JP2007009033A - Flame-retardant resin composition - Google Patents

Flame-retardant resin composition Download PDF

Info

Publication number
JP2007009033A
JP2007009033A JP2005190481A JP2005190481A JP2007009033A JP 2007009033 A JP2007009033 A JP 2007009033A JP 2005190481 A JP2005190481 A JP 2005190481A JP 2005190481 A JP2005190481 A JP 2005190481A JP 2007009033 A JP2007009033 A JP 2007009033A
Authority
JP
Japan
Prior art keywords
weight
molecular weight
parts
flame retardant
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005190481A
Other languages
Japanese (ja)
Other versions
JP4786231B2 (en
Inventor
Hidenori Nozawa
英則 野澤
Masao Gunji
雅男 軍司
Ikuo Machida
郁夫 町田
Katsumi Kidokoro
勝巳 城所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohto Kasei Co Ltd
Toyo Styrene Co Ltd
Original Assignee
Tohto Kasei Co Ltd
Toyo Styrene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohto Kasei Co Ltd, Toyo Styrene Co Ltd filed Critical Tohto Kasei Co Ltd
Priority to JP2005190481A priority Critical patent/JP4786231B2/en
Publication of JP2007009033A publication Critical patent/JP2007009033A/en
Application granted granted Critical
Publication of JP4786231B2 publication Critical patent/JP4786231B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a flame-retardant resin composition that has all of high flame retardance, heat stability, light resistance and fluidity, is readily melted and kneaded by an ordinary compound apparatus and has excellent surface impact strength and Charpy impact strength. <P>SOLUTION: The flame-retardant resin composition is obtained by mixing 100 parts wt. of a thermoplastic resin with 5-50 parts wt. of a flame retardant that is represented by general formula (I) (X is bromine or chlorine; R<SP>1</SP>and R<SP>2</SP>are each a glycidyl group or its alcohol addition group), has 700-1,500g/eq epoxy equivalent, 100-150°C softening point, a molecular weight distribution of ≤20 wt.% of a component having 2,000-10,000 molecular weight, 10-75 wt.% of a component having <2,000 molecular weight and ≥5 wt.% of a component having >10,000 molecular weight and 500-1,300 number-average molecular weight and 1-20 parts wt. of a flame-retardant auxiliary. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は難燃剤を含有した難燃性樹脂組成物に関し、更に詳しくは、高度の難燃性と共に耐光性、熱安定性、耐衝撃性、並びに流動性に優れ、コンパウンド作成が容易な難燃性樹脂組成物に関するものであり、OA機器、事務機器等、エンクロージャー等の用途に適する材料を提供するものである。より好ましくは、スチレン系樹脂に難燃剤及び難燃化助剤を添加したスチレン系難燃性樹脂組成物を提供するものである。   The present invention relates to a flame retardant resin composition containing a flame retardant, and more specifically, a flame retardant that is excellent in light resistance, thermal stability, impact resistance, and fluidity as well as high flame resistance and easy to make a compound. The present invention relates to a functional resin composition, and provides a material suitable for applications such as OA equipment, office equipment, and enclosures. More preferably, the present invention provides a styrene flame retardant resin composition obtained by adding a flame retardant and a flame retardant aid to a styrene resin.

スチレン系樹脂は優れた成形加工性、バランスのとれた機械的特性を有するため、従来より家庭電化製品及びOA機器、事務機器等のハウジング材料として使用されている。しかし、米国のUL規格、カナダのCSA規格に適合するには材料の難燃化を図る必要があり、その方法として有機系及び無機系の難燃剤を添加する方法が採用されている。有機系の難燃剤としてはリン系化合物、ハロゲン系化合物が使用され、無機系の難燃剤としてはアンチモン酸化物が使用されている。このうちハロゲン系化合物はスチレン系樹脂の難燃剤としては効果的であり、その中でも物性、難燃性の点からテトラブロモビスフェノールA、ポリブロモジフェニルエーテル、臭素化ポリカーボネートオリゴマー、ビストリブロモフェノキシエタン、臭素化エポキシ樹脂、臭素化エポキシ樹脂のトリブロモフェノール反応物等がよく知られ、その用途に応じて使い分けられている。   Styrenic resins have been used as housing materials for home appliances, OA equipment, office equipment and the like because of their excellent moldability and balanced mechanical properties. However, in order to comply with the US UL standard and the Canadian CSA standard, it is necessary to make the material flame retardant, and a method of adding an organic or inorganic flame retardant is adopted as the method. Phosphorus compounds and halogen compounds are used as organic flame retardants, and antimony oxides are used as inorganic flame retardants. Of these, halogen compounds are effective as flame retardants for styrene resins, and among these, tetrabromobisphenol A, polybromodiphenyl ether, brominated polycarbonate oligomers, bistribromophenoxyethane, brominated compounds from the viewpoint of physical properties and flame retardancy. Epoxy resins, tribromophenol reactants of brominated epoxy resins, and the like are well known, and are used properly according to their applications.

テトラブロモビスフェノールAを難燃剤として使用した場合、スチレン系樹脂の熱安定性及び耐熱性が大幅に低下するため、耐熱グレードとしての使用には限界があり、耐光性もあまりよくないため、耐光性を向上させるには耐光安定剤、紫外線吸収剤等を添加せねばならず、それらにより大幅なコストアップ、機械的特性及び難燃性の低下を引き起こす欠陥を有していた。ポリブロモジフェニルエーテルを難燃剤として使用した場合、スチレン系樹脂の耐熱性、機械的特性は良好であるが、耐光性が著しく悪く、紫外線に晒される用途のカラー着色品は変色するため専ら黒色に着色した材料としてのみ使用されていた。特許文献1には、臭素化ポリカーボネートオリゴマーを難燃剤として使用しているが、スチレン系樹脂の耐熱性、機械的特性及び耐光性は良好であるが、熱安定性に乏しいため成形加工時に成型品の表面にフラッシュ、シルバー不良を発生しやすく、成形加工メーカーで注意深い条件管理を行ってもフラッシュ、シルバーによる不良率を皆無にすることはできないという問題を抱えていた。ビストリブロモフェノキシエタンを難燃剤として使用したスチレン系樹脂の場合、耐光性は良好であるが、樹脂の耐熱性が低く、また成型品の表面に難燃剤がブリードアウトするという問題があった。   When tetrabromobisphenol A is used as a flame retardant, the thermal stability and heat resistance of the styrene resin are greatly reduced, so there are limits to its use as a heat-resistant grade, and light resistance is not so good. In order to improve the light resistance, it is necessary to add a light-resistant stabilizer, an ultraviolet absorber and the like, and they have defects that cause a significant increase in cost, mechanical properties and flame retardancy. When polybromodiphenyl ether is used as a flame retardant, the heat resistance and mechanical properties of the styrenic resin are good, but the light resistance is remarkably poor, and the color-colored product that is exposed to ultraviolet rays changes color, so it is exclusively colored black. Was used only as a material. Patent Document 1 uses a brominated polycarbonate oligomer as a flame retardant, but the styrenic resin has good heat resistance, mechanical properties and light resistance, but has poor thermal stability, so it is a molded product during molding processing. As a result, flash and silver defects are likely to occur on the surface, and even with careful control of conditions by molding manufacturers, the defect rate due to flash and silver cannot be completely eliminated. In the case of a styrene resin using bistribromophenoxyethane as a flame retardant, the light resistance is good, but the heat resistance of the resin is low, and the flame retardant bleeds out on the surface of the molded product.

特許文献2には、臭素化エポキシ樹脂、臭素化エポキシ樹脂のトリブロモフェノール反応物等を難燃剤として使用し、特許文献3には、臭素化エポキシ樹脂のジブロモフェノール反応物をスチレン系樹脂に用いることが提案されているが、これらはOA機器、事務機器のハウジング材料として使用された場合、難燃性が劣り、耐熱性も低く、耐熱クリープ特性も低いため、使用される用途が制限されていた。特に分子量が1,000未満の場合、一般的に使用されている押出機による連続でのコンパウンド成形性が劣るという問題もあり、特殊な成形条件等にする必要があった。   Patent Document 2 uses a brominated epoxy resin, a brominated epoxy resin tribromophenol reactant or the like as a flame retardant, and Patent Document 3 uses a brominated epoxy resin dibromophenol reactant for a styrene resin. However, when these are used as housing materials for office automation equipment and office equipment, they are inferior in flame retardancy, have low heat resistance, and have low heat-resistant creep characteristics. It was. In particular, when the molecular weight is less than 1,000, there is a problem that continuous compound moldability by a generally used extruder is inferior, and it is necessary to use special molding conditions.

特許文献4には、末端に水酸基、エポキシ基、トリブロムフェノール反応残基を有する難燃剤をスチレン系樹脂に配合することを提案されているが、重量平均分子量が1,500〜20,000の範囲にあるハロゲン含有芳香族ジオールを用いなければならなかった。
特開昭58−198543号公報 特開昭63−072749号公報 特開平01−240571号公報 特開昭61−211354号公報
Patent Document 4 proposes that a styrene resin is blended with a flame retardant having a hydroxyl group, an epoxy group, and a tribromophenol reactive residue at the terminal, but has a weight average molecular weight of 1,500 to 20,000. A range of halogen-containing aromatic diols had to be used.
JP 58-198543 A JP 63-072749 A Japanese Patent Laid-Open No. 01-240571 JP-A-61-211354

本発明者は、この様な現状を鑑み、上記の問題点を解決し、高度な難燃性と共に熱安定性、耐光性、流動性の全てを有し、さらに一般のコンパウンド装置での溶融混練が容易であり、かつ面衝撃強度及びシャルピー衝撃強度に優れた難燃性樹脂組成物を提供するものである。 In view of such a current situation, the present inventor has solved the above-mentioned problems, has high flame retardancy as well as thermal stability, light resistance, and fluidity, and is further melt-kneaded in a general compound apparatus. It is easy to provide a flame retardant resin composition excellent in surface impact strength and Charpy impact strength.

本発明は、熱可塑性樹脂100重量部に対して、下記一般式(I)で表される、エポキシ当量が700〜1,500g/eqで、軟化点が100℃〜150℃であり、分子量2,000〜10,000の成分が20重量%以下および、分子量2,000未満の成分が10〜75重量%、なおかつ分子量10,000を越える成分が5重量%以上である分子量分布を有する、数平均分子量が500〜1,300である難燃剤を5〜50重量部、難燃化助剤を1〜20重量部配合してなることを特徴とする難燃性樹脂組成物。   In the present invention, an epoxy equivalent represented by the following general formula (I) is 700 to 1,500 g / eq, a softening point is 100 ° C. to 150 ° C., and a molecular weight is 2 with respect to 100 parts by weight of a thermoplastic resin. A component having a molecular weight distribution of not more than 20% by weight of components of 10,000 to 10,000, 10 to 75% by weight of components having a molecular weight of less than 2,000, and 5% by weight or more of components having a molecular weight of more than 10,000. A flame retardant resin composition comprising 5 to 50 parts by weight of a flame retardant having an average molecular weight of 500 to 1,300 and 1 to 20 parts by weight of a flame retardant aid.

Figure 2007009033
Figure 2007009033

一般式(I)中、R、Rは水素または一般式(II)または一般式(III)から選ばれた同一または異種の基であり、なおかつ一般式(III)がR、R全体の20〜50mol%であり、Xは臭素あるいは塩素、iは1〜4の整数、nは0を含む自然数である。 In the general formula (I), R 1 and R 2 are hydrogen or the same or different groups selected from the general formula (II) or the general formula (III), and the general formula (III) is R 1 , R 2 20 to 50 mol% of the total, X is bromine or chlorine, i is an integer of 1 to 4, and n is a natural number including 0.

Figure 2007009033
Figure 2007009033

Figure 2007009033
はC1〜C8のアルキル基から選ばれた同一または異種の基である。
Figure 2007009033
R 3 is the same or different group selected from C1 to C8 alkyl groups.

本発明に於ける難燃性樹脂組成物は一般的に使用されている連続式コンパウンド生産において、特殊な機械や特別な条件を必要とせず、容易に生産する事が可能でありながら、UL規格のV−2以上の難燃性を有し、さらに家庭電化製品の外装材料として要求のある1.5mmの厚みでのV−0難燃性及び、OA機器の外装材料として要求のある5VA難燃性の実力を持ち、耐衝撃性や優れた流動性を有する為、OA機器、事務機器、家庭電化製品等の各種用途に極めて有用な樹脂材料である。   The flame retardant resin composition in the present invention can be easily produced without the need for special machines or special conditions in the production of generally used continuous compounds. V-0 flame retardancy at 1.5mm thickness which is required as an exterior material for home appliances and 5VA difficulty required as an exterior material for OA equipment Because it has flammability, impact resistance and excellent fluidity, it is a resin material that is extremely useful for various applications such as OA equipment, office equipment, and home appliances.

以下、本発明を詳細に説明する。
本発明の式(I)で示される難燃剤は末端基にエポキシ基を有しており、エポキシ当量として、700〜1,500g/eqの範囲にある。エポキシ当量700g/eq未満では、コンパウンド作成時に重合を起こし、粘度が増加することで成形加工性が悪くなり、生産性が悪くなる。また、1,500g/eqを越えると流動性の悪化、耐光性の悪化など物性低下がみられる。
Hereinafter, the present invention will be described in detail.
The flame retardant represented by the formula (I) of the present invention has an epoxy group as a terminal group, and is in the range of 700 to 1,500 g / eq as an epoxy equivalent. If the epoxy equivalent is less than 700 g / eq, polymerization occurs at the time of compound preparation, and the viscosity increases, so that the molding processability deteriorates and the productivity deteriorates. On the other hand, when it exceeds 1,500 g / eq, physical properties such as fluidity and light resistance are deteriorated.

また、0≦n<500の繰り返し単位を有するものであっても良いが、分子量2,000〜10,000の成分量を20重量%以下にする必要があり、2,000〜10,000の分子量の範囲にあるn=3〜15の成分が20重量%以下の含有量であることが好ましい。同範囲の成分が20重量%を越える場合、耐熱性及び耐衝撃性が著しく悪化するため、成分量を20重量%以下、好ましくは2〜15重量%、より好ましくは2〜10重量%である。ここで述べる分子量とは、標準ポリスチレン換算によるゲルパーミネーション測定での分子量を示す。   Moreover, although it may have a repeating unit of 0 ≦ n <500, the amount of the component having a molecular weight of 2,000 to 10,000 must be 20% by weight or less, and 2,000 to 10,000. It is preferable that the content of n = 3 to 15 in the molecular weight range is 20% by weight or less. When the component in the same range exceeds 20% by weight, the heat resistance and impact resistance are remarkably deteriorated, so the amount of the component is 20% by weight or less, preferably 2 to 15% by weight, more preferably 2 to 10% by weight. . The molecular weight described here indicates a molecular weight in gel permeation measurement by standard polystyrene conversion.

また、分子量10,000を越える成分が増えると得られた難燃性樹脂組成物の流動性及び成形加工性が著しく悪化するため、分子量10,000以上の成分の好ましい範囲は15〜50重量%、より好ましくは20〜45重量%である。分子量2,000未満の成分が増え過ぎるとコンパウンド作成時、スチレン樹脂と難燃剤の分離が起こり、連続生産が困難となるので、分子量2,000未満の成分の好ましい範囲は25〜75重量%、より好ましくは45〜75重量%である。しかしながら、分子量が同じでも、末端基の構造によって軟化点に差が生じる。即ち、末端基がアルキル基の場合は軟化点を下げる事ができる。また、アルキル基の量が多すぎると樹脂との相溶性が悪くなり、機械物性が悪くなるだけでなく、流動性も悪くなる。アルキル基の量としては、末端基全体の20〜50mol%であり、好ましくは25〜50mol%、さらに好ましくは30〜45mol%である。   Moreover, since the fluidity | liquidity and molding processability of the obtained flame-retardant resin composition will deteriorate remarkably when the component exceeding molecular weight 10,000 increases, the preferable range of a component with a molecular weight of 10,000 or more is 15 to 50 weight%. More preferably, it is 20 to 45% by weight. If the component with a molecular weight of less than 2,000 increases too much, separation of the styrene resin and the flame retardant occurs at the time of compound preparation, and continuous production becomes difficult. Therefore, the preferred range of the component with a molecular weight of less than 2,000 is 25 to 75% by weight, More preferably, it is 45 to 75% by weight. However, even with the same molecular weight, the softening point varies depending on the structure of the terminal group. That is, when the terminal group is an alkyl group, the softening point can be lowered. Moreover, when there is too much quantity of an alkyl group, compatibility with resin will worsen and not only mechanical physical property will worsen but fluidity | liquidity will also worsen. The amount of the alkyl group is 20 to 50 mol%, preferably 25 to 50 mol%, more preferably 30 to 45 mol% of the entire terminal group.

本発明に於いて用いられる難燃剤の軟化点は100℃〜150℃の範囲にする必要がある。軟化点が100℃未満の場合、コンパウンド作成時、スチレン樹脂と難燃剤の分離が起こり、連続生産が困難となる。また、軟化点が150℃を越える場合、得られた難燃性スチレン樹脂組成物の流動性及び成形加工性が著しく悪化するため、軟化点は100℃〜150℃の範囲にする必要がある。より好ましい範囲は、105℃〜140℃である。さらに好ましくは105〜130℃である。   The softening point of the flame retardant used in the present invention needs to be in the range of 100 ° C to 150 ° C. When the softening point is less than 100 ° C., the styrene resin and the flame retardant are separated at the time of preparing the compound, which makes continuous production difficult. Further, when the softening point exceeds 150 ° C., the fluidity and molding processability of the obtained flame-retardant styrene resin composition are remarkably deteriorated, so the softening point needs to be in the range of 100 ° C. to 150 ° C. A more preferable range is 105 ° C to 140 ° C. More preferably, it is 105-130 degreeC.

本発明に於いて用いられる難燃剤は前記一般式(I)で表され、その具体例としては、含ハロゲンビスフェノールAと含ハロゲンビスフェノールA型エポキシ樹脂、及び/または、アルキルグリシジルエーテル化合物の反応生成物、含ハロゲンビスフェノールAとエピクロルヒドリン、及び/または、アルキルグリシジルエーテル化合物を定法に従って反応せしめることによって得られる反応生成物が挙げられ、反応時のモル比率を調整することにより分子量分布を制御することができるが、この際に含ハロゲンフェノキシ樹脂を併用することにより分子量10,000を越える成分量の調整を行う事も可能である。含ハロゲンビスフェノールAと含ハロゲンビスフェノールA型エポキシ樹脂、及び/または、アルキルグリシジルエーテル化合物の反応比率を変化させることにより、末端を水酸基とすること、あるいはエポキシ基とすることができ、このようにして得られた反応生成物はいずれも好適な難燃剤となる。更に、末端水酸基をアルキルグリシジルエーテル化合物と反応させることによって得られるエーテル誘導体も本発明の目的に適する難燃剤となる。   The flame retardant used in the present invention is represented by the general formula (I), and specific examples thereof include a reaction product of a halogen-containing bisphenol A and a halogen-containing bisphenol A type epoxy resin and / or an alkyl glycidyl ether compound. Reaction product obtained by reacting a product, halogen-containing bisphenol A and epichlorohydrin and / or alkyl glycidyl ether compound according to a conventional method, and controlling the molecular weight distribution by adjusting the molar ratio during the reaction. In this case, however, it is possible to adjust the amount of the component having a molecular weight exceeding 10,000 by using a halogen-containing phenoxy resin together. By changing the reaction ratio of the halogen-containing bisphenol A and the halogen-containing bisphenol A type epoxy resin and / or the alkyl glycidyl ether compound, the terminal can be a hydroxyl group or an epoxy group. Any of the obtained reaction products is a suitable flame retardant. Furthermore, an ether derivative obtained by reacting a terminal hydroxyl group with an alkyl glycidyl ether compound is also a flame retardant suitable for the purpose of the present invention.

含ハロゲンビスフェノールAの具体例としては、テトラブロモビスフェノールA、ジブロモビスフェノールA等がある。また、含ハロゲンビスフェノールA型エポキシ樹脂の具体例としては、テトラブロモビスフェノールAのジグリシジルエーテル、ジブロモビスフェノールAのジグリシジルエーテル等がある。特に、好ましい難燃剤は、テトラブロモビスフェノールAとテトラブロモビスフェノールAのジグリシジルエーテルの反応生成物、テトラブロモビスフェノールAとエピクロリルヒドリンの反応生成物、及びこれらの反応生成物のうち末端にエポキシ基を有する化合物を、メタノール等のアルコールと反応させることによって得られるエーテル誘導体である。   Specific examples of the halogen-containing bisphenol A include tetrabromobisphenol A and dibromobisphenol A. Specific examples of the halogen-containing bisphenol A type epoxy resin include diglycidyl ether of tetrabromobisphenol A, diglycidyl ether of dibromobisphenol A, and the like. In particular, the preferred flame retardant is a reaction product of tetrabromobisphenol A and a diglycidyl ether of tetrabromobisphenol A, a reaction product of tetrabromobisphenol A and epichlorolylhydrin, and a terminal product of these reaction products. It is an ether derivative obtained by reacting a compound having an epoxy group with an alcohol such as methanol.

難燃剤の分子量範囲を制御するため、分子量が10,000以上の樹脂と分子量が2,000以下の樹脂を混合することも可能だが、この場合は、加熱溶融し均一な樹脂とし、所定の軟化点範囲にする必要がある。均一な混合が不完全な場合、コンパウンド作成時にスチレン樹脂と難燃剤の分離が起こり、連続生産が困難となる。   In order to control the molecular weight range of the flame retardant, it is possible to mix a resin with a molecular weight of 10,000 or more and a resin with a molecular weight of 2,000 or less. Must be a point range. If the uniform mixing is incomplete, separation of the styrene resin and the flame retardant occurs at the time of compound preparation, making continuous production difficult.

スチレン系樹脂100重量部に対する難燃剤の配合比率は、5〜50重量部と広範囲に変化させることができるが、より好ましい配合比率は、15〜30重量部である。また、本発明の難燃剤に既知の難燃剤、例えばエチレンビステトラブロモフタルイミド、デカブロモジフェニルエタン、臭素化芳香族トリアジン等の1種もしくは複数種を併用することは、難燃性樹脂組成物の特性を更に改善するために有効な手段である。   The blending ratio of the flame retardant with respect to 100 parts by weight of the styrenic resin can be changed in a wide range of 5 to 50 parts by weight, but a more preferable blending ratio is 15 to 30 parts by weight. In addition, using one or a plurality of known flame retardants such as ethylenebistetrabromophthalimide, decabromodiphenylethane, brominated aromatic triazine, etc. in combination with the flame retardant of the present invention, This is an effective means for further improving the characteristics.

本発明に於いて用いられるスチレン系樹脂としては、ポリスチレン、ゴム変性スチレン系樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−α−メチルスチレン共重合体、アクリロニトリル−ブタジエン−スチレン三元共重合体、アクリロニトリル−ブタジエン−α−メチルスチレン三元共重合体等が挙げられ、これらは夫々単独に、若しくは相溶性の良いポリマーにあっては、必要に応じて2種類以上の混合物として使用できる。   Examples of styrene resins used in the present invention include polystyrene, rubber-modified styrene resins, acrylonitrile-styrene copolymers, acrylonitrile-α-methylstyrene copolymers, acrylonitrile-butadiene-styrene terpolymers, and acrylonitrile. -Butadiene-α-methylstyrene terpolymers and the like can be mentioned, and these can be used alone or in the form of a mixture of two or more if necessary in a compatible polymer.

本発明の組成物で使用する難燃化助剤は、難燃剤の難燃効果を更に高める働きをするものであり、例えば酸化アンチモンとして三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ等、ホウ素系化合物としてホウ酸亜鉛、メタホウ酸バリウム、無水ホウ酸亜鉛、無水ホウ酸等、スズ系化合物としてスズ酸亜鉛、ヒドロキシスズ酸亜鉛等、モリブデン系化合物として酸化モリブデン、モリブデン酸アンモニウム等、ジルコニウム系化合物として酸化ジルコニウム、水酸化ジルコニウム等、また亜鉛系化合物として硫化亜鉛等が挙げられるが、なかでも三酸化アンチモンを使用することが特に好ましい。
本発明に於いて用いられる三酸化アンチモンの配合量はスチレン系樹脂100重量部に対して1〜20重量部であり、20重量部を超えると機械特性が著しく低下する。特に好ましい配合比率は1〜8重量部であり、三酸化アンチモンの配合比率が8重量部よりも多い場合に比べ燃焼時のグローイング挙動をより低下させることが出来る。また、三酸化アンチモンの平均粒子径は3μm以下であり、好ましくは1μm以下が効果的である。平均粒子径が3μmを超えると機械特性が著しく低下する。
The flame retardant aid used in the composition of the present invention functions to further enhance the flame retardant effect of the flame retardant, such as antimony oxide, antimony trioxide, antimony tetroxide, antimony pentoxide, sodium antimonate. Etc., zinc borate, barium metaborate, anhydrous borate, anhydrous boric acid, etc. as boron compounds, zinc stannate, zinc hydroxystannate, etc. as tin compounds, molybdenum oxide, ammonium molybdate, etc. as molybdenum compounds, Zirconium-based compounds include zirconium oxide, zirconium hydroxide and the like, and zinc-based compounds include zinc sulfide and the like, and it is particularly preferable to use antimony trioxide.
The blending amount of antimony trioxide used in the present invention is 1 to 20 parts by weight with respect to 100 parts by weight of the styrenic resin. The particularly preferred blending ratio is 1 to 8 parts by weight, and the glowing behavior during combustion can be further reduced as compared with the case where the blending ratio of antimony trioxide is more than 8 parts by weight. The average particle diameter of antimony trioxide is 3 μm or less, preferably 1 μm or less. When the average particle diameter exceeds 3 μm, the mechanical properties are remarkably lowered.

本発明に於けるスチレン系樹脂、難燃剤及び難燃化助剤の配合方法は、公知の混合技術を適用することが出来る。例えばミキサー型混合機、V型他ブレンダー、及びタンブラー型混合機等の混合装置であらかじめ混合しておいた混合物を、更に溶融混練することで均一な難燃性樹脂組成物とすることが出来る。
溶融混練にも特に制限はなく公知の溶融技術を適用出来る。好適な溶融混練装置として、バンバリー型ミキサー、ニーダー、ロール、単軸押出機、特殊単軸押出機、及び二軸押出機等がある。更に押出機等の溶融混練装置の途中から難燃化剤等の添加剤を別途に添加する方法がある。
難燃剤を添加し溶融混練する際の樹脂温度は、分散に必要な最低温度が望ましく、通常260℃以下、更に好ましくは250℃以下で混練することが適当である。
A known mixing technique can be applied to the blending method of the styrene resin, the flame retardant and the flame retardant aid in the present invention. For example, a uniform flame-retardant resin composition can be obtained by further melt-kneading a mixture previously mixed with a mixing apparatus such as a mixer-type mixer, a V-type blender, and a tumbler-type mixer.
There is no particular limitation on melt kneading, and a known melting technique can be applied. Suitable melt kneaders include Banbury mixers, kneaders, rolls, single screw extruders, special single screw extruders, and twin screw extruders. Furthermore, there is a method of separately adding an additive such as a flame retardant from the middle of a melt-kneading apparatus such as an extruder.
The resin temperature when adding a flame retardant and melt-kneading is desirably the minimum temperature necessary for dispersion, and it is usually appropriate to knead at 260 ° C. or lower, more preferably 250 ° C. or lower.

本発明の難燃性樹脂組成物には、スチレン系樹脂に一般的に配合されている各種添加剤、例えば充填剤、滑剤、補強剤、安定剤、耐光安定剤、紫外線吸収剤、可塑剤、着色剤、帯電防止剤、色相改良剤等を添加してもよい。   In the flame-retardant resin composition of the present invention, various additives generally blended in styrene-based resins, such as fillers, lubricants, reinforcing agents, stabilizers, light-resistant stabilizers, ultraviolet absorbers, plasticizers, Coloring agents, antistatic agents, hue improvers, and the like may be added.

以下、合成例、実施例、及び比較例を示し、本発明を更に詳細に説明するが、本発明の範囲がこれらの実施例に限定されるものではない。また、例中の部及び%の表示はいずれも重量基準である。さらに本発明では以下の試験方法を使用した。
(1)分子量
装置 :HLC−8120(東ソー社製)
カラム:SuperHZ2000×1本+SuperHZ3000×1本+SuperHZ4000×1本(東ソー社製)
温度 :40℃
溶離液/流量:THF 0.35ml/min
検出器:RI
較正法:標準ポリスチレンによる換算
(2)エポキシ当量 :JIS K−7236。
(3)ガラス転移温度 :SII社製 EXTER DSC6200を使用して、20℃から10℃/分の昇温速度により測定した。
(4)軟化点 :JIS K−7234の環球法で測定した。
(5)臭素含有量 :水酸化カリウム、エタノールを用いて400℃にて溶融分解し、イオン交換水に溶解、硝酸により中和後、硝酸銀水溶液による電位差滴定により生成する臭化カリウムを定量した。
(6)押出性 :本特許の樹脂組成物を二軸押出機(池貝製PCM30、スクリュー径30mm、L/D=37.5)を使い混練した際のベント口からの樹脂の溢れ出しが無いかを確認した。溢れ出しの発生し易い樹脂組成物を×の評価とした。主な運転条件は下記の通り。
シリンダー設定温度:180℃(搬送部位)〜230℃(混練り〜計量部位)
スクリュー回転数:300rpm
押出速度:20kg/h
樹脂温度:240〜250℃
(7)面衝撃強度 :計装化多軸衝撃試験機(東洋精機製 落錘グラフィックインパクトテスタ)を使用し、ストライカー直径12.7mm、ホルダー直径76mm、衝撃速度3.5m/sで2mm肉厚の縦横90mmの角板で評価した。
(8)シャルピー衝撃強さ :JIS K7111に準拠し、ISO179/1eA方法でシャルピー衝撃強さを測定した。
(9)メルトフローレート(MFR):JIS K7210に準拠し、200℃、49N荷重で測定した。
(10)滞留熱安定性 :日本製鋼所製の射出成形機J−75SAIIを使用して本発明の樹脂組成物のプレートを成形し、通常の成形品の色相と射出シリンダヒーターの設定温度260℃で30分間滞留させた直後の成形品の色相を測定し、色差を比較し変化度合いを求めた。色差測定には、日本電色製のSZ−IIΣ80測色色差計を使用した。
(11)耐光性 :東洋精機製のキセノンウェザーメータを使用し、ブラックパネル温度55℃、照射エネルギー0.3W/m2(340nm)、フィルター内側ボロシリケートガラス及び外側ソーダライムガラス、雨無し状態で300時間照射後の色差をプレート成形品で比較した。色差計は滞留熱安定性と同じものを使用した。
(12)難燃性 :米国UL規格のUL94に規定されている垂直燃焼性試験に準拠し、厚み1.5mmの試験片を評価した。
実施例、及び比較例の難燃化助剤には、日本精鉱株式会社の平均粒子径0.8μmの三酸化アンチモン(日本精鉱株式会社製、PATOX−M)を使用した。実施例、及び比較例の添加剤には、エチレンビスステアリン酸アマイド、ポリテトラフルオロエチレン共重合体、ベンゾトリアゾール系紫外線吸収剤とアミン系光安定剤の1:1ブレンド品、酸化チタン系無機顔料をそれぞれ共通して使用し、OA機器の外装カバーを想定した白系の着色ペレットとした。
Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated further in detail, the scope of the present invention is not limited to these Examples. In the examples, both parts and% are based on weight. Furthermore, the following test method was used in the present invention.
(1) Molecular weight apparatus: HLC-8120 (manufactured by Tosoh Corporation)
Column: SuperHZ2000 × 1 + SuperHZ3000 × 1 + SuperHZ4000 × 1 (Tosoh Corporation)
Temperature: 40 ° C
Eluent / flow rate: THF 0.35 ml / min
Detector: RI
Calibration method: Conversion based on standard polystyrene (2) Epoxy equivalent: JIS K-7236.
(3) Glass transition temperature: Measured at a rate of temperature increase from 20 ° C. to 10 ° C./min using EXTER DSC6200 manufactured by SII.
(4) Softening point: Measured by the ring and ball method of JIS K-7234.
(5) Bromine content: Melted and decomposed at 400 ° C. using potassium hydroxide and ethanol, dissolved in ion-exchanged water, neutralized with nitric acid, and then potassium bromide formed by potentiometric titration with an aqueous silver nitrate solution was quantified.
(6) Extrudability: No resin overflow from the vent port when the resin composition of this patent is kneaded using a twin screw extruder (Ikegai PCM30, screw diameter 30 mm, L / D = 37.5) I confirmed. The resin composition which is easy to generate overflow was evaluated as x. The main operating conditions are as follows.
Cylinder set temperature: 180 ° C (conveying part) to 230 ° C (kneading to measuring part)
Screw rotation speed: 300rpm
Extrusion speed: 20kg / h
Resin temperature: 240-250 ° C
(7) Surface impact strength: Using an instrumented multi-axis impact tester (falling weight graphic impact tester made by Toyo Seiki), striker diameter 12.7 mm, holder diameter 76 mm, impact speed 3.5 m / s, 2 mm thickness Evaluation was made with a square plate of 90 mm in length and width.
(8) Charpy impact strength: Charpy impact strength was measured by the ISO179 / 1eA method in accordance with JIS K7111.
(9) Melt flow rate (MFR): measured in accordance with JIS K7210 at 200 ° C. and 49 N load.
(10) Stability heat stability: The plate of the resin composition of the present invention was molded using an injection molding machine J-75SAII manufactured by Nippon Steel, and the hue of a normal molded product and the set temperature of an injection cylinder heater 260 ° C. The hue of the molded product immediately after being retained for 30 minutes was measured, and the color difference was compared to determine the degree of change. For color difference measurement, an SZ-IIΣ80 colorimetric color difference meter made by Nippon Denshoku was used.
(11) Light resistance: Xenon weather meter manufactured by Toyo Seiki, black panel temperature 55 ° C, irradiation energy 0.3W / m 2 (340nm), filter inner borosilicate glass and outer soda lime glass, no rain The color difference after irradiation for 300 hours was compared between plate molded products. The color difference meter used was the same as the residence heat stability.
(12) Flame retardance: A test piece having a thickness of 1.5 mm was evaluated in accordance with a vertical flammability test defined in UL94 of the US UL standard.
Antimony trioxide (Nippon Seiko Co., Ltd., PATOX-M) having an average particle size of 0.8 μm was used as the flame retardant aid of Examples and Comparative Examples. Examples and comparative examples include ethylene bis stearic acid amide, polytetrafluoroethylene copolymer, 1: 1 blend of benzotriazole UV absorber and amine light stabilizer, titanium oxide inorganic pigment Were used in common, and white-based colored pellets were assumed assuming an exterior cover for OA equipment.

合成例1
温度計、攪拌機コンデンサーを備えたフラスコにTBA(テトラブロモビスフェノールA)型フェノキシ樹脂YPB−43C(東都化成社製、臭素含有量53%、重量平均分子量50,000)400gとTBA(デッドシーブルミン社製 水酸基当量272g/eq)100gとアルキルグリシジルエーテル、エピオールM(日本油脂社製メチルグリシジルエーテル、エポキシ当量92g/eq)34g、YDB−400(東都化成社製臭素化エポキシ樹脂、臭素含有量48%、重量平均分子量800)、467g触媒としてTPP(トリフェニルホスフィン)0.3gを仕込み、160℃で5時間反応させて難燃剤aを得た。
Synthesis example 1
In a flask equipped with a thermometer and a stirrer condenser, 400 g of TBA (tetrabromobisphenol A) type phenoxy resin YPB-43C (manufactured by Tohto Kasei Co., Ltd., bromine content 53%, weight average molecular weight 50,000) and TBA (manufactured by Dead Sea Blooming Co., Ltd.) Hydroxyl equivalent 272 g / eq) 100 g, alkyl glycidyl ether, Epiol M (Methyl Glycidyl ether manufactured by NOF Corporation, epoxy equivalent 92 g / eq) 34 g, YDB-400 (Toto Kasei Co. brominated epoxy resin, bromine content 48%, (Weight average molecular weight 800) 0.3 g of TPP (triphenylphosphine) was charged as a 467 g catalyst and reacted at 160 ° C. for 5 hours to obtain flame retardant a.

合成例2
温度計、攪拌機コンデンサーを備えたフラスコにTBA(前述)型フェノキシ樹脂YPB−43C(前述)350gとTBA(前述)121gとアルキルグリシジルエーテル、エピオールM(前述)41g、YDB−400(前述)を488g、触媒としてTPP(前述)0.3gを仕込み、160℃で5時間反応させて難燃剤bを得た。
Synthesis example 2
In a flask equipped with a thermometer and a stirrer condenser, 350 g of TBA (previously) phenoxy resin YPB-43C (previously) 350 g, TBA (previously) 121 g, alkyl glycidyl ether, 41 g of Epiol M (previously), 488 g of YDB-400 (previously) The catalyst was charged with 0.3 g of TPP (described above) and reacted at 160 ° C. for 5 hours to obtain flame retardant b.

合成例3
温度計、攪拌機コンデンサーを備えたフラスコにTBA(前述)型フェノキシ樹脂YPB−43C(前述)300gとTBA(前述)218gとアルキルグリシジルエーテル、エピオールM(前述)74g、YDB−400(前述)を408g、触媒としてTPP(前述)0.3gを仕込み、160℃で5時間反応させて難燃剤cを得た。
Synthesis example 3
In a flask equipped with a thermometer and a stirrer condenser, TBA (previously) type phenoxy resin YPB-43C (previously) 300 g, TBA (previously) 218 g, alkyl glycidyl ether, Epiol M (previously) 74 g, YDB-400 (previously) 408 g Then, 0.3 g of TPP (described above) was charged as a catalyst and reacted at 160 ° C. for 5 hours to obtain flame retardant c.

合成例4
温度計、攪拌機コンデンサーを備えたフラスコにTBA(前述)型フェノキシ樹脂YPB−43C(前述)250gとTBA(前述)140gとアルキルグリシジルエーテル、エピオールM(前述)47g、YDB−360(東都化成社製臭素化エポキシ樹脂、臭素含有量49%、数平均分子量760)を563g、触媒としてTPP(前述)0.3gを仕込み、160℃で5時間反応させて難燃剤dを得た。
Synthesis example 4
In a flask equipped with a thermometer and a stirrer condenser, TBA (previously) type phenoxy resin YPB-43C (previously) 250 g, TBA (previously) 140 g, alkyl glycidyl ether, Epiol M (previously) 47 g, YDB-360 (manufactured by Toto Kasei) 563 g of brominated epoxy resin, bromine content 49%, number average molecular weight 760) and TPP (described above) 0.3 g as a catalyst were charged and reacted at 160 ° C. for 5 hours to obtain flame retardant d.

合成例5
温度計、攪拌機コンデンサーを備えたフラスコにTBA(前述)型フェノキシ樹脂YPB−43C(前述)250gとTBA(前述)140gとアルキルグリシジルエーテル、エピオールM(前述)47g、YDB−400(前述)を563g、触媒としてTPP(前述)0.3gを仕込み、160℃で5時間反応させて難燃剤eを得た。
Synthesis example 5
In a flask equipped with a thermometer and a stirrer condenser, TBA (previously) phenoxy resin YPB-43C (previously) 250 g, TBA (previously) 140 g, alkyl glycidyl ether, Epiol M (previously) 47 g, YDB-400 (previously) 563 g Then, 0.3 g of TPP (described above) was charged as a catalyst and reacted at 160 ° C. for 5 hours to obtain flame retardant e.

合成例6
温度計、攪拌機コンデンサーを備えたフラスコにTBA(前述)型フェノキシ樹脂YPB−43C(前述)150gとTBA(前述)318gとアルキルグリシジルエーテル、エピオールM(前述eq)107g、YDB−400(前述)を425g、触媒としてTPP(前述)0.3gを仕込み、160℃で5時間反応させて難燃剤fを得た。
Synthesis Example 6
A flask equipped with a thermometer and a stirrer condenser was charged with 150 g of TBA (previously) phenoxy resin YPB-43C (previously) 318 g, TBA (previously) 318 g, alkyl glycidyl ether, 107 g of epiol M (previously eq), and YDB-400 (previously). 425 g and TPP (described above) 0.3 g as a catalyst were charged and reacted at 160 ° C. for 5 hours to obtain a flame retardant f.

合成例7
温度計、攪拌機コンデンサーを備えたフラスコにTBA(前述)型フェノキシ樹脂YPB−43C(前述)350gとTBA(前述)243gとアルキルグリシジルエーテル、エピオールM(前述)82g、YDB−400(前述)を325g、触媒としてTPP(前述)0.3gを仕込み、160℃で5時間反応させて難燃剤gを得た。
Synthesis example 7
In a flask equipped with a thermometer and a stirrer condenser, 350 g of TBA (previously) phenoxy resin YPB-43C (previously) 350 g, TBA (previously) 243 g, alkyl glycidyl ether, Epiol M (previously) 82 g, YDB-400 (previously) 325 g As a catalyst, 0.3 g of TPP (described above) was charged and reacted at 160 ° C. for 5 hours to obtain flame retardant g.

合成例8
温度計、攪拌機コンデンサーを備えたフラスコにTBA(前述)型フェノキシ樹脂YPB−43C(前述)250gとTBA(前述)420gとアルキルグリシジルエーテル、エピオールM(前述)142g、YDB−400(前述)を188g、触媒としてTPP(前述)0.3gを仕込み、160℃で5時間反応させて難燃剤hを得た。
Synthesis example 8
In a flask equipped with a thermometer and a stirrer condenser, 250 g of TBA (previously) phenoxy resin YPB-43C (previously) 250 g, TBA (previously) 420 g, alkyl glycidyl ether, 142 g of Epiol M (previously), 188 g of YDB-400 (previously) Then, 0.3 g of TPP (described above) was charged as a catalyst and reacted at 160 ° C. for 5 hours to obtain flame retardant h.

合成例9
温度計、攪拌機コンデンサーを備えたフラスコにTBA(前述)型フェノキシ樹脂YPB−43C(前述)250gとTBA(前述)280gとアルキルグリシジルエーテル、エピオールM(前述)95g、YDB−400(前述)を375g、触媒としてTPP(前述)0.3gを仕込み、160℃で5時間反応させて難燃剤iを得た。
Synthesis Example 9
In a flask equipped with a thermometer and a stirrer condenser, TBA (previously) phenoxy resin YPB-43C (previously) 250 g, TBA (previously) 280 g, alkyl glycidyl ether, Epiol M (previously) 95 g, YDB-400 (previously) 375 g Then, 0.3 g of TPP (described above) was charged as a catalyst and reacted at 160 ° C. for 5 hours to obtain flame retardant i.

合成例1〜9および比較難燃剤1〜3の性状を表1に示す。 Properties of Synthesis Examples 1 to 9 and Comparative Flame Retardants 1 to 3 are shown in Table 1.

Figure 2007009033
Figure 2007009033

実施例1
ゴム変性スチレン系樹脂としてH650(東洋スチレン製、以下HIPSと略す)100重量部に、合成例1で得られた難燃剤aを20重量部、三酸化アンチモンを5重量部、添加剤をヘンシェルミキサーで混合した後に、二軸押出機(池貝製PCM30)にて溶融混練し難燃性樹脂組成物を作製した。
Example 1
100 parts by weight of H650 (manufactured by Toyo Styrene, hereinafter abbreviated as HIPS) as a rubber-modified styrene resin, 20 parts by weight of the flame retardant a obtained in Synthesis Example 1, 5 parts by weight of antimony trioxide, and Henschel mixer as an additive Then, the mixture was melt-kneaded with a twin screw extruder (Ikegai PCM30) to prepare a flame retardant resin composition.

実施例2
HIPS(前述)を100重量部、合成例2で得られた難燃剤bを20重量部、三酸化アンチモンを5重量部、添加剤を実施例1と同様に溶融混練し難燃性樹脂組成物を作製した。
Example 2
100 parts by weight of HIPS (previously described), 20 parts by weight of flame retardant b obtained in Synthesis Example 2, 5 parts by weight of antimony trioxide, and the melt-kneaded additive in the same manner as in Example 1 Was made.

実施例3
HIPS(前述)を100重量部、合成例3で得られた難燃剤cを20重量部、三酸化アンチモンを5重量部、添加剤を実施例1と同様に溶融混練し難燃性樹脂組成物を作製した。
Example 3
100 parts by weight of HIPS (described above), 20 parts by weight of the flame retardant c obtained in Synthesis Example 3, 5 parts by weight of antimony trioxide, and the melt-kneaded additive in the same manner as in Example 1 Was made.

実施例4
HIPS(前述)を100重量部、合成例4で得られた難燃剤dを20重量部、三酸化アンチモンを5重量部、添加剤を実施例1と同様に溶融混練し難燃性樹脂組成物を作製した。
Example 4
100 parts by weight of HIPS (described above), 20 parts by weight of the flame retardant d obtained in Synthesis Example 4, 5 parts by weight of antimony trioxide, and the melt-kneaded additive in the same manner as in Example 1 Was made.

実施例5
HIPS(前述)を100重量部、合成例5で得られた難燃剤eを20重量部、三酸化アンチモンを5重量部、添加剤を実施例1と同様に溶融混練し難燃性樹脂組成物を作製した。
Example 5
100 parts by weight of HIPS (described above), 20 parts by weight of the flame retardant e obtained in Synthesis Example 5, 5 parts by weight of antimony trioxide, and the melt-kneaded additive in the same manner as in Example 1 Was made.

比較例1
HIPS(前述)を100部、YDB474A(東都化成製、臭素含有量49%数平均分子量1,170)20部、三酸化アンチモンを5部、添加剤を実施例1と同様に溶融混練し難燃性樹脂組成物を作製した。
Comparative Example 1
100 parts of HIPS (previously described), 20 parts of YDB474A (manufactured by Tohto Kasei, bromine content 49% number average molecular weight 1,170), 5 parts of antimony trioxide, and melt-kneaded the additive in the same manner as in Example 1 to make flame retardant A functional resin composition was prepared.

比較例2
HIPS(前述)を100重量部、合成例6で得られた難燃剤fを20重量部、三酸化アンチモンを5重量部、添加剤を実施例1と同様に溶融混練し難燃性樹脂組成物を作製した。
Comparative Example 2
100 parts by weight of HIPS (described above), 20 parts by weight of the flame retardant f obtained in Synthesis Example 6, 5 parts by weight of antimony trioxide, and the melt-kneaded additive in the same manner as in Example 1 Was made.

比較例3
HIPS(前述)を100重量部、合成例7で得られた難燃剤gを20重量部、三酸化アンチモンを5重量部、添加剤を実施例1と同様に溶融混練し難燃性樹脂組成物を作製した。
Comparative Example 3
100 parts by weight of HIPS (described above), 20 parts by weight of the flame retardant g obtained in Synthesis Example 7, 5 parts by weight of antimony trioxide, and the melt-kneaded additive in the same manner as in Example 1 Was made.

比較例4
HIPS(前述)を100重量部、合成例8で得られた難燃剤hを20重量部、三酸化アンチモンを5重量部、添加剤を実施例1と同様に溶融混練し難燃性樹脂組成物を作製した。
Comparative Example 4
100 parts by weight of HIPS (previously described), 20 parts by weight of flame retardant h obtained in Synthesis Example 8, 5 parts by weight of antimony trioxide, and the melt-kneaded additive in the same manner as in Example 1 Was made.

比較例5
HIPS(前述)を100重量部、合成例9で得られた難燃剤iを20重量部、三酸化アンチモンを5重量部、添加剤を実施例1と同様に溶融混練し難燃性樹脂組成物を作製した。
Comparative Example 5
100 parts by weight of HIPS (described above), 20 parts by weight of the flame retardant i obtained in Synthesis Example 9, 5 parts by weight of antimony trioxide, and the melt-kneaded additive in the same manner as in Example 1 Was made.

比較例6
HIPS(前述)を100部、TB−60(東都化成社製、臭素含有量59%数平均分子量960)20部、三酸化アンチモンを5部、添加剤を実施例1と同様に溶融混練し難燃性樹脂組成物を作製した。
Comparative Example 6
100 parts of HIPS (previously described), 20 parts of TB-60 (manufactured by Tohto Kasei Co., Ltd., bromine content 59% number average molecular weight 960), 5 parts of antimony trioxide, and the additive is difficult to be melt kneaded as in Example 1. A flammable resin composition was prepared.

比較例7
HIPS(前述)を100部、YDB−406(東都化成社製、臭素含有量51%数平均分子量1,100)20部、三酸化アンチモンを5部、添加剤を実施例1と同様に溶融混練し難燃性樹脂組成物を作製した。
Comparative Example 7
100 parts of HIPS (previously described), 20 parts of YDB-406 (manufactured by Toto Kasei Co., Ltd., bromine content 51% number average molecular weight 1,100), 5 parts of antimony trioxide, and melt kneaded in the same manner as in Example 1. A flame retardant resin composition was prepared.

実施例1〜5、比較例1〜7の物性を評価し、その結果を表2に示した。
表中の記号は次を表す。
◎:優れる、○:良い、△:やや劣る、×:劣る
The physical properties of Examples 1 to 5 and Comparative Examples 1 to 7 were evaluated, and the results are shown in Table 2.
The symbols in the table represent the following:
◎: Excellent, ○: Good, △: Slightly inferior, ×: Inferior

Figure 2007009033
Figure 2007009033

Claims (1)

熱可塑性樹脂100重量部に対して、下記一般式(I)で表される、エポキシ当量が700〜1,500g/eqで、軟化点が100℃〜150℃であり、分子量2,000〜10,000の成分が20重量%以下および、分子量2,000未満の成分が10〜75重量%、なおかつ分子量10,000を越える成分が5重量%以上である分子量分布を有する、数平均分子量が500〜1,300である難燃剤を5〜50重量部、難燃化助剤を1〜20重量部配合してなることを特徴とする難燃性樹脂組成物。
Figure 2007009033
一般式(I)中、R、Rは水素または一般式(II)または一般式(III)から選ばれた同一または異種の基であり、なおかつ一般式(III)がR、R全体の20〜50mol%であり、Xは臭素あるいは塩素、iは1〜4の整数、nは0を含む自然数である。
Figure 2007009033
Figure 2007009033
はC1〜C8のアルキル基から選ばれた同一または異種の基である。

The epoxy equivalent represented by the following general formula (I) is 700 to 1,500 g / eq, the softening point is 100 to 150 ° C., and the molecular weight is 2,000 to 10 with respect to 100 parts by weight of the thermoplastic resin. The number average molecular weight is 500, having a molecular weight distribution in which the component of 1,000 is 20% by weight or less, the component having a molecular weight of less than 2,000 is 10 to 75% by weight, and the component having a molecular weight exceeding 10,000 is 5% by weight or more. A flame retardant resin composition comprising 5 to 50 parts by weight of a flame retardant of ˜1,300 and 1 to 20 parts by weight of a flame retardant aid.
Figure 2007009033
In the general formula (I), R 1 and R 2 are hydrogen or the same or different groups selected from the general formula (II) or the general formula (III), and the general formula (III) is R 1 , R 2 20 to 50 mol% of the total, X is bromine or chlorine, i is an integer of 1 to 4, and n is a natural number including 0.
Figure 2007009033
Figure 2007009033
R 3 is the same or different group selected from C1 to C8 alkyl groups.

JP2005190481A 2005-06-29 2005-06-29 Flame retardant resin composition Expired - Fee Related JP4786231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190481A JP4786231B2 (en) 2005-06-29 2005-06-29 Flame retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005190481A JP4786231B2 (en) 2005-06-29 2005-06-29 Flame retardant resin composition

Publications (2)

Publication Number Publication Date
JP2007009033A true JP2007009033A (en) 2007-01-18
JP4786231B2 JP4786231B2 (en) 2011-10-05

Family

ID=37747943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190481A Expired - Fee Related JP4786231B2 (en) 2005-06-29 2005-06-29 Flame retardant resin composition

Country Status (1)

Country Link
JP (1) JP4786231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021091778A (en) * 2019-12-10 2021-06-17 日本化薬株式会社 Epoxy resin and epoxy resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101842A (en) * 1996-09-30 1998-04-21 Toto Kasei Co Ltd Halogen-containing flame-retardant and resin composition containing the flame-retardant
JPH1143532A (en) * 1997-07-28 1999-02-16 Toto Kasei Co Ltd Flame retardant and resin composition containing the same
JP2005171150A (en) * 2003-12-12 2005-06-30 Toto Kasei Co Ltd Flame retardant for thermoplastic resin and flame retarding styrenic resin composition containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101842A (en) * 1996-09-30 1998-04-21 Toto Kasei Co Ltd Halogen-containing flame-retardant and resin composition containing the flame-retardant
JPH1143532A (en) * 1997-07-28 1999-02-16 Toto Kasei Co Ltd Flame retardant and resin composition containing the same
JP2005171150A (en) * 2003-12-12 2005-06-30 Toto Kasei Co Ltd Flame retardant for thermoplastic resin and flame retarding styrenic resin composition containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021091778A (en) * 2019-12-10 2021-06-17 日本化薬株式会社 Epoxy resin and epoxy resin composition
JP7307668B2 (en) 2019-12-10 2023-07-12 日本化薬株式会社 Epoxy resin and epoxy resin composition

Also Published As

Publication number Publication date
JP4786231B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
EP0471852B1 (en) Flame-retardant resin composition
JP4786231B2 (en) Flame retardant resin composition
JP4376046B2 (en) Flame retardant for thermoplastic resin and flame retardant styrene resin composition containing the flame retardant
JP4623704B2 (en) Flame retardant polystyrene resin composition
JP2781649B2 (en) Flame retardant styrenic resin composition
JP2009280752A (en) Method for producing flame-retardant polystyrene-based resin
JP3736584B2 (en) Flame retardant, method for producing the flame retardant, and flame retardant thermoplastic resin composition containing the flame retardant
JP2793350B2 (en) Flame retardant styrenic resin composition
JP3820690B2 (en) Flame retardant thermoplastic resin composition
JPH05202251A (en) Flame-retarding styrene resin composition
US5278215A (en) Flame-retardant synthetic resin composition and flame retardant
JP5144426B2 (en) Flame retardant resin composition and method for producing the same
JP4870962B2 (en) Styrenic flame retardant resin composition and styrene flame retardant resin molded product
JPH1143532A (en) Flame retardant and resin composition containing the same
JP3198485B2 (en) Flame retardant styrenic resin composition
JPH0892445A (en) Flame-retardant styrenic resin composition
JP3246627B2 (en) Flame retardant polycarbonate resin composition
JPH0625290B2 (en) Method for producing flame-retardant styrene resin composition
CN115850898A (en) Styrene composition and preparation method and application thereof
JPH07109397A (en) Flame-retardant rubber-modified styrenic composition
JPH05295277A (en) Flame-retardant composition and flame-retardant thermoplastic resin composition
JPH01287132A (en) Nonflammable resin composition
JPH10120915A (en) Flame petardant thermoplastic resin composition and flame retardant composition
JPH1160853A (en) Flame-retardant resin composition
JP2006063229A (en) Resin composition and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees