JP2007007358A - High-speed radiographing digital x-ray image formation system for medical test collecting image data at low magnification ratio - Google Patents

High-speed radiographing digital x-ray image formation system for medical test collecting image data at low magnification ratio Download PDF

Info

Publication number
JP2007007358A
JP2007007358A JP2005219562A JP2005219562A JP2007007358A JP 2007007358 A JP2007007358 A JP 2007007358A JP 2005219562 A JP2005219562 A JP 2005219562A JP 2005219562 A JP2005219562 A JP 2005219562A JP 2007007358 A JP2007007358 A JP 2007007358A
Authority
JP
Japan
Prior art keywords
ray
subject
detection system
image
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005219562A
Other languages
Japanese (ja)
Inventor
Norihito Hatakeyama
典人 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005219562A priority Critical patent/JP2007007358A/en
Publication of JP2007007358A publication Critical patent/JP2007007358A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging

Abstract

<P>PROBLEM TO BE SOLVED: To provide a digital X-ray image formation system for executing high-speed radiography with consideration given to scattered radiation and a subject. <P>SOLUTION: An X-ray generator 5 and an X-ray tube 11 capable of executing high-voltage radiography irradiate X-rays in a high voltage range, and information inside the subject 21 having movement is A/D converted by a digital image detecting system 31 highly sensitive to the energy band and imaged on an image display device 6. Then, the X-ray tube has a focus capable of executing magnification imaging and the subject 21 and the digital image detecting system 31 have a distance sufficient for Gradel effect. This constitution can thus magnify the image at a slight magnification ratio using the magnification imaging method, combinedly use the high-voltage radiographing method and Gradel method to produce a room for the mechanical output capacity of the X-rays, limits the non-acuteness caused by the movement of the subject by executing a short-time radiographing so as to improve the image quality. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、拡大撮影法によりわずかに画像を拡大し、見難さや誤認を軽減するための高速撮影デジタルX線画像形成システムに関する。  The present invention relates to a high-speed digital X-ray image forming system for slightly enlarging an image by an enlargement imaging method and reducing difficulty in viewing and misidentification.

X線画像は、X線管の焦点が理論上の点の時、X線焦点から放射状に放射され、被写体を透過し、画像検出系に投影される。被写体をX線が透過する時に、エネルギーの減弱を伴うので、画像検出系はこの差を画像として現す。ところが、現実には点焦点は存在せず、必ず面積を有するので、幾何学的不鋭として半影を生じる。よって、X線管の焦点は、小さければ小さいほど良いが、X線出力の問題から大容量になるほど焦点は大きくなり半影も大きくなる。一般撮影法を図1に示す。一般撮影法は、半影を小さくするために、X線管焦点〜被写体間の距離a1を、被写体の大きさによって充分に数学的にX線が平行線と近似されうる距離をとり、被写体〜画像検出系間の距離b1をできるだけ小さくする。  When the focal point of the X-ray tube is a theoretical point, the X-ray image is emitted radially from the X-ray focal point, passes through the subject, and is projected onto the image detection system. When X-rays pass through the subject, energy is attenuated, so the image detection system shows this difference as an image. However, in reality, there is no point focus, and it always has an area. Therefore, the smaller the focal point of the X-ray tube, the better. However, the larger the capacity, the larger the focal point and the larger the penumbra because of the problem of X-ray output. A general imaging method is shown in FIG. In general imaging, in order to reduce penumbra, the distance a1 between the focus of the X-ray tube and the subject is set to a distance at which the X-ray can be approximated to a parallel line sufficiently mathematically depending on the size of the subject. The distance b1 between the image detection systems is made as small as possible.

微小な被写体を鮮鋭に画像化したいとき、拡大撮影法がある。  There is an enlarged shooting method when it is desired to sharply image a minute subject.

拡大撮影法を図2に示す。拡大撮影法は、単純な拡大撮影法と高度な拡大撮影法という本文での用語の使い分けを兼ねて説明する。単純な拡大撮影法は、X線管焦点〜被写体〜画像検出系の幾何学的な位置関係を、X線管焦点からX線が放射されるとみなして、三角形の相似を応用して画像を拡大投影する方法で、X線焦点サイズよりも大きな被写体を拡大投影するものである。さらに、画像検出系の粒状性がX線管焦点〜被写体〜画像検出系の幾何学的な位置関係には依存せずに一定であるので、被写体がM倍に拡大されたとき、画像検出系上に投影された被写体面の粒状性は、面積でMの2乗となるので、S/N比が増大して識別能がよくなることを利用している。また、拡大撮影法は、グレーデル効果(後述する)が出現するので、グレーデル技法(後述する)を併用している場合も多い。乳房撮影等によく利用されている。
高度な拡大撮影法とは、X線焦点サイズよりも小さな被写体を拡大投影するものである。投影像は、幾何学的な半影により被写体よりも小さな投影像となるが、画像検出系の粒状性がX線管焦点〜被写体〜画像検出系の幾何学的な位置関係には依存せずに一定であるので、被写体がM倍に拡大されたとき、画像検出系上に投影された被写体面の粒状性は、面積でMの2乗となるので、S/N比が増大して識別能がよくなることを利用している。
Mは拡大率で、図2よりM=1+b2÷a2であり、a2が小さくb2が大きくなるほど拡大率Mは大きくなる。
An enlarged photographing method is shown in FIG. The enlargement photographing method will be described by combining the terminology used in the text of a simple enlargement photographing method and an advanced magnification photographing method. The simple magnified imaging method considers the geometric positional relationship between the X-ray tube focal point, the subject, and the image detection system as X-rays are emitted from the X-ray tube focal point, and applies an image similar to a triangle. A method for enlarging and projecting an object larger than the X-ray focal spot size by the enlarging projection method. Furthermore, since the granularity of the image detection system is constant without depending on the geometric positional relationship between the X-ray tube focus, the subject, and the image detection system, the image detection system is expanded when the subject is magnified M times. Since the granularity of the object surface projected above is the square of M in area, it utilizes the fact that the S / N ratio increases and the discrimination performance improves. In addition, since the Gradell effect (described later) appears in the magnified photographing method, the Gradel technique (described later) is often used together. It is often used for mammography.
The advanced magnified imaging method is to enlarge and project a subject smaller than the X-ray focal spot size. The projected image is a smaller projected image than the subject due to the geometric penumbra, but the granularity of the image detection system does not depend on the geometric positional relationship between the focus of the X-ray tube and the subject to the image detection system. Therefore, when the subject is magnified M times, the granularity of the subject surface projected on the image detection system is M squared in area, so that the S / N ratio increases and is identified. It uses the ability to improve.
M is an enlargement ratio, and M = 1 + b2 ÷ a2 from FIG. 2, and the enlargement ratio M increases as a2 decreases and b2 increases.

運動のある被写体を鮮鋭に画像化したいとき、高圧撮影法がある。  When you want to sharpen a moving subject, you can use high-pressure photography.

高圧撮影を行うと、X線管負荷軽減により小焦点、短時間撮影が可能になる。また、骨の透過性増加によりX線像のコントラスト低下が生じ、診断領域が拡大する。  When high-pressure imaging is performed, small focus and short-time imaging can be performed by reducing the load on the X-ray tube. Further, the contrast of the X-ray image is reduced due to the increase in bone permeability, and the diagnostic area is enlarged.

高圧撮影を行うときや、被写体厚が大きく散乱線が画像形成に影響を与えるときは、グリッド法やグレーデル法がある。  When performing high-pressure photography or when the subject thickness is large and scattered rays affect image formation, there are the grid method and the Gradel method.

グリッド法は、投影画像の入射本線方向のみ通過するように、格子状にX線不透過物質で壁が作られており、本線外の角度から入射する散乱線を遮断する。優れた散乱線除去装置であるが、X線のグリッド入射線量に対し、出力線量はロスが生じるために、X線のエネルギー帯によっては、X線の出力を2倍から4倍に増加させる必要がある。つまり、被写体の被曝線量が大きくなる上に、散乱線除去装置そのものが画質を低下させる一因となる。さらに、デジタル画像検出系と相性が悪い。何故ならば、グリッドピッチとデジタル検出系素子ピッチの相互作用によるモアレ現象が生じるからである。  In the grid method, a wall is made of an X-ray opaque material in a lattice shape so as to pass only in the incident main line direction of the projection image, and scattered rays incident from an angle outside the main line are blocked. Although it is an excellent scattered radiation removal device, the output dose is lost with respect to the X-ray grid incident dose, so depending on the X-ray energy band, the X-ray output needs to be increased from 2 to 4 times. There is. That is, the exposure dose of the subject increases, and the scattered radiation removal apparatus itself contributes to the degradation of image quality. Furthermore, it is incompatible with the digital image detection system. This is because a moire phenomenon due to the interaction between the grid pitch and the digital detection system element pitch occurs.

グレーデル法は、グレーデル効果とグレーデル技法という本文での用語の使い分けを兼ねて説明する。グレーデル効果とは、入射X線が被写体内で散乱現象を生じ、散乱点から放射状に散乱することで、散乱線の単位面積当たりの密度と散乱点からの距離との間に、距離の逆二乗則が成立する。
入射X線と同じ方向の本線は、被写体透過時にエネルギー減弱するが、被写体からの距離との間に、本線の単位面積当たりの密度は大きく変わらない。そこで、被写体の透過X線出力面〜画像検出系間の距離を離すことで、散乱線だけを大きく減弱させることができる。この効果をグレーデル効果という。
グレーデル技法というのは、被写体の透過X線出力面〜画像検出系間β2の距離を離していくと、グリット等の散乱線除去装置を使用するよりもグレーデル効果が上回る地点があることに着目し、グリット等の散乱線除去装置を用いる必要がないとする技法をいう。この被写体の透過X線出力面〜画像検出系間の距離が15〜20cm以上と言われ、40cmの距離では、ほぼ画質に影響する散乱線を除去できるとされている。
The Gradel method is explained by combining the terms used in the text of the Gradel effect and the Gradel technique. The Gradel effect is a phenomenon in which incident X-rays cause a scattering phenomenon in a subject and scatter radially from the scattering point, and the inverse square of the distance between the density per unit area of the scattered radiation and the distance from the scattering point. The law is established.
The main line in the same direction as the incident X-rays attenuates the energy when transmitted through the subject, but the density per unit area of the main line does not change greatly between the distance from the subject. Therefore, by separating the distance between the transmission X-ray output surface of the subject and the image detection system, only the scattered radiation can be greatly attenuated. This effect is called the Gradel effect.
Grader's technique pays attention to the fact that there is a point where the gradel effect is higher when the distance between the transmission X-ray output surface of the subject and the image detection system β2 is increased than when the scattered radiation removing device such as grit is used. , A technique that does not require the use of a scattered radiation removing device such as grit. The distance between the transmission X-ray output surface of the subject and the image detection system is said to be 15 to 20 cm or more, and at a distance of 40 cm, it is said that scattered rays that substantially affect the image quality can be removed.

引用文献の説明Explanation of cited references

引用文献1には、グレーデル技法を用いてX線管焦点〜被写体〜画像検出系の幾何学的な位置関係を設定したX線システムが記載されており、幾何学的不鋭が増大することまで記載されている。引用文献2には拡大撮影がなされる高さを有し、着脱可能なX線低吸収台の利用が記載されている。引用文献3には、拡大撮影法とグレーデル技法の効率的な併用と、それを利用した屈折コントラスト現象が生じるX線画像形成システムが記載されている。  Cited Document 1 describes an X-ray system in which the geometric positional relationship between the X-ray tube focus, the subject, and the image detection system is set using the Gradel technique, and the geometrical insensitivity increases. Are listed. Cited Document 2 describes the use of a detachable X-ray low-absorption table having a height at which enlarged photographing is performed. Cited Document 3 describes an X-ray image forming system in which a magnified imaging method and a Gradel technique are efficiently used and a refractive contrast phenomenon is generated using the method.

以上の引用文献の一覧List of above cited references

1.特開平9−262233号公報
2.実願昭59−132954号(実開昭61−48711号)のマイクロフィルム
3.特開2001−324772号
1. Japanese Patent Laid-Open No. 9-2622332. 2. Microfilm of Japanese Patent Application No. 59-132951 (Japanese Utility Model Application No. 61-48711) Japanese Patent Application Laid-Open No. 2001-324772

拡大撮影法、グレーデル技法および高圧撮影法とそれらの併用を行うには、撮影条件の設定が数学的およびX線の出力能力的に非常に難しかったので、特殊撮影の分野に分類されていた。ところが近年、アナログ撮影からデジタル撮影に進歩したことで、濃度変化等の画像処理がコンピュータソフトにて出来るようになったことから、撮影条件の設定が容易となった。また、完成画像の拡大率の変更も容易にできるので、これらの併用法を応用し、被写体の動きが0ではないが微小のときに、鮮鋭度が良く診断読影し易いように、既存技術以上の高速撮影を行うことで、運動による不鋭を軽減させて画質の向上を目的とするためのデジタルX線画像形成システムを提供する。  In order to use the magnified imaging method, the Gradel technique, and the high-pressure imaging method in combination, the setting of the imaging conditions was very difficult in terms of mathematical and X-ray output capability, and thus it was classified into the field of special imaging. However, in recent years, with the advancement from analog photography to digital photography, image processing such as density change can be performed by computer software, so that it is easy to set photographing conditions. In addition, since the enlargement ratio of the completed image can be easily changed, these combined methods can be applied to improve the sharpness and facilitate diagnostic interpretation when the subject's movement is not zero, but it is more than the existing technology. A digital X-ray image forming system for reducing image insensitivity and improving image quality by performing high-speed imaging is provided.

上記目的を達成するために、被写体の拡大率の設定、被写体の運動による撮影時間の設定、そして、その撮影時間を可能にするためのX線画像形成システムの構成にあたる。  In order to achieve the above object, the present invention corresponds to the setting of the magnification ratio of the subject, the setting of the imaging time by the movement of the subject, and the configuration of the X-ray image forming system for enabling the imaging time.

拡大撮影法を利用する時に、どの程度の拡大率を採用するかであるが、ここで肉眼のMTF(MTFとは、鮮鋭度を物理量に変換したものである)に着目した。肉眼のMTFを図3に示す。正常肉眼では0.1〜0.15mmの病変を識別できるが、それ以下の大きさではMTFは急速に減少し、信号検出できても誤認する割合が高くなる。図3では、2cycles/mmより少し小さいところに肉眼のMTFがピークになっている。つまり、0.15〜0.2mmの大きさより少し大きいとMTFがとても良いが0.15〜0.2mmで充分であろう。例えば、骨梁は0.1mm程度であるから、拡大するほど見易いものではあるが、拡大専用撮影機のように大きく拡大しなくても、信号検出できて且つ誤認せずに正確な診断ができる程度の拡大率で充分である。つまり、0.1mmの病変を1.1倍の拡大率で0.11mmとするだけで診断能は向上し、1.2倍の拡大率で0.12mmに出来れば、診断能は格段に向上する。
よって、0.1〜0.15mmの被写体を0.15〜0.2mmに拡大するためには、拡大率が1.04〜2.0倍程度を要求したい。そのためのX線管焦点は、高度な拡大撮影法を用いるならば0.3mm以上0.6mm以下でよい。
What magnification ratio is used when the magnified imaging method is used. Here, attention is paid to the MTF of the naked eye (MTF is a sharpness converted into a physical quantity). The MTF of the naked eye is shown in FIG. Although the lesion of 0.1 to 0.15 mm can be identified with the normal naked eye, the MTF rapidly decreases at a size smaller than that, and the rate of misperception increases even if the signal can be detected. In FIG. 3, the MTF of the naked eye has a peak at a position slightly smaller than 2 cycles / mm. In other words, MTF is very good when it is slightly larger than 0.15 to 0.2 mm, but 0.15 to 0.2 mm may be sufficient. For example, since the trabecular bone is about 0.1 mm, it is easy to see as it is enlarged. However, even if the enlargement is not greatly enlarged like a dedicated photographing machine, the signal can be detected and an accurate diagnosis can be made without misidentification. A degree of enlargement is sufficient. In other words, the diagnostic ability is improved simply by setting a 0.1 mm lesion to 0.11 mm at a magnification of 1.1 times, and if it can be reduced to 0.12 mm at a magnification of 1.2 times, the diagnostic ability will be greatly improved. To do.
Therefore, in order to enlarge a 0.1 to 0.15 mm subject to 0.15 to 0.2 mm, the enlargement ratio is required to be about 1.04 to 2.0 times. The X-ray tube focal point for that purpose may be 0.3 mm or more and 0.6 mm or less if an advanced magnification imaging method is used.

被写体が動態の時、運動による不鋭は画質を指数関数的に変化させるので、できるだけ短時間撮影を行う方がよい。
例えば、秒速1.2mmの振幅で運動があるとすると、2.0倍拡大すると秒速2.4mmの投影像となるので、0.3mmの不鋭を許容すると、0.125秒以内の短時間撮影を行わなければならない。同様に、秒速1.5mmの振幅のとき、1.5倍拡大すると秒速2.25mmの投影像となるので、0.133秒以内の短時間撮影を行わなければならない。
実際には、幾何学的半影が加味されるので、0.12秒以下の短時間撮影が必要であろう。しかし、X線量子モトルによる粒状性の都合により、0.01秒以上は照射したいので、撮影時間は0.01〜0.12秒の範囲に制限される。
上記で運動に振幅という考え方を用いたのは、同一振幅間ならば、動いた回数は画質に影響しないからである。
When the subject is dynamic, instability due to movement changes the image quality exponentially, so it is better to shoot for as short a time as possible.
For example, if there is a motion with an amplitude of 1.2 mm / s, a magnification of 2.0 times results in a projected image of 2.4 mm / s, so if 0.3 mm of unsharpness is allowed, a short time within 0.125 seconds You have to shoot. Similarly, when the amplitude is 1.5 mm / s, when the magnification is 1.5 times, a projected image of 2.25 mm / s is obtained. Therefore, it is necessary to shoot for a short time within 0.133 seconds.
Actually, since a geometric penumbra is taken into account, it is necessary to take a short time of 0.12 seconds or less. However, because of the granularity due to the X-ray quantum motor, it is desired to irradiate for 0.01 seconds or longer, so the imaging time is limited to a range of 0.01 to 0.12 seconds.
The reason why the amplitude is used for the movement is that the number of movements does not affect the image quality if the amplitude is the same.

短時間撮影を行うためにグレーデル技法を利用する。被写体の運動による不鋭は、撮影時間によって指数関数的に変化するので、短時間で撮影した方が良い。つまり、より高電圧で且つ大電流で短時間撮影が良いが、管電圧が高いほど被写体から散乱線が発生するので、高電圧領域では、グリット等の散乱線除去装置が使用される。また、高電圧でなくとも被写体の厚みにより散乱線が発生するので、グリット等の散乱線除去装置が使用されることもある。これは、X線の入力に対して出力ロスを生じるので、撮影時間を長くする必要が生じ意に反する。そこで、グリット等の散乱線除去装置を使用せずに、グレーデル効果を利用して、グレーデル効果の有効距離もしくは、グレーデル技法の距離を保つものである。ただし、その距離は散乱体の厚み、つまり、被写体の厚みによるので、検査内容と検討しなければならない。
グレーデル技法を採用できる距離があれば、同等の画質を得ながらにして、出力を制御できる。
つまり、より短時間による高速撮影が可能となるので、被写体の動きが0ではないが小さいとき、グレーデル技法は、グリッド法よりも格段に画質が向上する。
グレーデル効果は、使用するX線管電圧によって、その効果が異なる。それは高電圧のX線エネルギーの方が、被写体透過時に散乱し易いからである。これは、高電圧撮影法の特徴である。また、高電圧撮影法は、X線管負荷軽減により小焦点、短時間撮影が可能である。
Use the Gradel technique for short-time shooting. The instability due to the movement of the subject changes exponentially with the shooting time, so it is better to shoot in a short time. That is, it is good to take a short time with a higher voltage and a larger current. However, a scattered ray is generated from the subject as the tube voltage is higher. Therefore, a scattered ray removing device such as grit is used in the high voltage region. In addition, scattered radiation is generated depending on the thickness of the subject even when the voltage is not high, and thus a scattered radiation removing device such as grit may be used. This causes an output loss with respect to the input of X-rays, which is contrary to the intention because it is necessary to lengthen the imaging time. Therefore, the effective distance of the Gradel effect or the distance of the Gradel technique is maintained by using the Gradel effect without using a scattered radiation removing device such as a grid. However, since the distance depends on the thickness of the scatterer, that is, the thickness of the subject, it must be considered as the inspection contents.
If there is a distance that can adopt the Gradel technique, the output can be controlled while obtaining the same image quality.
That is, since high-speed shooting can be performed in a shorter time, when the movement of the subject is not zero but is small, the image quality of the Gredel technique is significantly improved as compared with the grid method.
The effect of the Gredel effect varies depending on the X-ray tube voltage used. This is because high-voltage X-ray energy is more likely to scatter when passing through the subject. This is a feature of the high voltage imaging method. In addition, the high-voltage imaging method enables small focal length and short time imaging by reducing the X-ray tube load.

X線管焦点〜被写体〜デジタル画像検出系間の幾何学的な配置は、高圧撮影法を用いるためにタングステンターゲットを使用することから被曝線量を考慮すると、X線管焦点〜被写体のX線入力面間の距離α2は50cm以上ほしいところである。グレーデル効果を使用するには、経験的に被写体の透過X線出力面〜デジタル画像検出系間β2が肉厚の薄い被写体でも4cm以上ほしいところである。そして、40cmあれば散乱線を除去できるとされるが、さらに余裕を持って50cmまでを設定した。
被写体〜デジタル画像検出系間b2が50cmの時、拡大率1.1倍であればX線管焦点〜被写体間の距離a2は500cmが必要であるが、現実的な使用範囲と短時間撮影に必要なX線装置の容量を考慮して、150cm以下とすることが妥当であろう。
よって、X線管焦点〜デジタル画像検出系間の距離a2+b2は、54〜200cmの範囲となる。
図4のように被写体厚が50cmで、X線管焦点〜デジタル画像検出系間a4+b4が150cm、X線管焦点〜被写体のX線入力面間α4が50cm、被写体の透過X線出力面〜デジタル画像検出系間β4が50cmのとき、拡大率は2.0倍となり、0.1mmの被写体に高度な拡大撮影法を用いるとき、X線管焦点は0.3mmでよく、血管造影システムやCT装置に応用される範囲であろう。もっとも、血管造影システムやCT装置は、そこまで小さな被写体を目的としていないので、被写体の運動を制御できたならば、もっと大きなX線管焦点でもよい場合もあろう。
The X-ray tube focus to the subject to the digital image detection system uses a tungsten target for high-pressure imaging, so the X-ray tube focus to the subject X-ray input is taken into account. The distance α2 between the surfaces is desired to be 50 cm or more. In order to use the Gradel effect, it is empirically desired that the distance between the transmission X-ray output surface of the subject and the digital image detection system β2 is 4 cm or more even for a thin subject. And if it is 40 cm, it is said that scattered radiation can be removed.
When the distance b2 between the subject and the digital image detection system is 50 cm, the distance a2 between the focal point of the X-ray tube and the subject needs to be 500 cm if the enlargement ratio is 1.1 times. Considering the necessary capacity of the X-ray apparatus, it is appropriate to set it to 150 cm or less.
Therefore, the distance a2 + b2 between the X-ray tube focal point and the digital image detection system is in the range of 54 to 200 cm.
As shown in FIG. 4, the subject thickness is 50 cm, the a4 + b4 between the X-ray tube focus and the digital image detection system is 150 cm, the α4 between the X-ray tube focus and the X-ray input surface of the subject is 50 cm, and the transmitted X-ray output surface of the subject is digital. When the inter-image detection system β4 is 50 cm, the enlargement ratio is 2.0 times, and when an advanced enlargement photographing method is used for a subject of 0.1 mm, the X-ray tube focus may be 0.3 mm, and an angiography system or CT It will be the range applied to the device. However, the angiography system and CT apparatus are not intended for such a small subject, so if the movement of the subject can be controlled, a larger X-ray tube focus may be used.

上記に小焦点、短時間撮影を行うのに高電圧撮影法が向いていることを記載したが、デジタル画像検出系において、画像検出素子が100μmで70〜80KV帯のX線エネルギーに高感度なレスポンスを示すものがある。このエネルギー帯に合致するX線を発生させるには、X線管の管電圧ピークを100KV前後以上にしてやれば、タングステンターゲットのX線エネルギーの連続スペクトルは一致する。よって、X線管電圧が100KV前後以上のX線発生装置を必要とする。ただし、タングステンターゲットの回転陽極X線管は、構造上200KVが限界であるが、そのX線連続スペクトルをもってして充分である。高電圧撮影法を行うためには100KV以上がほしいが、濾過フィルターの有無を考慮して96KV以上で、汎用X線管を用いるならば、150KV以下となる。  As described above, the high-voltage imaging method is suitable for performing small focus and short-time imaging. However, in the digital image detection system, the image detection element is 100 μm and highly sensitive to 70 to 80 KV band X-ray energy. Some of them show a response. In order to generate X-rays that match this energy band, the continuous spectrum of the X-ray energy of the tungsten target matches if the tube voltage peak of the X-ray tube is about 100 KV or higher. Therefore, an X-ray generator having an X-ray tube voltage of about 100 KV or more is required. However, a rotary anode X-ray tube of a tungsten target has a limit of 200 KV because of its structure, but its X-ray continuous spectrum is sufficient. In order to perform the high voltage imaging method, 100 KV or more is desired, but it is 96 KV or more in consideration of the presence or absence of a filtration filter, and 150 KV or less if a general-purpose X-ray tube is used.

上記条件で画像を構成するためのX線総出力を考慮すると、X線高電圧発生器は、単相全波整流方式の場合では20mA以上が必要である。  In consideration of the total X-ray output for constructing an image under the above conditions, the X-ray high voltage generator needs 20 mA or more in the case of the single-phase full-wave rectification method.

請求項1に係る発明と引用文献1との対比Comparison between the invention of claim 1 and cited document 1

請求項1に係る発明と引用文献1に記載の発明とは、グレーデル技法を用いる点で、全く同一のものであり、グレーデル効果の利用において、必要と認識している被写体の透過X線出力面〜画像検出系の距離β2は同程度である。しかしながら、結果的に、引用文献1では幾何学的な不鋭が増大すると明記されている。つまり、画質が低下する結果となったのに対し、本願発明では、全く逆に画質を向上させる結果が得られている。何故ならば、引用文献1は、X線画像形成システムで重要なX線管の焦点サイズや被写体の運動による短時間撮影の必要性を考慮せずにX線画像形成システムが構成されている点で、本願発明と相違しているからである。  The invention according to claim 1 and the invention described in the cited document 1 are exactly the same in that the gradel technique is used, and the transmission X-ray output surface of the subject recognized as necessary in the use of the gradel effect. The distance β2 of the image detection system is approximately the same. However, as a result, reference 1 specifies that geometrical sharpness increases. That is, while the image quality is deteriorated, the invention of the present application has the opposite effect of improving the image quality. This is because the cited document 1 is configured with an X-ray image forming system without considering the focus size of the X-ray tube and the necessity of short-time imaging due to the motion of the subject, which are important in the X-ray image forming system. This is because it is different from the present invention.

請求項1に係る発明と引用文献2および3との対比Comparison between the invention of claim 1 and cited references 2 and 3

請求項1に係る発明と引用文献2および3に記載の発明とは、拡大撮影法を用いる点で、全く同一のものである。しかし、拡大撮影法とは、焦点サイズよりも大きな被写体を幾何学的に拡大して見るためのものであり、焦点サイズよりも小さな被写体は、半影によりボケるので、本来は拡大撮影法の対象とはならない。引用文献2および3は、乳房用X線システムであるから、焦点が被写体よりも小さいことを暗に示しているが、本願発明は、焦点サイズよりも小さな被写体を、主目的としている点で、本願発明と相違している。
また、拡大撮影法では、拡大率が違っても同じ不鋭であれば同じ評価か、もしくは、見易さの観点から拡大率が大きい方が高評価を得るが、本願発明では、被写体に運動がある場合を想定しているので、運動による不鋭を拡大させずに半影の許容範囲に収めるためと、拡大率を大きくするとX線の発生量を大きくする必要が生じるので、この2点で、撮影時間を長くしたくはないという理由から、同じ画質の不鋭であれば、拡大率の低い方がよい。
さらに、引用文献2および3は、被写体に運動がないという前提で、撮影時間が数秒単位のX線システムが構成されているのに対し、本願発明は、被写体には運動があるものという前提に100分の数秒という単位でX線システムを構成している点で、本願発明と相違している。
The invention according to claim 1 and the inventions described in the cited documents 2 and 3 are exactly the same in that an enlarged photographing method is used. However, the magnified shooting method is for viewing a subject larger than the focal size in a geometrically enlarged manner, and a subject smaller than the focal size is blurred by a penumbra. Not subject. References 2 and 3 implicitly indicate that the focal point is smaller than the subject because it is an X-ray system for breasts, but the present invention is mainly intended for a subject smaller than the focal point size. This is different from the present invention.
Also, in the magnifying method, even if the magnification is different, the same evaluation is obtained if it is the same sharpness, or a higher magnification is obtained from the viewpoint of easy viewing. Since it is assumed that there is a certain amount of X-rays, it is necessary to increase the amount of X-rays when the enlargement ratio is increased. If the image quality is unsharp for the reason that it is not desirable to lengthen the shooting time, a lower magnification is better.
Further, the cited documents 2 and 3 are based on the premise that the subject has no motion, and the X-ray system having a photographing time unit of several seconds is configured, whereas the present invention is based on the premise that the subject has motion. This is different from the present invention in that the X-ray system is configured in units of a few hundredths of a second.

請求項1に係る発明と引用文献3との対比Comparison between the invention of claim 1 and cited document 3

請求項1に係る発明と引用文献3に記載の発明とは、拡大撮影法とグレーデル技法の効率的な併用が記載されており、これらの理論上の観点は全く同一のものである。ところが、X線システムを構成する上で、引用文献3は被写体の運動を考慮していない。よって、X線システムの個々の構成要素が異なったものとなり、被写体の運動が0ではないが微小な動きを伴うとき、引用文献3では本願発明の結果は得られない。  The invention according to claim 1 and the invention described in the cited document 3 describe the efficient combined use of the magnified photographing method and the Gradel technique, and these theoretical viewpoints are exactly the same. However, in configuring the X-ray system, the cited document 3 does not consider the motion of the subject. Therefore, when the individual components of the X-ray system are different and the movement of the subject is not zero but involves a slight movement, the result of the present invention cannot be obtained in the cited document 3.

請求項1に係る発明と引用文献1と2および3の組み合わせによるものとの対比Comparison between the invention of claim 1 and the combination of the cited references 1, 2 and 3

短時間撮影の観点からすると、引用文献1と引用文献2および3の組み合わせで、本願発明が出来上がりそうであるが、引用文献1に記載があるように、幾何学的な不鋭を嫌って、グレーデル技法の適応を諦めた趣旨の記載があるので、当業者でも容易に想到し得ないものである。  From the viewpoint of short-time shooting, the invention of the present application is likely to be completed by the combination of Cited Document 1 and Cited Documents 2 and 3, but as described in Cited Document 1, dislikes the geometrical sharpness, Since there is a description of the purpose of giving up the adaptation of the Gradel technique, even those skilled in the art cannot easily conceive.

発明の効果The invention's effect

本願発明は、以上説明したように構成されているので、以下に記載されているような効果がある。  Since the present invention is configured as described above, the following effects can be obtained.

0ではないが微小な動きを伴う病変の細部の画像を、短時間撮影と高度な拡大撮影法の観点からX線画像形成システムを構成することで、通常の撮影手技よりも鮮鋭度の高い画像として、医療診断上必要とされる0.1〜0.15mmの病変の診断能を向上させるに充分な画像を得ることができた。応用すれば、0.6mm焦点搭載の汎用X線画像形成システムであれば、被写体の透過X線出力面〜画像検出系の距離を離すために、X線低吸収台を増設することで既存寝台の厚みを増し一定距離を維持すれば、検査内容によっては可能である。
また、グリッド等の散乱線除去装置を使用しないので、グリッドピッチとデジタル検出系素子ピッチの相互作用によるモアレ現象を生じさせない。
そして、得られた画質は予想以上のものであった。
現在研究解明中であるが、骨病変の診断には、高圧撮影法は向かないと考えられているようであるが、どうもそうではないようである。骨梁単位で画像を見たとき、案外と疎に軟部組織の中に骨組織が存在するので、高度な拡大撮影法により投影像に不鋭が生じても、本影と共に不鋭を被写体の投影画像として有効に認識できるだけの空間的余裕があるからであろう。
また、本願発明では100μmピッチの画像検出素子を使用したが、ピッチが荒くなってもX線感度が向上した方が、良い画像を形成する可能性があろう。逆に、ピッチが細かくなればX線の屈折コントラストを検出できる可能性があろう。
By constructing an X-ray image forming system from the viewpoint of short-time imaging and advanced magnified radiography, it is possible to obtain a sharper image than a normal radiography technique. As a result, an image sufficient to improve the diagnostic ability of a lesion of 0.1 to 0.15 mm required for medical diagnosis could be obtained. If applied, if it is a general-purpose X-ray image forming system equipped with a 0.6 mm focal point, an existing bed can be installed by adding an X-ray low-absorption table in order to increase the distance between the transmission X-ray output surface of the subject and the image detection system. If the thickness is increased and a certain distance is maintained, this is possible depending on the inspection contents.
Further, since a scattered radiation removing device such as a grid is not used, a moire phenomenon due to the interaction between the grid pitch and the digital detection system element pitch is not caused.
And the obtained image quality was more than expected.
Although research is currently being elucidated, it seems that high-pressure imaging is not suitable for diagnosing bone lesions, but it does not seem to be the case. When viewing images in trabecular units, bone tissue is present in the soft tissue, which is unexpectedly sparse. This is because there is enough space to recognize the projected image effectively.
Further, in the present invention, an image detecting element having a pitch of 100 μm is used. However, even if the pitch becomes rough, it is likely that a better image is formed if the X-ray sensitivity is improved. On the contrary, if the pitch becomes finer, the refraction contrast of X-rays may be detected.

実施例について図面を参照して説明すると、図5において、X線管電圧が98KV、管電流20mA、撮影時間0.12秒のX線出力条件でX線発生装置(単相全波整流方式)(5)を作動させ、0.3mm焦点のX線管(11)からX線を照射する。厚さ14cmの被写体(21)はX線低吸収台(4)で支えられており、透過したX線は70KV〜80KV帯に高感度を有するデジタル画像検出系(31)に至る。そしてX線エネルギーはA/D変換されて画像表示装置(6)に送られて画像化される。画像表示装置に表示された画像は、濃度変更や縮尺がソフトウェアにより可能であるので、微妙な濃度設定等ができる。散乱線と被写体の運動を考慮して短時間で高速撮影した画像は、とても画質が良いものである。この時の幾何学的なシステム配置は、X線管焦点〜被写体間a5は72cm、被写体〜デジタル画像検出系間b5は28cm、X線管焦点〜被写体のX線入力面間α5は65cm、被写体の透過X線出力面〜デジタル画像検出系間β5は21cm、そしてX線管焦点〜デジタル画像検出系間a5+b5は100cmとなっており、拡大率は、約1.39倍となる。  The embodiment will be described with reference to the drawings. In FIG. 5, an X-ray generator (single-phase full-wave rectification method) is used with an X-ray output condition of an X-ray tube voltage of 98 KV, a tube current of 20 mA, and an imaging time of 0.12 seconds. (5) is operated and X-rays are irradiated from the X-ray tube (11) having a focal point of 0.3 mm. A subject (21) having a thickness of 14 cm is supported by an X-ray low absorption table (4), and the transmitted X-rays reach a digital image detection system (31) having high sensitivity in the 70 KV to 80 KV band. The X-ray energy is A / D converted and sent to the image display device (6) to be imaged. Since the image displayed on the image display device can be changed in density and scaled by software, fine density setting can be performed. Images taken at a high speed in a short time in consideration of scattered radiation and subject motion have very good image quality. At this time, the geometrical system layout is 72 cm for the X-ray tube focal point to the subject a5, 28 cm for the subject to digital image detection system b5, and 65 cm for the distance between the X-ray tube focal point and the X-ray input plane of the subject to be 65 cm. Β5 between the transmission X-ray output surface and the digital image detection system is 21 cm, and a5 + b5 between the X-ray tube focus and the digital image detection system is 100 cm, and the enlargement ratio is about 1.39 times.

従来の一般撮影法を示す図である。It is a figure which shows the conventional general imaging | photography method. 従来の拡大撮影法を示す図である。It is a figure which shows the conventional magnified imaging method. 人の正常眼のMTFを示したものである。引用文献は、株式会社 南江堂 診療放射線技術 改訂第5版 上巻 より抜粋記載したものである。It shows MTF of a human normal eye. The cited documents are excerpted from Nanedo Co., Ltd. Medical Radiation Technology Revised 5th edition. 本願発明における幾何学的なX線システム配置の実施例を示す図である。It is a figure which shows the Example of the geometrical X-ray system arrangement | positioning in this invention. 本願発明における画像形成システムの実施例を示す図である。It is a figure which shows the Example of the image forming system in this invention.

符号の説明Explanation of symbols

1 X線管
11 高電圧撮影用のX線管
2 被写体
21 0ではないが微小な運動を伴う被写体
3 画像検出系
31 70KV〜80KV帯でX線高感度のデジタル画像検出系
4 X線低吸収台
5 高電圧撮影用X線発生装置
6 画像表示装置
DESCRIPTION OF SYMBOLS 1 X-ray tube 11 X-ray tube 2 for high-voltage imaging 2 Subject 210 Object which is not 0 but accompanied by minute movement 3 Image detection system 31 Digital image detection system X-ray high sensitivity in 70 KV to 80 KV band 4 X-ray low absorption Table 5 X-ray generator for high-voltage imaging 6 Image display device

Claims (1)

被写体の運動が0ではないが微小のときに、1.04〜2.0倍の拡大率による拡大撮影法が可能なように、0.3mm以上0.6mm以下の実効焦点のタングステンターゲットから成る回転陽極X線管を有し、且つX線管焦点、被写体のX線入力面、被写体の透過X線出力面およびデジタル画像検出系の幾何学的な配置が、X線管焦点〜被写体のX線入力面間の距離が50cm以上150cm以下で、グレーデル効果が有効となるように被写体の透過X線出力面〜デジタル画像検出系間の距離が4cm以上50cm以下で、X線管焦点〜デジタル画像検出系の距離が54cm以上200cm以下を有する。さらに、70KV〜80KVのX線エネルギー帯に高感度のレスポンスを示すデジタル画像検出系を有し、そのデジタル信号を画像化する画像表示装置と、且つそのデジタル画像検出系が効率よく反応するように、X線管電圧が96KV以上150KV以下の高電圧撮影法が可能で、0.01秒以上0.12秒以下の短時間撮影が可能な単相全波整流方式の場合にあっては20mA以上のX線発生装置を有する機能を特徴とするX線画像形成システム  It consists of a tungsten target with an effective focus of 0.3 mm or more and 0.6 mm or less so that a magnified photographing method with an enlargement ratio of 1.04 to 2.0 times is possible when the movement of the subject is not zero but is minute. The X-ray tube focal point, the X-ray input surface of the subject, the transmitted X-ray output surface of the subject, and the geometrical arrangement of the digital image detection system have a rotating anode X-ray tube. The distance between the transmission X-ray output surface of the subject and the digital image detection system is 4 cm or more and 50 cm or less so that the distance between the line input surfaces is 50 cm or more and 150 cm or less and the Gradel effect is effective. The distance of the detection system is 54 cm or more and 200 cm or less. Furthermore, it has a digital image detection system that exhibits a high-sensitivity response in the X-ray energy band of 70 KV to 80 KV, and an image display device that images the digital signal, and the digital image detection system reacts efficiently. In the case of a single-phase full-wave rectification method capable of high-voltage imaging with an X-ray tube voltage of 96 KV to 150 KV, and capable of short-time imaging of 0.01 seconds to 0.12 seconds, 20 mA or more X-ray image forming system having the function of having an X-ray generator
JP2005219562A 2005-06-30 2005-06-30 High-speed radiographing digital x-ray image formation system for medical test collecting image data at low magnification ratio Pending JP2007007358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219562A JP2007007358A (en) 2005-06-30 2005-06-30 High-speed radiographing digital x-ray image formation system for medical test collecting image data at low magnification ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005219562A JP2007007358A (en) 2005-06-30 2005-06-30 High-speed radiographing digital x-ray image formation system for medical test collecting image data at low magnification ratio

Publications (1)

Publication Number Publication Date
JP2007007358A true JP2007007358A (en) 2007-01-18

Family

ID=37746573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219562A Pending JP2007007358A (en) 2005-06-30 2005-06-30 High-speed radiographing digital x-ray image formation system for medical test collecting image data at low magnification ratio

Country Status (1)

Country Link
JP (1) JP2007007358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008492A1 (en) * 2010-07-13 2012-01-19 株式会社テレシステムズ X-ray tomogram imaging device
CN104346815A (en) * 2013-07-29 2015-02-11 上海西门子医疗器械有限公司 Patient-displacement monitoring method, system and X-ray imaging equipment in exposing process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008492A1 (en) * 2010-07-13 2012-01-19 株式会社テレシステムズ X-ray tomogram imaging device
JP5878121B2 (en) * 2010-07-13 2016-03-08 株式会社テレシステムズ X-ray tomography system
US9668705B2 (en) 2010-07-13 2017-06-06 Takara Telesystems Corp. X-ray tomogram imaging device
KR101819257B1 (en) * 2010-07-13 2018-01-16 다카라 텔레시스템즈 가부시키가이샤 X-ray tomogram imaging device
CN104346815A (en) * 2013-07-29 2015-02-11 上海西门子医疗器械有限公司 Patient-displacement monitoring method, system and X-ray imaging equipment in exposing process

Similar Documents

Publication Publication Date Title
JP4846577B2 (en) X-ray inspection method and X-ray inspection apparatus
JP2007216052A (en) Tomosynthesis system for breast imaging
JP2008062058A (en) Method for acquiring tomosynthesis image
JP6475138B2 (en) Control device, radiographic image capturing device, radiographic image capturing method, and radiographic image capturing program
JP5669799B2 (en) Image processing apparatus, radiographic imaging system, image processing program, and image processing method
JP2005013738A (en) System and method for scanning object in tomosynthesis application
WO2017043106A1 (en) Image processing device, radiation image image pickup system, image processing method, and image processing program
Analoui et al. Medical imaging: principles and practices
JP3861572B2 (en) X-ray imaging device
JP2589613B2 (en) X-ray CT imaging method and X-ray CT apparatus
Shaw et al. Optimization of MTF and DQE in magnification radiography: a theoretical analysis
CN113167746A (en) Dynamic radiation collimation for non-destructive analysis of test objects
JP2007007358A (en) High-speed radiographing digital x-ray image formation system for medical test collecting image data at low magnification ratio
JP6659695B2 (en) Two-dimensional X-ray detector capable of dynamically setting a region of interest, cone beam CT apparatus including the same, and method of operating the same
JP2009183373A (en) X-ray grid and x-ray diagnostic apparatus
JP2005080918A (en) Radiation tomography apparatus and radiation tomography method, as well as image generation apparatus and image generation method
Haus et al. Image quality in mammography
Calliste et al. Initial clinical evaluation of stationary digital breast tomosynthesis
WO2020246220A1 (en) Radiography system and enlarged absorption contrast image generation method
JP5389965B2 (en) Scattered ray correction method and X-ray CT apparatus
JP2006346290A (en) Radiographic image photographing apparatus
JP4730054B2 (en) Phase contrast X-ray imaging system for asbestos and phase contrast X-ray imaging method for asbestos
WO2007108346A1 (en) Radiograph processing method, radiograph processing apparatus, and radiographic imaging system
JP2007268033A (en) Radiography system and radiography method
Malliori et al. Breast tomosynthesis using the multiple projection algorithm adapted for stationary detectors

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116