JPH08296121A - Production of fibril comprising polyvinyl alcohol and starch - Google Patents

Production of fibril comprising polyvinyl alcohol and starch

Info

Publication number
JPH08296121A
JPH08296121A JP10087395A JP10087395A JPH08296121A JP H08296121 A JPH08296121 A JP H08296121A JP 10087395 A JP10087395 A JP 10087395A JP 10087395 A JP10087395 A JP 10087395A JP H08296121 A JPH08296121 A JP H08296121A
Authority
JP
Japan
Prior art keywords
starch
fiber
fibrils
wet
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10087395A
Other languages
Japanese (ja)
Inventor
Toshimi Yoshimochi
駛視 吉持
Tomoyuki Sano
友之 佐野
Satoru Kobayashi
悟 小林
Shunpei Naramura
俊平 楢村
Akio Omori
昭夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP10087395A priority Critical patent/JPH08296121A/en
Publication of JPH08296121A publication Critical patent/JPH08296121A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain fibrils capable of highly absorbing an alkaline solution and capable of being dissolved in hot water and wasted by (dry)wet-spinning a sea phase-island phase-separable solution containing a vinyl alcohol polymer and starch and subsequently processing the spun fiber into the fibrils. CONSTITUTION: (A) A polyvinyl alcohol polymer and (B) starch are dissolved in a common solvent in a weight ratio of 95/5 to 50/50 to obtain the solution capable of being separated into the seas comprising the component A and the islands comprising the component B. The solution is (dry)wet-spun as a spinning raw solution, and the obtained fibers are processed into fibrils having diameters of approximately 10μm or less by a chemical swelling force and/or a mechanical stress. The fiber is little in foaming due to its dissolution on beating, and can easily be fibrillated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリビニルアルコール
系ポリマー(以下PVAと略す)とデンプンよりなるフ
ィブリルの製造法に関するものであり、さらに詳しくは
バクテリアバリアー性医療用不織布などに用いることが
できるフィブリルの製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fibril composed of a polyvinyl alcohol-based polymer (hereinafter abbreviated as PVA) and starch, and more specifically, a fibril which can be used for a nonwoven fabric for medical use having a bacterial barrier. Of the manufacturing method of.

【0002】[0002]

【従来の技術】近年、エレクトロニクス、情報通信の発
展に伴い、電池は一層の高性能化が求められる一方、製
造上及び廃棄後の無公害化の点より無水銀化が求められ
ており、電池で陽極と陰極物質の隔離のため使用される
セパレーターは無水銀下での高性能化のため、例えばア
ルカリマンガン電池などのセパレーターには高アルカリ
吸液性が要求されている。このため、アルカリマンガン
電池のセパレーターに使用されている耐アルカリの良好
なビニロンはショート改善のためポアサイズ低下が必要
で細デニール化が進められ、現在では0.3drが市販
されている。しかしながらビニロンのみではアルカリ吸
液性能不足のため、吸液性の優れたセルロース繊維でか
つ叩解により極細にフィブリル化可能なポリノジック繊
維などと混抄せざるを得ない。しかしながら、ポリノジ
ック繊維は製造工程での公害問題などがある。したがっ
て、極細にフィブリル化可能で、かつアルカリ吸液性に
優れたPVA繊維が望まれているが、現状ではポリノジ
ック繊維より優れたPVA繊維がない。
2. Description of the Related Art In recent years, along with the development of electronics and information communication, batteries have been required to have higher performance, while silver-free batteries have been required from the viewpoint of pollution-free production and disposal. The separator used for separating the anode and cathode materials is required to have a high alkali absorbing property in order to improve the performance under a mercury-free condition, for example, a separator such as an alkali manganese battery. For this reason, it is necessary to reduce the pore size of vinylon having a good alkali resistance, which is used for a separator of an alkaline manganese battery, in order to improve short-circuiting, and fine denier has been promoted. Currently, 0.3 dr is commercially available. However, since vinylon alone has insufficient alkali absorbing ability, it is inevitable to mix with cellulose fibers having excellent absorbing ability and polynosic fibers which can be finely fibrillated by beating. However, polynosic fibers have pollution problems in the manufacturing process. Therefore, there is a demand for PVA fibers that can be finely fibrillated and have excellent alkali-absorbing properties, but at present, there are no PVA fibers that are superior to polynosic fibers.

【0003】また、医療衛生業務従事者が病原体、ウイ
ルス、患者体液から身を保護するための衣料の要求が高
まり織物、編物、不織布を使用した医療用製品、例えば
手術衣服、マスク、帽子、手術台シート、ベットカバ
ー、患者ガウン、枕カバー等が研究開発や市販されてい
るが、バリアー材として緻密、軽量、柔軟性が期待でき
るフィブリル化した親水性のフィブリルよりなる不織布
が切望されている。また、これ等医療用製品は一般に使
用後、廃棄されるが廃棄物は日本では焼却されるのが通
例となっており、悪臭、窒素酸化物、ダイオキシンなど
による大気汚染で環境上の問題があり、熱水溶解廃棄あ
るいは生分解可能な安価な不織布製品が切望されてい
る。
[0003] In addition, medical hygiene workers are increasingly required to wear clothing to protect themselves from pathogens, viruses and body fluids of patients, and medical products using woven fabrics, knitted fabrics and non-woven fabrics such as surgical clothes, masks, hats and surgery. Although base sheets, bed covers, patient gowns, pillow covers, etc. have been researched and developed and are commercially available, a non-woven fabric made of fibrillated hydrophilic fibrils, which is expected to be dense, lightweight, and flexible, has been earnestly desired as a barrier material. In addition, these medical products are generally disposed of after use, but the waste is usually incinerated in Japan, and there is an environmental problem due to air pollution due to foul odors, nitrogen oxides, dioxins, etc. Inexpensive non-woven fabric products that can be dissolved in hot water or discarded or biodegraded are desired.

【0004】親水性の極細フィブリルを得るために、ブ
レンドポリマーの相分離現象を利用する試みは数多くな
されている。例えば、特公昭5−17609号、特開昭
48−56925、特開昭49−6203号等の各公報
には、ポリアクリルニトリル系ポリマーを海成分とし、
PVAにアクリルニトリルをグラフト共重合したものや
ポリメチルメタクリレート系ポリマーを島成分とする海
島繊維を叩解した時、フィブリル化が可能であることが
示されている。しかしながら、耐アルカリ性かつ高アル
カリ吸液性が要求される用途や熱水溶解性が要求される
用途に使用することができない。
Many attempts have been made to utilize the phenomenon of phase separation of blend polymers in order to obtain hydrophilic ultrafine fibrils. For example, JP-A-5-17609, JP-A-48-56925, JP-A-49-6203 and the like disclose polyacrylonitrile-based polymers as sea components,
It has been shown that fibrillation is possible when a PVA graft-copolymerized with acrylonitrile or a sea-island fiber containing a polymethylmethacrylate polymer as an island component is beaten. However, it cannot be used for applications requiring alkali resistance and high alkali liquid absorption, or applications requiring hot water solubility.

【0005】デンプンを含有するPVA繊維以外の繊維
に関しては、例えば特公昭55−116814号公報に
は、デンプン含有でレーヨン繊維の染色が繊維断面全体
にわたって均一で、かつ通常レーヨンに比し、染色効果
が向上することが開示されている。特公昭60−183
53号公報には、デンプン含有セルロース繊維にアクリ
ルニトリルをグラフト重合させ吸水性が向上することが
開示されている。また、特公昭60−35480号公報
には、デンプン繊維を混抄した紙の製造法が開示されて
いる。いずれも、本発明が目的とする親水性の極細フィ
ブリルを得るものを開示していない。
Regarding fibers other than PVA fibers containing starch, for example, in Japanese Patent Publication No. Sho 55-116814, the dyeing effect of rayon fibers containing starch is uniform over the entire cross section of the fiber and is more effective than ordinary rayon. Is disclosed to be improved. Japanese Patent Publication 60-183
No. 53 discloses that water absorption is improved by graft-polymerizing acrylonitrile onto starch-containing cellulose fibers. In addition, Japanese Patent Publication No. 60-35480 discloses a method for producing paper in which starch fibers are mixed. None of them discloses a method for obtaining a hydrophilic ultrafine fibril which is the object of the present invention.

【0006】デンプンを含有するPVA繊維の公知例と
して、例えば特公昭38−7517号公報で均質断面を
有し、染色効果が良好なPVA繊維が報告されている。
また、特公平3−249208号公報と特公平4−10
0913号公報で、生分解性可能な繊維及びフィブリル
の製法が開示されており、いずれも本発明が目的とする
親水性の極細フィブリルを得るものを開示していない。
As a known example of PVA fiber containing starch, for example, Japanese Patent Publication No. 38-7517 has reported PVA fiber having a uniform cross section and a good dyeing effect.
In addition, Japanese Patent Publication No. 3-249208 and Japanese Patent Publication No. 4-10
No. 0913 discloses a method for producing biodegradable fibers and fibrils, and neither discloses a method for obtaining hydrophilic ultrafine fibrils which is the object of the present invention.

【0007】デンプンとのブレンド繊維がフィブリル化
することは、特公昭35−8565号公報で開示されて
いるが、水溶液を溶媒とする原液のため、デンプンとP
VAの相溶性が良く、原液段階でPVAが海、デンプン
が島に相分離した状態になり難く、これを紡糸原液とし
て使用した場合、径3μm以下の極細フィブリルを得る
ことは不可能である。
The fact that the blended fiber with starch is fibrillated is disclosed in Japanese Patent Publication No. Sho 35-8565, but since it is a stock solution containing an aqueous solution as a solvent, starch and P
The compatibility of VA is good, and it is difficult for PVA to be in the state of phase separation into sea and starch into islands at the stock solution stage. When this is used as a spinning stock solution, it is impossible to obtain ultrafine fibrils having a diameter of 3 μm or less.

【0008】[0008]

【発明が解決しようとする課題】以上より、木材パルプ
と同じ水酸基を多量に有するPVAを海成分とし、叩解
時溶出による発泡が少なく、易フィブリル化可能で、か
つ高アルカリ吸液性及び、熱水溶解廃棄可能なPVAフ
ィブリルが強く望まれているにもかかわらず未だ得られ
ていない。このような状況に鑑み、本発明者らは鋭意努
力し、遂に本発明に至った。
From the above, PVA having a large amount of the same hydroxyl groups as wood pulp as a sea component, less foaming due to elution during beating, easy fibrillation, high alkali absorbency, and heat Despite the strong desire for water soluble disposable PVA fibrils, they have not yet been obtained. In view of such a situation, the present inventors have earnestly made efforts and finally arrived at the present invention.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、P
VA(A)とデンプン(B)をA/Bの重量比95/5
〜50/50で共通の有機溶媒に溶解してAが海成分、
Bが島成分の海島相分離溶液とし、この溶液を紡糸原液
として凝固浴中に乾湿式又は湿式紡糸し、得られた繊維
を化学的膨潤力と機械的応力の各々単独あるいは併用す
ることにより、径10μm以下のフィブリルとすること
を特徴とするPVAとデンプンからなるフィブリルの製
造法である。
That is, the present invention is based on P
The weight ratio of VA (A) and starch (B) is 95/5.
Dissolved in a common organic solvent at ~ 50/50 and A is a sea component,
A sea-island phase separation solution in which B is an island component is used, and this solution is subjected to dry-wet or wet-spinning in a coagulation bath as a spinning stock solution, and the obtained fiber is used alone or in combination with a chemical swelling force and a mechanical stress. A method for producing fibrils composed of PVA and starch, characterized in that the fibrils have a diameter of 10 μm or less.

【0010】本発明のフィブリル製造法においては、P
VAを海成分とする。分子鎖が配向結晶化し易く、高強
度フィブリルが得られ易く、耐アルカリ性、親水性を多
量に有するPVAが海成分、すなわち連続相を構成して
いることが本発明の課題を達成する上で基本的に重要で
ある。ここでいうPVAとはビニルアルコールユニット
を70モル%以上有していれば特に限定はない。ケン化
度は80モル%以上ならば限定はない。PVAの重合度
に特別の限定はないが、高強度フィブリルを得るために
は、重合度500以上であると好ましく、1500以上
であるとさらに好ましい。デンプンは親水性でありなが
ら、有機溶媒中ではPVAと相分離し易く、フィブリル
化され易い。
In the fibril manufacturing method of the present invention, P
VA is the sea component. In order to achieve the object of the present invention, it is essential that PVA having a molecular chain that is easily oriented and crystallized, high-strength fibrils are easily obtained, and that PVA having a large amount of alkali resistance and hydrophilicity constitutes a sea component, that is, a continuous phase. Importantly. The PVA referred to here is not particularly limited as long as it has a vinyl alcohol unit of 70 mol% or more. There is no limitation as long as the degree of saponification is 80 mol% or more. The degree of polymerization of PVA is not particularly limited, but in order to obtain high strength fibrils, the degree of polymerization is preferably 500 or more, more preferably 1500 or more. Although starch is hydrophilic, it easily undergoes phase separation with PVA in an organic solvent and is easily fibrillated.

【0011】また、本発明において、島成分となるデン
プンとしては、とうもろこしデンプン、ジャガイモデン
プン、小麦デンプン、米デンプン、タピオカデンプン及
びこれらを変性処理したもの、例えばカチオンデンプ
ン、α化デンプン、酸化デンプン、エーテル化デンプ
ン、酢化デンプン等が挙げられる。
Further, in the present invention, as the starch serving as the island component, corn starch, potato starch, wheat starch, rice starch, tapioca starch and modified products thereof such as cationic starch, pregelatinized starch, oxidized starch, Examples thereof include etherified starch and acetylated starch.

【0012】海島の重量比は95/5〜50/50であ
る。島成分のデンプンが5%より少ないとフィブリル化
し難い。海成分のPVAが50%より少ないと、デンプ
ンが部分的に海成分を形成し、PVAが明確なマトリッ
クス相を形成しえなくなり高強度フィブリルを得ること
は困難となる。PVA/デンプンの重量比は、90/1
0〜52/48が良く、より好ましくは80/20〜5
5/45、さらに好ましくは75/25〜60/40で
ある。
The weight ratio of sea islands is 95/5 to 50/50. If the island component starch is less than 5%, it is difficult to fibrillate. If the PVA of the sea component is less than 50%, the starch partially forms the sea component, and the PVA cannot form a clear matrix phase, and it becomes difficult to obtain high strength fibrils. The weight ratio of PVA / starch is 90/1
0 to 52/48 is good, and more preferably 80/20 to 5
It is 5/45, more preferably 75/25 to 60/40.

【0013】次に本発明のフィブリルの製造法について
述べる。上記PVA(A)とデンプン(B)を共通溶媒
に溶解することが重要である。共通溶媒としては、ジメ
チルスルホキシド(以下DMSOと略記する)、グリセ
リン、エチレングリコール、ジエチレングリコール、ジ
メチルホルムアミドなどが挙げられる。本発明において
は、紡糸原液段階でPVAが海、デンプンが島に相分離
した海島構造の溶液とする。海島成分を決める因子とし
ては、PVAとデンプンの相溶性、組成比、原液濃度、
溶媒種類、温度などがあり、これらを適宜制御すること
が重要である。紡糸原液の粘度は、10〜4000ポイ
ズが好ましく、より好ましくは20〜200ポイズであ
る。
Next, the method for producing the fibrils of the present invention will be described. It is important to dissolve the above PVA (A) and starch (B) in a common solvent. Examples of the common solvent include dimethyl sulfoxide (hereinafter abbreviated as DMSO), glycerin, ethylene glycol, diethylene glycol, dimethylformamide and the like. In the present invention, a solution having a sea-island structure in which PVA is phase-separated into sea and starch is phase-separated into islands at the spinning dope stage. Factors that determine sea-island components include compatibility between PVA and starch, composition ratio, stock solution concentration,
There are solvent types, temperatures, etc., and it is important to appropriately control these. The viscosity of the spinning dope is preferably 10 to 4000 poise, more preferably 20 to 200 poise.

【0014】このようにして得た紡糸原液をノズルを通
して凝固浴中に紡糸する。本発明においては、湿式か乾
湿式の紡糸方式が用いられ、目的、用途に応じていずれ
かが適宜選択することができるが、不織布にするための
ステープルを得るためには、多ホールノズル紡糸が容易
な湿式紡糸が好ましい。凝固浴は、例えばDMSOを溶
媒とする場合、メタノール、エタノール、などのアルコ
ール類、アセトン、メチルエチルケトン、メチルイソプ
ロピルケトン、メチルイソブチルケトンなどのケトン
類、酢酸メチル、酢酸エチルなどのエステル類、トルエ
ン、キシレンなどの芳香族類及びこれらとDMSOの混
合液を使用することができる。
The spinning dope thus obtained is spun into a coagulation bath through a nozzle. In the present invention, a wet or dry-wet spinning method is used, and either one can be appropriately selected according to the purpose and application, but in order to obtain staples for forming a nonwoven fabric, a multi-hole nozzle spinning method is used. Easy wet spinning is preferred. For example, when DMSO is used as a solvent, the coagulation bath contains alcohols such as methanol and ethanol, ketones such as acetone, methyl ethyl ketone, methyl isopropyl ketone and methyl isobutyl ketone, esters such as methyl acetate and ethyl acetate, toluene and xylene. It is possible to use aromatics such as and mixtures of these with DMSO.

【0015】得られた紡糸原糸は乾燥後、必要に応じて
乾熱延伸、乾熱処理するが、好ましくは総延伸倍率が6
倍以上になるように乾熱延伸する。6倍以上になると、
PVAとデンプンの延伸性の相違から海島境界に歪、亀
裂が生じ易くなりフィブリル化が容易となる。
The obtained spun raw yarn is dried and then, if necessary, subjected to dry heat drawing and dry heat treatment, but the total draw ratio is preferably 6
Dry heat stretching is performed so as to double or more. When it becomes 6 times or more,
Due to the difference in stretchability between PVA and starch, strains and cracks easily occur at the sea-island boundaries, and fibrillation becomes easy.

【0016】このようにして得た繊維は、化学的膨潤力
と機械的応力の各々単独あるいは併用によりフィブリル
化する。化学的膨潤力とは、海成分であるPVAかまた
は島成分のデンプンを膨潤させる能力をいい、代表的膨
潤剤として水を使用するが、膨潤状態で機械的剪断力を
加えると、フィブリル含量の多いフィブリルが得られる
ので好ましい。
The fibers thus obtained are fibrillated by a chemical swelling force and a mechanical stress, either alone or in combination. The chemical swelling power means the ability to swell PVA which is a sea component or starch which is an island component, and water is used as a typical swelling agent, but when mechanical shearing force is applied in a swollen state, It is preferable because many fibrils can be obtained.

【0017】フィブリル化は繊維を切断して繊維の状態
で行う方法とシート状物を形成後行う方法がある。前者
は、たとえば本発明繊維を1〜10mmに切断し、水中
に浸漬、分散し、ビーター、リファイナー、ミキサーな
どにより機械的応力を加え、フィブリル化させる方法で
ある。後者は、たとえば本発明繊維を捲縮・切断しステ
ープルとした後、カードを通して形成したウェブに、ま
たは本発明繊維を1〜30mmに切断したものを紙料と
して水中に分散させ、湿式抄造した原紙に30kg/c
2以上、好ましくは60kg/cm2以上の高圧水流を
あて、高圧水流による衝撃あるいは剪断によりフィブリ
ル化する。
Fibrillation includes a method of cutting fibers into fibers and a method of forming a sheet-like material. The former is, for example, a method in which the fiber of the present invention is cut into 1 to 10 mm, immersed in water, dispersed, and subjected to mechanical stress with a beater, refiner, mixer or the like to be fibrillated. The latter is, for example, a wet-processed base paper obtained by crimping and cutting the fibers of the present invention into staples, and then dispersing the fibers of the present invention into a web formed by passing through a card or dispersing the fibers of the present invention into water as a stock material in water. 30 kg / c
A high-pressure water stream of m 2 or more, preferably 60 kg / cm 2 or more is applied and fibrillated by impact or shearing by the high-pressure water stream.

【0018】本発明にいうフィブリルの大きさとは、本
発明のフィブリルをパラフィンで包埋し、ミクロトーム
で薄切片を作り透過光学顕微鏡で200〜800倍に拡
大した断面写真より断面積を求め、その面積と同一の円
の換算直径を算出し、n=10の平均径を求めた。径が
10μmを越えると、得られるフィブリルが大きく、フ
ィブリル本来の機能を果たさない。フィブリルにおいて
は、大きさは0.03〜10μmが良く、好ましくは
0.1〜6μm、さらに好ましくは0.5〜3μmであ
り、かつ1%以上フィブリルを含有するものである。ま
た、本発明の繊維は強力な機械的剪断力のみでも分割さ
れるため、フィブリル化の方法として、ニードルパンチ
法も用いることができる。ただし先に述べたように、本
発明の繊維は水流絡合のように、湿潤歪みのある状態で
の機械的剪断力を受けた場合に、よりいっそう分割フィ
ブリル化されるため、ニードルパンチ法の場合は条件を
厳しくする必要がある。すなわち、フィブリル化条件と
して、刺針密度250本/cm2以上が好ましく、より
好ましくは刺針密度400本/cm2以上である。
The fibril size referred to in the present invention means that the fibril of the present invention is embedded in paraffin, thin sections are prepared with a microtome, and a cross-sectional area is determined from a cross-sectional photograph magnified 200 to 800 times with a transmission optical microscope. The converted diameter of a circle the same as the area was calculated, and the average diameter of n = 10 was calculated. When the diameter exceeds 10 μm, the obtained fibrils are large and the original function of the fibrils is not fulfilled. The size of fibrils is preferably 0.03 to 10 μm, preferably 0.1 to 6 μm, more preferably 0.5 to 3 μm, and contains 1% or more fibrils. Further, since the fiber of the present invention is split only by a strong mechanical shearing force, a needle punch method can also be used as a method of fibrillation. However, as described above, the fiber of the present invention is further split into fibrils when subjected to mechanical shearing force in a wet strained state such as hydroentanglement, and thus the fiber of the needle punch method is used. If you need to be strict. That is, as the fibrillation condition, preferably puncture needle density 250 lines / cm 2 or more, and more preferably puncture needle density 400 / cm 2 or more.

【0019】乾式水絡法、ニードルパンチ法ともに、カ
ーディング方法としては、ローラーカード、セミランダ
ムカード、ランダムカード等、ウェッブの形成方法につ
いても、タンデムウェッブ、クロスウェッブ、クリスク
ロスウェッブ等、一般に知られているものでよい。ま
た、湿式水絡法に用いられる原紙については、一般に知
られた円網、短網、長網等の抄紙機によって得られた原
紙で良く、また水流処理の支持体に導けるものであれ
ば、原紙は乾燥された状態でも乾燥前のものでも良い。
本発明の繊維と供に、ウェッブに混綿または原紙に混抄
される原綿については、レーヨン、溶剤紡糸セルロース
繊維、ポリノジック、ポリエステル、アクリル、ナイロ
ン、ポリプロピレン、ビニロン等、一般に知られている
ものを用いることができる。ウェッブの積層について
も、本発明の繊維を少なくとも一部含んだ同種ウェッブ
による積層のみでなく、本発明の繊維の混合率の異なる
ウェッブ同士の積層や、本発明の繊維を含まないウェッ
ブとの積層でも良い。すなわち、本発明の繊維がフィブ
リル化した状態で一部含まれているならば、均一に存在
しておらず、偏在していても良い。また、得られた乾式
水絡不織布、湿式水絡不織布、ニードルパンチ乾式不織
布に、サチュレート法、スプレー法、プリント法、泡末
法等のエマルジョンバインダー法や粉末法によって、酢
ビ系、アクリル系、ポリエチレン系、塩ビ系、ウレタン
系、ポリエステル系、エポキシ系、ゴム系等、一般に知
られた樹脂バインダーを添加することもできる。本発明
フィブリルを製造するには、PVAとデンプン以外にも
本発明の目的を逸脱しない範囲において、無機顔料、有
機顔料、耐熱劣化防止剤、PH調整剤、架橋剤、油剤な
どを含有していてもよく、これらは目的に応じて原液段
階、固化段階、抽出段階、乾燥直前、延伸直前、熱延伸
後、熱処理後などの各製造プロセス段階で付与すること
ができる。
Both the dry water junction method and the needle punching method are commonly known as carding methods such as roller card, semi-random card and random card, and web forming methods such as tandem web, cross web and criss cross web. You can use the existing one. Further, as for the base paper used in the wet water-flooding method, a base paper obtained by a generally known paper machine such as a cylinder, a short-net and a fourdrinier may be used, and as long as it can be led to a support for water stream treatment, The base paper may be in a dried state or before being dried.
With the fiber of the present invention, as the raw cotton mixed with the web or the raw paper mixed with the raw paper, rayon, solvent-spun cellulose fiber, polynosic, polyester, acrylic, nylon, polypropylene, vinylon, etc., which are generally known, are used. You can Regarding the lamination of webs, not only the lamination by the same kind of web containing at least a part of the fibers of the present invention, but the lamination of webs having different mixing ratios of the fibers of the present invention, or the lamination of webs not containing the fibers of the present invention But good. That is, if the fibers of the present invention are partially contained in a fibrillated state, they may not be uniformly present and may be unevenly distributed. In addition, the obtained dry-water-entangled nonwoven fabric, wet-water-entangled nonwoven fabric, needle punch dry-type nonwoven fabric, vinyl acetate-based, acrylic-based, polyethylene It is also possible to add a generally known resin binder such as a resin type, a vinyl chloride type, a urethane type, a polyester type, an epoxy type or a rubber type. In order to produce the fibril of the present invention, in addition to PVA and starch, an inorganic pigment, an organic pigment, a heat deterioration preventing agent, a pH adjusting agent, a cross-linking agent, an oil agent and the like are contained within a range not departing from the object of the present invention. Alternatively, these may be applied in each manufacturing process stage such as a stock solution stage, a solidification stage, an extraction stage, immediately before drying, immediately before stretching, after hot stretching, after heat treatment, etc. depending on the purpose.

【0020】[0020]

【実施例】以下実施例により本発明を具体的に説明する
が、本発明は実施例のみに限定されるものではない。 実施例1 重合度1750、ケン化度99.9モル%のPVAとコ
ーンスターチ酸化デンプン(以下デンプンと略記)をP
VAとデンプンの重量比が60/40、総濃度が20重
量%になるように、100℃のDMSOに10時間窒素
雰囲気下で撹拌溶解した。この溶液は完全透明でなく、
すこし濁っており、PVAが海成分、デンプンが島成分
の海島相分離溶液であったが、100℃で24hr撹拌
せずに放置しても更なる相分離の傾向はみられず、安定
な均一分散液であった。この溶液を紡糸原液とし、孔径
0.06mmφ、1000ホールのノズルを通し、DM
SO/メタノールの重量比が30/70で温度が10℃
の固化浴中に湿式紡糸し、3.5倍の湿延伸を施し、糸
中のDMSOをメタノールで抽出後、80℃の熱風で乾
燥し、200℃で、全延伸倍率10倍の乾熱延伸を行
い、PVA/デンプンブレンド繊維を得た。2000デ
ニール/1000のフィラメントヤーン強度は5.8g
/dであった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples. Example 1 PVA having a polymerization degree of 1750 and a saponification degree of 99.9 mol% and corn starch oxidized starch (hereinafter abbreviated as starch) were mixed with P
It was stirred and dissolved in DMSO at 100 ° C. for 10 hours under a nitrogen atmosphere so that the weight ratio of VA and starch was 60/40 and the total concentration was 20% by weight. This solution is not completely clear,
It was a little cloudy, and it was a sea-island phase separation solution with PVA as the sea component and starch as the island component, but there was no tendency for further phase separation even when left at 100 ° C for 24 hours without stirring, and it was stable and uniform. It was a dispersion. This solution is used as a spinning dope, and is passed through a nozzle with a hole diameter of 0.06 mmφ and 1000 holes, and DM
SO / methanol weight ratio 30/70 and temperature 10 ° C
Wet spinning in the solidifying bath of No. 3 and wet drawing of 3.5 times, DMSO in the thread is extracted with methanol, dried with hot air of 80 ° C., and dry drawn at 200 ° C. with a total draw ratio of 10 times. Was carried out to obtain a PVA / starch blend fiber. 2000 denier / 1000 filament yarn strength is 5.8g
Was / d.

【0021】実施例2 実施例1で得られたPVA/デンプン海島繊維を2mm
に切断し、その5gを20℃水500ml中に分散し、
家庭用ミキサー(ナショナルMX−X40)で5分間撹
拌叩解し、叩解液をろ過回収し、含水フィブリルを得
た。このフィブリルを光学顕微鏡及び走査型電子顕微鏡
で観察した結果、径が3.0μm以下のフィブリルが2
5%あった。なお叩解処理前の繊維の径は15μmであ
った。得られた含水フィブリル繊維を4g(純量)に水
1.5リットルを加え、離解機で十分離解させ、粘剤を
加えて十分に撹拌し、抄紙液を作製した。この抄紙液を
300mlとり水を加えて1リットルとし、TAPPI
手抄き抄紙機で抄造した。得られた抄造紙をNo3濾紙
で十分に脱水し、風乾し目付け40g/m2の手抄き紙
を得た。得られた紙の繊維内アルカリ吸液量は2.6g
/gであり、叩解ポリノジックレーヨン繊維とビニロン
繊維を混抄して得た紙のアルカリ吸液量2.2g/gと
同等の高アルカリ吸液性を示した。なお、紙の繊維内ア
ルカリ吸液量は、5cm×5cmの紙(乾燥後重量WD
g)を35%KOH水溶液に20℃×30分浸漬し、3
000rpm×10分の遠心脱液した後の紙の重量をW
cgとした時、(WC−WD)/WD(g/g)として求め
た。
Example 2 2 mm of the PVA / starch sea-island fiber obtained in Example 1
Cut into 5 pieces, and disperse 5 g of the same in 500 ml of water at 20 ° C.,
The mixture was stirred and beaten with a household mixer (National MX-X40) for 5 minutes, and the beaten liquid was collected by filtration to obtain hydrous fibrils. As a result of observing the fibrils with an optical microscope and a scanning electron microscope, 2 fibrils having a diameter of 3.0 μm or less were found.
There was 5%. The diameter of the fiber before beating was 15 μm. To 4 g (pure amount) of the obtained hydrous fibril fiber, 1.5 liters of water was added and allowed to disintegrate with a disintegrator, a viscous agent was added, and the mixture was sufficiently stirred to prepare a papermaking solution. Take 300 ml of this papermaking solution and add water to make 1 liter.
Papermaking was performed with a handmade paper machine. The obtained papermaking paper was thoroughly dehydrated with No3 filter paper and air-dried to obtain a handmade paper having a basis weight of 40 g / m 2 . The amount of alkali absorption in the fiber of the obtained paper is 2.6 g.
/ G, which was a high alkali absorption property equivalent to the alkali absorption amount of 2.2 g / g of paper obtained by mixing beaten polynosic rayon fibers and vinylon fibers. The amount of alkali liquid absorbed in the fiber of the paper is 5 cm × 5 cm (weight after drying W D
g) is immersed in 35% KOH aqueous solution at 20 ° C. for 30 minutes, and 3
The weight of the paper after centrifugal deliquoring at 000 rpm x 10 minutes is W
when a c g, calculated as (W C -W D) / W D (g / g).

【0022】実施例3 実施例1で得られたPVA/デンプン繊維を捲縮・切断
し、得られたステープルファイバーをカード機にかけ
て、目付け40g/m2のウェブを作製し、このウェブ
を水で濡らした後、80kg/cm2の高圧水流をあ
て、繊維を分割、絡合させた。不織布を走査型電子顕微
鏡で観察した結果、径が3μm以下のフィブリルが18
%存在した。得られた不織布の繊維内アルカリ吸液量は
2.6g/gであり、高アルカリ吸液性を示した。な
お、フィブリル本数率はフィブリル化繊維の断面を走査
型電子顕微鏡で写真を撮り、単位面積あたりに存在する
径1.0μ以下のフィブリル本数より求めた。
Example 3 The PVA / starch fiber obtained in Example 1 was crimped and cut, and the obtained staple fiber was applied to a card machine to prepare a web having a basis weight of 40 g / m 2 , and the web was washed with water. After wetting, a high-pressure water stream of 80 kg / cm 2 was applied to split and entangle the fibers. As a result of observing the non-woven fabric with a scanning electron microscope, 18 fibrils with a diameter of 3 μm or less were found.
%Were present. The amount of alkali liquid absorption in the fiber of the obtained non-woven fabric was 2.6 g / g, indicating high alkali liquid absorption. The fibril count ratio was determined from the number of fibrils having a diameter of 1.0 μ or less existing per unit area by taking a photograph of a cross section of the fibrillated fiber with a scanning electron microscope.

【0023】比較例1 実施例1で得られたPVA/デンプン繊維を2mmに切
断し、叩解処理せずそのまま抄紙した。この紙の繊維内
アルカリ吸液量は1.5g/gと低い値を示した。
COMPARATIVE EXAMPLE 1 The PVA / starch fiber obtained in Example 1 was cut into 2 mm, and paper was made as it was without beating. The amount of alkali liquid absorbed in the fiber of this paper was a low value of 1.5 g / g.

【0024】比較例2 20kg/cm2の高圧水流をあてる以外は実施例3と
同様にして水流絡合不織布を作製した。この不織布を走
査型電子顕微鏡で観察した結果、分割されたフィブリル
はほとんどなかった。
Comparative Example 2 A hydroentangled nonwoven fabric was produced in the same manner as in Example 3 except that a high-pressure water flow of 20 kg / cm 2 was applied. As a result of observing this nonwoven fabric with a scanning electron microscope, there were almost no divided fibrils.

【0025】実施例4 平均重合度4000、ケン化度99.9モル%のPVA
とコーンスターチデンプン(以下デンプンと略)を重量
比が70/30、総濃度が15重量%になるように10
0℃DMSOに10時間窒素雰囲気下で撹拌溶解し、次
いで該溶液を0.15mmφ、40ホールのノズルより
吐出し、メタノール/DMSO=7/3(重量比)、温
度2℃の凝固液で湿式紡糸した。得られた原糸を更に4
0℃のメタノール浴中で4倍の湿延伸した後、メタノー
ルで溶剤を抽出し、100℃熱風乾燥後、220℃で総
延伸倍率12倍の乾熱延伸を行い、PVA/デンプンブ
レンド繊維を得た。この繊維の88dr/40fのヤー
ン強度は15.3g/dであった。該繊維を実施例2と
同じ方法で叩解し、極細フィブリルを得た。走査型電子
顕微鏡で観察した結果、径3μm以下のフィブリルは1
2%存在した。
Example 4 PVA having an average degree of polymerization of 4000 and a degree of saponification of 99.9 mol%
And corn starch starch (hereinafter abbreviated as starch) in a weight ratio of 70/30 and a total concentration of 15 wt% 10
It was dissolved in 0 ° C DMSO with stirring in a nitrogen atmosphere for 10 hours, then the solution was discharged from a nozzle of 0.15 mmφ and 40 holes, and wet with a coagulating liquid of methanol / DMSO = 7/3 (weight ratio) and a temperature of 2 ° C. Spun 4 more obtained yarn
After wet stretching 4 times in a methanol bath at 0 ° C., the solvent was extracted with methanol, dried with hot air at 100 ° C., and dry-heat stretched at 220 ° C. with a total draw ratio of 12 times to obtain a PVA / starch blend fiber. It was The yarn strength of this fiber at 88 dr / 40 f was 15.3 g / d. The fibers were beaten in the same manner as in Example 2 to obtain ultrafine fibrils. As a result of observation with a scanning electron microscope, the number of fibrils with a diameter of 3 μm or less is 1
2% was present.

【0026】実施例5 平均重合度1700、ケン化度98.5モル%のPVA
とコーンスターチ酸化デンプン(以下デンプンと略)を
重量比が80/20、総濃度が20%になるように10
0℃DMSOに10時間窒素雰囲気下で撹拌溶解し、次
いで該溶液を0.08mmφ、1000ホールのノズル
より吐出し、メタノール/DMSO=7/3(重量
比)、温度2℃の凝固液で湿式紡糸した。得られた原糸
を更に40℃のメタノール浴中で4倍の湿延伸した後、
メタノールで溶剤を抽出し、100℃熱風乾燥後、22
0℃で総延伸倍率13.8倍の乾熱延伸を行い、更に2
30℃で30秒熱処理した。この繊維の1806dr/
1000fのヤーン強度は4.83g/dであった。該
繊維を実施例3と同じ方法で水流絡合し、緻密で柔軟性
のある不織布を得た。走査型電子顕微鏡で観察した結
果、径3μm以下のフィブリルは32%であった。該不
織布を82℃熱水の浸漬したところ完全溶解した。
Example 5 PVA having an average degree of polymerization of 1700 and a degree of saponification of 98.5 mol%
And corn starch oxidised starch (hereinafter abbreviated as starch) at a weight ratio of 80/20 and a total concentration of 20% 10
It was dissolved in 0 ° C DMSO with stirring in a nitrogen atmosphere for 10 hours, and then the solution was discharged from a nozzle of 0.08 mmφ and 1000 holes, and wet with a coagulating solution of methanol / DMSO = 7/3 (weight ratio) and a temperature of 2 ° C. Spun The obtained raw yarn was further wet-drawn 4 times in a methanol bath at 40 ° C.,
After extracting the solvent with methanol and drying with hot air at 100 ℃, 22
Dry heat stretching at a total stretching ratio of 13.8 times at 0 ° C., and further 2
Heat treatment was performed at 30 ° C. for 30 seconds. 1806 dr / of this fiber
The yarn strength at 1000f was 4.83 g / d. The fibers were hydroentangled in the same manner as in Example 3 to obtain a dense and flexible nonwoven fabric. As a result of observation with a scanning electron microscope, fibrils having a diameter of 3 μm or less were 32%. When the nonwoven fabric was immersed in hot water at 82 ° C., it was completely dissolved.

【0027】比較例3 重合度1750、ケン化99.9モル%のPVAとコー
ンスターチ酸化デンプンの重量比が60/40%、ポリ
マー濃度20重量%で、90℃水×8hr間撹拌溶解し
た。この溶液を原液とし、穴径0.06mmφ、100
0ホールのノズルより45℃飽和硫酸ナトリウム浴に湿
式紡糸し、次いで20℃水中で2倍湿延伸し、220℃
で全延伸倍率18倍になるように乾熱延伸した。この繊
維を光学顕微鏡で断面を観察したところ明瞭な海島構造
が見られなかった。そこで実施例2と同様な方法で叩解
を試みたが、分割はみられるものの極細化せず径3.0
μmのフィブリルは本数率1%未満であった。
Comparative Example 3 PVA having a polymerization degree of 1750, saponification of 99.9 mol% and corn starch oxidized starch in a weight ratio of 60/40%, and a polymer concentration of 20 wt% were stirred and dissolved in water at 90 ° C. for 8 hours. Using this solution as a stock solution, the hole diameter is 0.06 mmφ, 100
Wet spinning from a 0-hole nozzle into a saturated sodium sulfate bath at 45 ° C, then wet-stretching twice at 20 ° C in water, and 220 ° C.
Then, the film was subjected to dry heat drawing so that the total draw ratio was 18 times. When a cross section of this fiber was observed with an optical microscope, no clear sea-island structure was observed. Therefore, the beating was tried in the same manner as in Example 2, but division was observed, but the diameter was 3.0 without being ultrafine.
The number of fibrils of μm was less than 1%.

【0028】実施例6 実施例1で得られたPVA/デンプン繊維を捲縮、44
mmに切断し、得られたステープルファイバーをセミラ
ンダムカード機にかけ、20g/m2のセミランダムウ
ェブ(A)を得た。これとは別に、レーヨン1.3d×
40mmのステープルを用いて、同様に30g/m2
セミランダムウェブ(B)を得た。これらのウェブをラ
ッパーにて、ウェブ(A)を上下層に、ウェブ(B)を
中間層に積層して、金網製織りベルトの上に置き、80
kg/cm2の高圧水流をあて、繊維を分割、絡合させ
た後、ドライヤー温度110℃で乾燥させ、70g/m
2の乾式水絡不織布を得た。得られた不織布の顕微鏡観
察より、本発明の繊維は径が2μm、アスペクト比が2
000以上のフィブリルに分割され、各々のウェブがよ
く絡合していることがわかった。
Example 6 The PVA / starch fiber obtained in Example 1 is crimped, 44
The staple fiber thus obtained was cut into mm, and the obtained staple fiber was applied to a semi-random card machine to obtain a 20 g / m 2 semi-random web (A). Separately, rayon 1.3d ×
A 30 g / m 2 semi-random web (B) was similarly obtained using 40 mm staples. These webs were laminated with a wrapper, the web (A) was laminated on the upper and lower layers, and the web (B) was laminated on the intermediate layer.
A high-pressure water stream of kg / cm 2 is applied to split and entangle the fibers, and then dried at a dryer temperature of 110 ° C. to 70 g / m 2.
A dry water-flooded nonwoven fabric of 2 was obtained. From the microscopic observation of the obtained nonwoven fabric, the fiber of the present invention has a diameter of 2 μm and an aspect ratio of 2
It was found to be well entangled with each web divided into more than 000 fibrils.

【0029】比較例5 レーヨン1.3d×40mmのステープルを用いて、実
施例6と同様にセミランダムカード機にかけ、各々、2
0g/m2、30g/m2のセミランダムウェブを得た。
これらのウェブをラッパーにて、15g/m2ウェブを
上下層に、30g/m2ウェブを中間層に積層して、金
網製織りベルトの上に置き、80kg/cm2の高圧水
流をあて、繊維を絡合させた後、ドライヤー温度110
℃で乾燥させ、70g/m2の乾式水絡不織布を得た。
得られた不織布は、実施例6で得られた不織布と比較し
て、密度が低く、めがねレンズの拭取り性に劣るもので
あった。
Comparative Example 5 A rayon 1.3d × 40 mm staple was applied to a semi-random card machine in the same manner as in Example 6, and 2 each.
Semi-random webs of 0 g / m 2 and 30 g / m 2 were obtained.
These webs were wrapped with a wrapper, 15 g / m 2 webs were laminated on the upper and lower layers, and 30 g / m 2 webs were laminated on the intermediate layer, placed on a wire mesh woven belt, and a high-pressure water stream of 80 kg / cm 2 was applied, After entanglement of fibers, dryer temperature 110
Drying was carried out at 0 ° C. to obtain 70 g / m 2 of a dry hydroentangled nonwoven fabric.
The obtained non-woven fabric had a low density and was inferior in the wipeability of the spectacle lens as compared with the non-woven fabric obtained in Example 6.

【0030】実施例7 実施例1で得られたPVA/デンプン繊維を捲縮、51
mmに切断し、得られたステープルファイバーをパラレ
ルカードでカーディング、クロスラッパーで作成したク
ロスウェブに、刺針密度500本/cm2でニードルパ
ンチングし、繊維を分割、絡合させ、300g/m2
乾式不織布を得た。得られた不織布の顕微鏡観察より、
繊維は径が4μm、アスペクト比が500以上のフィブ
リルに分割され、各々が絡合していることがわかった。
なお、ニードルパンチ処理前の未叩解繊維の径は15μ
mであった。
Example 7 The PVA / starch fiber obtained in Example 1 was crimped, 51
The staple fiber thus obtained is cut into mm, carded with a parallel card, and cross-wrapped with a cross-wrapper, and needle punched at a needle density of 500 needles / cm 2 to divide and entangle the fibers, and 300 g / m 2 To obtain a dry non-woven fabric. From the microscopic observation of the obtained nonwoven fabric,
It was found that the fiber was divided into fibrils having a diameter of 4 μm and an aspect ratio of 500 or more, and the fibrils were entangled with each other.
The diameter of the unbeaten fiber before needle punching is 15μ.
It was m.

【0031】実施例8 実施例1で得られたPVA/デンプン繊維を15mmに
切断したものを40%と、木材パルプ60%を混合した
スラリーを調整した。これを短網抄造機にて抄紙し、ド
ライヤー温度110℃で乾燥させ、30g/m2の原紙
を得た。この原紙を3枚重ね合わせ、金網製織りベルト
の上に置き、80kg/cm2の高圧水流をあて、繊維
を分割、絡合させた後、ドライヤー温度110℃で乾燥
させ、85g/m2の湿式水絡不織布を得た。得られた
不織布の顕微鏡観察より、繊維は径が1μm、アスペク
ト比が2000以上のフィブリルに分割され、各々がよ
く絡合していることがわかった。なお、高圧水流処理前
の未叩解繊維の径は15μmであった。
Example 8 A slurry was prepared by mixing 40% of the PVA / starch fiber obtained in Example 1 cut into 15 mm and 60% of wood pulp. This was paper-made by a short-net paper making machine and dried at a dryer temperature of 110 ° C. to obtain a base paper of 30 g / m 2 . Three pieces of this base paper are piled up, placed on a wire mesh woven belt, and a high-pressure water stream of 80 kg / cm 2 is applied to divide and entangle the fibers, followed by drying at a dryer temperature of 110 ° C., and 85 g / m 2 of A wet, water-woven nonwoven fabric was obtained. From the microscopic observation of the obtained nonwoven fabric, it was found that the fibers were divided into fibrils having a diameter of 1 μm and an aspect ratio of 2000 or more, and each was well entangled. The diameter of the unbeaten fiber before the high-pressure water stream treatment was 15 μm.

【0032】[0032]

【発明の効果】本発明のフィブリル繊維を用いて得られ
たシートは、緻密性、遮蔽性、耐アルカリ性、不透明
性、拭取り性、吸水性、吸油性、透湿性、保温性、耐候
性、高強度、高引裂力、耐摩耗性、制電性、ドレープ
性、染色性、安全性等に極めて優れるため、エアフィル
ター、バグフィルター、液体フィルター、掃除機用フィ
ルター、水切りフィルター、菌遮蔽フィルター等の各種
フィルター用シート、電池セパレーター、コンデンサー
紙、フロッピーディスク包材等の各種電気器材用シー
ト、FRPサーフェーサー、粘着テープ基布、吸油材、
製紙フェルト等の各種工業用シート、家庭・業務・医療
用ワイパー、印刷ロール用ワイパー、複写機クリーニン
グ用ワイパー、光学機器用ワイパー等の各種ワイパー用
シート、手術衣・ガウン、覆布、キャップ、マスク、シ
ーツ、タオル、ガーゼ、パップ剤基布、おむつ、おむつ
ライナー、おむつカバー、絆創膏基布、おしぼり、ティ
ッシュ等の各種医療・衛生用シート、芯地、パット、ジ
ャンパーライナー、ディスポ下着等の各種衣料用シー
ト、人工・合成皮革基布、テーブルトップ、壁紙、障子
紙、ブラインド、カレンダー、ラッピング、カイロ・乾
燥剤袋、買物袋、風呂敷、スーツカバー、枕カバー等の
各種生活資材用シート、寒冷紗、内張カーテン、べたが
け、遮光・防草シート、農業包装材、育苗ポット下敷き
紙等の各種農業用シート、防煙・防塵マスク、実験着、
防塵服等の各種防護用シート、ハウスラップ、ドレン
材、濾過材、分離材、オーバーレイ、ルーフィング、タ
フト・カーペット基布、結露防止シート、壁装材、防音
・防振シート、木質ボード、養生シート等の各種土木建
築用シート、フロアー・トランクマット、天井成型材、
ヘッドレスト、内張布等の各種車輌内装材用シート等の
用途に用いることができる。また、本発明の繊維を、硬
質の無機微粒子と分散撹拌するとフィブリル化し、微粒
子捕捉性と補強性に優れ、しかも耐熱難燃性に優れたフ
ィブリルを得ることができ、摩擦材として有用である。
またこのフィブリルをセメントに混合分散させると、セ
メント粒子の捕捉性に優れ、しかも補強性もあるので、
高強度スレート板を容易に得ることができる。
The sheet obtained by using the fibril fiber of the present invention has a denseness, a shielding property, an alkali resistance, an opacity, a wiping property, a water absorption property, an oil absorption property, a moisture permeability, a heat retention property, a weather resistance property, High strength, high tear strength, abrasion resistance, anti-static property, drape property, dyeing property, safety, etc. are extremely excellent, so air filters, bag filters, liquid filters, vacuum cleaner filters, drain filters, bacteria shielding filters, etc. Sheets for various filters, battery separators, condenser paper, sheets for various electrical equipment such as floppy disk packaging materials, FRP surfacers, adhesive tape base cloth, oil absorbing materials,
Various industrial sheets such as paper-making felt, household / business / medical wipers, wipers for printing rolls, wipers for cleaning copiers, wipers for optical devices, surgical wipes / gowns, covers, caps, masks , Sheets, towels, gauze, patch base cloth, diapers, diaper liners, diaper covers, adhesive plaster base cloths, hand towels, wipes, tissues, etc. Sheet, artificial / synthetic leather base cloth, table top, wallpaper, shoji paper, blinds, calendar, wrapping, body warmer / desiccant bag, shopping bag, furoshiki, suit cover, pillow cover, etc. Various types of agricultural sheets such as liner curtains, flat covers, light-shielding / weedproof sheets, agricultural packaging materials, seedling pot underlayment paper, etc. Theft, smoke and dust mask, lab coat,
Various protective sheets for dustproof clothing, house wraps, drain materials, filtration materials, separation materials, overlays, roofing, tuft / carpet base cloth, condensation prevention sheets, wall covering materials, sound / vibration prevention sheets, wooden boards, curing sheets Sheets for civil engineering and construction, floor / trunk mats, ceiling molding materials, etc.
It can be used for various purposes such as seats for various vehicle interior materials such as headrests and lining cloths. Further, when the fiber of the present invention is dispersed and stirred with hard inorganic fine particles, it is fibrillated, and it is possible to obtain fibrils excellent in fine particle capturing property and reinforcing property, and also excellent in heat resistance and flame retardance, which is useful as a friction material.
In addition, when this fibril is mixed and dispersed in cement, it has excellent trapping properties for cement particles and also has a reinforcing property.
A high strength slate plate can be easily obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楢村 俊平 岡山県倉敷市酒津1621番地 株式会社クラ レ内 (72)発明者 大森 昭夫 岡山県倉敷市酒津1621番地 株式会社クラ レ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunpei Naramura, 1621 Sakazu, Kurashiki, Okayama Prefecture, Kuraray Co., Ltd. (72) Inventor, Akio Omori, 1621, Satsuki, Kurashiki, Okayama

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ビニルアルコール系ポリマー(A)とデ
ンプン(B)をA/Bの重量比95/5〜50/50で
共通の有機溶媒に溶解して、Aが海成分、Bが島成分の
海島相分離溶液とし、この溶液を紡糸原液として、凝固
浴中に乾湿式又は湿式紡糸し、得られた繊維を化学的膨
潤力と機械的応力の各々単独あるいは併用することによ
り、径10μm以下のフィブリルとすることを特徴とす
るビニルアルコール系ポリマーとデンプンからなるフィ
ブリルの製造法。
1. A vinyl alcohol polymer (A) and starch (B) are dissolved in a common organic solvent at a weight ratio of A / B of 95/5 to 50/50, where A is a sea component and B is an island component. Of the sea-island phase separation solution, the solution is used as a spinning stock solution, and the solution is subjected to dry-wet or wet-spinning in a coagulation bath, and the obtained fibers are used individually or in combination of a chemical swelling force and a mechanical stress to obtain a diameter of 10 μm or less A method for producing a fibril comprising a vinyl alcohol-based polymer and starch.
【請求項2】 紡糸方法が湿式紡糸法である請求項1に
記載のフィブリルの製造法。
2. The method for producing fibrils according to claim 1, wherein the spinning method is a wet spinning method.
【請求項3】 請求項1に記載の繊維を水中で叩解する
フィブリルの製造法。
3. A method for producing fibrils, wherein the fiber according to claim 1 is beaten in water.
【請求項4】 請求項1に記載の繊維からなるウェブに
30kg/cm2以上の高圧水流を当てるフィブリルの
製造法。
4. A method for producing fibrils, which comprises applying a high-pressure water stream of 30 kg / cm 2 or more to the web made of the fiber according to claim 1.
【請求項5】 請求項1に記載の繊維を少なくとも一部
として含む原綿をカーディングして得られたウェッブ
に、30kg/cm2以上の高圧水流をあてることによ
り、請求項1に記載の繊維をフィブリル化させることを
特徴とする乾式水絡不織布の製造方法。
5. The fiber according to claim 1, wherein a high-pressure water stream of 30 kg / cm 2 or more is applied to a web obtained by carding the raw cotton containing at least a part of the fiber according to claim 1. A method for producing a dry-type water-entangled nonwoven fabric, which comprises fibrillating.
【請求項6】 請求項1に記載の繊維を少なくとも一部
として含む原綿をカーディングして得られたウェッブ
に、250本/cm2以上の刺針密度でニードルパンチ
ングすることにより、請求項1に記載の繊維をフィブリ
ル化させることを特徴とする乾式不織布の製造方法。
6. A web obtained by carding the raw cotton containing at least a part of the fiber according to claim 1 is needle punched at a needle insertion density of 250 or more per cm 2 to obtain a web. A method for producing a dry nonwoven fabric, which comprises fibrillating the described fiber.
【請求項7】 請求項1に記載の繊維を主体繊維の少な
くとも一部として含むスラリーを抄造することによって
得られた原紙に、30kg/cm2以上の高圧水流をあ
てることにより、請求項1に記載の繊維をフィブリル化
させることを特徴とする湿式水絡不織布の製造方法。
7. A high-pressure water stream of 30 kg / cm 2 or more is applied to the base paper obtained by paper-making the slurry containing the fiber according to claim 1 as at least a part of the main fiber, whereby A process for producing a wet hydroentangled nonwoven fabric, which comprises fibrillating the described fiber.
JP10087395A 1995-04-25 1995-04-25 Production of fibril comprising polyvinyl alcohol and starch Pending JPH08296121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10087395A JPH08296121A (en) 1995-04-25 1995-04-25 Production of fibril comprising polyvinyl alcohol and starch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10087395A JPH08296121A (en) 1995-04-25 1995-04-25 Production of fibril comprising polyvinyl alcohol and starch

Publications (1)

Publication Number Publication Date
JPH08296121A true JPH08296121A (en) 1996-11-12

Family

ID=14285445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10087395A Pending JPH08296121A (en) 1995-04-25 1995-04-25 Production of fibril comprising polyvinyl alcohol and starch

Country Status (1)

Country Link
JP (1) JPH08296121A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248057A (en) * 1999-06-07 2001-09-14 Kuraray Co Ltd Porous sheet
JP2002159532A (en) * 2000-11-28 2002-06-04 Kuraray Co Ltd Absorptive article
JP2003009994A (en) * 2001-07-04 2003-01-14 Toyota Motor Corp Interior part for vehicle
US7851391B2 (en) 2001-05-10 2010-12-14 The Procter & Gamble Company Multicomponent fibers comprising starch and polymers
KR20180018578A (en) 2015-06-25 2018-02-21 주식회사 쿠라레 Readily fibrillatable polyvinyl alcohol fiber and method for manufacturing same
JPWO2018123891A1 (en) * 2016-12-28 2019-10-31 株式会社クラレ Fibrilized polyvinyl alcohol fiber and method for producing the same
CN110863264A (en) * 2019-10-13 2020-03-06 浙江理工大学 Preparation method of degradable superfine fiber based tea packaging material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248057A (en) * 1999-06-07 2001-09-14 Kuraray Co Ltd Porous sheet
JP2002159532A (en) * 2000-11-28 2002-06-04 Kuraray Co Ltd Absorptive article
US7851391B2 (en) 2001-05-10 2010-12-14 The Procter & Gamble Company Multicomponent fibers comprising starch and polymers
JP2003009994A (en) * 2001-07-04 2003-01-14 Toyota Motor Corp Interior part for vehicle
KR20180018578A (en) 2015-06-25 2018-02-21 주식회사 쿠라레 Readily fibrillatable polyvinyl alcohol fiber and method for manufacturing same
US11053610B2 (en) 2015-06-25 2021-07-06 Kuraray Co., Ltd. Readily fibrillative polyvinyl alcohol fiber and method for manufacturing same
JPWO2018123891A1 (en) * 2016-12-28 2019-10-31 株式会社クラレ Fibrilized polyvinyl alcohol fiber and method for producing the same
CN110863264A (en) * 2019-10-13 2020-03-06 浙江理工大学 Preparation method of degradable superfine fiber based tea packaging material
CN110863264B (en) * 2019-10-13 2022-06-10 浙江理工大学 Preparation method of degradable superfine fiber based tea packaging material

Similar Documents

Publication Publication Date Title
JP6542752B2 (en) Paper and non-woven products containing ultrafine synthetic fiber binders
KR101302769B1 (en) Porous Fibrous Sheets of Nanofibers
Das et al. Composite nonwovens
US4639390A (en) Preparation of non-woven fabric containing polyvinyl alcohol fiber
KR100225318B1 (en) Fibrillatable fiber of a sea- islands structure
EP1891256B1 (en) Highly resilient, dimensionally recoverable nonwoven material
JP2010070870A (en) Method for producing nonwoven fabric, the nonwoven fabric, nonwoven fabric structure, and textile product
US5972501A (en) Easily fibrillatable fiber
US6048641A (en) Readily fibrillatable fiber
US6124058A (en) Separator for a battery comprising a fibrillatable fiber
JPH08296121A (en) Production of fibril comprising polyvinyl alcohol and starch
JP6680780B2 (en) Easily fibrillated polyvinyl alcohol fiber and method for producing the same
JP3741886B2 (en) Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber
JPH08284021A (en) Readily fibrillated fiber comprising polyvinyl alcohol and cellulosic polymer
JPH10102322A (en) Readily fibrillatable fiber
JP3506790B2 (en) Composite fiber and fiber sheet using the same
JP3725716B2 (en) Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber
JPH09302525A (en) Readily fibrillating fiber and its production
JP2765947B2 (en) Bulky paper
JPH09170115A (en) Easily fibrillating fiber and its production
JPH0628692B2 (en) Deodorant, moisture-absorbing and water-absorbing sheet
JP2833784B2 (en) Bulk paper having dispersibility in water and production method thereof
EP0432489A2 (en) Heat-adhesive composite fiber and nonwoven fabric made by using same
EP0861929A1 (en) Easily fibrillable fiber
Bhat et al. Biodegradable nonwovens