JP2007007559A - Ceramic honeycomb filter - Google Patents

Ceramic honeycomb filter Download PDF

Info

Publication number
JP2007007559A
JP2007007559A JP2005191858A JP2005191858A JP2007007559A JP 2007007559 A JP2007007559 A JP 2007007559A JP 2005191858 A JP2005191858 A JP 2005191858A JP 2005191858 A JP2005191858 A JP 2005191858A JP 2007007559 A JP2007007559 A JP 2007007559A
Authority
JP
Japan
Prior art keywords
honeycomb filter
sealing
flow path
sealed
inflow side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005191858A
Other languages
Japanese (ja)
Inventor
Masakazu Motoi
雅一 許斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005191858A priority Critical patent/JP2007007559A/en
Publication of JP2007007559A publication Critical patent/JP2007007559A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Silencers (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a honeycomb filter in which the number of both side sealed passages is reduced by appropriately arranging the both side sealed passages constituting a resonance pipe and the number of outflowing side sealed passages is increased and PM collecting capacity is increased without reducing a muffling function as much as possible. <P>SOLUTION: This ceramic honeycomb filter has an inflowing side sealed passage in which an exhaust gas inflowing side of the passage surrounded by a partition wall of ceramic honeycomb structure and having a square cross section is sealed with a sealing part, the outflowing side sealed passage in which an outflowing side is sealed with the sealing part and the both side sealed passage in which both the inflowing side and the outflowing side are sealed with the sealing parts. In this ceramic honeycomb filter, all eight passages surrounding the both side sealed passage are the inflowing side sealed passages or the outflowing side sealed passages and further at least two inflowing side sealed passages or the outflowing side sealed passages are provided between two both side sealed passages standing in a line in a stretching direction of the partition wall on a passage cross section of a vertical direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ディーゼルエンジンから排出される粒子状物質を含む排気ガスを浄化するのに使用されるセラミックハニカムフィルタに関する。   The present invention relates to a ceramic honeycomb filter used for purifying exhaust gas containing particulate matter discharged from a diesel engine.

ディーゼルエンジンなどの排気ガス中には炭素を主体とするPM(Particulate Matter:粒子状物質)が多量に含まれており、これが大気中に放出されると人体や環境に悪影響を与える。このためディーゼルエンジンなどの排気ガス系には、PMを捕集、浄化するためのフィルタが搭載されている。   Exhaust gases such as diesel engines contain a large amount of PM (Particulate Matter) mainly composed of carbon, and if this is released into the atmosphere, it will adversely affect the human body and the environment. For this reason, an exhaust gas system such as a diesel engine is equipped with a filter for collecting and purifying PM.

図1は、排気ガス中のPMを捕集、浄化する、従来のセラミックハニカムフィルタ(以下セラミックハニカムフィルタを略して「ハニカムフィルタ」という)10の一例を示し、(a)は流入側から見たハニカムフィルタの模式図、(b)は線A−Aに沿った断面模式図である。図1で、ハニカムフィルタ10は、ハニカムフィルタの流路方向に垂直な断面が略円状または略楕円状の外周壁1と、この外周壁1の内周側で隔壁2により囲まれた多数の流路を有するセラミックハニカム構造体(以下セラミックハニカム構造体を略して「ハニカム構造体」という)(1)が、排気ガスの流入側端面7と流出側端面8において各々封止部5、6で交互に目封止されることで、流出側封止流路3と流入側封止流路4とを形成している。なお、外周壁を1、ハニカム構造体を(1)として示している。   FIG. 1 shows an example of a conventional ceramic honeycomb filter (hereinafter abbreviated as “honeycomb filter”) 10 that collects and purifies PM in exhaust gas, and (a) is viewed from the inflow side. The schematic diagram of a honey-comb filter, (b) is a cross-sectional schematic diagram along line AA. In FIG. 1, the honeycomb filter 10 includes an outer peripheral wall 1 whose section perpendicular to the flow path direction of the honeycomb filter is substantially circular or substantially elliptical, and a large number of walls surrounded by partition walls 2 on the inner peripheral side of the outer peripheral wall 1. A ceramic honeycomb structure (1) having a flow path (hereinafter referred to as “honeycomb structure” for short) is formed by sealing portions 5 and 6 on the exhaust gas inflow end surface 7 and the outflow side end surface 8 respectively. By alternately plugging, the outflow side sealed flow path 3 and the inflow side sealed flow path 4 are formed. The outer peripheral wall is shown as 1, and the honeycomb structure is shown as (1).

図1のハニカムフィルタ10において、排気ガスの浄化は以下の通り行われる。排気ガス(点線矢印で示す)は、流入側端面7に開口している流出側封止流路3から流入する。そして、排気ガス中に含まれるPMは、隔壁2を通過する際に隔壁2の内部と表面に捕集され、浄化された排気ガスは、流出側端面8に開口している流入側封止流路4から流出、大気中に放出される。   In the honeycomb filter 10 of FIG. 1, exhaust gas purification is performed as follows. Exhaust gas (indicated by a dotted arrow) flows in from the outflow side sealing flow path 3 opened in the inflow side end surface 7. The PM contained in the exhaust gas is collected on the inside and the surface of the partition wall 2 when passing through the partition wall 2, and the purified exhaust gas flows into the inflow side sealed flow opening in the outflow side end face 8. It flows out of the road 4 and is released into the atmosphere.

ここで、隔壁2の内部と表面に捕集されたPMが多くなると、流出側封止流路3内にPMが堆積するとともに隔壁が目詰まりして圧力損失が増加してしまうので、圧力損失が増加する前に、PMを燃焼除去してハニカムフィルタ10を再生する必要がある。   Here, when the amount of PM trapped in the inside and the surface of the partition wall 2 increases, PM accumulates in the outflow side sealing flow path 3 and the partition wall is clogged to increase the pressure loss. Before this increases, it is necessary to regenerate the honeycomb filter 10 by burning and removing PM.

ところで、図1に示す基本的なハニカムフィルタに対して、特許文献1には、消音機能を付加したハニカムフィルタが記載されている。図2は特許文献1に記載されたハニカムフィルタの1例を示し、(a)は流入側から見たハニカムフィルタの模式図、(b)は線C−Cに沿った断面模式図である。図2において、3は流出側封止流路、4は流入側封止流路、4Cは流路の流入側と流出側を共に封止した両側封止流路である。また図2(a)で、流入側封止流路4のハッチングは流路の流入側の封止部5を示しており、両側封止流路4CのハッチングとX印は、この流路が流入側の封止部5と流出側の封止部6とで目封止されていることを示す。ここで両側封止流路を共鳴室として機能させることで、消音機能を有するハニカムフィルタを得ることができるとしている。   By the way, in contrast to the basic honeycomb filter shown in FIG. 1, Patent Document 1 describes a honeycomb filter to which a silencing function is added. FIG. 2 shows an example of the honeycomb filter described in Patent Document 1, wherein (a) is a schematic view of the honeycomb filter viewed from the inflow side, and (b) is a schematic cross-sectional view along line CC. In FIG. 2, 3 is an outflow side sealed flow path, 4 is an inflow side sealed flow path, and 4C is a both-side sealed flow path in which both the inflow side and the outflow side of the flow path are sealed. Further, in FIG. 2A, the hatching of the inflow side sealed flow path 4 indicates the sealed portion 5 on the inflow side of the flow path. It shows that the inflow side sealing portion 5 and the outflow side sealing portion 6 are plugged. Here, it is said that a honeycomb filter having a silencing function can be obtained by making the both-side sealed flow path function as a resonance chamber.

特開2003−254035号公報JP 2003-254035 A

しかしながら特許文献1に記載の図2に示す消音機能を有するハニカムフィルタ20の場合には、図1に示すハニカムフィルタに比べて、両側封止流路4Cの数だけ流入側封止流路4と流出側封止流路3の数は減少する。PMは流出側封止流路3を構成する隔壁の表面と内部に捕集されるため、流出側封止流路3の数が少ないと、短時間で流出側封止流路3内にPMが堆積するとともに隔壁2が目詰まりし圧力損失が増加してしまい、ハニカムフィルタの再生の間隔を短くする必要が生じる。ハニカムフィルタの再生の方法としては、電気ヒータ、バーナー、マイクロ波などでPMを燃焼する方法がとられるが、いずれの方法にせよ再生の間隔が短くなるとエネルギーの消費量が増大することとなる。   However, in the case of the honeycomb filter 20 having the silencing function shown in FIG. 2 described in Patent Document 1, the number of the inflow side sealing flow paths 4 is the same as the number of the both-side sealed flow paths 4C compared to the honeycomb filter shown in FIG. The number of outflow side sealing flow paths 3 decreases. Since PM is collected on the surface and inside of the partition wall constituting the outflow side sealing flow path 3, if the number of outflow side sealing flow paths 3 is small, the PM can be put into the outflow side sealing flow path 3 in a short time. As a result, the partition wall 2 is clogged and the pressure loss increases, and the regeneration interval of the honeycomb filter needs to be shortened. As a method of regenerating the honeycomb filter, a method of burning PM with an electric heater, a burner, a microwave, or the like is used. However, in any method, when the regeneration interval is shortened, energy consumption increases.

当然ながら両側封止流路4Cの数を減らして流出側封止流路3の数を増やせば、ハニカムフィルタの再生が必要になるまでのPM捕集量(以下ハニカムフィルタの再生が必要になるまでのPM捕集量を略して、「PM捕集容量」という)も増えるので、再生の間隔を延長することが可能となるが、消音機能は低減する。特許文献1には流入側封止流路と流出側封止流路及び両側封止流路の配置と割合は自由に変更できると記載されているが、消音機能をできるだけ低下させずに両側封止流路4Cの数を減らして流出側封止流路3の数を増やす具体的な配置と割合は提示されていない。   Naturally, if the number of both-side sealed flow paths 4C is reduced and the number of outflow-side sealed flow paths 3 is increased, the amount of PM trapped until the honeycomb filter needs to be regenerated (hereinafter, the honeycomb filter needs to be regenerated). (PM collection capacity is abbreviated as “PM collection capacity”), so that the regeneration interval can be extended, but the silencing function is reduced. Patent Document 1 describes that the arrangement and ratio of the inflow side sealing channel, the outflow side sealing channel, and the both side sealing channels can be freely changed, but both sides sealing without reducing the silencing function as much as possible. The specific arrangement and ratio of increasing the number of outflow side sealing channels 3 by reducing the number of stop channels 4C are not presented.

したがって本発明の課題は、両側封止流路を適切に配置することで両側封止流路の数を低減して流出側封止流路の数を増やし、消音機能をできるだけ低下せずにPM捕集容量を増大したハニカムフィルタを得ることにある。   Therefore, an object of the present invention is to reduce the number of both-side sealed channels by increasing the number of both-side sealed channels and to increase the number of outflow-side sealed channels, and to reduce PM without reducing the silencing function as much as possible. The object is to obtain a honeycomb filter having an increased collection capacity.

本発明は、セラミックハニカム構造体の隔壁で囲まれた断面が四角形状である流路の排気ガス流入側を封止部で目封止した流入側封止流路と、流出側を封止部で目封止した流出側封止流路と、流入側と流出側を共に封止部で目封した両側封止流路とを有するセラミックハニカムフィルタにおいて、前記両側封止流路を囲む8つの流路が全て流入側封止流路または流出側封止流路であるとともに、流路垂直方向断面上で前記隔壁の延伸方向に並んで存在する2つの前記両側封止流路の間には少なくとも2つの流入側封止流路または流出側封止流路を有することを特徴とする。   The present invention relates to an inflow side sealed flow path in which an exhaust gas inflow side of a flow path surrounded by partition walls of a ceramic honeycomb structure has a quadrangular shape is plugged with a sealing part, and an outflow side is a sealing part In a ceramic honeycomb filter having an outflow side sealing flow path plugged with a plug and both side sealing flow paths in which both the inflow side and the outflow side are plugged with a sealing portion, All of the flow paths are inflow side sealed flow paths or outflow side sealed flow paths, and between the two side sealed flow paths that exist side by side in the extending direction of the partition wall on the cross section in the vertical direction of the flow path. It has at least two inflow side sealed flow paths or outflow side sealed flow paths.

ここで両側封止流路を囲む8つの流路とは、図3に示すハニカムフィルタの流路垂直方向断面模式図において、両側封止流路4Cの周りを囲む8つの流路をいう。また流路垂直方向断面上で前記隔壁の延伸方向とは、図3に示す2つの矢印方向をいう。また、流路の断面の四角形状とは、正方形、長方形、台形、平行四辺形等に限らず、流路垂直方向断面において隔壁が交差することで形成されるコーナー部を4つ有する形状であればよい。   Here, the eight channels surrounding the both-side sealed channels refer to eight channels surrounding the both-side sealed channels 4C in the schematic vertical sectional view of the honeycomb filter shown in FIG. Further, the extending direction of the partition wall on the cross section in the vertical direction of the flow path means two arrow directions shown in FIG. Further, the quadrangular shape of the cross section of the flow path is not limited to a square, a rectangle, a trapezoid, a parallelogram, or the like, but may be a shape having four corner portions formed by intersecting partition walls in the cross section in the vertical direction of the flow path. That's fine.

また本発明は、前記流入側封止流路の流入側の封止部と前記両側封止流路の流入側の封止部は、前記セラミックハニカム構造体の排気ガス流入側端面より離れて配置され、前記流入側封止流路と前記両側封止流路とが流路垂直方向断面上で前記隔壁の延伸方向に隣接しないことが好ましい。   Further, according to the present invention, the inflow side sealing portion of the inflow side sealing flow channel and the inflow side sealing portion of the both side sealing flow channels are arranged apart from the exhaust gas inflow side end surface of the ceramic honeycomb structure. In addition, it is preferable that the inflow side sealed flow channel and the both side sealed flow channels are not adjacent to the extending direction of the partition wall on the flow channel vertical cross section.

(作用)
本発明の作用を、図を用いて説明する。先ず図2に特許文献1に記載されたハニカムフィルタを示す。ここで(a)は流入側端面から見たハニカムフィルタの模式図、(b)は線C−Cに沿った断面模式図である。また、2は隔壁、5、6は封止部、3は流出側封止流路、4は流入側封止流路、4Cは両側封止流路を示す。図2に示すハニカムフィルタの場合には、全流路の1/4の数の流路が流出側封止流路であり、すなわち全流路の数に対して25%の数の流路が流出側封止流路3であるのでPM捕集容量は小さい。PM捕集容量を増大するためには両側封止流路の数を減少させ、流出側封止流路の数を増加すればよいが、単に両側封止流路4Cの数を減少させて、例えば両側封止流路4Cを半減して図4の模式図のようにしただけではPM捕集容量は増加するものの消音機能が大きく減少する。この理由は、流出側封止流路3のうち、例えば流出側封止流路3Hに流入した排気ガスのうち流入側封止流路4Iと4Jへ隔壁2を通過して流入した排気ガスは共鳴管を構成する両側封止流路4Cを囲む隔壁に触れることなくハニカムフィルタより排出されるためである。また、両側封止流路どうしが1つの流路を囲む4つの隔壁のうち2つを共有するように隣接しているため両側封止流路の消音機能が効果的に発揮されない。
(Function)
The operation of the present invention will be described with reference to the drawings. First, FIG. 2 shows a honeycomb filter described in Patent Document 1. Here, (a) is a schematic diagram of the honeycomb filter as viewed from the inflow side end face, and (b) is a schematic cross-sectional view along line CC. Further, 2 is a partition wall, 5 and 6 are sealing portions, 3 is an outflow side sealing flow path, 4 is an inflow side sealing flow path, and 4C is a double-side sealed flow path. In the case of the honeycomb filter shown in FIG. 2, 1/4 of the total number of flow paths is the outflow side sealed flow path, that is, 25% of the total number of flow paths is present. Since it is the outflow side sealing flow path 3, the PM collection capacity is small. In order to increase the PM collection capacity, it is only necessary to decrease the number of both-side sealed channels and increase the number of outflow-side sealed channels, but simply decrease the number of both-side sealed channels 4C, For example, if the both-side sealed flow path 4C is reduced to half as shown in the schematic diagram of FIG. 4, the noise collection function is greatly reduced although the PM collection capacity is increased. The reason for this is that out of the exhaust gas flowing into the outflow side sealing flow channel 3H, for example, the exhaust gas flowing through the partition wall 2 into the inflow side sealing flow channels 4I and 4J out of the outflow side sealing flow channel 3H This is because the honeycomb filter is discharged without touching the partition wall surrounding the both-side sealed flow paths 4C constituting the resonance tube. Further, since the two side sealed channels are adjacent to each other so as to share two of the four partition walls surrounding one channel, the silencing function of the both side sealed channels is not effectively exhibited.

上記の理由を回避して、図5に示すように両側封止流路4Cを隔壁の延伸方向から45°方向にずらして配置した場合には、排気ガスはハニカムフィルタの内部で必ず両側封止流路を囲む隔壁に触れることになるため、消音機能は効果的に発揮できるものの、全流路の数に対する流出側封止流路3の数は25%となり、PM捕集容量は小さい。   When the both-side sealed flow path 4C is shifted from the extending direction of the partition wall by 45 ° as shown in FIG. 5 while avoiding the above reasons, the exhaust gas must be sealed on both sides inside the honeycomb filter. Although the silencing function can be effectively exhibited because it touches the partition wall surrounding the flow path, the number of outflow side sealed flow paths 3 is 25% of the total number of flow paths, and the PM collection capacity is small.

次に本発明のハニカムフィルタの一例を図6に示す。ここで(a)は流入側から見たハニカムフィルタの模式図、(b)は線F−Fに沿った断面模式図である。図6に示すハニカムフィルタ60は、両側封止流路4C囲む8つの流路が全て流入側封止流路4または流出側封止流路3となっている。さらに流路垂直方向断面上で隔壁2の延伸方向に並んで存在する2つの両側封止流路4C(例えば4CAと4CB)の間には少なくとも2つの流入側封止流路4または流出側封止流路3を有している。このように両側封止流路4Cを配置することで、全流路の数に対して流出側封止流路3の数は約42%となる。図2と図5に示すハニカムフィルタでは全流路の数に対する流出側封止流路3の数は25%であり、図4に示すハニカムフィルタでは全流路の数に対する流出側封止流路3の数は37%であるため、本発明のハニカムフィルタ60のPM捕集容量は大きく増加する。さらに、排気ガスはハニカムフィルタの内部で必ず両側封止流路を囲む隔壁に触れることになるため、上記図5に示すハニカムフィルタと同様に消音機能は効果的に発揮される。   Next, an example of the honeycomb filter of the present invention is shown in FIG. Here, (a) is a schematic view of the honeycomb filter viewed from the inflow side, and (b) is a schematic cross-sectional view along the line FF. In the honeycomb filter 60 shown in FIG. 6, the eight flow paths surrounding the both-side sealed flow paths 4 </ b> C are all inflow side sealed flow paths 4 or outflow side sealed flow paths 3. Further, at least two inflow side sealing channels 4 or outflow side seals are provided between two two-sided sealing channels 4C (for example, 4CA and 4CB) existing side by side in the extending direction of the partition wall 2 on the channel vertical cross section. A stop channel 3 is provided. By arranging the both-side sealed flow paths 4C in this way, the number of outflow side sealed flow paths 3 is about 42% with respect to the total number of flow paths. In the honeycomb filter shown in FIGS. 2 and 5, the number of outflow side sealing channels 3 with respect to the total number of channels is 25%. In the honeycomb filter shown in FIG. 4, the outflow side sealing channels with respect to the number of all channels. Since the number of 3 is 37%, the PM collection capacity of the honeycomb filter 60 of the present invention is greatly increased. Further, since the exhaust gas always comes into contact with the partition wall surrounding the both-side sealed flow path inside the honeycomb filter, the silencing function is effectively exhibited as in the honeycomb filter shown in FIG.

本発明のハニカムフィルタの別の一例を図7に示す。ここで(a)は流入側から見たハニカムフィルタの模式図、(b)は線G−Gに沿った断面模式図である。図7に示すフィルタ70は、両側封止流路4C囲む8つの流路が全て流入側封止流路4または流出側封止流路3となっている。さらに流路垂直方向断面上で隔壁2の延伸方向に並んで存在する2つの両側封止流路4Cの間には3つの流入側封止流路4または流出側封止流路3を有している。このように両側封止流路4Cを配置することで、全流路の数に対して流出側封止流路3の数は50%とさらに増加し、ハニカムフィルタのPM捕集容量は上記の図6に示すハニカムフィルタ60に比べてさらに増加する。また、排気ガスはハニカムフィルタ70の内部で必ず両側封止流路4Cを囲む隔壁に触れることになるため、上記の図5に示すハニカムフィルタと同様に消音機能は効果的に発揮される。   FIG. 7 shows another example of the honeycomb filter of the present invention. Here, (a) is a schematic view of the honeycomb filter viewed from the inflow side, and (b) is a schematic cross-sectional view along the line GG. In the filter 70 shown in FIG. 7, all the eight flow paths surrounding the both-side sealed flow paths 4 </ b> C are the inflow side sealed flow paths 4 or the outflow side sealed flow paths 3. Further, there are three inflow side sealing channels 4 or outflow side sealing channels 3 between the two side sealing channels 4C existing side by side in the extending direction of the partition wall 2 on the channel vertical cross section. ing. By arranging the both-side sealed flow paths 4C in this way, the number of outflow-side sealed flow paths 3 is further increased to 50% with respect to the total number of flow paths, and the PM collection capacity of the honeycomb filter is as described above. Compared with the honeycomb filter 60 shown in FIG. Further, since the exhaust gas always comes into contact with the partition wall surrounding the both-side sealed flow paths 4C inside the honeycomb filter 70, the silencing function is effectively exhibited as in the honeycomb filter shown in FIG.

本発明において、流路垂直方向断面上で隔壁2の延伸方向に並んで存在する2つの両側封止流路4Cの間に存在する流入側封止流路4または流出側封止流路3の数を増やすことも可能である。また、両側封止流路4Cを流入側封止流路4または流出側封止流路3に変更することも可能である。これにより共鳴管を構成する両側封止流路4Cの数が減少するため消音機能は減少するものの、両側封止流路4Cは隔壁2を挟んで全て流入側封止流路4または流出側封止流路3に接しているため、消音効果を効果的に発揮しながらPM捕集容量することができる。   In the present invention, the inflow side sealed flow path 4 or the outflow side sealed flow path 3 existing between the two side sealed flow paths 4C existing side by side in the extending direction of the partition wall 2 on the flow path vertical cross section. It is also possible to increase the number. It is also possible to change the both-side sealed flow path 4C to the inflow side sealed flow path 4 or the outflow side sealed flow path 3. As a result, the number of the both-side sealed flow paths 4C constituting the resonance tube is reduced, so that the silencing function is reduced. However, the both-side sealed flow paths 4C are all inflow side sealed flow paths 4 or outflow side sealed with the partition wall 2 interposed therebetween. Since it is in contact with the stop channel 3, it is possible to collect the PM while effectively exhibiting the silencing effect.

また、本発明において、両側封止流路4Cの内部にさらに封止部を設けることもできる。これにより、共鳴周波数の異なる共鳴管を構成することができる。   Moreover, in this invention, a sealing part can also be provided in the inside of both-side sealing flow path 4C. Thereby, resonance tubes having different resonance frequencies can be configured.

本発明のハニカムフィルタの別の一例を図8に示す。ここで(a)は流出側から見たハニカムフィルタの模式図、(b)は線H−Hに沿った断面模式図である。図8に示すハニカムフィルタでは、流入側封止流路4の流入側の封止部5と両側封止流路4Cの流入側の封止部5が、流入側端面7より離れて配置されている。これにより流入側の封止部の流入側にもPMを捕集でき、PM捕集容量がさらに増加する。さらに、流入側封止流路4と両側封止流路4Cとは流路垂直方向断面上で隔壁の延伸方向に隔壁2を挟んで隣接していない。これにより流入側封止流路4と両側封止流路4Cはそれぞれ高温になった排気ガスが流れる流出側封止流路3とのみ隔壁2を挟んで隣接するので、流入側封止流路4と両側封止流路4Cそれぞれの流入側の封止部5の流入側端面に堆積するPMが燃焼除去しやすい。   FIG. 8 shows another example of the honeycomb filter of the present invention. Here, (a) is a schematic view of the honeycomb filter viewed from the outflow side, and (b) is a schematic cross-sectional view along the line HH. In the honeycomb filter shown in FIG. 8, the inflow side sealing portion 5 of the inflow side sealing channel 4 and the inflow side sealing portion 5 of the both side sealing channels 4C are arranged apart from the inflow side end surface 7. Yes. As a result, PM can also be collected on the inflow side of the inflow side sealing portion, and the PM collection capacity further increases. Further, the inflow side sealing flow path 4 and the both side sealing flow paths 4C are not adjacent to each other with the partition wall 2 interposed in the extending direction of the partition wall on the cross section in the flow channel vertical direction. As a result, the inflow side sealing flow path 4 and the both side sealing flow paths 4C are adjacent to each other with only the outflow side sealing flow path 3 through which the exhaust gas having a high temperature flows through the partition wall 2. 4 and PM deposited on the inflow side end surfaces of the inflow side sealing portions 5 of the both side sealed flow paths 4C are easily burned and removed.

本発明のハニカムフィルタによれば、共鳴管を構成する両側封止流路を適切に配置することで両側封止流路の数を低減し流出側封止流路の数を増やし、消音機能をできるだけ低下せずにPM捕集容量を増大したハニカムフィルタを得ることができる。   According to the honeycomb filter of the present invention, by properly arranging the both-side sealed flow paths constituting the resonance tube, the number of both-side sealed flow paths is reduced, the number of outflow-side sealed flow paths is increased, and the muffler function is provided. A honeycomb filter having an increased PM collection capacity without being reduced as much as possible can be obtained.

以下、本発明の実施の形態の数例を、図面に基づき詳細に説明する。
(実施の形態1)
図6は実施の形態1に係るハニカムフィルタ60であり、(a)は流入側から見たハニカムフィルタの模式図、(b)は線F−Fに沿った断面模式図である。ハニカムフィルタの60の基本的な構造と両側封止流路40Cの配置パターンは上記課題を解決するための手段で記したとおりである。すなわち図6に示すハニカムフィルタ60は、両側封止流路4C囲む8つの流路が全て流入側封止流路4または流出側封止流路3となっており、さらに流路垂直方向断面上で隔壁2の延伸方向に並んで存在する2つの両側封止流路4Cの間には少なくとも2つの流入側封止流路4または流出側封止流路3を有している。実施の形態1に係るハニカムフィルタ60は、以下のようにして得ることができる。先ず、カオリン、タルク、シリカ、水酸化アルミ、アルミナなどの粉末を調整して、質量比で、SiO2:47〜53%、Al23:33〜38%、MgO:12〜16%、およびCaO、Na2O、K2O、TiO2、Fe23、PbO、P25などの不可避的に混入する成分を全体で2.5%以下を含むようなコージェライト生成原料粉末とし、これにメチルセルロース、ヒドロキシプロピルメチルセルロース等のバインダー、潤滑剤、造孔材としてグラファイトを添加し、乾式で十分混合した後、規定量の水を添加、十分な混練を行って可塑化したセラミック杯土を作製する。次に、押出し成形用金型を用いて坏土を押出し成形し、切断して、ハニカム構造を有する成形体とする。次に、成形体を、乾燥、焼成させ、外周壁1となる外径が267mm、全長Lが300mm、隔壁2が、厚さ0.3mm、ピッチ1.57mm、気孔率65%、平均細孔径20μmのコージェライト質ハニカム構造体とする。このハニカム構造体(1)の流路の全数は、約25,000個となっている。
Hereinafter, several examples of embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
6A and 6B show the honeycomb filter 60 according to Embodiment 1. FIG. 6A is a schematic diagram of the honeycomb filter viewed from the inflow side, and FIG. 6B is a schematic cross-sectional view taken along line FF. The basic structure of the honeycomb filter 60 and the arrangement pattern of the both-side sealed flow paths 40C are as described in the means for solving the above problems. That is, in the honeycomb filter 60 shown in FIG. 6, all the eight flow paths surrounding the both-side sealed flow paths 4C are the inflow side sealed flow paths 4 or the outflow side sealed flow paths 3, and Thus, at least two inflow side sealing channels 4 or outflow side sealing channels 3 are provided between the two side sealing channels 4C existing side by side in the extending direction of the partition wall 2. The honeycomb filter 60 according to Embodiment 1 can be obtained as follows. First, kaolin, talc, silica, aluminum hydroxide, to adjust the powder, such as alumina, in a mass ratio, SiO 2: 47~53%, Al 2 O 3: 33~38%, MgO: 12~16%, And a cordierite-producing raw material powder containing 2.5% or less in total of components inevitably mixed such as CaO, Na 2 O, K 2 O, TiO 2, Fe 2 O 3 , PbO, and P 2 O 5 To this, add graphite, methylcellulose, hydroxypropylmethylcellulose, and other binders, graphite, and pore-forming material, mix thoroughly in a dry process, add a specified amount of water, and perform sufficient kneading to plasticize the ceramic cup. Make soil. Next, the kneaded material is extruded using an extrusion molding die and cut to obtain a formed body having a honeycomb structure. Next, the molded body is dried and fired, the outer diameter of the outer peripheral wall 1 is 267 mm, the total length L is 300 mm, the partition walls 2 are 0.3 mm thick, 1.57 mm pitch, 65% porosity, average pore diameter A cordierite honeycomb structure with a thickness of 20 μm is used. The total number of channels of the honeycomb structure (1) is about 25,000.

次に公知の方法でハニカム構造体の両端に封止部を形成する。まずハニカム構造体(1)の流入側端面7に樹脂製の封止用フィルムを貼着する。次に流入側封止部5を形成する位置の封止用フィルムを穿孔する。このとき流入側の封止部5が図6(a)に示すパターンになるようにする。次にハニカム構造体(1)の流入側端面7をスラリー状の封止材に浸漬し、穿孔を介して封止材を流路に充填する。その後、封止材が隔壁2に着肉し保形性が得られた後、封止用フィルムを除去し、封止材の乾燥を行う。続いて上記と同様にハニカム構造体(1)の流出側端面8より封止部6が図6(a)に示すパターンになるように封止材を充填し、封止用フィルムを除去し、封止材の乾燥を行う。その後バッチ式焼成炉を用いて温度制御しつつ封止材と共にハニカム構造体(1)の焼成を行うことで、図6に示すハニカムフィルタ60となる。このハニカムフィルタ60の両側封止流路4Cの数は全流路の数に対して42%となる。   Next, sealing portions are formed at both ends of the honeycomb structure by a known method. First, a resin sealing film is attached to the inflow side end face 7 of the honeycomb structure (1). Next, a sealing film at a position where the inflow side sealing portion 5 is formed is perforated. At this time, the sealing portion 5 on the inflow side is made to have a pattern shown in FIG. Next, the inflow side end face 7 of the honeycomb structure (1) is immersed in a slurry-like sealing material, and the sealing material is filled into the flow path through the perforations. Thereafter, after the sealing material is deposited on the partition wall 2 and the shape retention is obtained, the sealing film is removed and the sealing material is dried. Subsequently, in the same manner as described above, the sealing material 6 is filled from the outflow side end face 8 of the honeycomb structure (1) so that the sealing portion 6 has the pattern shown in FIG. 6A, and the sealing film is removed. The sealing material is dried. Thereafter, the honeycomb structure (1) is fired together with the sealing material while controlling the temperature using a batch-type firing furnace, whereby the honeycomb filter 60 shown in FIG. 6 is obtained. The number of both-side sealed flow paths 4C of the honeycomb filter 60 is 42% with respect to the total number of flow paths.

なお、PMが燃焼するときの熱が外周壁1を通して外部に伝達しにくくするために、ハニカム構造体の外周部の流路の両端部に封止部を有する断熱層を設けることもあるが、この両端部を封止した流路は断熱の機能を持たせるために連続して隣接しているものであり、本件発明の共鳴管を構成した流路とは異なる。   In order to make it difficult for heat when PM burns to be transmitted to the outside through the outer peripheral wall 1, a heat insulating layer having a sealing portion may be provided at both ends of the flow path of the outer peripheral portion of the honeycomb structure. The flow paths with both ends sealed are adjacent to each other in order to provide a heat insulating function, and are different from the flow paths constituting the resonance tube of the present invention.

(比較例)
次に比較例として図6のハニカム構造体(1)と同じ物を用いて、ただし流入側の封止部5と流出側の封止部6を形成する流路を変更して、流入側封止流路4と流出側封止流路3と両側封止流路4Cの配置が図5に示すパターンになるようにしてハニカムフィルタ50を製作した。このハニカムフィルタ50の両側封止流路4Cの数は全流路の数に対して25%となる。上記実施の形態1に示すハニカムフィルタ60と比較例に示すハニカムフィルタ50とのPM捕集容量を比較すると、実施の形態1に示すハニカムフィルタ60のPM捕集容量は比較例に示すハニカムフィルタ50に対して160%に増加することができた。また、上記実施の形態1に示すハニカムフィルタ60と比較例に示すハニカムフィルタ50の消音機能はほぼ同等であった。
(Comparative example)
Next, as a comparative example, the same structure as the honeycomb structure (1) of FIG. 6 is used, except that the flow path for forming the inflow side sealing portion 5 and the outflow side sealing portion 6 is changed, and the inflow side sealing is performed. The honeycomb filter 50 was manufactured such that the stop channel 4, the outflow side sealing channel 3, and the both side sealing channel 4C were arranged in the pattern shown in FIG. The number of both-side sealed channels 4C of the honeycomb filter 50 is 25% with respect to the total number of channels. When the PM collection capacity of the honeycomb filter 60 shown in the first embodiment and the honeycomb filter 50 shown in the comparative example are compared, the PM collection capacity of the honeycomb filter 60 shown in the first embodiment is the honeycomb filter 50 shown in the comparative example. It was possible to increase to 160%. Moreover, the silencing function of the honeycomb filter 60 shown in the first embodiment and the honeycomb filter 50 shown in the comparative example was almost the same.

ここでPM捕集容量は以下のようにして測定する。まず比較例のハニカムフィルタ50を圧力損失測定装置に装着し、空気を10Nm/minの量でハニカムフィルタ50に通過させ初期の圧力損失を測定する。次に上記と同じ空気量とともに粒径0.042μmのカーボン粉を少量ずつ3g/minの割合でハニカムフィルタに投入しながら圧力損失を測定する。圧力損失の値が初期の圧力損質の125%となった時点までにハニカムフィルタ50に投入したカーボン粉の重量をハニカムフィルタ50のPM捕集容量とし、またこのときの圧力損失の値をKとする。次に実施の形態1に示すハニカムフィルタ60を圧力損失測定装置に装着し、上記と同様に空気とともにカーボン粉を少量ずつハニカムフィルタに投入しながら圧力損失を測定し、圧力損失の値が上記Kとなった時点までにハニカムフィルタ60に投入したカーボン粉の重量をハニカムフィルタ60のPM捕集容量とする。 Here, the PM collection capacity is measured as follows. First, the honeycomb filter 50 of the comparative example is mounted on a pressure loss measuring device, and air is passed through the honeycomb filter 50 in an amount of 10 Nm 3 / min, and the initial pressure loss is measured. Next, the pressure loss is measured while introducing carbon powder having a particle size of 0.042 μm into the honeycomb filter in small portions at a rate of 3 g / min together with the same air amount as described above. The weight of the carbon powder charged into the honeycomb filter 50 by the time when the pressure loss value reaches 125% of the initial pressure loss quality is defined as the PM collection capacity of the honeycomb filter 50, and the pressure loss value at this time is defined as K. And Next, the honeycomb filter 60 shown in the first embodiment is mounted on the pressure loss measuring device, and the pressure loss is measured while introducing small amounts of carbon powder together with air into the honeycomb filter in the same manner as described above. The weight of the carbon powder charged into the honeycomb filter 60 up to the time point becomes the PM collection capacity of the honeycomb filter 60.

(実施の形態2)
図7は実施の形態2に係わるハニカムフィルタ70であり、(a)は流入側から見たハニカムフィルタの模式図、(b)は線G−Gに沿った断面模式図である。ハニカムフィルタ70の製造方法は実施の形態1に係わるハニカムフィルタ60と同じであるが、流出側封止流路3と流入側封止流路4と両側封止流路4Cの配置が図7に示すパターンになるように封止用フィルムの穿孔パターンのみを変更して製造した。上記のように製造したハニカムフィルタ70は、全流路の数に対する流出側封止流路の数が50%となり、実施の形態1に示すハニカムフィルタ60に対してPM捕集容量を110%とさらに増加することができた。また、上記実施の形態2に示すハニカムフィルタ70と実施の形態1に示すハニカムフィルタ60の消音機能はほぼ同等であった。
(Embodiment 2)
7A and 7B show the honeycomb filter 70 according to the second embodiment, where FIG. 7A is a schematic diagram of the honeycomb filter viewed from the inflow side, and FIG. 7B is a schematic cross-sectional view taken along line GG. The manufacturing method of the honeycomb filter 70 is the same as that of the honeycomb filter 60 according to Embodiment 1, but the arrangement of the outflow side sealing flow path 3, the inflow side sealing flow path 4, and the both side sealing flow paths 4C is shown in FIG. Only the perforation pattern of the sealing film was changed to produce the pattern shown. In the honeycomb filter 70 manufactured as described above, the number of outflow side sealing channels is 50% of the total number of channels, and the PM collection capacity is 110% compared to the honeycomb filter 60 shown in the first embodiment. It could be increased further. Further, the silencing function of the honeycomb filter 70 shown in the second embodiment and that of the honeycomb filter 60 shown in the first embodiment are substantially the same.

(実施の形態3)
図8は実施の形態3に係わるハニカムフィルタ80であり、(a)は流入側から見たハニカムフィルタの模式図、(b)は線H−Hに沿った断面模式図である。ハニカムフィルタ80の形態は実施の形態2に示すハニカムフィルタ70と比較して、流入側封止流路4の封止部5と両側封止流路4Cの流入側の封止部5がハニカムフィルタの流入側端面7より離れて配置されていることを除き同じである。また、実施の形態3のハニカムフィルタ80の製造方法は、流入側封止流路4の封止部5と両側封止流路4Cの流入側の封止部5の製造方法を除いて同じである。
(Embodiment 3)
8A and 8B show the honeycomb filter 80 according to the third embodiment. FIG. 8A is a schematic view of the honeycomb filter viewed from the inflow side, and FIG. 8B is a schematic cross-sectional view taken along line HH. Compared with the honeycomb filter 70 shown in the second embodiment, the honeycomb filter 80 has a configuration in which the sealing portion 5 of the inflow side sealing flow path 4 and the inflow side sealing portion 5 of the both side sealing flow paths 4C are the honeycomb filter. It is the same except that it is arrange | positioned away from the inflow side end surface 7 of no. The manufacturing method of the honeycomb filter 80 of the third embodiment is the same except for the manufacturing method of the sealing portion 5 of the inflow side sealing flow path 4 and the inflow side sealing portion 5 of the both side sealing flow paths 4C. is there.

ハニカムフィルタ80の流入側封止流路4の封止部5と両側封止流路4Cの流入側の封止部5は、注射器状の管を流路の内部に挿入し、封止部の材料となるペースト状の封止材料を流入側端面7より離れた所望の位置に導入することで製造できる。   The sealing part 5 of the inflow side sealing flow path 4 of the honeycomb filter 80 and the sealing part 5 on the inflow side of the both side sealing flow paths 4C are configured by inserting a syringe-like tube into the flow path. It can be manufactured by introducing a pasty sealing material as a material into a desired position away from the inflow side end face 7.

上記のように製造したハニカムフィルタ80は、全流路の数に対する流出側封止流路の数が50%となり、実施の形態2に示すハニカムフィルタ70に対してPM捕集容量を140%とさらに増加することができた。また、上記実施の形態3に示すハニカムフィルタ80と実施の形態2に示すハニカムフィルタ70の消音機能はほぼ同等であった。なお、流入側端面7より離れて配置された流入側封止流路4の封止部5と両側封止流路4Cの流入側の封止部5の製造方法として、ハニカム構造体(1)を封止部5が配置される位置で流路垂直方向に一旦切断分離し、ハニカム構造体の端面に封止部を設ける公知の方法を用いて封止部を配置した後、接合材を用いて分離したハニカム構造体を再び接合一体化することで得ることもできる。   In the honeycomb filter 80 manufactured as described above, the number of outflow side sealing channels is 50% with respect to the total number of channels, and the PM collection capacity is 140% with respect to the honeycomb filter 70 shown in the second embodiment. It could be increased further. Further, the silencing function of the honeycomb filter 80 shown in the third embodiment and that of the honeycomb filter 70 shown in the second embodiment are substantially the same. In addition, as a manufacturing method of the sealing part 5 of the inflow side sealing flow path 4 and the sealing part 5 on the inflow side of the both side sealing flow paths 4C which are arranged apart from the inflow side end face 7, honeycomb structure (1) Is cut and separated in the direction perpendicular to the flow path at the position where the sealing portion 5 is disposed, and the sealing portion is disposed using a known method of providing the sealing portion on the end face of the honeycomb structure, and then a bonding material is used. The honeycomb structure separated in this manner can be obtained by joining and integrating again.

従来のハニカムフィルタを示し、(a)は流入側から見たハニカムフィルタの模式図、(b)は線A−Aに沿った断面模式図である。A conventional honeycomb filter is shown, (a) is a schematic view of the honeycomb filter viewed from the inflow side, and (b) is a schematic cross-sectional view along line AA. 特許文献1に提案しているハニカムフィルタを示し、(a)は流入側から見たハニカムフィルタの模式図、(b)は線C−Cに沿った断面模式図である。The honeycomb filter proposed in Patent Document 1 is shown, in which (a) is a schematic view of the honeycomb filter viewed from the inflow side, and (b) is a schematic cross-sectional view along line CC. 両側封止流路を囲む8つの流路と、流路垂直方向断面上で前記隔壁の延伸方向の意味を説明する図である。It is a figure explaining the meaning of the extending direction of the above-mentioned partition on the eight channel which encloses both sides sealing channel, and a channel perpendicular direction section. 図4に示すハニカムフィルタ対して、両側封止流路の数を減少した例を示すハニカムフィルタであり、(a)は流入側から見たハニカムフィルタの模式図、(b)は線D−Dに沿った断面模式図である。4 is a honeycomb filter showing an example in which the number of both-side sealed channels is reduced with respect to the honeycomb filter shown in FIG. 4, (a) is a schematic diagram of the honeycomb filter viewed from the inflow side, and (b) is a line DD. It is a cross-sectional schematic diagram along line. 比較例に係るハニカムフィルタであり、(a)は流入側から見たハニカムフィルタの模式図、(b)は線E−Eに沿った断面模式図である。It is a honeycomb filter which concerns on a comparative example, (a) is a schematic diagram of the honeycomb filter seen from the inflow side, (b) is a cross-sectional schematic diagram along line EE. 実施の形態1に係るハニカムフィルタであり、(a)は流入側から見たハニカムフィルタの模式図、(b)は線F−Fに沿った断面模式図である。1 is a honeycomb filter according to Embodiment 1, wherein (a) is a schematic view of the honeycomb filter viewed from the inflow side, and (b) is a schematic cross-sectional view taken along line FF. 実施の形態2に係るハニカムフィルタであり、(a)は流入側から見たハニカムフィルタの模式図、(b)は線G−Gに沿った断面模式図である。4 is a honeycomb filter according to Embodiment 2, wherein (a) is a schematic view of the honeycomb filter viewed from the inflow side, and (b) is a schematic cross-sectional view taken along line GG. FIG. 実施の形態3に係るハニカムフィルタであり、(a)は流入側から見たハニカムフィルタの模式図、(b)は線F−Fに沿った断面模式図である。4 is a honeycomb filter according to Embodiment 3, wherein (a) is a schematic view of the honeycomb filter viewed from the inflow side, and (b) is a schematic cross-sectional view taken along line FF. FIG.

符号の説明Explanation of symbols

10、20、40、50、60、70、80:ハニカムフィルタ(セラミックハニカムフィルタ)
1:外周壁
(1):ハニカム構造体(セラミックハニカム構造体)
2:隔壁
3:流出側封止流路
4:流入側封止流路
4C:両側封止流路
5:流入側の封止部
6:流出側の封止部
7:流入側端面
8:流出側端面
10, 20, 40, 50, 60, 70, 80: honeycomb filter (ceramic honeycomb filter)
1: Outer peripheral wall (1): Honeycomb structure (ceramic honeycomb structure)
2: Septum 3: Outflow side sealed flow path 4: Inflow side sealed flow path 4C: Both sides sealed flow path 5: Inflow side sealed section 6: Outflow side sealed section 7: Inflow side end face 8: Outflow Side end face

Claims (2)

セラミックハニカム構造体の隔壁で囲まれた断面が四角形状である流路の排気ガス流入側を封止部で目封止した流入側封止流路と、流出側を封止部で目封止した流出側封止流路と、流入側と流出側を共に封止部で目封した両側封止流路とを有するセラミックハニカムフィルタにおいて、前記両側封止流路を囲む8つの流路が全て流入側封止流路または流出側封止流路であるとともに、流路垂直方向断面上で前記隔壁の延伸方向に並んで存在する2つの前記両側封止流路の間には少なくとも2つの流入側封止流路または流出側封止流路を有することを特徴とするセラミックハニカムフィルタ。 The flow path surrounded by the partition walls of the ceramic honeycomb structure has a quadrangular cross section, the inflow side sealing flow path in which the exhaust gas inflow side is plugged with the sealing part, and the outflow side is plugged with the sealing part. In the ceramic honeycomb filter having the outflow side sealed flow path and the both side sealed flow paths in which the inflow side and the outflow side are both sealed with a sealing portion, all of the 8 flow paths surrounding the both side sealed flow paths are Inflow side sealing flow path or outflow side sealing flow path, and at least two inflows between the two side sealed flow paths that exist side by side in the extending direction of the partition wall on the cross section in the vertical direction of the flow path A ceramic honeycomb filter having a side sealing flow path or an outflow side sealing flow path. 前記流入側封止流路の流入側の封止部と前記両側封止流路の流入側の封止部は、前記セラミックハニカム構造体の排気ガス流入側端面より離れて配置され、前記流入側封止流路と前記両側封止流路とが流路垂直方向断面上で前記隔壁の延伸方向に隣接しないことを特徴とする請求項1に記載のセラミックハニカムフィルタ。 The inflow side sealing portion of the inflow side sealing flow channel and the inflow side sealing portion of the both side sealing flow channels are disposed apart from the exhaust gas inflow side end surface of the ceramic honeycomb structure, and the inflow side 2. The ceramic honeycomb filter according to claim 1, wherein the sealing flow path and the both-side sealed flow paths are not adjacent to each other in the extending direction of the partition walls on the cross section in the flow path vertical direction.
JP2005191858A 2005-06-30 2005-06-30 Ceramic honeycomb filter Pending JP2007007559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191858A JP2007007559A (en) 2005-06-30 2005-06-30 Ceramic honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191858A JP2007007559A (en) 2005-06-30 2005-06-30 Ceramic honeycomb filter

Publications (1)

Publication Number Publication Date
JP2007007559A true JP2007007559A (en) 2007-01-18

Family

ID=37746715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191858A Pending JP2007007559A (en) 2005-06-30 2005-06-30 Ceramic honeycomb filter

Country Status (1)

Country Link
JP (1) JP2007007559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243271A (en) * 2008-03-28 2009-10-22 Mazda Motor Corp Particulate filter

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129042A (en) * 1980-03-14 1981-10-08 Ngk Insulators Ltd Honeycomb structure of ceramic
JPS5954682A (en) * 1982-09-20 1984-03-29 日本碍子株式会社 Open end sealing method for ceramic honeycomb structure
JPH0147206B2 (en) * 1981-09-14 1989-10-12 Ngk Insulators Ltd
JPH03284312A (en) * 1990-03-30 1991-12-16 Riken Corp Method for filling highly heat-conductive powder into cell of ceramic filter
JP2003126629A (en) * 2001-10-29 2003-05-07 Hitachi Metals Ltd Ceramic honeycomb filter
JP2003161136A (en) * 2001-07-31 2003-06-06 Ngk Insulators Ltd Honeycomb structure and method for production thereof
JP2003254035A (en) * 2002-03-06 2003-09-10 Toyota Motor Corp Particulate filter
JP2003254034A (en) * 2002-02-26 2003-09-10 Ngk Insulators Ltd Honeycomb filter
JP2004154647A (en) * 2002-11-05 2004-06-03 Asahi Glass Co Ltd Ceramics honeycomb filter
WO2005014142A1 (en) * 2003-08-12 2005-02-17 Ngk Insulators, Ltd. Ceramic filter
JP2005169308A (en) * 2003-12-12 2005-06-30 Ngk Insulators Ltd Honeycomb filter and its production method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129042A (en) * 1980-03-14 1981-10-08 Ngk Insulators Ltd Honeycomb structure of ceramic
JPH0147206B2 (en) * 1981-09-14 1989-10-12 Ngk Insulators Ltd
JPS5954682A (en) * 1982-09-20 1984-03-29 日本碍子株式会社 Open end sealing method for ceramic honeycomb structure
JPH03284312A (en) * 1990-03-30 1991-12-16 Riken Corp Method for filling highly heat-conductive powder into cell of ceramic filter
JP2003161136A (en) * 2001-07-31 2003-06-06 Ngk Insulators Ltd Honeycomb structure and method for production thereof
JP2003126629A (en) * 2001-10-29 2003-05-07 Hitachi Metals Ltd Ceramic honeycomb filter
JP2003254034A (en) * 2002-02-26 2003-09-10 Ngk Insulators Ltd Honeycomb filter
JP2003254035A (en) * 2002-03-06 2003-09-10 Toyota Motor Corp Particulate filter
JP2004154647A (en) * 2002-11-05 2004-06-03 Asahi Glass Co Ltd Ceramics honeycomb filter
WO2005014142A1 (en) * 2003-08-12 2005-02-17 Ngk Insulators, Ltd. Ceramic filter
JP2005169308A (en) * 2003-12-12 2005-06-30 Ngk Insulators Ltd Honeycomb filter and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243271A (en) * 2008-03-28 2009-10-22 Mazda Motor Corp Particulate filter

Similar Documents

Publication Publication Date Title
JP3925154B2 (en) Exhaust gas purification filter
JP5195416B2 (en) Ceramic honeycomb filter and exhaust gas purification device
KR100874398B1 (en) Honeycomb Structure
WO2007074808A1 (en) Honeycomb structure and production method thereof
JP2014200741A (en) Wall flow type exhaust gas purification filter
JP2004261664A (en) Honeycomb structure and mouthpiece for extrusion molding of honeycomb structure
JP2010229909A (en) Honeycomb structure and bonded type honeycomb structure
JP2005169308A (en) Honeycomb filter and its production method
JP2010221159A (en) Honeycomb filter
JP7122393B2 (en) Honeycomb structure, exhaust gas purification device and exhaust system
JP4320702B2 (en) Exhaust gas purification device
JP4640987B2 (en) Ceramic filter
JP2006272157A (en) Ceramic honeycomb filter and waste gas cleaning facility
JP2005095884A (en) Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding
JP2005052750A (en) Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus
JP2007007559A (en) Ceramic honeycomb filter
JP2006000685A (en) Honeycomb structural body and manufacturing method therefor
JP4600826B2 (en) Ceramic honeycomb filter
JP6887301B2 (en) Honeycomb filter
JP2004167482A (en) Honeycomb filter for exhaust gas cleaning, and its production method
JP2015174037A (en) Gap-sealed honeycomb structure
JP2018192386A (en) Honeycomb filter
JP2018167211A (en) Honeycomb structure
JP4841244B2 (en) Honeycomb structure and filter using the same
JP2006231111A (en) Filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120203