)を添加し、混合機(「スーパーミキサー」、日本スピンドル社製)によって約3分間ドライブレンドして混合物を得た。
[Preparation of powder coating composition]
To the thermosetting resin, curing agent, and porous fired product of the types and blending amounts shown in Table 2, 30 parts of titanium oxide (“CR-50”, manufactured by Ishihara Sangyo Co., Ltd.), 0.001 part of carbon black (“MA- 100 ", manufactured by Mitsubishi Chemical Corporation), and 0.5 parts of benzoin and 0.5 parts of anti-crater agent (" Acronal 4F ", manufactured by BASF. Acrylic oligomer) are added as additives, and a mixer (" Super mixer ") is added. , Manufactured by Nippon Spindle Co., Ltd.) for about 3 minutes to obtain a mixture.

次に、上記混合物を溶融混練機(「ブスコニーダー」、ブス社製)によって約100℃で溶融混練して成形し、得られた成形物を室温まで冷却した後、粉砕機(「アトマイザー」、不二パウダル社製)によって粗粉砕し、さらに微粉砕機ジェットミル(「IDS−2型」、日本ニューマチック工業社製)を用いて微粉砕した。   Next, the mixture is melt-kneaded and molded at about 100 ° C. with a melt kneader (“Busconyder”, manufactured by Buss), and the resulting molded product is cooled to room temperature, and then pulverized (“atomizer”, The mixture was coarsely pulverized by Nipowdar Co., Ltd. and further pulverized using a fine pulverizer jet mill (“IDS-2 type”, manufactured by Nippon Pneumatic Kogyo Co., Ltd.).

こうして得られた粉体を気流分級機(「DS−2型」、日本ニューマチック工業社製)によって分級し、微小粒子と粗大粒子を除去し、平均粒径(体積平均粒径)が25μm程度の粉体塗料組成物No.1〜16を作成した。粉体塗料組成物No.14〜16は、多孔性焼成物が無添加および配合量が本発明の範囲から外れる比較例用として作成したものである。   The powder thus obtained is classified by an airflow classifier (“DS-2 type”, manufactured by Nippon Pneumatic Kogyo Co., Ltd.) to remove fine particles and coarse particles, and the average particle size (volume average particle size) is about 25 μm. Powder coating composition no. 1-16 were created. Powder coating composition No. Nos. 14 to 16 were prepared for comparative examples in which the porous fired product was not added and the blending amount was out of the scope of the present invention.

尚、体積平均粒径および粒度分布は、粒度分析計(「マイクロトラックHRAX−100」、日機装社製)を用いて測定した。このときの測定試料は、サンプルビンにポリオキシエチレン(10)オクチルフェニルエーテル0.1質量%水溶液50gと、測定対象である粉体塗料組成物0.5gとを加え、このサンプル瓶を超音波洗浄機(「SILENTSONIC UT−105」、シャープ社製)により3分間超音波振動させ、水溶液を浸漬させた粉体塗料分散水を用いた。   The volume average particle size and particle size distribution were measured using a particle size analyzer ("Microtrack HRAX-100", manufactured by Nikkiso Co., Ltd.). As a measurement sample at this time, 50 g of a 0.1% by mass aqueous solution of polyoxyethylene (10) octylphenyl ether and 0.5 g of a powder coating composition to be measured are added to a sample bottle, and this sample bottle is subjected to ultrasonic waves. Powder paint dispersion water in which an aqueous solution was immersed by ultrasonic vibration for 3 minutes with a washing machine (“SILENTSONIC UT-105”, manufactured by Sharp Corporation) was used.

Figure 2007009064
Figure 2007009064

[有機溶剤塗料および水性塗料の調製(比較例用)]
比較例として、下記のように、粉末状の多孔性焼成物を含有する有機溶剤塗料および水性塗料を調製した。
[Preparation of organic solvent paint and water-based paint (for comparative example)]
As a comparative example, an organic solvent paint and an aqueous paint containing a powdered porous fired product were prepared as follows.

(有機溶剤塗料の調製)
有機溶剤型アルキド/メラミン樹脂系塗料「オルガセレクト300」(日本ペイント社製)に上記調整例Eで調整した粉末状多孔性焼成物Eを樹脂100質量部に対して76質量部配合して、粉末状多孔性焼成物を含有する有機溶剤塗料No.1を調製した。
(Preparation of organic solvent paint)
An organic solvent type alkyd / melamine resin-based paint “Olga Select 300” (manufactured by Nippon Paint Co., Ltd.) is blended with 76 parts by mass of the powdery porous fired product E prepared in the above Adjustment Example E with respect to 100 parts by mass of the resin. Organic solvent paint No. containing powdered porous fired product 1 was prepared.

(水性塗料の調製)
水性ポリエステル/メラミン樹脂系塗料「オーデエコラインS−100」(日本ペイント社製)に上記調整例Fで調整した粉末状多孔性焼成物Fを樹脂100質量部に対して76質量部配合して、粉末状多孔性焼成物を含有する水性塗料No.1を調製した。
(Preparation of water-based paint)
76 parts by mass of the powdered porous fired product F prepared in Preparation Example F above was added to an aqueous polyester / melamine resin-based paint “Ode Eco Line S-100” (manufactured by Nippon Paint Co., Ltd.) with respect to 100 parts by mass of the resin. Water-based paint No. containing a powdered porous fired product 1 was prepared.

[塗膜形成方法]
上記によって得られた粉体塗料組成物、有機溶剤塗料および水性塗料を、合金化溶融亜鉛めっき鋼板材の被塗基材に静電塗装し、表3に示すように実施例1〜13と比較例1〜5の塗装試験片を作成した。
[Coating film forming method]
The powder coating composition, organic solvent coating, and water-based coating obtained as described above were electrostatically coated on the coated base material of the alloyed hot-dip galvanized steel sheet, and compared with Examples 1 to 13 as shown in Table 3. The coating test piece of Examples 1-5 was created.

合金化溶融亜鉛めっき鋼板材はJIS−G−3302「溶融亜鉛めっき鋼板」で規定されている溶融亜鉛めっき鋼板材(SGCC材)でF06のめっき目付け量とし、サイズは100mm×150mmで板厚0.6mmとした。   The alloyed hot-dip galvanized steel sheet material is a hot-dip galvanized steel sheet material (SGCC material) specified by JIS-G-3302 “hot dip galvanized steel sheet”, and has a coating weight of F06, the size is 100 mm × 150 mm, and the plate thickness is 0 6 mm.

粉体塗装は、アースが取られた導電性水平ベルトコンベア上に被塗基材を置き、次に、コロナ帯電塗装ガン(「PG−1」、GEMA社製)のガンヘッド先端部から鋼板材までの距離が15cmとなるように塗装ガンをセットし、塗装ガン印加電圧−80KV、設定膜厚30〜50μmで片面のみ塗装した。そして、得られた塗装試験片を、試験片の表面温度が180℃で15分間保持できる条件で焼き付けた。   For powder coating, the substrate to be coated is placed on a grounded conductive horizontal belt conveyor, and then from the tip of the gun head of the corona charging coating gun ("PG-1", manufactured by GEMA) to the steel plate material. The coating gun was set so that the distance was 15 cm, and only one side was painted with a coating gun applied voltage of −80 KV and a set film thickness of 30 to 50 μm. And the obtained coating test piece was baked on the conditions which can maintain the surface temperature of a test piece at 180 degreeC for 15 minutes.

尚、水性塗料および有機溶剤型塗料の塗装は、エアスプレーでスプレーガン口径1.3mm、霧化圧0.2〜0.4MPaで片面のみ塗装を行い、得られた塗装試験片を、試験片の表面温度が140℃で15分間保持できる条件で焼き付けた。(比較例1、2)。   The water-based paint and the organic solvent-type paint are applied by spraying only one side with a spray gun caliber of 1.3 mm and an atomization pressure of 0.2 to 0.4 MPa by air spray. Was baked under the condition that the surface temperature of the film could be kept at 140 ° C. for 15 minutes. (Comparative Examples 1 and 2).

実施例1〜13および比較例1〜5の塗装試験片を下記の評価方法および評価基準によって脱臭作用、浄化作用、塗膜外観、密着性、塗膜硬度および塗装性を評価し、その結果を表3に示した。   The coating test specimens of Examples 1 to 13 and Comparative Examples 1 to 5 were evaluated for deodorizing action, purification action, coating film appearance, adhesion, coating film hardness, and coating properties by the following evaluation methods and evaluation criteria, and the results were obtained. It is shown in Table 3.

<評価方法>
[脱臭作用(アンモニア)]
(一次評価)
焼付け後の上記塗装試験片を24時間室温に放置後、以下に示す条件でアンモニア吸着試験(検知管法)により脱臭の程度を評価した。尚、1枚の塗装試験片で3回評価を行い、バラツキを含めて評価した。
<Evaluation method>
[Deodorizing action (ammonia)]
(Primary evaluation)
The above-mentioned coating test piece after baking was left at room temperature for 24 hours, and then the degree of deodorization was evaluated by an ammonia adsorption test (detection tube method) under the following conditions. In addition, it evaluated three times with one coating test piece, and evaluated including variation.

1リットル真空瓶(A)に、マイクロシリンジを用いてアンモニア水を注入した。次いで、フッ化ビニル樹脂製テトラバック(B)に窒素ガスを80リットル導入した後、ガスタイトシリンジを用いて上記アンモニアが注入された1リットル真空瓶(A)からアンモニアガスを注入し、上記フッ化ビニル樹脂製テトラバック(B)内のアンモニアガスの初期濃度を30ppmになるように検知管で確認して調整した。別途用意した10リットルのフッ化ビニル樹脂製テトラバック(C)に塗装試験片を封入し、上記でアンモニアガス濃度が30ppmに調整されたフッ化ビニル樹脂製テトラバック(B)と上記10リットルのフッ化ビニル樹脂製テトラバック(C)とをポンプで接続し、上記フッ化ビニル樹脂製テトラバック(B)内の調整されたアンモニアガスを上記ポンプを用いて毎分1リットルの割合で10リットルを塗装試験片が封入されている上記フッ化ビニル樹脂製テトラバック(C)に導入し試験を開始した。試験開始から100時間後の上記フッ化ビニル樹脂製テトラバック(C)内のアンモニアガス濃度をガス検知管で測定した。塗装試験片を封入せずに上記操作を行ったものを空試験として補正した。なお、試験に供した温度は25℃とした。   Ammonia water was injected into a 1 liter vacuum bottle (A) using a microsyringe. Next, 80 liters of nitrogen gas was introduced into the tetraback (B) made of vinyl fluoride resin, and then the ammonia gas was injected from the 1 liter vacuum bottle (A) into which the ammonia had been injected using a gas tight syringe. The initial concentration of ammonia gas in the vinyl chloride resin tetrabag (B) was adjusted by checking with a detector tube so that the initial concentration was 30 ppm. A test specimen was sealed in a 10 liter vinyl fluoride resin tetra-back (C) prepared separately, and the above-mentioned 10 liters of vinyl fluoride resin tetra-bag (B) whose ammonia gas concentration was adjusted to 30 ppm and the above 10 liters. A vinyl fluoride resin tetrabag (C) is connected by a pump, and the adjusted ammonia gas in the vinyl fluoride resin tetrabag (B) is 10 liters at a rate of 1 liter per minute using the pump. Was introduced into the above-mentioned vinyl fluoride resin tetrabag (C) in which a coating test piece was enclosed, and the test was started. The ammonia gas concentration in the vinyl fluoride resin tetrabag (C) 100 hours after the start of the test was measured with a gas detector tube. A blank test was performed by performing the above operation without enclosing a coating test piece. The temperature used for the test was 25 ° C.

(二次評価)
塗装試験片の塗膜面を10×10cmの面積で、500グラムの荷重をかけながら、ガーゼにより100回擦り塗膜表面を劣化させた後、一次評価と同様の条件でアンモニアの脱臭の程度を評価した。その結果を表3に示した。尚、1枚の塗装試験片で3回評価を行い、バラツキを含めて評価した。
(Secondary evaluation)
While applying a load of 500 grams on a 10 × 10 cm area of the paint specimen, the surface of the paint film was rubbed 100 times with gauze, and then the degree of deodorization of ammonia was evaluated under the same conditions as in the primary evaluation. evaluated. The results are shown in Table 3. In addition, it evaluated three times with one coating test piece, and evaluated including variation.

尚、評価は以下の5段階で示した。
5…0ppm以上、5ppm未満
4…5ppm以上、10ppm未満
3…10ppm以上、15ppm未満
2…15ppm以上、20ppm未満
1…20ppm以上
The evaluation is shown in the following five stages.
5 ... 0 ppm or more, less than 5 ppm 4 ... 5 ppm or more, less than 10 ppm 3 ... 10 ppm or more, less than 15 ppm 2 ... 15 ppm or more, less than 20 ppm 1 ... 20 ppm or more

[浄化作用(ホルムアルデヒド)]
(一次評価)
焼付け後の上記塗装試験片を24時間室温に放置後、以下に示す条件でホルムアルデヒド吸着試験(検知管法)により浄化の程度を評価した。その結果を表3に示した。尚、1枚の塗装試験片で3回評価を行い、バラツキを含めて評価した。
[Purification (formaldehyde)]
(Primary evaluation)
After the baking, the coated test piece was allowed to stand at room temperature for 24 hours, and the degree of purification was evaluated by a formaldehyde adsorption test (detection tube method) under the following conditions. The results are shown in Table 3. In addition, it evaluated three times with one coating test piece, and evaluated including variation.

1リットル真空瓶(A)に、マイクロシリンジを用いてホルマリンを注入した。次いで、フッ化ビニル樹脂製テトラバック(B)に窒素ガスを80リットル導入した後、ガスタイトシリンジを用いて上記ホルマリンが注入された1リットル真空瓶(A)からホルムアルデヒドガスを注入し、上記フッ化ビニル樹脂製テトラバック(B)内のホルムアルデヒドガスの初期濃度を30ppmになるように検知管で確認して調整した。別途用意した10リットルのフッ化ビニル樹脂製テトラバック(C)に塗装試験片を封入し、上記でホルムアルデヒドガス濃度が30ppmに調整されたフッ化ビニル樹脂製テトラバック(B)と上記10リットルのフッ化ビニル樹脂製テトラバック(C)とをポンプで接続し、上記フッ化ビニル樹脂製テトラバック(B)内の調整されたホルムアルデヒドガスを上記ポンプを用いて毎分1リットルの割合で10リットルを塗装試験片が封入されている上記フッ化ビニル樹脂製テトラバック(C)に導入し試験を開始した。試験開始から100時間後の上記フッ化ビニル樹脂製テトラバック(C)内のホルムアルデヒドガス濃度をガス検知管で測定した。塗装試験片を封入せずに上記操作を行ったものを空試験として補正した。なお、試験に供した温度は25℃とした。   Formalin was injected into a 1 liter vacuum bottle (A) using a microsyringe. Next, 80 liters of nitrogen gas was introduced into the tetraback (B) made of vinyl fluoride resin, and then formaldehyde gas was injected from the 1 liter vacuum bottle (A) into which the formalin had been injected, using a gas tight syringe. The initial concentration of formaldehyde gas in the vinyl chloride resin tetrabag (B) was adjusted by checking with a detector tube so as to be 30 ppm. A test specimen was sealed in a 10 liter vinyl fluoride resin tetrabac (C) separately prepared, and the vinyl fluoride resin tetrabac (B) whose formaldehyde gas concentration was adjusted to 30 ppm as described above and 10 liters of the above 10 liters. A vinyl fluoride resin tetrabag (C) is connected by a pump, and the adjusted formaldehyde gas in the vinyl fluoride resin tetrabag (B) is 10 liters at a rate of 1 liter per minute using the pump. Was introduced into the above-mentioned vinyl fluoride resin tetrabag (C) in which a coating test piece was enclosed, and the test was started. The formaldehyde gas concentration in the vinyl fluoride resin tetrabag (C) 100 hours after the start of the test was measured with a gas detector tube. A blank test was performed by performing the above operation without enclosing a coating test piece. The temperature used for the test was 25 ° C.

(二次評価)
塗装試験片の塗膜面を10×10cmの面積で、500グラムの荷重をかけながら、ガーゼにより100回擦り塗膜表面を劣化させた後、一次評価と同様の条件でホルムアルデヒドの浄化の程度を評価した。その結果を表3に示した。尚、1枚の塗装試験片で3回評価を行い、バラツキを含めて評価した。
(Secondary evaluation)
While applying a load of 500 grams on a 10 × 10 cm area of the coating test piece and rubbing the surface of the coating 100 times with gauze, the degree of purification of formaldehyde was evaluated under the same conditions as in the primary evaluation. evaluated. The results are shown in Table 3. In addition, it evaluated three times with one coating test piece, and evaluated including variation.

尚、評価は以下の5段階で示した。
5…0ppm以上、10ppm未満
4…10ppm以上、15ppm未満
3…15ppm以上、20ppm未満
2…20ppm以上、25ppm未満
1…25ppm以上
The evaluation is shown in the following five stages.
5 ... 0 ppm or more, less than 10 ppm 4 ... 10 ppm or more, less than 15 ppm 3 ... 15 ppm or more, less than 20 ppm 2 ... 20 ppm or more, less than 25 ppm 1 ... 25 ppm or more

[塗膜外観]
塗装試験片の外観状態を目視で評価した。その結果を表3に示した。
[Appearance of coating film]
The appearance state of the coating test piece was visually evaluated. The results are shown in Table 3.

尚、評価は以下の3段階で示した。
3…十分に均一な艶消し感を発現
2…均一な艶消し感を発現
1…不均一な艶消し感を発現
The evaluation was shown in the following three stages.
3… Produces a sufficiently uniform matte feel 2… Produces a uniform matte feel 1… Produces a non-uniform matte feel

[塗膜硬度]
塗装試験片について、乾燥または焼付け後の塗膜を24時間室温に放置後、JIS−K−5600「塗料一般試験方法」に準拠して鉛筆引っかき試験を行った。その結果を鉛筆硬度で表3に示した。
[Coating hardness]
About the coating test piece, after leaving the coating film after drying or baking at room temperature for 24 hours, the pencil scratch test was done based on JIS-K-5600 "paint general test method". The results are shown in Table 3 in terms of pencil hardness.

[密着性]
塗装試験片について、JIS−K−5600「塗料一般試験方法」に準拠して、碁盤目剥離試験を行った。2mm角の100個の碁盤目を用意し、セロファン粘着テープを用いて剥離試験を行い、剥がれなかった碁盤目数を数えた。その結果を表3に示した。
[Adhesion]
The cross-cut peel test was performed on the coating test piece in accordance with JIS-K-5600 “Paint General Test Method”. 100 square grids of 2 mm square were prepared, a peel test was performed using cellophane adhesive tape, and the number of grids that were not peeled was counted. The results are shown in Table 3.

尚、評価は以下の3段階で示した。
3…0/100(剥離なし)
2…1/100〜50/100(50%以下剥離)
1…51/100〜100/100(51%以上剥離)
The evaluation was shown in the following three stages.
3 ... 0/100 (no peeling)
2 ... 1/100 to 50/100 (50% or less peeling)
1 ... 51 / 100-100 / 100 (51% or more peeling)

[塗装性]
スプレー塗装時のスプレーガン先における目詰まりの起こり始める時間帯を評価した。結果を表3に示した。
[Paintability]
The time zone when clogging started at the tip of the spray gun during spray coating was evaluated. The results are shown in Table 3.

尚、評価は以下の3段階で示した。
3…1時間以上、目詰りなし
2…30分程度で、目詰り
1…1〜10分程度で、目詰り
The evaluation was shown in the following three stages.
3 ... 1 hour or more, no clogging 2 ... about 30 minutes, clogging 1 ... about 1-10 minutes, clogging

Figure 2007009064
Figure 2007009064

表3の結果から明らかなように、本実施例は、本発明の粉体塗料組成物を用いて塗膜を形成したことにより、高脱臭作用および高浄化作用を発現した。また、塗膜の外観、硬度、密着性および塗装性にも優れていた。一方、比較例は、高脱臭作用および高浄化作用並びに塗膜外観、硬度、密着性および塗装性のすべてを満足して発現することができなかった。   As is clear from the results in Table 3, this example exhibited a high deodorizing action and a high purification action by forming a coating film using the powder coating composition of the present invention. Moreover, it was excellent also in the external appearance of the coating film, hardness, adhesiveness, and paintability. On the other hand, the comparative example was not able to satisfy and satisfy all of the high deodorizing action and the high purification action, and the coating film appearance, hardness, adhesion and paintability.

Claims (11)

熱硬化性樹脂と、硬化剤と、粉末状炭および粘土を含む多孔性焼成物と、を含有する粉体塗料組成物であって、
前記熱硬化性樹脂および前記硬化剤との合計量100質量部に対して、前記多孔性焼成物を10〜200質量部の割合で配合されている粉体塗料組成物。
A powder coating composition containing a thermosetting resin, a curing agent, and a porous fired product containing powdered charcoal and clay,
A powder coating composition comprising 10 to 200 parts by mass of the porous fired product with respect to 100 parts by mass of the total amount of the thermosetting resin and the curing agent.
前記多孔性焼成物は、粉末状炭と粘土とを含む原料組成物を混練した混練物を焼成して得られる請求項1に記載の粉体塗料組成物。   The powder coating composition according to claim 1, wherein the porous fired product is obtained by firing a kneaded product obtained by kneading a raw material composition containing powdered charcoal and clay. 前記粉末状炭と前記粘土との使用割合は、前記粉末状炭が70〜90質量部、前記粘土が10〜30質量部である請求項1または2に記載の粉体塗料組成物。   The powder coating composition according to claim 1 or 2, wherein the powdered charcoal and the clay are used in an amount of 70 to 90 parts by mass for the powdered charcoal and 10 to 30 parts by mass for the clay. 前記多孔性焼成物は、さらに原料成分として粉末状麦飯石、粉末状トルマリンおよび粉末状貴陽石からなる群より選ばれる一種類以上を含有する請求項1から3いずれか記載の粉体塗料組成物。   The powder coating composition according to any one of claims 1 to 3, wherein the porous fired product further contains one or more kinds selected from the group consisting of powdered barleystone, powdered tourmaline, and powdered precious stone as a raw material component. . 前記多孔性焼成物は、さらに原料成分として粉末状黒鉛硅石を含有する請求項4に記載の粉体塗料組成物。   The powder coating composition according to claim 4, wherein the porous fired product further contains powdered graphite meteorite as a raw material component. 前記多孔性焼成物は、さらに原料成分として粉末状貝殻または粉末状サンゴを含有する請求項4に記載の粉体塗料組成物。   The powder coating composition according to claim 4, wherein the porous fired product further contains a powdered shell or coral as a raw material component. 前記多孔性焼成物の平均粒径が3〜100μmの範囲である請求項1から6いずれか記載の粉体塗料組成物。   The powder coating composition according to any one of claims 1 to 6, wherein an average particle size of the porous fired product is in a range of 3 to 100 µm. 前記粉体塗料組成物の平均粒径が3〜50μmの範囲である請求項1から7いずれか記載の粉体塗料組成物。   The powder coating composition according to any one of claims 1 to 7, wherein the powder coating composition has an average particle size in the range of 3 to 50 µm. 被塗基材に、請求項1から8いずれか記載の粉体塗料組成物を乾燥膜厚5〜500μmの範囲の塗膜を形成する塗膜形成方法。   The coating-film formation method which forms the coating film of the range of 5-500 micrometers of dry film thicknesses with the powder coating material composition in any one of Claim 1 to 8 in a to-be-coated base material. 前記塗膜は、前記粉体塗料組成物を静電塗装で前記被塗基材に塗着した後、焼付けて形成されるものである請求項9に記載の塗膜形成方法。   The coating film forming method according to claim 9, wherein the coating film is formed by applying the powder coating composition to the substrate to be coated by electrostatic coating and then baking the coating composition. 請求項9または10に記載の塗膜形成方法により粉体塗料組成物を用いて塗膜が形成された塗装物。   A coated article in which a coating film is formed using the powder coating composition by the coating film forming method according to claim 9 or 10.
JP2005191739A 2005-06-30 2005-06-30 Powder coating composition, coating film forming method and coated article Active JP4879523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191739A JP4879523B2 (en) 2005-06-30 2005-06-30 Powder coating composition, coating film forming method and coated article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191739A JP4879523B2 (en) 2005-06-30 2005-06-30 Powder coating composition, coating film forming method and coated article

Publications (2)

Publication Number Publication Date
JP2007009064A true JP2007009064A (en) 2007-01-18
JP4879523B2 JP4879523B2 (en) 2012-02-22

Family

ID=37747974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191739A Active JP4879523B2 (en) 2005-06-30 2005-06-30 Powder coating composition, coating film forming method and coated article

Country Status (1)

Country Link
JP (1) JP4879523B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422481C (en) * 2007-04-21 2008-10-01 淄博统一陶瓷有限公司 Antistatic pseudo-classic ecological brick
JP2009030082A (en) * 2007-07-24 2009-02-12 Panasonic Corp Sliding member, and method for producing the same
JP2012007842A (en) * 2010-06-25 2012-01-12 Mitsubishi Electric Corp Humidification element, method for manufacturing the same, and humidifier
WO2012023216A1 (en) * 2010-08-19 2012-02-23 株式会社Lixil Powder-coated aluminum building material for outdoor use
JP2013072028A (en) * 2011-09-28 2013-04-22 Sumitomo Bakelite Co Ltd Porous powder coating particle, method of manufacturing the same, and epoxy resin powder coating composition
JP2015074739A (en) * 2013-10-10 2015-04-20 パナソニックIpマネジメント株式会社 Foamed plastic coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102076789B1 (en) * 2018-06-28 2020-02-12 목포대학교산학협력단 Nonflammable Paint Composition Using Pyrophyllite

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422481C (en) * 2007-04-21 2008-10-01 淄博统一陶瓷有限公司 Antistatic pseudo-classic ecological brick
JP2009030082A (en) * 2007-07-24 2009-02-12 Panasonic Corp Sliding member, and method for producing the same
JP2012007842A (en) * 2010-06-25 2012-01-12 Mitsubishi Electric Corp Humidification element, method for manufacturing the same, and humidifier
WO2012023216A1 (en) * 2010-08-19 2012-02-23 株式会社Lixil Powder-coated aluminum building material for outdoor use
JP2012040503A (en) * 2010-08-19 2012-03-01 Lixil Corp Powder-coated aluminum building material for outdoor use
JP2013072028A (en) * 2011-09-28 2013-04-22 Sumitomo Bakelite Co Ltd Porous powder coating particle, method of manufacturing the same, and epoxy resin powder coating composition
JP2015074739A (en) * 2013-10-10 2015-04-20 パナソニックIpマネジメント株式会社 Foamed plastic coating

Also Published As

Publication number Publication date
JP4879523B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4879523B2 (en) Powder coating composition, coating film forming method and coated article
JP4159983B2 (en) Solvent-containing paints curable by physical, thermal or thermal and actinic radiation and their use
JP5172458B2 (en) Emulsion composition for damping material
TWI804470B (en) Photocatalytic compositions, and uses thereof for obtaining water paints
JP2010514847A (en) Silica and dispersant containing radiation curable formulations with enhanced corrosion protection for metal substrates
JP6841237B2 (en) Powder coatings, powder coating manufacturing methods, and painted articles
JP2014189580A (en) Heat-insulating matte aqueous coating composition and method of forming heat-insulating matte coating film
CN1060100A (en) Water-based insulation damping painting
US6861467B2 (en) Powder coating composition
JP2015074769A (en) Heat-shielding water-based coating composition and heat-shielding coating film formation method
KR101574685B1 (en) Functional coating material for rust-resisting of steel and iron structure and construction method of surface repair and protection of steel and iron structure
JP7178047B2 (en) paint composition
KR101323960B1 (en) Composition of coating material which have rust prevention performance and vibration damping effect as water based and method for manufacturing the same
JPH09151335A (en) Water-based vibration-damping coating material
JP2007009130A (en) Water-based coating material
JP5685002B2 (en) Emulsion for damping material and damping material composition
KR101456280B1 (en) Functional paint composition for protecting steel material and surface
JP2000336318A (en) Composition for powdered paint and formation of coating film
JP3107289B2 (en) Method for producing powder coating composition
CN106366809A (en) High-impact-resistance automotive finishing powder coating
KR102009213B1 (en) Coating Composition Having Cellulose Powder for Blocking Solar Heat
JP2010275547A (en) Emulsion composition for drying by heating, method for producing the same, and vibration-damping material composition
JP2015034275A (en) Resin composition for vibration damping material
JPH0364347A (en) Chipping-resistant coating material of excellent property
KR101701443B1 (en) Anti fouling and waterproof and water repellency ceramic eco paint

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090420

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Ref document number: 4879523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250