JP2007007566A - Biodegradable filter medium - Google Patents

Biodegradable filter medium Download PDF

Info

Publication number
JP2007007566A
JP2007007566A JP2005192356A JP2005192356A JP2007007566A JP 2007007566 A JP2007007566 A JP 2007007566A JP 2005192356 A JP2005192356 A JP 2005192356A JP 2005192356 A JP2005192356 A JP 2005192356A JP 2007007566 A JP2007007566 A JP 2007007566A
Authority
JP
Japan
Prior art keywords
fiber
filter medium
biodegradable
lactic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005192356A
Other languages
Japanese (ja)
Other versions
JP4851739B2 (en
Inventor
Mitsuo Yoshida
光男 吉田
Kunihiro Tanabe
邦弘 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2005192356A priority Critical patent/JP4851739B2/en
Publication of JP2007007566A publication Critical patent/JP2007007566A/en
Application granted granted Critical
Publication of JP4851739B2 publication Critical patent/JP4851739B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable filter medium which can be used for building air conditioning and for a sterile room, has biodegradability and reveals performances such as homogeneity of the filter medium, collection efficiency of solid particles and pressure loss with sufficient balance and which gives consideration to prevention of soil acidification due to acidic rain or the like. <P>SOLUTION: The biodegradable filter medium comprises a glass fiber and biodegradable fiber. Preferably a part of the biodegradable fiber is a regenerated fiber or semi-synthetic fiber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、濾材に関するものであり、さらに詳しくはクリーンルーム用エアフィルター、ビル空調用エアフィルターなどの用途として、フィルター加工性に優れ、今後ますます問題視されつつある不燃ゴミ対策、並びに酸性雨等による土壌の酸性化防止に配慮した濾材に関するものである。   The present invention relates to a filter medium, and more specifically, as an application such as an air filter for a clean room and an air filter for a building air conditioner. This is related to filter media in consideration of the prevention of soil acidification due to slag.

フィルターの環境負荷で大きな問題となっているのは使用済みのフィルターの廃棄である。ビル空調、産業空調のエアフィルターの廃棄量は年間3000〜4000トンといわれており、これらの使用済みフィルターは産業廃棄物として焼却処理、埋め立て処理されている。フィルターを使用しているユーザーにとって廃棄物の発生とその処理は深刻な問題であり、このためフィルターの環境対策は廃棄量の減少や環境に負荷を与えない処理法の適用に集中している。この問題を解決するために、使用後の廃棄の問題を考慮して生分解性繊維からなる不織布にて構成されるエアフィルター基材が出願されている(特許文献1参照)。
エアフィルターは、その集塵効率によって、粗塵フィルター、中性能フィルター、高性能フィルター、HEPAフィルター、ULPAフィルターに分類される。上記生分解性繊維からなる不織布にて構成されるエアフィルター基材は、使用する繊維の繊維径が0.5〜100デシテックスであり、捕集効率は低く、台所用換気扇やレンジ用、空気清浄機用の粗塵フィルターに限定され、ビル空調用やクリーンルーム用の中・高性能フィルターには適さないものであった。
また、酸性雨等による土壌の酸性化防止を考慮した生分解性濾材はなかった。
特開2003−126628号公報
A major problem with the environmental load of filters is the disposal of used filters. The amount of air filters for building air conditioning and industrial air conditioning is said to be 3000 to 4000 tons per year. These used filters are incinerated and landfilled as industrial waste. The generation and disposal of waste is a serious problem for users who use filters, and therefore, environmental measures for filters concentrate on the application of treatment methods that reduce the amount of waste and do not place an environmental burden. In order to solve this problem, an air filter substrate composed of a nonwoven fabric made of biodegradable fibers has been filed in consideration of the problem of disposal after use (see Patent Document 1).
Air filters are classified into coarse dust filters, medium performance filters, high performance filters, HEPA filters, and ULPA filters according to their dust collection efficiency. The air filter substrate composed of the nonwoven fabric composed of the above biodegradable fibers has a fiber diameter of 0.5 to 100 dtex, and has a low collection efficiency. It was limited to coarse filter for machine and was not suitable for medium / high performance filter for building air conditioning and clean room.
Moreover, there was no biodegradable filter medium in consideration of acidification prevention of soil due to acid rain.
JP 2003-126628 A

本発明の課題は、ビル空調用やクリーンルーム用に使用可能であり、生分解性を有し、濾材の均一性、固体粒子の捕集効率、圧力損失といった性能をバランス良く発現し、酸性雨等による土壌の酸性化防止を考慮した生分解性濾材を提供することにある。   The problem of the present invention is that it can be used for building air conditioning and clean rooms, has biodegradability, expresses performance such as uniformity of filter media, solid particle collection efficiency, pressure loss, acid rain, etc. The purpose of the present invention is to provide a biodegradable filter medium that takes into account the prevention of soil acidification caused by aging.

本発明者らは、上記課題を解決するために鋭意検討した結果、
(1)ガラス繊維と、生分解性繊維とを主成分として含有することを特徴とする生分解性濾材、
(2)生分解性繊維の一部が再生繊維または半合成繊維であることを特徴とする請求項1に記載の生分解性濾材、
(3)ガラス繊維の繊維径が3μm以下であることを特徴とする請求項1または2に記載の生分解性濾材、
(4)濾材に対するガラス繊維の含有量が1〜50質量%、濾材に対する生分解性繊維の含有量が50〜99質量%である請求項1〜3のいずれかに記載の生分解性濾材、
(5)濾材が湿式抄紙法で製造されることを特徴とする請求項1〜4のいずれかに記載の生分解性濾材、
を見いだした。
As a result of intensive studies to solve the above problems, the present inventors have
(1) A biodegradable filter medium comprising glass fiber and biodegradable fiber as main components,
(2) The biodegradable filter medium according to claim 1, wherein a part of the biodegradable fiber is a regenerated fiber or a semi-synthetic fiber.
(3) The biodegradable filter medium according to claim 1 or 2, wherein the fiber diameter of the glass fiber is 3 µm or less.
(4) The biodegradable filter medium according to any one of claims 1 to 3, wherein the glass fiber content relative to the filter medium is 1 to 50 mass%, and the biodegradable fiber content relative to the filter medium is 50 to 99 mass%.
(5) The biodegradable filter medium according to any one of claims 1 to 4, wherein the filter medium is produced by a wet papermaking method,
I found.

本発明者らは、ガラス繊維が酸性溶液に晒された時に徐々にリーチングされることに着目し、酸性雨により酸性域となった土壌のpHを中性領域に近づける作用を活用し、土壌の酸性化を防止出来ると共に、良好な生分解性を有する濾材を見いだした。すなわち、ガラス繊維は鉱物原料で無害であるばかりでなく、大気中の二酸化炭素・亜硫酸ガス・窒素酸化物などの酸化物を取り込んだ酸性雨を中和しようとしてガラス繊維自身のアルカリ性の成分とが中和反応をおこすことにより、土壌のpHを酸性から中性に近づける役割を果たす。使用後に埋め立てられた生分解性濾材は、土中のバクテリアによって分解される。土壌のpHが中性域付近である場合、バクテリアの代謝活動が活発であり、生分解性濾材は容易に分解される。一方、酸性雨に晒されて土壌のpHが酸性域に傾いた場合、バクテリアは、酸性下ではその代謝活動が弱いため、有機物の分解が抑制され、生分解性が阻害される。本発明の生分解性濾材は、土中のpHを中性に近づけることによりバクテリアの代謝活動を活性化させる事が出来る。
また、ガラス繊維、特に繊維径3μm以下のマイクロガラス繊維は、圧力損失が低く、高い捕集効率が得られる事からエアフィルター用濾材、液体濾過用フィルター濾材に好適に使用され、生分解性繊維と最適に配合する事により、濾材の均一性、固体粒子の捕捉能、圧力損失といった性能をバランス良く発現し、強度の高い濾材と成りうる。また、再生繊維または半合成繊維を配合することにより濾材製造時の湿式抄紙性が高まり、ビル空調用やクリーンルームの中性能エアフィルター用として好適である。また、濾材に配合される生分解性繊維は、使用後のコンポスト処理や埋めたてにより最終的には炭酸ガスと水まで分解できる。
The present inventors pay attention to the fact that glass fibers are gradually leached when exposed to an acidic solution, utilizing the effect of bringing the pH of the soil that has become acidic due to acid rain closer to the neutral region, The present inventors have found a filter medium that can prevent acidification and has good biodegradability. In other words, glass fiber is not only harmless with mineral raw materials, but also has an alkaline component of glass fiber itself in an attempt to neutralize acid rain incorporating oxides such as carbon dioxide, sulfite gas, and nitrogen oxides in the atmosphere. By performing a neutralization reaction, it plays the role of bringing the pH of the soil closer to neutral from acidic. Biodegradable filter media landed after use is decomposed by bacteria in the soil. When the pH of the soil is near the neutral range, the bacterial metabolic activity is active, and the biodegradable filter medium is easily degraded. On the other hand, when the soil is exposed to acid rain and the pH of the soil is inclined to the acidic range, bacteria are weakly metabolized under acidity, so that decomposition of organic substances is suppressed and biodegradability is inhibited. The biodegradable filter medium of the present invention can activate bacterial metabolic activity by bringing the pH in the soil close to neutral.
In addition, glass fibers, particularly micro glass fibers having a fiber diameter of 3 μm or less, are suitable for air filter media and liquid filter media because of their low pressure loss and high collection efficiency. When optimally blended, performance such as uniformity of filter media, ability to trap solid particles, and pressure loss can be expressed in a well-balanced manner, and a high-strength filter media can be obtained. In addition, blending recycled fiber or semi-synthetic fiber improves wet papermaking properties during the production of filter media, and is suitable for use in building air conditioning and medium-performance air filters in clean rooms. In addition, the biodegradable fiber blended in the filter medium can be finally decomposed into carbon dioxide and water by composting after use or fresh filling.

以下、本発明を詳説する。本発明においてガラス繊維とは、SiO2を主体としてAl23、Na2O、CaO、K2O、B23等を含むものである。これら組成に関して特に制限はないが、クリーンルーム等に使用する場合、B23を極力少なくしたり、もしくはなくする事が好ましい。また、埋め立て後に樹木を植樹することを考慮すると、酸性雨で溶出し樹木の害となるAl3+を含むAl23を極力少なくしたり、もしくはなくす事が好ましい。ガラス繊維の繊維径は、濾材の捕集効率を高める働きをする事から細い事が重要であり、通常20μm以下であり、好ましくは3μm以下、より好ましくは1μm以下である。 The present invention is described in detail below. The glass fiber in the present invention is intended to include SiO 2 mainly Al 2 O 3, Na 2 O , CaO, K 2 O, a B 2 O 3 and the like. There is no particular limitation with respect to these compositions, but when used in a clean room or the like, or minimize a B 2 O 3, or it is preferable to eliminate. In consideration of planting trees after reclamation, it is preferable to reduce or eliminate Al 2 O 3 containing Al 3+ that is eluted by acid rain and harms trees. The fiber diameter of the glass fiber is important because it functions to increase the collection efficiency of the filter medium, and is usually 20 μm or less, preferably 3 μm or less, more preferably 1 μm or less.

本発明の濾材において、ガラス繊維のみで構成する事は生分解性の観点から好ましくなく、1種以上の生分解性繊維を併用することにより均一なネットワークを形成して、圧力損失を低く抑え、均一性を高める事により捕集効率を高めることが出来る。さらに生分解性繊維として、再生繊維または半合成繊維を使用することにより、湿式抄紙機で製造する際に湿紙状態での保水率が高まり、フェルトからの剥離性が向上する。   In the filter medium of the present invention, comprising only glass fibers is not preferable from the viewpoint of biodegradability, forming a uniform network by using one or more types of biodegradable fibers in combination, keeping pressure loss low, The collection efficiency can be increased by increasing the uniformity. Further, by using regenerated fibers or semi-synthetic fibers as biodegradable fibers, the water retention rate in the wet paper state is increased and the releasability from the felt is improved when manufacturing with a wet paper machine.

本発明の濾材において、ガラス繊維の配合比率は特に限定しないが、濾材に対する含有量が、1〜50質量%、好ましくは、1〜30質量%である。ガラス繊維の配合比率が50質量%を超えた場合、埋め立て後の生分解性成分が少なくなるばかりでなく、捕集効率は十分得られるものの圧力損失、通気抵抗、通液抵抗が高くなりすぎる場合があり、濾材の寿命が短くなる傾向がある。一方、1質量%未満では、満足な捕集効率が得られない。   In the filter medium of the present invention, the mixing ratio of the glass fibers is not particularly limited, but the content with respect to the filter medium is 1 to 50% by mass, preferably 1 to 30% by mass. When the mixing ratio of the glass fiber exceeds 50% by mass, not only the biodegradable components after landfill are reduced, but also the collection efficiency is sufficient, but the pressure loss, ventilation resistance, and liquid resistance are too high. There is a tendency that the life of the filter medium is shortened. On the other hand, if it is less than 1% by mass, satisfactory collection efficiency cannot be obtained.

本発明の生分解性濾材(以下濾材と称す)において、生分解性繊維とは、生分解性能を有するものであれば特に限定されるものではないが、ポリ乳酸系樹脂、ポリブチレンサクシネート樹脂、ポリカプロラクトン樹脂、ポリエチレンサクシネート樹脂、ポリグリコール酸樹脂、ポリブチレンテレフタレート系樹脂、ポリヒドロキシブチレート系樹脂等の脂肪族ポリエステルからなる繊維が好適に使用できる。脂肪族ポリエステルとしては、ポリグリコール酸やポリ乳酸のようなポリ(α−ヒドロキシ酸)、またはこれらを主たる繰り返し単位とする共重合体が挙げられる。また、ポリ(ε−カプロラクトン)、ポリ(β−プロピオラクトン)のようなポリ(ω−ヒドロキシアルカノエート)や、ポリ−3−ヒドロキシプロピオネート、ポリ−3−ヒドロキシブチレート、ポリ−3−ヒドロキシカプロネート、ポリ−3−ヒドロキシヘプタノエート、ポリ−3−ヒドロキシオクタノエートのようなポリ(β−ヒドロキシアルカノエート)や、これらの繰り返し単位とポリ−3−ヒドロキシバリレートまたはポリ−4−ヒドロキシブチレートの繰り返し単位との共重合体などが挙げられる。   In the biodegradable filter medium of the present invention (hereinafter referred to as filter medium), the biodegradable fiber is not particularly limited as long as it has biodegradability, but it is a polylactic acid resin or polybutylene succinate resin. Fibers made of aliphatic polyester such as polycaprolactone resin, polyethylene succinate resin, polyglycolic acid resin, polybutylene terephthalate resin, polyhydroxybutyrate resin can be suitably used. Examples of the aliphatic polyester include poly (α-hydroxy acid) such as polyglycolic acid and polylactic acid, and copolymers having these as main repeating units. Further, poly (ω-hydroxyalkanoate) such as poly (ε-caprolactone) and poly (β-propiolactone), poly-3-hydroxypropionate, poly-3-hydroxybutyrate, poly-3 -Poly (β-hydroxyalkanoates) such as hydroxycapronate, poly-3-hydroxyheptanoate, poly-3-hydroxyoctanoate, and their repeating units and poly-3-hydroxyvalerate or poly And a copolymer with a repeating unit of -4-hydroxybutyrate.

また、グリコールとジカルボン酸の縮重合体からなるポリアルキレンアルカノエートの例として、ポリエチレンオキサレート、ポリエチレンサクシネート、ポリエチレンアジペート、ポリエチレンアゼレート、ポリブチレンオキサレート、ポリブチレンサクシネート、ポリブチレンアジペート、ポリブチレンセバケート、ポリヘキサメチレンセバケート、ポリネオペンチルオキサレートまたはこれらを主繰り返し単位とするポリアルキレンアルカノエート共重合体が挙げられる。   Examples of polyalkylene alkanoates comprising a condensation polymer of glycol and dicarboxylic acid include polyethylene oxalate, polyethylene succinate, polyethylene adipate, polyethylene azelate, polybutylene oxalate, polybutylene succinate, polybutylene adipate, poly Examples include butylene sebacate, polyhexamethylene sebacate, polyneopentyl oxalate, or a polyalkylene alkanoate copolymer having these as main repeating units.

これらの中でもポリ乳酸系重合体は、機械的特性や剛性に優れるだけでなく難燃性をも有するものである。具体的には、45°ミクロバーナ法による区分3程度の難燃性を有するため、リン系難燃剤を使用することなくエアフィルター基材にリン系難燃剤が配合された従来品と同等の難燃性を付与できる。   Among these, the polylactic acid-based polymer has not only excellent mechanical properties and rigidity but also flame retardancy. Specifically, since it has a flame resistance of about Category 3 by the 45 ° micro burner method, it is as difficult as a conventional product in which a phosphorus flame retardant is blended in an air filter base material without using a phosphorus flame retardant. Can impart flammability.

また、ポリ乳酸系重合体は、芳香族ポリエステル繊維に比べて発熱量が低いため焼却炉を傷める恐れが少なく、また、有害ガスを発生することもないため、埋め立て処理だけでなく焼却処理も好適に行える。さらに、ポリ乳酸系重合体は、他の脂肪族ポリエステルと比較して剛性が高く、使用時の変形量を少なくできるためより好ましい。   In addition, polylactic acid-based polymers have a lower calorific value than aromatic polyester fibers, so there is little risk of damaging the incinerator, and no harmful gas is generated, so not only landfilling but also incineration is suitable. Can be done. Furthermore, a polylactic acid polymer is more preferable because it has higher rigidity than other aliphatic polyesters and can reduce the amount of deformation during use.

ポリ乳酸系重合体としては、ポリ(D−乳酸)、ポリ(L−乳酸)、D−乳酸とL−乳酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、D−乳酸とL−乳酸とヒドロキシカルボン酸との共重合体とから選ばれるいずれかの重合体、あるいはこれらのブレンド体が挙げられる。ポリ乳酸のホモポリマーであるポリ(L−乳酸)やポリ(D−乳酸)の融点は約180℃であるが、ポリ乳酸系重合体として前記コポリマーを用いる場合には、実用性と融点等を考慮してポリマー成分の共重合量比を決定することが好ましく、L−乳酸とD−乳酸との共重合比が、モル比で、(L−乳酸)/(D−乳酸)=100/0〜90/10、あるいは(L−乳酸)/(D−乳酸)=10/90〜100/0であることが好ましい。   Examples of the polylactic acid-based polymer include poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, L- Examples thereof include a copolymer of lactic acid and hydroxycarboxylic acid, any polymer selected from a copolymer of D-lactic acid, L-lactic acid, and hydroxycarboxylic acid, or a blend thereof. Poly (L-lactic acid) and poly (D-lactic acid), which are homopolymers of polylactic acid, have a melting point of about 180 ° C. However, when the copolymer is used as a polylactic acid polymer, practicality and melting point are It is preferable to determine the copolymerization amount ratio of the polymer component in consideration of the copolymerization ratio of L-lactic acid and D-lactic acid in terms of molar ratio (L-lactic acid) / (D-lactic acid) = 100/0. It is preferable that it is -90/10 or (L-lactic acid) / (D-lactic acid) = 10 / 90-100 / 0.

乳酸とヒドロキシカルボン酸との共重合体である場合におけるヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げられ、中でも特に、ヒドロキシカプロン酸またはグリコール酸を用いることが生分解性および低コストの点から好ましい。   Examples of the hydroxycarboxylic acid in the case of a copolymer of lactic acid and hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid, hydroxyoctanoic acid, and the like. Of these, hydroxycaproic acid or glycolic acid is particularly preferred from the viewpoint of biodegradability and low cost.

具体的には、ポリ乳酸からなる生分解性繊維(ラクトロン カネボウ社製)、ポリヒドロキシブチレートとバリレートの共重合体組成からなる生分解性繊維(バイオポール 米国モンサント社製)、ポリカプロラクトンからなる生分解性繊維(セルグリーン ダイセル化学工業社製)、脂肪族ポリエステルからなる生分解性繊維(ビオノーレ 昭和高分子社製)、でんぷんと変性ポリビニルアルコール組成からなる生分解性繊維(マタービー イタリア国ノバモント社製)等が挙げられる。また、これら生分解性繊維は1種類の使用に限られず、それぞれ分解挙動に特徴を持った生分解性繊維を2種類以上混合して用いてもよい。   Specifically, biodegradable fiber made of polylactic acid (Lactron Kanebo Co., Ltd.), biodegradable fiber made of a copolymer composition of polyhydroxybutyrate and valerate (Biopol USA Monsanto Co., Ltd.), and polycaprolactone Biodegradable fiber (manufactured by Cellgreen Daicel Chemical Industries), biodegradable fiber composed of aliphatic polyester (manufactured by Bionore Showa Polymer Co., Ltd.), biodegradable fiber composed of starch and modified polyvinyl alcohol composition (Matterby Novamont, Italy) Manufactured) and the like. In addition, these biodegradable fibers are not limited to one type of use, and two or more types of biodegradable fibers each having a characteristic in degradation behavior may be mixed and used.

本発明において生分解性繊維として、再生繊維または半合成繊維が含まれる。具体的には、生分解性を有するレーヨン繊維、リヨセル繊維、キュプラ、アセテート等が挙げられる。その繊維径は、特に限定されないが30μm以下が好ましく、より好ましくは20μm以下である。好ましくは、再生繊維または半合成繊維が繊維径の異なる2種類以上の繊維等を含んだ場合、ネットワークにさらなる空間が生まれ通気性、通液性が向上する。   In the present invention, the biodegradable fiber includes regenerated fiber or semi-synthetic fiber. Specific examples include biodegradable rayon fiber, lyocell fiber, cupra, and acetate. The fiber diameter is not particularly limited, but is preferably 30 μm or less, more preferably 20 μm or less. Preferably, when the regenerated fiber or the semi-synthetic fiber includes two or more kinds of fibers having different fiber diameters, an additional space is created in the network, and air permeability and liquid permeability are improved.

また、繊維径1μm以下の生分解性を有するフィブリル化リヨセル繊維を併用することにより、更なるネットワークが確保され、捕集効率を高める事が可能となる。   Further, by using a fibrillated lyocell fiber having a biodegradability with a fiber diameter of 1 μm or less, a further network is secured and the collection efficiency can be increased.

また、併用出来るその他の繊維としては、皮膜の少ない麻パルプ、コットンリンター、リント、針葉樹パルプ、広葉樹パルプなどの木材パルプや藁パルプ、竹パルプ、ケナフパルプなどの木本類、草本類を含む。これらの繊維はフィブリル化されていても通液性、通気性を阻害しない範囲であればなんら差し支えない。さらに、古紙、損紙などから得られるパルプ繊維等も含まれる。   Other fibers that can be used in combination include hemp pulp, cotton linter, lint, softwood pulp, hardwood pulp, and other wood pulp, straw pulp, bamboo pulp, kenaf pulp, and other herbs. Even if these fibers are fibrillated, there is no problem as long as they do not impair liquid permeability and air permeability. Furthermore, pulp fibers obtained from waste paper, waste paper, and the like are also included.

本発明の濾材において、生分解性繊維は、生分解性熱融着繊維であっても良い。生分解性熱融着繊維を含有させて、該熱融着繊維の溶融温度以上に濾材の温度を上げる工程を濾材の製造工程に組み入れることで、濾材の機械的強度が向上する。例えば、濾材を湿式抄造法で製造し、その後の乾燥工程で、該熱融着繊維を溶融させることができる。   In the filter medium of the present invention, the biodegradable fiber may be a biodegradable heat-sealing fiber. By incorporating the biodegradable heat-fusible fiber and increasing the temperature of the filter medium above the melting temperature of the heat-fusible fiber, the mechanical strength of the filter medium is improved. For example, a filter medium can be produced by a wet papermaking method, and the heat-sealing fiber can be melted in a subsequent drying step.

本発明の濾材に係わる生分解性熱融着繊維としては、単繊維のほか、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維などの複合繊維が挙げられる。複合繊維は、皮膜を形成しにくいので、濾材の空間を保持したまま、機械的強度を向上させることができる。   Examples of the biodegradable heat-fusible fiber related to the filter medium of the present invention include single fibers, and composite fibers such as core-sheath fibers (core-shell type), parallel fibers (side-by-side type), and radially divided fibers. Since the composite fiber hardly forms a film, the mechanical strength can be improved while maintaining the space of the filter medium.

本発明の濾材において、生分解性熱融着繊維の繊維径は特に限定されないが、3〜30μmであることが好ましく、より好ましくは5〜20μmである。   In the filter medium of the present invention, the fiber diameter of the biodegradable heat-fusible fiber is not particularly limited, but is preferably 3 to 30 μm, more preferably 5 to 20 μm.

本発明の濾材の坪量は特に限定しないが、フィルターに加工する際の強度や必要濾材面積を考慮すると、10〜150g/m2が好ましく、より好ましくは、50〜100g/m2である。 Although the basic weight of the filter medium of the present invention is not particularly limited, it is preferably 10 to 150 g / m 2 , more preferably 50 to 100 g / m 2 in consideration of the strength when processing into a filter and the required filter medium area.

本発明の濾材は、単層構造に限定されず、粗密構造の2層以上で構成されても良い。2層以上の構造にする場合には、密層を湿式抄紙法で作製し、粗層を一般的な乾式不織布の製法で作製した後にそれらを一体化させることも可能であり、粗層と密層とを湿式抄紙法で作製しても良い。2層以上の構成の場合で、用途がエアフィルター用の濾材の場合、上流側が粗層になる様に使用する事により寿命の長い濾材となる。一方、液体濾過用フィルターに使用する場合、密層を上流側にして使用した方が寿命が長い場合がある。   The filter medium of the present invention is not limited to a single layer structure, and may be composed of two or more layers having a dense structure. In the case of a structure having two or more layers, it is possible to produce a dense layer by a wet papermaking method and to integrate the coarse layer after producing it by a general dry nonwoven fabric manufacturing method. The layer may be produced by a wet papermaking method. In the case of two or more layers, when the application is a filter medium for an air filter, a filter medium with a long life is obtained by using the filter medium so that the upstream side is a coarse layer. On the other hand, when it is used for a filter for liquid filtration, the life may be longer when the dense layer is used on the upstream side.

本発明の濾材には、必要に応じて濾材の特性を阻害しない範囲で、バインダー、架橋剤、撥水剤、分散剤、歩留り向上剤、紙力剤、染料などの添加剤を適宜配合することができる。その場合、生分解性であることが好ましい。   In the filter medium of the present invention, additives such as a binder, a cross-linking agent, a water repellent, a dispersant, a yield improver, a paper strength agent, and a dye are appropriately blended as necessary as long as the characteristics of the filter medium are not impaired. Can do. In that case, it is preferably biodegradable.

本発明の濾材は、一般紙や湿式不織布を製造するための抄紙機、例えば、長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機が単独、またはこれらの抄紙機が同種または異種の2機以上がオンラインで設置されているコンビネーション抄紙機などにより製造される。抄紙機で製造された湿紙は、ドライヤーで乾燥させる。乾燥させた後、熱可塑性樹脂を含有させ、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥する。熱可塑性樹脂は、生分解性であることが好ましい。   The filter medium of the present invention is a paper machine for producing general paper or wet nonwoven fabric, for example, a long net paper machine, a circular net paper machine, or an inclined wire type paper machine, or these paper machines are the same or different. Manufactured on a combination paper machine installed on-line or more. The wet paper produced by the paper machine is dried with a dryer. After drying, a thermoplastic resin is contained and dried with an air dryer, a cylinder dryer, a suction drum dryer, an infrared dryer or the like. The thermoplastic resin is preferably biodegradable.

以下、本発明を実施例を挙げて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples.

ガラス繊維(B−26−R、繊維径約2.6μm、ラウシャ製)を2質量%、レーヨン繊維(繊維径約8μm、繊維長が5mm ダイワボウレーヨン社製)を48質量%、生分解性熱融着繊維として融点が170℃であるポリ乳酸(共重合モル比:D−乳酸/L−乳酸=2/98)が芯部に、融点が130℃のポリ乳酸(共重合モル比:D−乳酸/L−乳酸=8/92)が鞘部となるように質量比1:1で芯鞘型に複合された繊維径約15μm、繊維長が5mmの芯鞘型熱融着短繊維を50質量%の比率で水に分散し、乾燥重量60g/m2になる量の分散液を採取し、標準角形手抄き抄紙機を用いて抄紙した後、表面温度140℃のシリンダードライヤーで乾燥して、実施例1の濾材を作製した。 2% by mass of glass fiber (B-26-R, fiber diameter of about 2.6 μm, manufactured by Lauscha), 48% by mass of rayon fiber (fiber diameter of about 8 μm, fiber length of 5 mm manufactured by Daiwabo Rayon Co., Ltd.), biodegradable heat Polylactic acid having a melting point of 170 ° C. (copolymerization molar ratio: D-lactic acid / L-lactic acid = 2/98) as a fusion fiber and polylactic acid having a melting point of 130 ° C. (copolymerization molar ratio: D-) 50 core-sheath-type heat-sealing short fibers having a fiber diameter of about 15 μm and a fiber length of 5 mm, which are combined in a core-sheath type at a mass ratio of 1: 1 so that lactic acid / L-lactic acid = 8/92) becomes a sheath part. Dispersed in water at a ratio of mass% and collected a dispersion liquid having a dry weight of 60 g / m 2 , paper-making using a standard square hand-made paper machine, and then dried with a cylinder dryer having a surface temperature of 140 ° C. Thus, the filter medium of Example 1 was produced.

ガラス繊維(B−06−F、繊維径約0.6μm、ラウシャ製)を5質量%、レーヨン繊維(繊維径約8μm、繊維長が5mm ダイワボウレーヨン社製)を45質量%、生分解性熱融着繊維として融点が170℃であるポリ乳酸(共重合モル比:D−乳酸/L−乳酸=2/98)が芯部に、融点が130℃のポリ乳酸(共重合モル比:D−乳酸/L−乳酸=8/92)が鞘部となるように質量比1:1で芯鞘型に複合された繊維径約15μm、繊維長が5mmの芯鞘型熱融着短繊維を50質量%の比率で水に分散し、乾燥重量60g/m2になる量の分散液を採取し、標準角形手抄き抄紙機を用いて抄紙した後、表面温度140℃のシリンダードライヤーで乾燥して、実施例2の濾材を作製した。 5% by mass of glass fiber (B-06-F, fiber diameter of about 0.6 μm, manufactured by Lauscha), 45% by mass of rayon fiber (fiber diameter of about 8 μm, fiber length of 5 mm, manufactured by Daiwabo Rayon), biodegradable heat Polylactic acid having a melting point of 170 ° C. (copolymerization molar ratio: D-lactic acid / L-lactic acid = 2/98) as a fusion fiber and polylactic acid having a melting point of 130 ° C. (copolymerization molar ratio: D-) 50 core-sheath-type heat-sealing short fibers having a fiber diameter of about 15 μm and a fiber length of 5 mm, which are combined in a core-sheath type at a mass ratio of 1: 1 so that lactic acid / L-lactic acid = 8/92) becomes a sheath part. Dispersed in water at a ratio of mass% and collected a dispersion liquid having a dry weight of 60 g / m 2 , paper-making using a standard square hand-made paper machine, and then dried with a cylinder dryer having a surface temperature of 140 ° C. Thus, a filter medium of Example 2 was produced.

ガラス繊維(B−10−F、繊維径約1.0μm、ラウシャ製)を20質量%、レーヨン繊維(繊維径約8μm、繊維長が5mm ダイワボウレーヨン社製)を30質量%、生分解性熱融着繊維として融点が170℃であるポリ乳酸(共重合モル比:D−乳酸/L−乳酸=2/98)が芯部に、融点が130℃のポリ乳酸(共重合モル比:D−乳酸/L−乳酸=8/92)が鞘部となるように質量比1:1で芯鞘型に複合された繊維径約15μm、繊維長が5mmの芯鞘型熱融着短繊維を50質量%の比率で水に分散し、乾燥重量60g/m2になる量の分散液を採取し、標準角形手抄き抄紙機を用いて抄紙した後、表面温度140℃のシリンダードライヤーで乾燥して、実施例3の濾材を作製した。 20% by mass of glass fiber (B-10-F, fiber diameter: about 1.0 μm, manufactured by Lauscha), 30% by mass of rayon fiber (fiber diameter: about 8 μm, fiber length: 5 mm, manufactured by Daiwabo Rayon Co., Ltd.), biodegradable heat Polylactic acid having a melting point of 170 ° C. (copolymerization molar ratio: D-lactic acid / L-lactic acid = 2/98) as a fusion fiber and polylactic acid having a melting point of 130 ° C. (copolymerization molar ratio: D-) 50 core-sheath-type heat-sealing short fibers having a fiber diameter of about 15 μm and a fiber length of 5 mm, which are combined in a core-sheath type at a mass ratio of 1: 1 so that lactic acid / L-lactic acid = 8/92) becomes a sheath part. Dispersed in water at a ratio of mass% and collected a dispersion liquid having a dry weight of 60 g / m 2 , paper-making using a standard square hand-made paper machine, and then dried with a cylinder dryer having a surface temperature of 140 ° C. Thus, a filter medium of Example 3 was produced.

ガラス繊維(B−10−F、繊維径約1.0μm、ラウシャ製)を40質量%、レーヨン繊維(繊維径約8μm、繊維長が5mm ダイワボウレーヨン社製)を10質量%、生分解性熱融着繊維として融点が170℃であるポリ乳酸(共重合モル比:D−乳酸/L−乳酸=2/98)が芯部に、融点が130℃のポリ乳酸(共重合モル比:D−乳酸/L−乳酸=8/92)が鞘部となるように質量比1:1で芯鞘型に複合された繊維径約15μm、繊維長が5mmの芯鞘型熱融着短繊維を50質量%の比率で水に分散し、乾燥重量60g/m2になる量の分散液を採取し、標準角形手抄き抄紙機を用いて抄紙した後、表面温度140℃のシリンダードライヤーで乾燥して、実施例4の濾材を作製した。 40% by mass of glass fiber (B-10-F, fiber diameter: about 1.0 μm, manufactured by Lauscha), 10% by mass of rayon fiber (fiber diameter: about 8 μm, fiber length: 5 mm, manufactured by Daiwabo Rayon), biodegradable heat Polylactic acid having a melting point of 170 ° C. (copolymerization molar ratio: D-lactic acid / L-lactic acid = 2/98) as a fusion fiber and polylactic acid having a melting point of 130 ° C. (copolymerization molar ratio: D-) 50 core-sheath-type heat-sealing short fibers having a fiber diameter of about 15 μm and a fiber length of 5 mm, which are combined in a core-sheath type at a mass ratio of 1: 1 so that lactic acid / L-lactic acid = 8/92) becomes a sheath part. Dispersed in water at a ratio of mass% and collected a dispersion liquid having a dry weight of 60 g / m 2 , paper-making using a standard square hand-made paper machine, and then dried with a cylinder dryer having a surface temperature of 140 ° C. Thus, a filter medium of Example 4 was produced.

ガラス繊維(B−15−F、繊維径約1.5μm、ラウシャ製)を60質量%、レーヨン繊維(繊維径約8μm、繊維長が5mm ダイワボウレーヨン社製)を10質量%、生分解性熱融着繊維として融点が170℃であるポリ乳酸(共重合モル比:D−乳酸/L−乳酸=2/98)が芯部に、融点が130℃のポリ乳酸(共重合モル比:D−乳酸/L−乳酸=8/92)が鞘部となるように質量比1:1で芯鞘型に複合された繊維径約15μm、繊維長が5mmの芯鞘型熱融着短繊維を30質量%の比率で水に分散し、乾燥重量60g/m2になる量の分散液を採取し、標準角形手抄き抄紙機を用いて抄紙した後、表面温度140℃のシリンダードライヤーで乾燥して、実施例6の濾材を作製した。 60% by mass of glass fiber (B-15-F, fiber diameter: about 1.5 μm, manufactured by Lauscha), 10% by mass of rayon fiber (fiber diameter: about 8 μm, fiber length: 5 mm, manufactured by Daiwabo Rayon), biodegradable heat Polylactic acid having a melting point of 170 ° C. (copolymerization molar ratio: D-lactic acid / L-lactic acid = 2/98) as a fusion fiber and polylactic acid having a melting point of 130 ° C. (copolymerization molar ratio: D-) 30 core-sheath-type heat-sealing short fibers having a fiber diameter of about 15 μm and a fiber length of 5 mm, which are combined in a core-sheath type at a mass ratio of 1: 1 so that lactic acid / L-lactic acid = 8/92) becomes a sheath part. Dispersed in water at a ratio of mass% and collected a dispersion liquid having a dry weight of 60 g / m 2 , paper-making using a standard square hand-made paper machine, and then dried with a cylinder dryer having a surface temperature of 140 ° C. Thus, a filter medium of Example 6 was produced.

粗密構造の2層構造の濾材を作製するために、粗層用としてレーヨン繊維(繊維径約25μm、繊維長が5mm ダイワボウレーヨン社製)を質量50%、生分解性熱融着繊維として融点が170℃であるポリ乳酸(共重合モル比:D−乳酸/L−乳酸=2/98)が芯部に、融点が130℃のポリ乳酸(共重合モル比:D−乳酸/L−乳酸=8/92)が鞘部となるように質量比1:1で芯鞘型に複合された繊維径約15μm、繊維長が5mmの芯鞘型熱融着短繊維を50質量%の比率で水に分散し、乾燥重量40g/m2になる量の分散液を採取し、標準角形手抄き抄紙機を用いて抄紙した、別途密層用として、ガラス繊維(B−06−F、繊維径約0.6μm、ラウシャ製)を20質量%、レーヨン繊維(繊維径約8μm、繊維長が5mm ダイワボウレーヨン社製)を30質量%、生分解性熱融着繊維として融点が170℃であるポリ乳酸(共重合モル比:D−乳酸/L−乳酸=2/98)が芯部に、融点が130℃のポリ乳酸(共重合モル比:D−乳酸/L−乳酸=8/92)が鞘部となるように質量比1:1で芯鞘型に複合された繊維径約15μm、繊維長が5mmの芯鞘型熱融着短繊維を50質量%の比率で水に分散し、乾燥重量20g/m2になる量の分散液を採取し、標準角形手抄き抄紙機を用いて抄紙した後、湿紙の状態で粗層と密層を重ね合わせて、表面温度140℃のシリンダードライヤーで乾燥して、実施例6の粗密構造の濾材を作製した。 In order to produce a two-layer filter medium having a dense structure, a rayon fiber (fiber diameter: about 25 μm, fiber length: 5 mm, manufactured by Daiwabo Rayon Co., Ltd.) is 50% in mass for the coarse layer, and has a melting point as a biodegradable heat-fusible fiber. Polylactic acid (copolymerization molar ratio: D-lactic acid / L-lactic acid = 2/98) at 170 ° C. is the core, and polylactic acid (melting molar ratio: D-lactic acid / L-lactic acid = 130 ° C.) = 130 ° C. 8/92) is a core-sheath short fiber having a fiber diameter of about 15 μm and a fiber length of 5 mm, which is combined in a core-sheath type so that the sheath part is a mass ratio of 1: 1. A dispersion liquid was collected in an amount of 40 g / m 2 and dried using a standard square hand-made paper machine. Glass fibers (B-06-F, fiber diameter) were separately used for dense layers. About 0.6 μm, 20% by mass of Rauscha, rayon fiber (fiber diameter of about 8 μm, fiber length of 5 mm) Polylactic acid (copolymerization molar ratio: D-lactic acid / L-lactic acid = 2/98) having a melting point of 170 ° C. as a biodegradable heat-fusible fiber is 30% by mass of Iwabo Rayon Co., Ltd. A fiber diameter of about 15 μm combined in a core-sheath type with a mass ratio of 1: 1 so that polylactic acid (copolymerization molar ratio: D-lactic acid / L-lactic acid = 8/92) having a melting point of 130 ° C. becomes a sheath part, A core-sheath-type heat-sealing short fiber having a fiber length of 5 mm is dispersed in water at a ratio of 50% by mass, and a dispersion liquid having a dry weight of 20 g / m 2 is collected and used with a standard square hand-made paper machine. After the paper making, the coarse layer and the dense layer were overlapped in a wet paper state and dried with a cylinder dryer having a surface temperature of 140 ° C. to prepare a filter material with a coarse and dense structure of Example 6.

(比較例1)
生分解性繊維としてポリ乳酸(融点170℃、共重合モル比:D−乳酸/L−乳酸=2/98)からなる繊維径約11μm、繊維長が5mmの繊維を50質量%、生分解性熱融着繊維として融点が170℃であるポリ乳酸(共重合モル比:D−乳酸/L−乳酸=2/98)が芯部に、融点が130℃のポリ乳酸(共重合モル比:D−乳酸/L−乳酸=8/92)が鞘部となるように質量比1:1で芯鞘型に複合された繊維径約15μm、繊維長が5mmの芯鞘型熱融着短繊維を50質量%の比率で水に分散し、乾燥重量60g/m2になる量の分散液を採取し、標準角形手抄き抄紙機を用いて抄紙した後、表面温度140℃のシリンダードライヤーで乾燥して、比較例1の濾材を作製した。
(Comparative Example 1)
Biodegradable fiber: polylactic acid (melting point 170 ° C., copolymerization molar ratio: D-lactic acid / L-lactic acid = 2/98) fiber diameter of about 11 μm, fiber length of 5 mm, 50% by mass, biodegradable Polylactic acid having a melting point of 170 ° C. (copolymerization molar ratio: D-lactic acid / L-lactic acid = 2/98) is used as the heat-bonding fiber, and polylactic acid having a melting point of 130 ° C. (copolymerization molar ratio: D). A core-sheath type heat-sealing short fiber having a fiber diameter of about 15 μm and a fiber length of 5 mm, which is composited in a core-sheath type at a mass ratio of 1: 1 so that lactic acid / L-lactic acid = 8/92) becomes a sheath part. Disperse in water at a ratio of 50% by mass and collect a dispersion in a dry weight of 60 g / m 2 , make a paper using a standard square hand-made paper machine, and then dry with a cylinder dryer with a surface temperature of 140 ° C. Thus, a filter medium of Comparative Example 1 was produced.

(比較例2)
ガラス繊維(B−26−R、繊維径約2.6μm、ラウシャ製)を2質量%、生分解性繊維としてポリ乳酸(融点170℃、共重合モル比:D−乳酸/L−乳酸=2/98)からなる繊維径約11μm、繊維長が5mmの繊維を48質量%、ユニチカファイバー社製のポリエステルバインダー繊維「メルティ4080」繊維径約15μm繊維長5mmの芯鞘型熱融着短繊維を50質量%の比率で水に分散し、乾燥重量60g/m2になる量の分散液を採取し、標準角形手抄き抄紙機を用いて抄紙した後、表面温度140℃のシリンダードライヤーで乾燥して、比較例2の濾材を作製した。
(Comparative Example 2)
2% by mass of glass fiber (B-26-R, fiber diameter: 2.6 μm, manufactured by Lauscha), polylactic acid (melting point: 170 ° C., copolymerization molar ratio: D-lactic acid / L-lactic acid = 2) as biodegradable fiber / 98) a fiber having a fiber diameter of about 11 μm, a fiber length of 5 mm, 48% by mass, a polyester binder fiber “Melty 4080” manufactured by Unitika Fiber Co., Ltd., and a core-sheath type heat-sealing short fiber having a fiber diameter of about 15 μm and a fiber length of 5 mm. Disperse in water at a ratio of 50% by mass and collect a dispersion in a dry weight of 60 g / m 2 , make a paper using a standard square hand-made paper machine, and then dry with a cylinder dryer with a surface temperature of 140 ° C. Thus, a filter medium of Comparative Example 2 was produced.

<濾材の評価>
上記実施例1〜3及び比較例1〜2で作製した濾材について、坪量、圧力損失、粒子捕集効率、引張強度、生分解性、プリーツ加工性を以下の方法で評価した(表1)。
<Evaluation of filter media>
About the filter medium produced in the said Examples 1-3 and Comparative Examples 1-2, basic weight, pressure loss, particle collection efficiency, tensile strength, biodegradability, and pleat workability were evaluated by the following methods (Table 1). .

<圧力損失(単位:Pa)>
JIS B9908に準じて、面風速5.3cm/秒の条件で測定した。
<Pressure loss (unit: Pa)>
According to JIS B9908, it measured on the conditions of the surface wind speed of 5.3 cm / sec.

<粒子捕集効率(単位:%)>
JIS B9908に準じて面風速5.3cm/秒の条件で測定した。測定対象粒子は、大気塵を使用して、粒子径0.3〜0.5μmの粒子についての捕集効率をパーティクルカウンター(商品名「KC−11」、リオン社製)を使用して測定した。
捕集効率が15%以上であれば、ビル空調用エアフィルターやクリーンルーム用中・高性能エアフィルターに使用可能となる。
<Particle collection efficiency (unit:%)>
The surface wind speed was measured at 5.3 cm / sec in accordance with JIS B9908. The particles to be measured were measured using a particle counter (trade name “KC-11”, manufactured by Rion Co., Ltd.) for the collection efficiency of particles having a particle diameter of 0.3 to 0.5 μm using atmospheric dust. .
If the collection efficiency is 15% or more, it can be used for air filters for building air conditioning and medium / high performance air filters for clean rooms.

<引張強度(単位:kN/m)>
JIS P8113に則り、濾材を幅15mm、長さ200mmに裁断し、テンシロン測定機(オリエンテック社製、HTM−100)を用いて、フルスケール4kgで、破断時の荷重を各々10回測定し、その平均値を示した。
<Tensile strength (unit: kN / m)>
In accordance with JIS P8113, the filter medium is cut into a width of 15 mm and a length of 200 mm, and using a Tensilon measuring machine (Orientec Co., Ltd., HTM-100), the load at break is measured 10 times with a full scale of 4 kg. The average value was shown.

<生分解性>
濾材を6ヶ月間土中に埋設し、その後フィルターの形状が維持されているか観察した。そして、6ヶ月経過後に原型をとどめていないか、強度維持していないものを○、ほぼそのままの形状で、ほぼ強度を維持していたものを×で表した。
<Biodegradability>
The filter medium was embedded in the soil for 6 months, and then it was observed whether the shape of the filter was maintained. Then, after 6 months, the prototype was not retained or the strength was not maintained, and the shape was maintained as it was and the strength was maintained as x.

<土壌のpH>
濾材を6ヶ月間、茨城県つくば市の屋外の土中に埋設し、その後に濾材の真下の土壌を採取した。採取した土壌10gに蒸留水を25g加えて良く撹拌し、上澄み液のpHを測定した。
<Soil pH>
The filter media was embedded in the soil outside Tsukuba City, Ibaraki Prefecture for 6 months, and then the soil just below the filter media was collected. 25 g of distilled water was added to 10 g of the collected soil and stirred well, and the pH of the supernatant was measured.

<プリーツ(ひだ折り)加工性試験>
サンプルをひだ状に加工し、加工性の良いものを○、悪いものを×で評価した。
<Pleated (folding) processability test>
Samples were processed into pleats, and those with good workability were evaluated as “good” and those with poor work as “poor”.

Figure 2007007566
Figure 2007007566

Figure 2007007566
Figure 2007007566

表1の結果より、ガラス繊維を使用した実施例1〜5の濾材は、圧力損失、捕集効率のバランスが良く、エアフィルターの濾材に適していることが分かる。実施例6の濾材は粗密の2層構造である事から、圧力損失と捕集効率のバランスが良く、粗層を上流にして使用した際の粉塵保持量が多く、ライフが長いフィルターとなった。
また、土壌のpHが中性領域に近づいていることにより、比較例1の濾材より生分解の進行が早かった。
From the results of Table 1, it can be seen that the filter media of Examples 1 to 5 using glass fibers have a good balance of pressure loss and collection efficiency, and are suitable as filter media for air filters. Since the filter medium of Example 6 has a dense two-layer structure, it has a good balance between pressure loss and collection efficiency, has a large amount of dust when used with the coarse layer upstream, and has a long life. .
In addition, biodegradation progressed faster than the filter medium of Comparative Example 1 because the soil pH was close to the neutral region.

比較例1の濾材はガラス繊維を使用していないため、捕集効率が極めて低く、ビル空調やクリーンルームの中性能エアフィルターには適さない。
比較例2の濾材は、生分解性ではないポリエステル繊維を使用したため、生分解性が悪かった。
Since the filter medium of Comparative Example 1 does not use glass fiber, the collection efficiency is extremely low, and it is not suitable for a medium-performance air filter for a building air conditioner or a clean room.
The filter medium of Comparative Example 2 was poor in biodegradability because it used polyester fibers that were not biodegradable.

本発明の濾材は、エアフィルター等に有効に用いる事が出来る。   The filter medium of the present invention can be effectively used for an air filter or the like.

Claims (5)

ガラス繊維と、生分解性繊維とを主成分として含有することを特徴とする生分解性濾材。   A biodegradable filter medium comprising glass fiber and biodegradable fiber as main components. 生分解性繊維の一部が再生繊維または半合成繊維であることを特徴とする請求項1に記載の生分解性濾材。   The biodegradable filter medium according to claim 1, wherein a part of the biodegradable fiber is a regenerated fiber or a semisynthetic fiber. ガラス繊維の繊維径が3μm以下であることを特徴とする請求項1または2に記載の生分解性濾材。   The biodegradable filter medium according to claim 1 or 2, wherein the fiber diameter of the glass fiber is 3 µm or less. 濾材に対するガラス繊維の含有量が1〜50質量%、濾材に対する生分解性繊維の含有量が50〜99質量%である請求項1〜3のいずれかに記載の生分解性濾材。   The biodegradable filter medium according to any one of claims 1 to 3, wherein the glass fiber content relative to the filter medium is 1 to 50 mass%, and the biodegradable fiber content relative to the filter medium is 50 to 99 mass%. 濾材が湿式抄紙法で製造されることを特徴とする請求項1〜4のいずれかに記載の生分解性濾材。   The biodegradable filter medium according to any one of claims 1 to 4, wherein the filter medium is produced by a wet papermaking method.
JP2005192356A 2005-06-30 2005-06-30 Biodegradable filter media Expired - Fee Related JP4851739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192356A JP4851739B2 (en) 2005-06-30 2005-06-30 Biodegradable filter media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192356A JP4851739B2 (en) 2005-06-30 2005-06-30 Biodegradable filter media

Publications (2)

Publication Number Publication Date
JP2007007566A true JP2007007566A (en) 2007-01-18
JP4851739B2 JP4851739B2 (en) 2012-01-11

Family

ID=37746722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192356A Expired - Fee Related JP4851739B2 (en) 2005-06-30 2005-06-30 Biodegradable filter media

Country Status (1)

Country Link
JP (1) JP4851739B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107497180A (en) * 2017-10-10 2017-12-22 郭舒洋 A kind of preparation method of biodegradation type High dust holding amount air filting material
KR102380847B1 (en) * 2021-09-13 2022-04-01 주식회사 엔바이오니아 Air Filter Media With Antibiosis, Biodegradability and Water Repellency, and Manufacturing Method Thereof
KR102380855B1 (en) * 2021-09-13 2022-04-01 주식회사 엔바이오니아 Support For an Air Filter With Antibiosis, Biodegradability and Water Repellency, and Manufacturing Method Thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10189335B2 (en) 2015-10-01 2019-01-29 Caterpillar Inc. Filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205520A (en) * 1982-05-27 1983-11-30 Teijin Ltd Filter medium
JPH0970512A (en) * 1995-09-05 1997-03-18 Hokuetsu Paper Mills Ltd Filter material for air filter and air filter
JP2000300919A (en) * 1999-04-21 2000-10-31 Nippon Muki Co Ltd Air filter
JP2003093819A (en) * 2001-09-26 2003-04-02 Takenaka Komuten Co Ltd Air filter material and air filter comprising the air filter material
JP2003299924A (en) * 2002-04-05 2003-10-21 Toray Ind Inc Pleated filter material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205520A (en) * 1982-05-27 1983-11-30 Teijin Ltd Filter medium
JPH0970512A (en) * 1995-09-05 1997-03-18 Hokuetsu Paper Mills Ltd Filter material for air filter and air filter
JP2000300919A (en) * 1999-04-21 2000-10-31 Nippon Muki Co Ltd Air filter
JP2003093819A (en) * 2001-09-26 2003-04-02 Takenaka Komuten Co Ltd Air filter material and air filter comprising the air filter material
JP2003299924A (en) * 2002-04-05 2003-10-21 Toray Ind Inc Pleated filter material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107497180A (en) * 2017-10-10 2017-12-22 郭舒洋 A kind of preparation method of biodegradation type High dust holding amount air filting material
CN107497180B (en) * 2017-10-10 2019-11-12 南京南欣医药技术研究院有限公司 A kind of preparation method of biodegradation type High dust holding amount air filting material
KR102380847B1 (en) * 2021-09-13 2022-04-01 주식회사 엔바이오니아 Air Filter Media With Antibiosis, Biodegradability and Water Repellency, and Manufacturing Method Thereof
KR102380855B1 (en) * 2021-09-13 2022-04-01 주식회사 엔바이오니아 Support For an Air Filter With Antibiosis, Biodegradability and Water Repellency, and Manufacturing Method Thereof

Also Published As

Publication number Publication date
JP4851739B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
CN1195908C (en) Biodegradable cellulose acetate constructions and tobacco filter
US5905046A (en) Biodegradable and hydrolyzable sheet
JP2006326470A (en) Filtering material
JP2010535024A (en) Decomposable cigarette filter
JP4851739B2 (en) Biodegradable filter media
JPWO2015115418A1 (en) Multilayer filter medium, filter manufacturing method and air filter
CN110124413A (en) Polymer, polymer microfiber dimension, polymer nanofiber and the purposes including filtration device structure
JP3781655B2 (en) Air filter base material for kitchen fan and range
WO2014164127A1 (en) Nonwoven filtration media including microfibrillated cellulose fibers
JP2009197362A (en) Bamboo fiber sheet and method for producing the same
JP2011036763A (en) Air filter medium and method for manufacturing the same
JP2011137267A (en) Wet-laid staple fiber nonwoven fabric
Khan et al. Potential use of biodegradable polymers for facemask filter inserts produced using electrospinning methods
JP2003299924A (en) Pleated filter material
JPH11104416A (en) Air cleaning electret filter and its manufacture
JP2007021428A (en) Filter and its manufacturing method
JP2009185417A (en) Cellulose nano-fiber nonwoven sheet
JP2006167659A (en) Filter material
JPH08196829A (en) Air cleaning filter medium and its production
JP4100549B2 (en) Air filter medium and air filter
JP2007105685A (en) Filter for biodegradable air cleaner
JPH08296121A (en) Production of fibril comprising polyvinyl alcohol and starch
JP2014054595A (en) Filter medium for air filter
JP2602631Y2 (en) Tobacco filter
JP2001192932A (en) Microfiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

R150 Certificate of patent or registration of utility model

Ref document number: 4851739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees