JP2007006880A - Method for measuring enzyme and apparatus for measuring the same - Google Patents

Method for measuring enzyme and apparatus for measuring the same Download PDF

Info

Publication number
JP2007006880A
JP2007006880A JP2005261745A JP2005261745A JP2007006880A JP 2007006880 A JP2007006880 A JP 2007006880A JP 2005261745 A JP2005261745 A JP 2005261745A JP 2005261745 A JP2005261745 A JP 2005261745A JP 2007006880 A JP2007006880 A JP 2007006880A
Authority
JP
Japan
Prior art keywords
enzyme
reaction
solution
measuring
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005261745A
Other languages
Japanese (ja)
Other versions
JP4775701B2 (en
Inventor
Toshio Igarashi
淑郎 五十嵐
Jun Kato
潤 加藤
Naohiro Noda
直広 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005261745A priority Critical patent/JP4775701B2/en
Publication of JP2007006880A publication Critical patent/JP2007006880A/en
Application granted granted Critical
Publication of JP4775701B2 publication Critical patent/JP4775701B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring an enzyme, capable of giving a result on the spot, without requiring a waiting time due to an induction period, capable of continuously collecting and measuring a sample, and capable of following a change of a concentration of the enzyme in the sample with the lapse of time, and to provide an apparatus for measuring the same. <P>SOLUTION: This method for measuring the enzyme comprises utilizing autocatalytic reaction in which the enzyme acts as a catalyst and calculating an amount of the enzyme contained in a sample solution based on a time by which the reaction has rapidly proceeded, wherein the sample solution is mixed with a reagent participating in the autocatalytic reaction, so as to form a mixed solution, the mixed solution is poured into a channel at a prescribed flow rate, the autocatalytic reaction is made to arise in the channel, and the amount of the enzyme contained in the sample solution is calculated based on a state of a change of a color developed in the channel in accordance with the autocatalytic reaction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酵素の計測方法および計測装置に関する。酵素の計測は、例えば、エンザイムイムノアッセイ(EIA)と呼ばれる分析の中で、目的の生物や化学物質を酵素標識し、それを検出する技術として様々な分野で行なわれている。本発明を用いると、酵素を迅速、簡便、高感度に計測することが可能となる。利用分野としては酵素の計測を行う全ての分野が該当し、臨床をはじめ医薬品、製薬、食品、環境分析など広範である。具体的な用途としては、内分泌撹乱性物質(環境ホルモン)の検出や、ホルモン様作用の測定、アトピー性皮膚炎の原因物質特定、スギ花粉の飛散量測定、ウイルスや細菌のような微生物の計測が挙げられる。   The present invention relates to an enzyme measurement method and a measurement apparatus. Enzyme measurement is performed in various fields as a technique for enzyme-labeling target organisms and chemical substances and detecting them in an analysis called enzyme immunoassay (EIA), for example. If this invention is used, it will become possible to measure an enzyme rapidly, simply and with high sensitivity. The fields of application include all fields that measure enzymes, and include a wide range of fields including clinical, pharmaceutical, pharmaceutical, food, and environmental analysis. Specific uses include detection of endocrine disrupting substances (environmental hormones), measurement of hormone-like effects, identification of causative substances for atopic dermatitis, measurement of cedar pollen scattering, and measurement of microorganisms such as viruses and bacteria Is mentioned.

イムノアッセイは生体内での特異的な免疫反応である抗原抗体反応を利用した技術であり、アレルギー反応の原因物質、ウイルス、細菌など多様な対象を高い特異性をもって計測できる優れた分析手法である。計測原理は、抗原に結合させた標識物質の量を測ることにより、間接的に測定対象である抗原を定量するというものである。   The immunoassay is a technique using an antigen-antibody reaction, which is a specific immune reaction in a living body, and is an excellent analytical technique capable of measuring various targets such as allergic reaction causative substances, viruses and bacteria with high specificity. The measurement principle is to indirectly quantify the antigen to be measured by measuring the amount of labeling substance bound to the antigen.

標識物質としては、放射性物質、蛍光物質、発光物質、酵素などが用いられている。特に、酵素を標識とする分析方法はエンザイムイムノアッセイ(EIA)と呼ばれ、他の方法と比較して安全で操作が簡便である上、感度や選択性が高いという特長があり、広く利用されている。 標識酵素の計測方法としては、発色試薬を用いて吸光度を測定する方法や、化学発光を用いる方法が普及している。   As the labeling substance, radioactive substances, fluorescent substances, luminescent substances, enzymes and the like are used. In particular, an analytical method using an enzyme as a label is called an enzyme immunoassay (EIA), which is safer and easier to operate than other methods and has features such as high sensitivity and selectivity, and is widely used. Yes. As a method for measuring a labeling enzyme, a method of measuring absorbance using a coloring reagent and a method of using chemiluminescence are widely used.

しかしながら、これらの方法では、計測システム全体に対して、標識酵素の計測系に関わる分析精度、手間、コストの制約が大きいことが問題になっている。これに対して特許文献1に記載されるような先行技術は、代表的な標識酵素であるペルオキシダーゼ(Peroxydase:以下PODと略す)に着目し、PODが触媒として作用する自己触媒反応を利用して、反応が急激に進行するまでの時間(誘導期間)からPODの量を求めるという方法を提供している。この先行技術では、前記PODが触媒として作用する自己触媒反応は、亜硫酸塩・過酸化水素系の反応またはCo−(5−Br−PAPS)2・ペルオキソー硫酸系の反応としている。 However, in these methods, there is a problem in that the measurement accuracy, labor, and cost of the labeling enzyme measurement system are largely limited for the entire measurement system. On the other hand, the prior art described in Patent Document 1 focuses on peroxidase (hereinafter referred to as POD), which is a representative labeling enzyme, and utilizes an autocatalytic reaction in which POD acts as a catalyst. And providing a method for determining the amount of POD from the time until the reaction proceeds abruptly (induction period). In this prior art, the autocatalytic reaction in which the POD acts as a catalyst is a sulfite-hydrogen peroxide reaction or a Co- (5-Br-PAPS) 2 -peroxo-sulfuric acid reaction.

また、誘導期間の終点は、pHの急激な変化や、Co(5−Br−PAPS)2の分解進行に伴う呈色状態の急変として目視でもとらえることができ、特別な検出装置を必要とせず簡便である。この技術によって、簡易かつローコストな酵素の計測を実現している。
特開2001−333797号公報
In addition, the end point of the induction period can be visually recognized as a rapid change in pH or a sudden change in the color state accompanying the progress of decomposition of Co (5-Br-PAPS) 2 , without requiring a special detection device. Convenient. By this technology, simple and low-cost enzyme measurement is realized.
JP 2001-333797 A

しかしながら、特許文献1の方法は、反応がバッチ式に進むことから、例えばストップウォッチで時間を測り、誘導期間のあいだ変色を待っていなければならない。また、この先行技術は、一つのサンプルの酵素濃度を測定する方法であり、連続モニタリングができないなど、実用上の制約がある。   However, in the method of Patent Document 1, since the reaction proceeds batchwise, it is necessary to measure time with, for example, a stopwatch and wait for discoloration during the induction period. In addition, this prior art is a method for measuring the enzyme concentration of one sample and has practical limitations such as continuous monitoring is not possible.

そこで、本発明では、誘導期間を待つことなく、その場で結果を知ることができ、サンプルを連続的に採取し測定を行うことができ、サンプル中の酵素濃度の経時変化を追跡することを可能とする酵素の計測方法および計測装置を提供することを目的とする。   Therefore, in the present invention, without waiting for the induction period, the result can be known on the spot, the sample can be continuously collected and measured, and the change in the enzyme concentration in the sample over time can be tracked. It is an object of the present invention to provide an enzyme measuring method and a measuring apparatus that can be used.

上記目的を達成するために、本発明の請求項1に係る酵素の計測方法は、酵素が触媒として作用する自己触媒反応を利用し、反応が急激に進行するまでの時間(誘導期間)にもとづいて、試料液に含まれる酵素の量を求める酵素の計測方法であって、試料液に自己触媒反応に関わる試薬を混合し、その混合液を一定の流量で流路に流し、流路中で自己触媒反応を起こさせ、自己触媒反応に伴って流路中で現れる変色の状態から試料液に含まれる酵素の量を求めることを特徴とする。   In order to achieve the above object, the enzyme measuring method according to claim 1 of the present invention uses an autocatalytic reaction in which the enzyme acts as a catalyst, and is based on the time (induction period) until the reaction proceeds rapidly. An enzyme measuring method for determining the amount of enzyme contained in a sample solution, wherein a reagent involved in an autocatalytic reaction is mixed with the sample solution, and the mixed solution is allowed to flow through the channel at a constant flow rate. It is characterized in that an autocatalytic reaction is caused and the amount of enzyme contained in the sample liquid is obtained from the discolored state appearing in the flow path accompanying the autocatalytic reaction.

本発明の請求項2に係る酵素の計測方法は、請求項1について酵素の量の計測方法を示したものであり、自己触媒反応に伴って流路中で現れる変色領域の長さ、あるいは、非変色領域の長さのどちらか一方から、試料液に含まれる酵素の量を計測することを特徴とする。   The method for measuring an enzyme according to claim 2 of the present invention shows the method for measuring the amount of enzyme according to claim 1, and is the length of the discoloration region that appears in the flow path with the autocatalytic reaction, or The amount of the enzyme contained in the sample solution is measured from either one of the lengths of the non-discolored region.

本発明の請求項3に係る酵素の計測方法は、請求項1、2の酵素の計測方法を実施するための装置であって、試薬を保持する手段と、試料液を保持する手段と、送液手段と、試薬、試料液およびそれらの混合液を流す流路と、試薬や試料液を混合する手段と、自己触媒反応を検出する手段とを備えることを特徴とする。   The enzyme measurement method according to claim 3 of the present invention is an apparatus for carrying out the enzyme measurement method according to claims 1 and 2, comprising means for holding a reagent, means for holding a sample solution, It is characterized by comprising a liquid means, a flow path for flowing the reagent, the sample liquid and a mixture thereof, a means for mixing the reagent and the sample liquid, and a means for detecting an autocatalytic reaction.

本発明の請求項4に係る酵素の計測方法は、請求項3について流路の性質を特定したものであり、流路のうち、試薬と試料液の混合液を流す部分が透明であることを特徴とする。   The enzyme measuring method according to claim 4 of the present invention specifies the properties of the flow channel according to claim 3, and the portion of the flow channel through which the mixed solution of the reagent and the sample solution flows is transparent. Features.

本発明の請求項5に係る酵素の計測方法は、請求項4について流路の形状を特定したものであり、流路のうち、試薬と試料液の混合液を流す部分がらせん状構造を有することを特徴とする。   The enzyme measuring method according to claim 5 of the present invention specifies the shape of the flow channel according to claim 4, and the portion of the flow channel through which the mixed liquid of the reagent and the sample solution flows has a helical structure. It is characterized by that.

本発明の請求項6に係る酵素の計測方法は、複数試料の計測を可能とする発明であり、請求項3〜5に示した装置であって、複数の試料液を保持する手段と、複数の流路とを備えることを特徴とする。   The enzyme measurement method according to claim 6 of the present invention is an invention that enables measurement of a plurality of samples, and is an apparatus according to claims 3 to 5, comprising means for holding a plurality of sample solutions, and a plurality of samples. The flow path is provided.

本発明の請求項7に係る酵素の計測方法は、校正機能を実現するための発明であり、請求項3〜6に示した装置であって、酵素を含まない校正用溶液(ゼロ校正液)と、既知の濃度の酵素を含む校正用溶液(スパン校正液)とのいずれか一方、ないしは両方を備えることを特徴とする。   A method for measuring an enzyme according to claim 7 of the present invention is an invention for realizing a calibration function, and is the apparatus according to claims 3 to 6, wherein the calibration solution does not contain an enzyme (zero calibration solution). And a calibration solution (span calibration solution) containing an enzyme having a known concentration, or both.

本発明によれば、誘導期間を待つことなく、その場で結果を知ることができ、サンプルを連続的に採取し測定を行うことができ、サンプル中の酵素濃度の経時変化を追跡することを可能とする酵素の計測方法および計測装置が提供される。   According to the present invention, without waiting for the induction period, the result can be known on the spot, the sample can be continuously collected and measured, and the change in the enzyme concentration in the sample over time can be traced. Provided are an enzyme measurement method and a measurement apparatus which can be used.

以下に本発明の実施の形態を述べるが、本発明の適用範囲は、この内容に限定されるものではない。   Embodiments of the present invention will be described below, but the scope of the present invention is not limited to this content.

自己触媒反応
自己触媒反応とは、反応進行にともなって、反応物質が増加したり、反応を触媒する物質が増加する化学反応である。
この反応の特徴は、反応進行にともなって、反応速度が指数関数的に増大し、ある時間が経過した時に反応が急激に進むことである。この反応において反応開始剤となる物質(たとえば反応を触媒する酵素)をトリガーと呼ぶ。そして、トリガーの量は反応開始から反応終点までの時間(誘導期間)から求めることができる。自己触媒反応では、混合して反応を開始させても誘導期間は、ほとんど無反応であるかのように進み、このような誘導期間を過ぎて急激に反応が進行すると共に完了する。したがって、誘導期間とは、このように反応物および必要な触媒を混合してから反応が完了するまでの期間であると共に、その期間の経過の直前まで実質的に反応が進行せず、経過時点でほぼ瞬時に反応が完了する期間であることを意味する。
Autocatalytic reaction An autocatalytic reaction is a chemical reaction in which the number of reactants increases or the number of substances that catalyze the reaction increases as the reaction proceeds.
The characteristic of this reaction is that the reaction rate increases exponentially with the progress of the reaction, and the reaction proceeds rapidly when a certain time elapses. A substance that becomes a reaction initiator in this reaction (for example, an enzyme that catalyzes the reaction) is called a trigger. The amount of the trigger can be obtained from the time from the reaction start to the reaction end point (induction period). In the autocatalytic reaction, even if mixing is started and the reaction is started, the induction period proceeds as if there is almost no reaction, and the reaction rapidly proceeds and completes after such an induction period. Therefore, the induction period is a period from the mixing of the reactant and the necessary catalyst in this way until the reaction is completed, and the reaction does not substantially proceed until just before the lapse of the period. This means that the reaction is almost instantaneously completed.

自己触媒反応の中でpHの経時変化を利用して反応進行を検出する系として、亜硫酸ナトリウム/過酸化水素反応系がある。この反応系では式(1)の反応が起こり、亜硫酸水素イオン1個が水素イオン1個と反応して、水素イオン2個が生成する。
HSO3- + H22 + H+
→ 2H+ + SO4 2- + H2O ・・・・・(1)
There is a sodium sulfite / hydrogen peroxide reaction system as a system for detecting the progress of reaction by utilizing a change in pH with time in an autocatalytic reaction. In this reaction system, the reaction of formula (1) occurs, and one hydrogen sulfite ion reacts with one hydrogen ion to generate two hydrogen ions.
HSO 3 + H 2 O 2 + H +
→ 2H + + SO 4 2- + H 2 O (1)

生成した水素イオンは式(1)の反応側の要素となることから、反応が進めば進むほど平衡を生成側に押し、反応速度が高まっていく。結果的に、時間が経過するにつれて水素イオンが指数関数的に増加していき、反応溶液のpHは、ある時間(誘導期間)が経過すると急激に低下する。このため、この溶液にpH指示薬、例えばブロモチモールブルー(BTB)を添加しておくと、誘導時間が経過した後、溶液のpH変化に伴って、溶液の色が青色から黄色に瞬時に変化する。この呈色状態の変化は、十分、目視で確認が可能であり、特別な検出装置などを必要としない。   Since the generated hydrogen ion becomes an element on the reaction side of the formula (1), as the reaction proceeds, the equilibrium is pushed to the generation side, and the reaction rate increases. As a result, hydrogen ions increase exponentially as time elapses, and the pH of the reaction solution rapidly decreases when a certain time (induction period) elapses. Therefore, if a pH indicator such as bromothymol blue (BTB) is added to this solution, the color of the solution instantly changes from blue to yellow as the pH of the solution changes after the induction time has elapsed. . This change in the color state can be sufficiently visually confirmed, and no special detection device or the like is required.

自己触媒反応のほかの例としては、Co−(5−Br−PAPS)2 /ペルオキソー硫酸反応系がある。この反応系では式(2)の反応が起こり、Co2+イオンが生成する。 Another example of the autocatalytic reaction is a Co- (5-Br-PAPS) 2 / peroxo-sulfuric acid reaction system. In this reaction system, the reaction of the formula (2) occurs and Co 2+ ions are generated.

Figure 2007006880
(2)
Co2+イオンは、式(2)の反応に対して触媒として働くため、結果的に、上記の(1)の反応と同様、反応進行とともに反応速度が高まっていく。Co−(5−Br−PAPS)2 は紫色、その分解生成物は無色であるため、誘導期間が経過した後、紫色だった反応溶液は無色透明になる。
Figure 2007006880
(2)
Since Co 2+ ions act as a catalyst for the reaction of the formula (2), as a result, the reaction rate increases as the reaction proceeds, as in the reaction of the above (1). Since Co- (5-Br-PAPS) 2 is purple and its decomposition product is colorless, the reaction solution which is purple after the induction period has passed becomes colorless and transparent.

上述の2つの自己触媒反応系では、いずれも、酵素ペルオキシダーゼ(POD)の一種であるホースラディッシュペルオキシダーゼ(以下HRPと略)がトリガーとして働く。HRPは、EIAにおいて抗体の標識によく利用される酵素である。自己触媒反応はHRPを微量まで定量可能であり、EIAの信号検知手段として非常に優れている。   In both of the two autocatalytic reaction systems described above, horseradish peroxidase (hereinafter abbreviated as HRP), which is a kind of enzyme peroxidase (POD), works as a trigger. HRP is an enzyme often used for labeling antibodies in EIA. The autocatalytic reaction can quantify HRP to a very small amount and is very excellent as a signal detection means of EIA.

本発明に係る酵素の計測方法の形態
本発明に係る酵素の計測方法では、自己触媒反応を流路中で行う。自己触媒反応に関わる試薬、および試料液は、ポンプなどを用いて流路に流して混合し、例えば、ガラス棒にポリテトラフロロエチレンチューブをらせん状に巻きつけた流路(コイル)の中に通す。このような形態では、コイルの任意の長さの場所を境に自己触媒反応に伴う変化(例えば溶液の変色)が起こる。
3. Form of enzyme measuring method according to the present invention In the enzyme measuring method according to the present invention, an autocatalytic reaction is performed in a flow path. Reagents related to autocatalytic reaction and sample liquid are mixed by flowing into the flow path using a pump or the like, for example, in a flow path (coil) in which a polytetrafluoroethylene tube is wound spirally around a glass rod. Pass through. In such a form, a change (for example, discoloration of a solution) occurs due to an autocatalytic reaction at a position of an arbitrary length of the coil.

例えば、試料液と試薬とを混合した場所をx=0とし、そこから変化が起こる場所までの距離をx、管路の各部における断面積をS(X) 、流量をV(一定)、誘導期間をTとすると、これらの関係は式(3)で表すことができる。
∫S(X) dx = V × T ・・・・・(3)
式(3)において、管路の断面積を一定のSとすると、
S × x = V × T
x = V/S × T
となり、これは、
距離 = 流速 × 時間 ・・・・・(4)
と解釈することもできる。すなわち、流量だけでなく、流速が一定であることを意味する。
式(1)の自己触媒反応にBTBを添加した系を用いた場合、試料液中のHRP濃度が異なると、その濃度の増加とともにガラス棒上の青色バンドの長さが短くなる。それは、HRP濃度の増加に伴って自己触媒反応の速度が向上し、誘導期間が短くなった結果、変化が起こる場所までの距離が短くなるためである。この事実に基づき、自己触媒反応をフロー系で検出する方法を確立したのが本発明である。
For example, the place where the sample solution and the reagent are mixed is set to x = 0, the distance from the place where the change occurs to x, the cross-sectional area at each part of the pipeline is S (X) , the flow rate is V (constant), When the period is T, these relationships can be expressed by Equation (3).
∫ S (X) dx = V x T (3)
In equation (3), if the cross-sectional area of the pipe is a constant S,
S x x = V x T
x = V / S × T
And this is
Distance = Flow velocity x Time (4)
Can also be interpreted. That is, not only the flow rate but also the flow rate is constant.
When a system in which BTB is added to the autocatalytic reaction of formula (1) is used, if the HRP concentration in the sample solution is different, the length of the blue band on the glass rod becomes shorter as the concentration increases. This is because as the HRP concentration increases, the speed of the autocatalytic reaction increases and the induction period becomes shorter, resulting in a shorter distance to the place where the change occurs. Based on this fact, the present invention has established a method for detecting an autocatalytic reaction in a flow system.

自己触媒反応はある誘導時間を経た後に反応が急激に進行する。そのため上述のように流路中を所定の流量(管径が一定の領域では一定流速)で流れる反応溶液は、変化が起きる場所までの距離が誘導期間に従属(管径が一定の領域では比例)して変化する。このため、任意の長さの位置で、急激に反応が進行する前の溶液と、進行した後の溶液に分かれる。
管径が一定の場合には、距離と誘導期間とが比例関係にあり、これに基づいて、HRP濃度を特定することができる。
管径が変化しても、流量を一定とすれば、誘導期間中の全流量を測定し、誘導期間中の全流量と、誘導期間とが比例関係にあることからHRP濃度を特定することができる。
本発明者らは、pH変化を利用した自己触媒反応系であるBTB/亜硫酸塩/過酸化水素自己触媒反応を流路に流して行った。その結果、攪拌コイル中の任意の長さを境界として、青色バンドと黄色バンドが現れた。この自己触媒反応系では、ある誘導時間を経て、反応溶液のpHが急激に下降する。そのため、青色バンドの溶液は高pH(反応進行前)の溶液、黄色バンドの溶液は低pH(反応進行後)の溶液に相当する。青色バンドと黄色バンドの境界の位置の変動は6時間の連続運転でおよそ±1mm程度であった。このことから、本発明では、従来の変色時間を目視とストップウォッチで測定するバッチ系自己触媒反応のように、急激に反応が進む瞬間まで溶液を監視する必要はない。
The autocatalytic reaction proceeds rapidly after a certain induction time. Therefore, as described above, the reaction solution flowing through the flow path at a predetermined flow rate (a constant flow rate in a region where the tube diameter is constant) depends on the induction period (the proportion is proportional in the region where the tube diameter is constant). ) And change. For this reason, at a position of an arbitrary length, the solution is divided into a solution before the reaction suddenly progresses and a solution after the progress.
When the tube diameter is constant, the distance and the induction period are in a proportional relationship, and based on this, the HRP concentration can be specified.
Even if the pipe diameter changes, if the flow rate is constant, the total flow rate during the induction period is measured, and the HRP concentration can be specified because the total flow rate during the induction period and the induction period are in a proportional relationship. it can.
The present inventors conducted BTB / sulfite / hydrogen peroxide autocatalytic reaction, which is an autocatalytic reaction system utilizing pH change, through a flow path. As a result, a blue band and a yellow band appeared with an arbitrary length in the stirring coil as a boundary. In this autocatalytic reaction system, the pH of the reaction solution drops rapidly after a certain induction time. Therefore, the blue band solution corresponds to a high pH solution (before reaction progress), and the yellow band solution corresponds to a low pH solution (after reaction progress). The variation in the position of the boundary between the blue band and the yellow band was about ± 1 mm after 6 hours of continuous operation. For this reason, in the present invention, it is not necessary to monitor the solution until the moment when the reaction proceeds abruptly, unlike the batch autocatalytic reaction in which the color change time is measured visually and with a stopwatch.

次に、本発明に係る酵素の計測方法および計測装置に関し、その実施例と請求項との関係を示し、さらに実施例について説明する。
実施例
1.試薬
BTB、亜硫酸ナトリウム、HRPは和光純薬製を使用した。過酸化水素は関東化学製を使用した。その他の試薬は断りの無い限り市販の特級試薬を蒸留水で希釈して使用した。
Next, regarding the enzyme measuring method and measuring apparatus according to the present invention, the relationship between the examples and the claims will be shown, and further examples will be described.
Example 1. Reagents BTB, sodium sulfite, and HRP were manufactured by Wako Pure Chemical Industries. Hydrogen peroxide manufactured by Kanto Chemical was used. Unless otherwise noted, commercially available special grade reagents were used after diluting with distilled water.

2.装置
送液手段としては、プランジャーポンプを用いることができる。本実施例では、東京化成製のダブルプランジャー型ポンプTCI−NOX1000ωを2台使用した。プランジャータイプ以外のポンプとしては、流量比保持を重視する場合はペリスタティックポンプが好適であり、微小化を目指すにはピエゾポンプが適している。
2. A plunger pump can be used as the device liquid feeding means. In this example, two double plunger pumps TCI-NOX1000ω made by Tokyo Chemical Industry were used. As a pump other than the plunger type, a peristaltic pump is suitable when importance is attached to the flow rate ratio, and a piezo pump is suitable for miniaturization.

流路には、ジーエルサイエンス製のポリテトラフロロエチレンチューブ(外径1/16インチ、内径1mm)を使用した。このチューブは半透明であり、流路中の液の色を目視などで検知することができる。また、ポリテトラフロロエチレンチューブをらせん状に巻きつけるために、直径7mm、長さ300mmのガラス管を使用した。チューブをらせん状にすることで、目視観察の際、変色域を認識しやすくなるからである。   A polytetrafluoroethylene tube (outer diameter 1/16 inch, inner diameter 1 mm) manufactured by GL Science was used for the flow path. This tube is translucent, and the color of the liquid in the flow path can be detected visually. Further, a glass tube having a diameter of 7 mm and a length of 300 mm was used for winding the polytetrafluoroethylene tube in a spiral shape. This is because by making the tube spiral, it becomes easy to recognize the discoloration region during visual observation.

3.各溶液の調製
亜硫酸塩/BTB水溶液は亜硫酸ナトリウム0.64gとBTB 15mgを蒸留水に溶解し、50mLに希釈し、流路に流す際はこの溶液をさらに5倍に希釈して使用した。過酸化水素水は30%過酸化水素水4mLを蒸留水で100mLに希釈して使用した。
HRP試料溶液は蒸留水で希釈し、HRP濃度100μgL-1に調製したものを母液とし、これをさらに蒸留水で希釈して使用した。
3. Preparation of each solution As the sulfite / BTB aqueous solution, 0.64 g of sodium sulfite and 15 mg of BTB were dissolved in distilled water, diluted to 50 mL, and this solution was further diluted 5 times when used in the flow path. Hydrogen peroxide water was used by diluting 4 mL of 30% hydrogen peroxide water to 100 mL with distilled water.
The HRP sample solution was diluted with distilled water, and the HRP concentration adjusted to 100 μgL −1 was used as a mother liquor, which was further diluted with distilled water.

4.定量操作
図1に、本発明の実施例であるフローシステム装置の概略を示す。プランジャーポンプ1を用いて、流路AにはBTB/亜硫酸塩水溶液2を、流路Bには過酸化水素水3をそれぞれ流速0.5mL・min-1で流した。同様に、流路CにはHRP試料溶液4を流速1.0mL・min-1で流した。なお、図1の装置は、本発明を実施するための一実施形態であり、本発明を実施するための装置は、図1のものに限定されるものではない。
4). FIG. 1 shows an outline of a flow system apparatus that is an embodiment of the present invention. Using the plunger pump 1, the BTB / sulfite aqueous solution 2 was passed through the flow path A and the hydrogen peroxide solution 3 was flowed through the flow path B at a flow rate of 0.5 mL · min −1 . Similarly, the HRP sample solution 4 was passed through the channel C at a flow rate of 1.0 mL · min −1 . 1 is an embodiment for carrying out the present invention, and the apparatus for carrying out the present invention is not limited to that shown in FIG.

図1の装置では、流路中で混合された溶液は、ガラス棒に巻きつけられた反応コイル5の中を流れる。溶液のpHは、当初、弱アルカリ性であることから、BTBの青色を呈しているが(図中6の領域)、ある長さから先では、自己触媒反応によってpHが急激に低下し、黄色へと変化する(図中7の領域)。このためガラス棒上の反応コイルが変色前の青色領域と変食後の黄色領域とに分かれた様子を目視で判別できる。変色状態の観察は、目視のほか、CCDカメラやCMOSカメラによっても可能であり、ほかには、リニアイメージセンサを利用することもできる。参照番号8、9で示した装置は、試薬と試料液を混合するためのミキサーであり、必要に応じて用いればよい。計測後、廃液10は装置から排出される。   In the apparatus of FIG. 1, the solution mixed in the flow path flows through a reaction coil 5 wound around a glass rod. Since the pH of the solution is weakly alkaline at first, it exhibits a blue color of BTB (region 6 in the figure). From a certain length, the pH rapidly decreases due to autocatalytic reaction and turns yellow. (Region 7 in the figure). For this reason, it can visually discriminate | determine a mode that the reaction coil on a glass rod was divided into the blue area | region before discoloration, and the yellow area | region after a food change. In addition to visual observation, the discolored state can be observed by a CCD camera or a CMOS camera. In addition, a linear image sensor can be used. The apparatuses indicated by reference numerals 8 and 9 are mixers for mixing the reagent and the sample solution, and may be used as necessary. After the measurement, the waste liquid 10 is discharged from the apparatus.

本実施例では、図1の装置を用い、反応コイルの左末端から青色と黄色の境界までの長さ、すなわち青色領域6の長さをものさしで測定し、試料液中のHRP濃度の定量を行った。   In this example, using the apparatus of FIG. 1, the length from the left end of the reaction coil to the boundary between blue and yellow, that is, the length of the blue region 6 is measured to measure the HRP concentration in the sample solution. went.

5.HRP濃度と変色域の長さとの関係
本実施例では、試料液中のHRP濃度を0ppm、1ppm、2ppm、1ppm、0ppmと変化させたときに、時間経過に伴ない、青色領域6の長さがどのように変化するかを測定した。結果を図2に示す。HRP濃度が増加すると青色領域6の長さは短くなった。また、濃度が減少して初期の0ppmに戻ると、青色領域の長さは元に戻った。
5. In this example, when the HRP concentration in the sample solution was changed to 0 ppm, 1 ppm, 2 ppm, 1 ppm, and 0 ppm, the length of the blue region 6 with the passage of time. Was measured. The results are shown in FIG. As the HRP concentration increased, the length of the blue region 6 became shorter. When the concentration decreased and returned to the initial value of 0 ppm, the length of the blue region was restored.

HRPは、過酸化水素が分解されて水素イオンを生成する反応を触媒する。図2の結果から了解されるように、本発明では一つのサンプルの酵素濃度を測定することが可能なだけではなく、そのサンプルの濃度変化をリアルタイムに追跡することも可能である。   HRP catalyzes a reaction in which hydrogen peroxide is decomposed to generate hydrogen ions. As understood from the result of FIG. 2, the present invention can not only measure the enzyme concentration of one sample but also track the concentration change of the sample in real time.

6.検量線
青色領域6の長さは誘導期間によって変化する。本発明者らは、亜硫酸塩/過酸化水素系自己触媒反応の誘導時間はHRP濃度の負の常用対数値に比例することを認識している。このHRP濃度との相関関係の一致は、流速が一定の場合、距離が時間に比例する式(4)の関係から導くことができる。青色領域6の長さとHRP濃度の対数値の関係は1〜50ppmの間で良好な直線性を示した(図3)。このように、青色領域6の長さはHRP濃度の負の常用対数値に比例した。
なお、図3に係る実施例では、青色領域6の長さとHRP濃度の対数値の関係を示した。このように、管径が一定の場合には、距離(青色領域6の長さ)と誘導期間とが比例関係にあり、これに基づいて、HRP濃度を特定することができる。すなわち、検量線を得ることができる。
しかし、前記したように、管径が変化しても、流量を一定とすれば、誘導期間中の全流量を測定し、誘導期間中の全流量と、誘導期間とが比例関係にあることからHRP濃度を特定することができる。すなわち、流量に基づいて検量線を得ることができる。
例えば、反応時間が遅ければ、反応初期では経路を太くして流速を落とし、反応が現れる頃の到達時間(誘導期間の終了時間)付近では、その反応時間の差を顕著に見るため、半径を細くして、流速を速くするといったように管(チューブ)を構成することもできる。また、管を徐々に細くして、同一流量で引き流速を徐々に速くすることも可能である。このような形態であっても、誘導期間中の全流量を計測することができる。このように、必ずしも流速を一定とせず、流量を一定とし、誘導期間中の全流量を測定し、誘導期間中の全流量と、誘導期間との比例関係からHRP濃度を特定するように実施することも、本発明の技術的範囲に含まれる。
6). Calibration curve The length of the blue region 6 varies depending on the induction period. The present inventors recognize that the induction time of the sulfite / hydrogen peroxide autocatalytic reaction is proportional to the negative common logarithm of the HRP concentration. The coincidence of the correlation with the HRP concentration can be derived from the relationship of the equation (4) in which the distance is proportional to time when the flow rate is constant. The relationship between the length of the blue region 6 and the logarithmic value of the HRP concentration showed good linearity between 1 and 50 ppm (FIG. 3). Thus, the length of the blue region 6 was proportional to the negative common logarithm of the HRP concentration.
In the example according to FIG. 3, the relationship between the length of the blue region 6 and the logarithmic value of the HRP concentration is shown. Thus, when the tube diameter is constant, the distance (the length of the blue region 6) and the induction period are in a proportional relationship, and based on this, the HRP concentration can be specified. That is, a calibration curve can be obtained.
However, as described above, even if the pipe diameter changes, if the flow rate is constant, the total flow rate during the induction period is measured, and the total flow rate during the induction period is proportional to the induction period. The HRP concentration can be specified. That is, a calibration curve can be obtained based on the flow rate.
For example, if the reaction time is slow, the path is made thicker and the flow rate is reduced at the beginning of the reaction, and the radius is set to be close to the arrival time when the reaction appears (the end time of the induction period). It is also possible to configure the tube (tube) so as to reduce the thickness and increase the flow rate. It is also possible to gradually narrow the tube and gradually increase the pulling flow rate at the same flow rate. Even in this form, the total flow rate during the induction period can be measured. In this way, the flow rate is not necessarily constant, the flow rate is constant, the total flow rate during the induction period is measured, and the HRP concentration is specified from the proportional relationship between the total flow rate during the induction period and the induction period. This is also included in the technical scope of the present invention.

7.ブランク反応の抑制
本実施例で用いた、式(1)で表される自己触媒反応は、試薬2、3が混合すると、HRPが存在しなくても、反応が進行する。この、いわゆるブランク反応の影響を軽減するには、試料液4は、試薬と試料液の混合タイミングを近づけることが好ましい。最も好適な方法は、試薬と試料液とを同時に混合することである。
7). Inhibition of Blank Reaction In the autocatalytic reaction represented by the formula (1) used in this example, when reagents 2 and 3 are mixed, the reaction proceeds even if HRP is not present. In order to reduce the influence of this so-called blank reaction, it is preferable that the sample solution 4 is brought close to the mixing timing of the reagent and the sample solution. The most preferred method is to mix the reagent and sample solution simultaneously.

次に、図1〜図3について説明した実施例の他、本発明を実施するにあたっての変形例について言及する。
A.複数の試料の計測
複数の試料を計測する場合は、試料液を保持する容器とそれに付随する流路を複数構成し、電磁弁などの流路切りかえ機構を加えて、所望の試料液を送液できるよう、装置を構成すればよい。
Next, in addition to the embodiments described with reference to FIGS. 1 to 3, modifications for implementing the present invention will be described.
A. Measurement of multiple samples When measuring multiple samples, configure multiple containers holding sample solutions and their associated channels, add a channel switching mechanism such as a solenoid valve, and add the desired sample solution. What is necessary is just to comprise an apparatus so that liquid feeding can be carried out.

B.校正機能
本発明の装置の実用化を想定すると、校正機能の実現は重要である。校正機能をもつ装置の構成は、基本的に、上記図1〜図3に係る実施例で用いた装置の構成と同じである。試料液を保持する容器のうち、ひとつに酵素を含まない校正用溶液(ゼロ校正液)を備えれば、それを用いて、ゼロ校正を行うことができる。また、既知の濃度の酵素を含む校正用溶液(スパン校正液)を備えれば、スパン校正を行うことができる。これらのいずれか一方、ないしは両方を備えることで、校正機能を実現できる。
B. Calibration Function Assuming that the apparatus of the present invention is put into practical use, it is important to realize the calibration function. The configuration of the apparatus having a calibration function is basically the same as the configuration of the apparatus used in the embodiments according to FIGS. If one of the containers holding the sample solution is provided with a calibration solution (zero calibration solution) that does not contain an enzyme, zero calibration can be performed using that solution. Further, if a calibration solution (span calibration solution) containing an enzyme with a known concentration is provided, span calibration can be performed. A calibration function can be realized by providing either or both of these.

C.温度変動の影響排除
自己触媒反応は温度によってその反応速度が影響を受ける。装置を一定温度に調節すれば、周囲温度の影響を避けることが可能である。
また、所定の自己触媒反応について、温度変化が反応速度に与える影響をあらかじめ把握しておけば、装置に温度センサを設けて、その温度によって温度影響を演算で補正することができる。この方式は、装置の温度調節機構を省略できるので、装置の簡略化には好ましい。
C. Eliminating the effects of temperature fluctuations The reaction rate of autocatalytic reactions is affected by temperature. By adjusting the apparatus to a constant temperature, it is possible to avoid the influence of the ambient temperature.
In addition, if the influence of temperature change on the reaction rate for a given autocatalytic reaction is known in advance, a temperature sensor can be provided in the apparatus, and the temperature influence can be corrected by calculation based on the temperature. This method is preferable for simplifying the apparatus because the temperature control mechanism of the apparatus can be omitted.

D.マイクロ化
本発明に係る酵素の計測方法では、測定の間、試薬が消費され続けることになる。試薬消費を抑制するには、計測系のマイクロ化が有効である。マイクロチップフローシステムを実現すれば、環境に与える負荷を軽減した環境調和型の計測方法となることが期待される。
D. Micronization In the enzyme measuring method according to the present invention, reagents are continuously consumed during the measurement. In order to reduce reagent consumption, micro measurement systems are effective. If a microchip flow system is realized, it is expected to be an environmentally harmonious measurement method that reduces the load on the environment.

特許文献1のバッチ系自己触媒反応を利用したシステムは、誘導期間が終わってから測定結果が分かるというシステムだった。これに対して、本発明に係る酵素の計測方法は、測定中は常に計測結果が現れているため、誘導期間を待つことなく、その場で結果を知ることができる。   The system using the batch-type autocatalytic reaction of Patent Document 1 is a system in which the measurement result is known after the induction period is over. In contrast, in the enzyme measurement method according to the present invention, since the measurement result always appears during the measurement, the result can be known on the spot without waiting for the induction period.

また、本発明に係る酵素の計測方法では、サンプルを連続的に採取し測定を行うことができる。これにより、サンプル中の酵素濃度の経時変化を追跡することが可能となる。特許文献1の技術では、ただ単に一個のサンプルの濃度を測定していたのに比べて、実用上、大きな効果が期待される。   Moreover, in the enzyme measuring method according to the present invention, the sample can be continuously collected and measured. As a result, it is possible to track changes in the enzyme concentration in the sample over time. The technique of Patent Document 1 is expected to have a great effect in practice compared to simply measuring the concentration of a single sample.

なお、自己触媒反応は反応液の呈色状態の変化として目視でも十分とらえることができ、特別な検出器を必要としない。この特徴は、簡易、ローコストな計測システムを実現する上で、極めて有効である。特許文献1記載の発明で期待できたこの効果は、本発明でも同様に期待することができる。   Note that the autocatalytic reaction can be sufficiently detected visually as a change in the color state of the reaction solution, and does not require a special detector. This feature is extremely effective in realizing a simple and low-cost measurement system. This effect that can be expected in the invention described in Patent Document 1 can also be expected in the present invention.

本発明に係る酵素の計測方法および装置は、自己触媒反応系だけでなく、時間計測系を利用したほかの化学計測法、例えば、振動反応系、時計反応系などにも適用が可能である。   The enzyme measurement method and apparatus according to the present invention can be applied not only to an autocatalytic reaction system but also to other chemical measurement methods using a time measurement system, such as a vibration reaction system and a clock reaction system.

本発明に係る酵素の計測方法および装置について、その一実施の形態について概略を示す概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram which shows the outline about one embodiment about the measuring method and apparatus of the enzyme based on this invention. HRP濃度を変化させたときの青色領域の長さの変化を示すグラフである。It is a graph which shows the change of the length of a blue region when an HRP density | concentration is changed. HRP濃度と青色領域の長さとの関係を示すグラフである。It is a graph which shows the relationship between HRP density | concentration and the length of a blue region.

符号の説明Explanation of symbols

1 プランジャーポンプ
2 BTB/亜硫酸塩水溶液
3 過酸化水素水
4 HRP試料溶液
5 反応コイル
6 青色領域
8、9 ミキサー
10 廃液
1 Plunger pump 2 BTB / sulfite aqueous solution 3 Hydrogen peroxide solution 4 HRP sample solution 5 Reaction coil 6 Blue region 8, 9 Mixer 10 Waste liquid

Claims (7)

酵素が触媒として作用する自己触媒反応を利用し、反応が急激に進行するまでの時間にもとづいて、試料液に含まれる酵素の量を求める酵素の計測方法であって、
上記試料液に自己触媒反応に関わる試薬を混合して混合液とし、
該混合液を一定の流量で流路に流し、
該流路中で自己触媒反応を起こさせ、
自己触媒反応に伴って上記流路中で現れる変色の状態から上記試料液に含まれる酵素の量を求めることを特徴とする酵素の計測方法。
An enzyme measurement method that uses an autocatalytic reaction in which an enzyme acts as a catalyst and determines the amount of enzyme contained in a sample solution based on the time until the reaction proceeds rapidly,
Reagents involved in autocatalytic reaction are mixed with the sample solution to make a mixture,
Flowing the mixture at a constant flow rate through the flow path;
Causing an autocatalytic reaction in the flow path;
A method for measuring an enzyme, characterized in that the amount of enzyme contained in the sample solution is obtained from a discolored state appearing in the flow path in association with an autocatalytic reaction.
自己触媒反応に伴って流路中で現れる変色領域の長さ、または、非変色領域の長さのどちらか一方から、試料液に含まれる酵素の量を計測することを特徴とする請求項1に記載の酵素の計測方法。   2. The amount of enzyme contained in the sample solution is measured from either the length of the color changing region appearing in the flow path in association with the autocatalytic reaction or the length of the non-color changing region. The method for measuring an enzyme according to 1. 請求項1または2の酵素の計測方法を実施するための装置であって、
上記試薬を保持する手段と、
上記試料液を保持する手段と、
送液手段と、
上記試薬、上記試料液およびそれらの混合液を流す流路と
上記試薬および上記試料液を混合する手段と
自己触媒反応を検出する手段とを備える
ことを特徴とする酵素の計測装置。
An apparatus for carrying out the enzyme measurement method according to claim 1 or 2,
Means for holding the reagent;
Means for holding the sample solution;
Liquid feeding means;
An enzyme measuring apparatus comprising: a flow path for flowing the reagent, the sample liquid, and a mixture thereof; means for mixing the reagent and the sample liquid; and means for detecting an autocatalytic reaction.
上記流路のうち、上記試薬と上記試料液の上記混合液を流す部分が透明であることを特徴とする請求項3に記載の酵素の計測装置。   4. The enzyme measuring apparatus according to claim 3, wherein a portion of the flow path through which the mixed solution of the reagent and the sample solution flows is transparent. 上記混合液を流す部分がらせん状構造を有することを特徴とする請求項4に記載の酵素の計測装置。   The apparatus for measuring an enzyme according to claim 4, wherein a portion through which the mixed solution flows has a helical structure. 複数の試料液を保持する手段と、
複数の流路と、
該流路の切りかえ機構とを備える
ことを特徴とする請求項3〜5のいずれかに記載の酵素の計測装置。
Means for holding a plurality of sample solutions;
A plurality of flow paths;
The enzyme measuring apparatus according to claim 3, further comprising a switching mechanism for the flow path.
酵素を含まない校正用溶液と、
既知の濃度の酵素を含む校正用溶液と
のいずれか一方、または両方を備える
ことを特徴とする請求項3〜6のいずれかに記載の酵素の計測装置。
A calibration solution that does not contain enzymes, and
7. The enzyme measuring apparatus according to claim 3, comprising either one or both of a calibration solution containing an enzyme having a known concentration.
JP2005261745A 2005-06-03 2005-09-09 Enzyme measuring method and measuring apparatus Expired - Fee Related JP4775701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005261745A JP4775701B2 (en) 2005-06-03 2005-09-09 Enzyme measuring method and measuring apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005163742 2005-06-03
JP2005163742 2005-06-03
JP2005261745A JP4775701B2 (en) 2005-06-03 2005-09-09 Enzyme measuring method and measuring apparatus

Publications (2)

Publication Number Publication Date
JP2007006880A true JP2007006880A (en) 2007-01-18
JP4775701B2 JP4775701B2 (en) 2011-09-21

Family

ID=37746153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261745A Expired - Fee Related JP4775701B2 (en) 2005-06-03 2005-09-09 Enzyme measuring method and measuring apparatus

Country Status (1)

Country Link
JP (1) JP4775701B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033062A (en) * 2010-09-17 2011-04-27 深圳市新产业生物医学工程有限公司 Quasi-automatic chemiluminescence immunoassay analyzer
CN113219025A (en) * 2021-05-07 2021-08-06 安徽大学 Method for quantitatively detecting potassium bromate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643170A (en) * 1990-02-06 1994-02-18 Chemtrak Inc Choresterol measurement device
JPH06258323A (en) * 1982-03-09 1994-09-16 Bio Metric Syst Inc Equipment and method for quantitative analysis
JP2001333797A (en) * 2000-03-23 2001-12-04 Toshio Igarashi Method and device for measuring marker enzyme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258323A (en) * 1982-03-09 1994-09-16 Bio Metric Syst Inc Equipment and method for quantitative analysis
JPH0643170A (en) * 1990-02-06 1994-02-18 Chemtrak Inc Choresterol measurement device
JP2001333797A (en) * 2000-03-23 2001-12-04 Toshio Igarashi Method and device for measuring marker enzyme

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033062A (en) * 2010-09-17 2011-04-27 深圳市新产业生物医学工程有限公司 Quasi-automatic chemiluminescence immunoassay analyzer
CN102033062B (en) * 2010-09-17 2012-11-07 深圳市新产业生物医学工程有限公司 Quasi-automatic chemiluminescence immunoassay analyzer
CN113219025A (en) * 2021-05-07 2021-08-06 安徽大学 Method for quantitatively detecting potassium bromate
CN113219025B (en) * 2021-05-07 2023-07-25 安徽大学 Method for quantitatively detecting potassium bromate

Also Published As

Publication number Publication date
JP4775701B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4049801B2 (en) Flow analysis system that can quantitatively or semi-quantitatively measure elements in a sample
US20130156646A1 (en) Method and apparatus for degassing a liquid and analytical device having the apparatus
US20210190700A1 (en) Method for determining a parameter dependent on the concentration of at least one analyte in a sample liquid
RU2015121732A (en) CALIBRATION OF ANALYSIS USING THE REACTION TIME
Chen et al. Development of an automatic multi-channel ink-jet ejection chemiluminescence system and its application to the determination of horseradish peroxidase
JP2009112278A (en) Biological sample reaction chip and biological sample reaction method
Epifania et al. Capillary-driven microfluidic device with integrated nanoporous microbeads for ultrarapid biosensing assays
JP4775701B2 (en) Enzyme measuring method and measuring apparatus
CN110308140B (en) Method for detecting chemical substances by using potassium ferrate
CN104502332A (en) Method for detecting chloride ion concentration in water
CN107167443B (en) Method for detecting PCB77 by using ultraviolet spectrometer
JP4706883B2 (en) Biological sample quantification method
Chen et al. Accelerated micro-sequential injection in lab-on-valve format, applied to enzymatic assays
AU2022246368A1 (en) A method for measuring the concentration of a chemical species using a reagent baseline
Paengnakorn et al. Towards green titration: Downscaling the sequential injection analysis lab-at-valve titration system with the stepwise addition of a titrant
Leong et al. Lactate monitoring in droplet microfluidics: a cautionary tale in assay miniaturisation
van Staden Solving the problems of sequential injection systems as process analyzers
JP2008107245A (en) Flow-injection analysis device
JP4085122B2 (en) Flow analysis system that can quantitatively or semi-quantitatively measure elements in a sample
JP2002250736A (en) Method for automatically measuring concentration
JPS5860259A (en) Continuous determination
RU2797643C1 (en) Formaldehyde gas analyzer
Kato et al. A new length detection-micro fluidic device using an autocatalytic reaction
JPH1010050A (en) Gasifying separator of three-form nitrometer
JPS6248192B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees