JP2007006600A - Input/output management device, drive unit equipped with the management device, automobile mounted with the drive unit, and input/output management method - Google Patents

Input/output management device, drive unit equipped with the management device, automobile mounted with the drive unit, and input/output management method Download PDF

Info

Publication number
JP2007006600A
JP2007006600A JP2005183084A JP2005183084A JP2007006600A JP 2007006600 A JP2007006600 A JP 2007006600A JP 2005183084 A JP2005183084 A JP 2005183084A JP 2005183084 A JP2005183084 A JP 2005183084A JP 2007006600 A JP2007006600 A JP 2007006600A
Authority
JP
Japan
Prior art keywords
input
output
power storage
storage means
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005183084A
Other languages
Japanese (ja)
Other versions
JP4240012B2 (en
Inventor
Akihiro Kimura
秋広 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005183084A priority Critical patent/JP4240012B2/en
Publication of JP2007006600A publication Critical patent/JP2007006600A/en
Application granted granted Critical
Publication of JP4240012B2 publication Critical patent/JP4240012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/024Clutch engagement state of torque converter lock-up clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the input/output of excessive large power to/from a power accumulation means when a residual quantity is reset and so on. <P>SOLUTION: In this automobile that comprises a motor that can input and output power to drive wheels, and a battery that exchanges power between the motor and the battery, when the residual quantity SOC of the battery is reset (S130), temporary input/output restrictions Wintmp, Wouttmp set on the basis of a battery temperature Tb and the residual quantity SOC are corrected in a direction where the restrictions are further tightened, input/output restrictions Win, Wout of the battery are set (S280), and the motor is drive-controlled in the range of the set input/output restrictions Win, Wout (S290 to S310). By this, when the residual quantity SOC of the battery 26 is reset, the input/output of the excessive large power to/from the battery 26 can be suppressed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、入出力管理装置およびこれを備える駆動装置並びにこれを搭載する自動車、入出力管理方法に関する。   The present invention relates to an input / output management device, a drive device including the same, a vehicle equipped with the same, and an input / output management method.

従来、この種の入出力管理装置としては、充放電可能なバッテリの入出力を管理するものが提案されている(例えば、特許文献1参照)。この装置では、バッテリに充放電される充放電電流の積算値に基づいて演算されるバッテリの残容量とバッテリ温度とに基づいてバッテリの入出力制限を設定し、設定した入出力制限の範囲内でバッテリへの入出力を許可することにより、バッテリへの過大な電力の入出力を抑制している。
特開2002−337573号公報
Conventionally, as this type of input / output management device, one that manages input / output of a chargeable / dischargeable battery has been proposed (see, for example, Patent Document 1). In this device, the battery input / output limit is set based on the remaining battery capacity and the battery temperature calculated based on the integrated value of the charge / discharge current charged / discharged to / from the battery, and is within the set input / output limit range. By permitting input / output to / from the battery, excessive power input / output to the battery is suppressed.
JP 2002-337573 A

しかしながら、上述の入出力管理装置では、バッテリの残容量がリセットされたときなど所定の要因が生じたときには、バッテリの入出力制限が適正に設定されず、バッテリの入出力制限を超えた電力がバッテリに入出力されてしまう場合がある。   However, in the above-described input / output management device, when a predetermined factor occurs such as when the remaining capacity of the battery is reset, the input / output limit of the battery is not set appropriately, and the power exceeding the input / output limit of the battery is Input / output may occur in the battery.

本発明の入出力管理装置およびこれを備える駆動装置並びにこれを搭載する自動車、入出力管理方法は、蓄電装置への過大な電力の入出力を抑制することを目的とする。   An object of an input / output management device, a driving device including the input / output management device, a vehicle equipped with the input / output management device, and an input / output management method is to suppress input / output of excessive power to / from the power storage device.

本発明の入出力管理装置およびこれを備える駆動装置並びにこれを搭載する自動車、入出力管理方法は、上述の目的を達成するために以下の手段を採った。   The input / output management device of the present invention, the drive device equipped with the same, the automobile equipped with the same, and the input / output management method employ the following means in order to achieve the above-mentioned object.

本発明の入出力管理装置は、
充放電可能な蓄電手段の入出力を管理する入出力管理装置であって、
前記蓄電手段の状態を検出する状態検出手段と、
所定の補正要因が生じていないときには前記検出された蓄電手段の状態に基づいて該蓄電手段の入出力制限を設定し、前記所定の補正要因が生じているときには前記検出された蓄電手段の状態に基づいて設定される入出力制限に更に制限が課される方向への補正を施して該蓄電手段の入出力制限を設定する入出力制限設定手段と、
該設定された入出力制限の範囲内で前記蓄電手段の入出力を許可する入出力許可手段と、
を備えることを要旨とする。
The input / output management device of the present invention is
An input / output management device for managing input / output of chargeable / dischargeable power storage means,
State detecting means for detecting the state of the power storage means;
When the predetermined correction factor does not occur, the input / output limit of the power storage unit is set based on the detected state of the power storage unit, and when the predetermined correction factor occurs, the detected state of the power storage unit is set. An input / output restriction setting means for setting an input / output restriction of the power storage means by performing correction in a direction in which the restriction is further imposed on the input / output restriction set based on
Input / output permission means for permitting input / output of the power storage means within the set input / output restriction range;
It is a summary to provide.

この本発明の入出力管理装置では、所定の補正要因が生じていないときには、蓄電手段の状態に基づいて蓄電手段の入出力制限を設定すると共に設定した入出力制限の範囲内で蓄電手段の入出力を許可する。一方、所定の補正要因が生じているときには、蓄電手段の状態に基づいて設定される入出力制限に更に制限が課される方向への補正を施して蓄電手段の入出力制限を設定すると共に設定した入出力制限の範囲内で蓄電手段の入出力を許可する。これにより、所定の補正要因が生じているときに蓄電手段に過大な電力が入出力されるのを抑制することができる。   In the input / output management device according to the present invention, when a predetermined correction factor does not occur, the input / output limit of the power storage means is set based on the state of the power storage means, and the input of the power storage means is within the set input / output limit. Allow output. On the other hand, when a predetermined correction factor has occurred, the input / output limit set based on the state of the power storage means is further corrected in a direction in which a limit is imposed, and the input / output limit of the power storage means is set and set. The input / output of the power storage means is permitted within the range of the input / output restriction. Thereby, it is possible to suppress excessive electric power from being input to and output from the power storage means when a predetermined correction factor is generated.

こうした本発明の入出力管理装置において、前記入出力制限設定手段は、前記所定の補正要因が生じているときに、前記蓄電手段の状態を所定の正確さをもって検出することができないときには前記蓄電手段の状態を前記所定の正確さをもって検出することができなくなる直前に検出された蓄電手段の状態に基づいて設定される入出力制限に第1の補正値を用いた補正を施して前記入出力制限を設定し、前記蓄電手段の状態を所定の正確さをもって検出することができるときには該所定の正確さをもって検出された蓄電手段の状態に基づいて設定される入出力制限に前記第1の補正値より小さい第2の補正値を用いた補正を施して前記入出力制限を設定する手段であるものとすることもできる。こうすれば、蓄電手段の状態を所定の正確さをもって検出することができるか否かに応じて蓄電手段の入出力制限を設定することができる。この場合、前記第2の補正値は、時間の経過に伴って徐々に小さくなるよう設定されてなるものとすることもできる。   In such an input / output management device according to the present invention, the input / output restriction setting means may be configured such that when the predetermined correction factor occurs, the power storage means cannot detect the state of the power storage means with a predetermined accuracy. The input / output restriction is corrected by applying a correction using a first correction value to the input / output restriction set based on the state of the power storage means detected immediately before the state cannot be detected with the predetermined accuracy. When the state of the power storage means can be detected with a predetermined accuracy, the first correction value is set to the input / output limit set based on the state of the power storage means detected with the predetermined accuracy. The input / output restriction may be set by performing correction using a smaller second correction value. In this way, it is possible to set the input / output limit of the power storage means depending on whether or not the state of the power storage means can be detected with a predetermined accuracy. In this case, the second correction value may be set so as to gradually decrease with the passage of time.

また、本発明の入出力管理装置において、前記蓄電手段の温度を検出する温度検出手段を備え、前記状態検出手段は前記蓄電手段から放電可能な電力量である蓄電状態を検出する手段であり、前記入出力制限設定手段は前記所定の補正要因が生じていないときには前記検出された蓄電手段の蓄電状態と前記検出された蓄電手段の温度とに基づいて該蓄電手段の入出力制限を設定し前記所定の補正要因が生じているときには前記検出された蓄電手段の蓄電状態と前記検出された蓄電手段の温度とに基づいて設定される入出力制限に更に制限が課される方向への補正を施して該蓄電手段の入出力制限を設定する手段であるものとすることもできる。こうすれば、蓄電手段の入出力制限をより適正に設定することができる。   In the input / output management device of the present invention, the input / output management device includes a temperature detection unit that detects a temperature of the power storage unit, and the state detection unit is a unit that detects a power storage state that is an amount of power that can be discharged from the power storage unit. The input / output restriction setting means sets the input / output restriction of the power storage means based on the detected power storage state of the power storage means and the detected temperature of the power storage means when the predetermined correction factor has not occurred. When a predetermined correction factor has occurred, correction is performed in such a direction that a further restriction is imposed on the input / output restriction set based on the detected power storage state of the power storage means and the detected temperature of the power storage means. Thus, it may be a means for setting an input / output restriction of the power storage means. In this way, the input / output restriction of the power storage means can be set more appropriately.

さらに、本発明の入出力管理装置において、前記所定の補正要因は、入出力管理装置の記憶領域における少なくとも一部がリセットされた要因であるものとすることもできる。こうすれば、入出力管理装置の記憶領域における少なくとも一部がリセットされたときに蓄電手段に過大な電力が入出力されるのを抑制することができる。   Further, in the input / output management device of the present invention, the predetermined correction factor may be a factor that at least a part of the storage area of the input / output management device is reset. In this way, it is possible to prevent excessive power from being input / output to the power storage means when at least a part of the storage area of the input / output management device is reset.

或いは、本発明の入出力管理装置において、前記所定の補正要因は、入出力管理装置に電力供給する電源の遮断であるものとすることもできる。こうすれば、電源が遮断されたときに蓄電手段に過大な電力が入出力されるのを抑制することができる。   Alternatively, in the input / output management apparatus according to the present invention, the predetermined correction factor may be a cutoff of a power supply for supplying power to the input / output management apparatus. In this way, it is possible to suppress excessive electric power being input / output to / from the power storage means when the power source is shut off.

本発明の駆動装置は、駆動軸を駆動する駆動装置であって、前記駆動軸に動力を出力可能な電動機と、該電動機と電力のやりとりが可能な蓄電手段と、該蓄電手段の入出力を管理する上述のいずれかの態様の本発明の入出力管理装置と、前記電動機から出力すべき駆動指令を設定する駆動指令設定手段と、前記入出力許可手段により許可された前記蓄電手段の入出力の範囲内で前記設定された駆動指令により前記電動機が駆動されるよう該電動機を制御する制御手段と、を備えることを要旨とする。   The drive device of the present invention is a drive device that drives a drive shaft, and includes an electric motor that can output power to the drive shaft, a power storage means that can exchange power with the motor, and an input / output of the power storage means. The input / output management device according to any one of the above aspects to be managed, drive command setting means for setting a drive command to be output from the electric motor, and input / output of the power storage means permitted by the input / output permission means And a control means for controlling the electric motor so that the electric motor is driven by the set drive command within the range.

この本発明の駆動装置では、上述のいずれかの態様の本発明の入出力管理装置を搭載するから、本発明の入出力管理装置が奏する効果、例えば、所定の補正要因が生じているときに蓄電手段に過大な電力が入出力されるのを抑制することができる効果などと同様の効果を奏することができる。   Since the drive device of the present invention is equipped with the input / output management device of the present invention according to any one of the above-described aspects, the effect exhibited by the input / output management device of the present invention, for example, when a predetermined correction factor occurs It is possible to achieve the same effect as the effect of suppressing the excessive power input / output to / from the power storage means.

本発明の自動車は、上述の本発明の駆動装置を搭載し、車軸が前記駆動軸に連結されてなることを要旨とする。この本発明の自動車では、上述の本発明の駆動装置を搭載するから、本発明の駆動装置が奏する効果、例えば、所定の補正要因が生じているときに蓄電手段に過大な電力が入出力されるのを抑制することができる効果などと同様の効果を奏することができる。   The gist of an automobile of the present invention is that the above-described driving device of the present invention is mounted and an axle is connected to the driving shaft. Since the automobile according to the present invention is equipped with the above-described drive device according to the present invention, the effect exerted by the drive device according to the present invention, for example, excessive power is input to and output from the power storage means when a predetermined correction factor occurs. It is possible to achieve the same effect as the effect that can be suppressed.

本発明の入出力管理方法は、
充放電可能な蓄電手段の入出力を管理する入出力管理方法であって、
所定の補正要因が生じていないときには前記蓄電手段の状態に基づいて該蓄電手段の入出力制限を設定し、前記所定の補正要因が生じているときには前記蓄電手段の状態に基づいて設定される入出力制限に更に制限が課される方向への補正を施して該蓄電手段の入出力制限を設定し、該設定した入出力制限の範囲内で前記蓄電手段の入出力を許可する
ことを特徴とする。
The input / output management method of the present invention comprises:
An input / output management method for managing input / output of chargeable / dischargeable power storage means,
When the predetermined correction factor does not occur, the input / output limit of the power storage unit is set based on the state of the power storage unit, and when the predetermined correction factor occurs, the input is set based on the state of the power storage unit. Correcting the output restriction in a direction in which a further restriction is imposed, setting the input / output limit of the power storage means, and allowing the input / output of the power storage means within the set input / output limit range. To do.

この本発明の入出力管理方法によれば、所定の補正要因が生じていないときには蓄電手段の状態に基づいて蓄電手段の入出力制限を設定すると共に設定した入出力制限の範囲内で蓄電手段の入出力を許可し、所定の補正要因が生じているときには蓄電手段の状態に基づいて設定される入出力制限に更に制限が課される方向への補正を施して蓄電手段の入出力制限を設定すると共に設定した入出力制限の範囲内で蓄電手段の入出力を許可するから、所定の補正要因が生じているときに蓄電手段に過大な電力が入出力されるのを抑制することができる。   According to the input / output management method of the present invention, when a predetermined correction factor does not occur, the input / output limit of the power storage means is set based on the state of the power storage means, and within the set input / output limit range, Input / output is permitted, and when a predetermined correction factor is generated, the input / output limit set based on the state of the power storage means is further corrected in a direction in which a further restriction is imposed, and the input / output limit of the power storage means is set. In addition, since the input / output of the power storage means is permitted within the set input / output restriction range, it is possible to prevent excessive power from being input / output to the power storage means when a predetermined correction factor occurs.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例である駆動装置を搭載する電気自動車20の構成の概略を示す構成図である。実施例の電気自動車20は、図示するように、駆動輪30a,30bにデファレンシャルギヤ31を介して連結された駆動軸32に動力を入出力可能なモータ22と、モータ22を駆動するインバータ24を介してモータ22と電力のやりとりを行なうバッテリ26と、車両全体をコントロールする電子制御ユニット40と、電子制御ユニット40や補機61a,61bなどに電力供給する電源としての補機バッテリ60と、を備える。   FIG. 1 is a configuration diagram showing an outline of a configuration of an electric vehicle 20 equipped with a driving apparatus according to an embodiment of the present invention. As shown in the drawing, the electric vehicle 20 of the embodiment includes a motor 22 that can input and output power to a drive shaft 32 connected to drive wheels 30 a and 30 b via a differential gear 31, and an inverter 24 that drives the motor 22. A battery 26 for exchanging electric power with the motor 22, an electronic control unit 40 for controlling the entire vehicle, and an auxiliary battery 60 as a power source for supplying electric power to the electronic control unit 40, the auxiliary machines 61a and 61b, and the like. Prepare.

モータ22は、例えば、電動機として機能すると共に発電機としても機能する周知の同期発電電動機として構成されている。インバータ24は、複数のスイッチング素子により構成されており、バッテリ26から供給される直流電力を擬似的な三相交流電力に変換してモータ22に供給する。   The motor 22 is configured, for example, as a well-known synchronous generator motor that functions as a motor and also as a generator. The inverter 24 includes a plurality of switching elements, converts the DC power supplied from the battery 26 into pseudo three-phase AC power, and supplies the pseudo three-phase AC power to the motor 22.

電子制御ユニット40は、CPU42を中心とするマイクロプロセッサとして構成されており、CPU42の他に処理プログラムを記憶するROM44と、データを一時的に記憶するRAM46と、図示しない入出力ポートとを備える。このRAM46に記憶されたデータは、補機バッテリ60からの電力供給が遮断されたときには消去される。電子制御ユニット40には、モータ22の回転角を検出する回転角センサ23からの回転角θmや,バッテリ26の端子間に設置された電圧センサ27aからの端子間電圧Vb,バッテリ26に充放電される電流を検出する電流センサ27bからの充放電電流Ib,バッテリ26の温度を検出する温度センサ27cからの電池温度Tb,イグニッションスイッチ50からのイグニッション信号,シフトレバー51の操作位置を検出するシフトポジションセンサ52からのシフトポジションSP,アクセルペダル53の踏み込み量を検出するアクセルペダルポジションセンサ54からのアクセル開度Acc,ブレーキペダル55の踏み込み量を検出するブレーキペダルポジションセンサ56からのブレーキペダルポジションBP,車速センサ58からの車速Vなどが入力ポートを介して入力されている。電子制御ユニット40からは、モータ22を駆動制御するためのインバータ24のスイッチング素子へのスイッチング制御信号などが出力ポートを介して出力されている。なお、電子制御ユニット40では、バッテリ26を管理するために、電流センサ28により検出された充放電電流Ibの積算値に基づいてCPU42によりバッテリ26の残容量SOCも演算すると共に演算した残容量SOCをRAM46の所定アドレスに記憶する処理も行なっている。   The electronic control unit 40 is configured as a microprocessor centered on the CPU 42, and includes a ROM 44 for storing a processing program, a RAM 46 for temporarily storing data, and an input / output port (not shown) in addition to the CPU 42. The data stored in the RAM 46 is erased when the power supply from the auxiliary battery 60 is cut off. In the electronic control unit 40, the rotation angle θm from the rotation angle sensor 23 that detects the rotation angle of the motor 22, the voltage Vb between the terminals from the voltage sensor 27 a installed between the terminals of the battery 26, and the charge / discharge of the battery 26. The charge / discharge current Ib from the current sensor 27b for detecting the current to be detected, the battery temperature Tb from the temperature sensor 27c for detecting the temperature of the battery 26, the ignition signal from the ignition switch 50, and the shift for detecting the operating position of the shift lever 51 The shift position SP from the position sensor 52, the accelerator opening Acc from the accelerator pedal position sensor 54 that detects the depression amount of the accelerator pedal 53, and the brake pedal position BP from the brake pedal position sensor 56 that detects the depression amount of the brake pedal 55 , Vehicle speed sensor 5 And a vehicle speed V from are input via the input port. From the electronic control unit 40, a switching control signal to the switching element of the inverter 24 for driving and controlling the motor 22 is output via an output port. In the electronic control unit 40, in order to manage the battery 26, the CPU 42 calculates the remaining capacity SOC of the battery 26 and calculates the remaining capacity SOC based on the integrated value of the charge / discharge current Ib detected by the current sensor 28. Is also stored at a predetermined address in the RAM 46.

次に、こうして構成された電気自動車20の動作について説明する。図2は、実施例の電気自動車20の電子制御ユニット40により実行される駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば、数msec毎)に繰り返し実行される。   Next, the operation of the electric vehicle 20 configured as described above will be described. FIG. 2 is a flowchart illustrating an example of a drive control routine executed by the electronic control unit 40 of the electric vehicle 20 according to the embodiment. This routine is repeatedly executed every predetermined time (for example, every several msec).

駆動制御ルーチンが実行されると、電子制御ユニット40のCPU42は、まず、アクセルペダルポジションセンサ54からのアクセル開度Accや,車速センサ58からの車速V,モータ22の回転数Nm,温度センサ27cからの電池温度Tb,バッテリ26の残容量SOCなどのデータを入力する処理を実行する(ステップS100)。ここで、モータ22の回転数Nmは、図示しない回転数算出ルーチンにより回転角センサ23によって検出される回転角θmに基づいて算出されるものを入力するものとしたり、車速Vから換算されるものを入力するものとしたりすることができる。また、バッテリ26の残容量SOCは、電流センサ27bにより検出された充放電電流Ibの積算値に基づいて計算されてRAM46の所定アドレスに書き込まれたものを入力するものとした。   When the drive control routine is executed, first, the CPU 42 of the electronic control unit 40 first determines the accelerator opening Acc from the accelerator pedal position sensor 54, the vehicle speed V from the vehicle speed sensor 58, the rotational speed Nm of the motor 22, and the temperature sensor 27c. A process of inputting data such as the battery temperature Tb and the remaining capacity SOC of the battery 26 is executed (step S100). Here, the rotation speed Nm of the motor 22 is input based on a rotation angle θm detected by the rotation angle sensor 23 by a rotation speed calculation routine (not shown) or converted from the vehicle speed V. Can be entered. Further, the remaining capacity SOC of the battery 26 is calculated based on the integrated value of the charging / discharging current Ib detected by the current sensor 27b, and is inputted at a predetermined address in the RAM 46.

こうしてデータを入力すると、アクセル開度Accと車速Vとに基づいて駆動輪30a,30bに連結された駆動軸32に出力すべき要求トルクTd*を設定する(ステップS110)。ここで、要求トルクTd*は、実施例では、アクセル開度Accと車速Vと要求トルクTd*との関係を予め定めて要求トルク設定用マップとしてROM44に記憶しておき、アクセル開度Accと車速Vとが与えられると記憶したマップから対応する要求トルクTd*を導出して設定するものとした。要求トルク設定用マップの一例を図3に示す。   When the data is thus input, the required torque Td * to be output to the drive shaft 32 connected to the drive wheels 30a, 30b is set based on the accelerator opening Acc and the vehicle speed V (step S110). Here, in the embodiment, the required torque Td * is determined in advance by storing the relationship between the accelerator opening Acc, the vehicle speed V, and the required torque Td * in the ROM 44 as a required torque setting map. When the vehicle speed V is given, the corresponding required torque Td * is derived from the stored map and set. An example of the required torque setting map is shown in FIG.

次に、残容量リセットフラグF1の値を調べると共に(ステップS120)、残容量リセットフラグF1が値0のときには、バッテリ26の残容量SOCがリセットされたか否かを判定する(ステップS130)。ここで、残容量リセットフラグF1は、初期値として値0が設定されると共に残容量SOCがリセットされたときに値1が設定されるフラグである。また、残容量SOCがリセットされたか否かの判定は、実施例では、入力した残容量SOCが初期値であるか否かなどを調べることにより行なうものとした。   Next, the value of the remaining capacity reset flag F1 is checked (step S120), and if the remaining capacity reset flag F1 is 0, it is determined whether or not the remaining capacity SOC of the battery 26 has been reset (step S130). Here, the remaining capacity reset flag F1 is a flag in which a value 0 is set as an initial value and a value 1 is set when the remaining capacity SOC is reset. In the embodiment, whether or not the remaining capacity SOC has been reset is determined by checking whether or not the input remaining capacity SOC is an initial value.

バッテリ26の残容量SOCがリセットされていないと判定されたときには、バッテリ26の電池温度Tbとバッテリ26の残容量SOCとに基づいてバッテリ26の仮入出力制限Wintmp,Wouttmpを設定すると共に(ステップS140)、補正値αに値0を設定し(ステップS150)、設定した仮入出力制限Wintmpに補正値αを加えることによりバッテリ26の入力制限Winを計算すると共に仮出力制限Wouttmpから補正値αを減じることによりバッテリ26の出力制限Woutを計算する(ステップS280)。ここで、バッテリ26の仮入出力制限Wintmp,Wouttmpについては、実施例では、電池温度Tbに基づいて仮入出力制限Wintmp,Wouttmpの基本値を設定し、残容量SOCに基づいて仮出力制限用補正係数と仮入力制限用補正係数とを設定し、設定した仮入出力制限Wintmp,Wouttmpの基本値に補正係数を乗じて仮入出力制限Wintmp,Wouttmpを設定するものとした。図4にバッテリ26の電池温度Tbとバッテリ26の仮入出力制限Wintmp,Wouttmpの基本値との関係の一例を示し、図5にバッテリ26の残容量SOCとバッテリ26の仮入出力制限Wintmp,Wouttmpの補正係数との関係の一例を示す。   When it is determined that the remaining capacity SOC of the battery 26 has not been reset, the temporary input / output limits Wintmp, Wouttmp of the battery 26 are set based on the battery temperature Tb of the battery 26 and the remaining capacity SOC of the battery 26 (step) S140), the correction value α is set to 0 (step S150), the correction value α is added to the set temporary input / output limit Wintmp to calculate the input limit Win of the battery 26, and the correction value α is calculated from the temporary output limit Wouttmp. The output limit Wout of the battery 26 is calculated by subtracting (step S280). Here, regarding the temporary input / output limits Wintmp, Wouttmp of the battery 26, in the embodiment, the basic values of the temporary input / output limits Wintmp, Wouttmp are set based on the battery temperature Tb, and the temporary output limits are set based on the remaining capacity SOC. The correction coefficient and the temporary input restriction correction coefficient are set, and the temporary input / output restrictions Wintmp and Wouttmp are set by multiplying the basic value of the set temporary input / output restrictions Wintmp and Wouttmp by the correction coefficient. FIG. 4 shows an example of the relationship between the battery temperature Tb of the battery 26 and the basic values of the temporary input / output limits Wintmp and Wouttmp of the battery 26, and FIG. 5 shows the remaining capacity SOC of the battery 26 and the temporary input / output limits Wintmp, An example of the relationship with the correction coefficient of Wouttmp is shown.

こうしてバッテリ26の入出力制限Win,Woutを設定すると、設定した入出力制限Win,Woutをモータ22の回転数Nmで除することによりモータ22から出力してもよいトルクの上下限としてのトルク制限Tmin,Tmaxを計算し(ステップS290)、計算したトルク制限Tmin,Tmaxで要求トルクTd*を制限してモータ22のトルク指令Tm*を設定し(ステップS300)、設定したトルク指令Tm*でモータ22を駆動制御して(ステップS310)、駆動制御ルーチンを終了する。モータ22の駆動制御は、具体的には、トルク指令Tm*でモータ22が駆動されるようインバータ24のスイッチング素子をスイッチング制御することにより行なわれる。   When the input / output limits Win and Wout of the battery 26 are thus set, the torque limits as upper and lower limits of the torque that may be output from the motor 22 by dividing the set input / output limits Win and Wout by the rotation speed Nm of the motor 22. Tmin and Tmax are calculated (step S290), the required torque Td * is limited by the calculated torque limits Tmin and Tmax, the torque command Tm * of the motor 22 is set (step S300), and the motor is set by the set torque command Tm *. 22 is controlled (step S310), and the drive control routine is terminated. Specifically, the drive control of the motor 22 is performed by switching control of the switching element of the inverter 24 so that the motor 22 is driven by the torque command Tm *.

一方、ステップS130でバッテリ26の残容量SOCがリセットされたと判定されたときには、残容量リセットフラグF1に値1を設定すると共に(ステップS160)、ステップS100で入力したバッテリ26の残容量SOCが正確であるか否かを判定する(ステップS170)。また、ステップS120で残容量リセットフラグF1が値1のときには、バッテリ26の残容量SOCがリセットされたか否かを判定せずにバッテリ26の残容量SOCが正確であるか否かを判定する(ステップS170)。バッテリ26の残容量SOCが正確であるか否かの判定は、例えば、ステップS100で入力した残容量SOCとバッテリ26の端子間電圧Vbから設定される残容量SOCとの偏差が所定範囲内であるか否かを判定することにより行なうことができる。ここで、端子間電圧Vbから設定される残容量SOCについては、実施例では、端子間電圧Vbと残容量SOCとの関係を予め実験的に定めてマップとしてROM44に記憶しておき、電圧センサ27aにより検出される端子間電圧Vbと記憶したマップとを用いて残容量SOCを導出して設定するものとした。また、所定範囲はバッテリ26の特性などにより定められる。   On the other hand, when it is determined in step S130 that the remaining capacity SOC of the battery 26 has been reset, a value 1 is set in the remaining capacity reset flag F1 (step S160), and the remaining capacity SOC of the battery 26 input in step S100 is accurate. It is determined whether or not (step S170). When the remaining capacity reset flag F1 is 1 in step S120, it is determined whether or not the remaining capacity SOC of the battery 26 is accurate without determining whether or not the remaining capacity SOC of the battery 26 has been reset ( Step S170). The determination as to whether or not the remaining capacity SOC of the battery 26 is accurate is made, for example, when the deviation between the remaining capacity SOC input in step S100 and the remaining capacity SOC set from the inter-terminal voltage Vb of the battery 26 is within a predetermined range. This can be done by determining whether or not there is. Here, regarding the remaining capacity SOC set from the inter-terminal voltage Vb, in the embodiment, the relationship between the inter-terminal voltage Vb and the remaining capacity SOC is experimentally determined in advance and stored in the ROM 44 as a map. The remaining capacity SOC is derived and set using the inter-terminal voltage Vb detected by 27a and the stored map. The predetermined range is determined by the characteristics of the battery 26 and the like.

バッテリ26の残容量SOCが正確でないと判定されたときには、残容量格納フラグF2の値を調べ(ステップ180)、残容量格納フラグF2が値0のときには、前回このルーチンが実行されたときに入力されたバッテリ26の残容量(前回SOC)を格納値SOCsetとして格納し(ステップS190)、残容量格納フラグF2に値1を設定する(ステップS200)。ここで、残容量格納フラグF2は、初期値として値0が設定されると共に残容量SOCが正確でないと初めて判定されて前回の残容量(前回SOC)が格納されたときに値1が設定されるフラグである。また、ステップS190の処理は、残容量SOCが正確でないと判定される直前の残容量SOCを格納する処理となる。そして、格納した格納値SOCsetとバッテリ26の温度Tbとを用いて前述のステップS140の処理と同様にバッテリ26の仮入出力制限Wintmp,Wouttmpを設定し(ステップS210)、補正値αに値W1を設定し(ステップS220)、設定したバッテリ26の仮入出力制限Wintmp,Wouttmpと補正値αとを用いてバッテリ26の入出力制限Win,Woutを設定し(ステップS280)、設定した入出力制限Win,Woutの範囲内でモータ22を駆動制御する(ステップS290〜S310)。ここで、所定値W1は、バッテリ26の残容量SOCが正確でないと判定される直前の残容量SOCに基づいて設定される仮入出力制限Wintmp,Wouttmpを更に制限が課される方向に補正する程度を示すものであり、バッテリ26の特性などにより定められ、例えば、仮入出力制限Wintmp,Wouttmpの60%や70%などに設定される。一方、ステップS180で残容量格納フラグF2が値1のときには、ステップS190,S200の処理を行なうことなく、バッテリ26の残容量SOCが正確でないと判定される直前の残容量SOCを用いて前述のステップS210以降の処理を実行する。このように、バッテリ26の残容量SOCが正確でないときには、残容量SOCが正確でないと判定される直前の残容量SOCを用いてバッテリ26の仮入出力制限Wintmp,Wouttmpを設定すると共に設定した仮入出力制限Wintmp,Wouttmpを更に制限する方向に補正してバッテリ26の入出力制限Win,Woutを設定することにより、バッテリ26の残容量SOCが正確でないときにバッテリ26に過大な電力が入出力されるのを抑制することができる。   When it is determined that the remaining capacity SOC of the battery 26 is not accurate, the value of the remaining capacity storage flag F2 is checked (step 180), and when the remaining capacity storage flag F2 is 0, it is input when this routine is executed last time. The stored remaining capacity (previous SOC) of the battery 26 is stored as a stored value SOCset (step S190), and a value 1 is set to the remaining capacity storage flag F2 (step S200). Here, the remaining capacity storage flag F2 is set to a value 1 when the value 0 is set as an initial value and the remaining capacity SOC is first determined to be inaccurate and the previous remaining capacity (previous SOC) is stored. Flag. Further, the process of step S190 is a process of storing the remaining capacity SOC immediately before it is determined that the remaining capacity SOC is not accurate. Then, using the stored value SOCset and the temperature Tb of the battery 26, the temporary input / output limits Wintmp and Wouttmp of the battery 26 are set in the same manner as in the process of step S140 described above (step S210), and the value W1 is set as the correction value α. (Step S220), the input / output limits Win and Wout of the battery 26 are set using the temporary input / output limits Wintmp and Wouttmp of the battery 26 and the correction value α (step S280). The motor 22 is driven and controlled within the range of Win and Wout (steps S290 to S310). Here, the predetermined value W1 corrects the temporary input / output limits Wintmp, Wouttmp set based on the remaining capacity SOC immediately before it is determined that the remaining capacity SOC of the battery 26 is not accurate in a direction in which further restrictions are imposed. It indicates the degree, is determined by the characteristics of the battery 26, and is set to 60% or 70% of the temporary input / output limits Wintmp, Wouttmp, for example. On the other hand, when the remaining capacity storage flag F2 has a value of 1 in step S180, the above-described processing is performed using the remaining capacity SOC immediately before it is determined that the remaining capacity SOC of the battery 26 is not accurate without performing the processing of steps S190 and S200. The process after step S210 is executed. As described above, when the remaining capacity SOC of the battery 26 is not accurate, the temporary input / output limits Wintmp, Wouttmp of the battery 26 are set and set using the remaining capacity SOC immediately before it is determined that the remaining capacity SOC is not accurate. By correcting the input / output limits Wintmp, Wouttmp in the direction of further limiting and setting the input / output limits Win, Wout of the battery 26, excessive power is input / output to the battery 26 when the remaining capacity SOC of the battery 26 is not accurate. Can be suppressed.

ステップS170でバッテリ26の残容量SOCが正確であると判定されたときには、前述のステップS140と同様にバッテリ26の仮入出力制限Wintmp,Wouttmpを設定すると共に(ステップS230)、前回の補正値(前回α)から所定値Δαを減じることにより補正値αを設定し(ステップS240)、設定した補正値αを値0と比較し(ステップS250)、補正値αが値0以上のときには、設定したバッテリ26の仮入出力制限Wintmp,Wouttmpと補正値αとを用いてバッテリ26の入出力制限Win,Woutを設定し(ステップS280)、設定した入出力制限Win,Woutの範囲内でモータ22を駆動制御する(ステップS290〜S310)。ここで、所定値Δαは、バッテリ26の特性などにより定められ、前述の所定値W1より小さい値に設定される。こうして補正値αを徐々に小さくしていき、即ち、バッテリ26の入出力制限Win,Woutを電池温度Tbと残容量SOCとに基づいて設定される仮入出力制限Wintmp,Woutmpに近づけていき、補正値αが値0未満になったときには、補正値αに値0を再設定すると共に(ステップS260)、残容量リセットフラグF1と残容量格納フラグF2とに共に値0を設定し(ステップS270)、設定した仮入出力制限Wintmp,Wouttmpと補正値αとを用いて入出力制限Win,Woutを計算し(ステップS280)、入出力制限Win,Woutの範囲内でモータ22を駆動制御する(ステップS290〜S310)。こうして残容量リセットフラグF1と残容量格納フラグF2とに共に値0が設定されると、次回にこのルーチンが実行されたときには、ステップS130で残容量リセットフラグF1が値0であるとしてステップS140でバッテリ26の残容量SOCがリセットされたか否かの判定が行なわれる。このように、バッテリ26の残容量SOCがリセットされたときに残容量SOCが正確であるときには、補正値αが値0になるまで電池温度Tbと残容量SOCとに基づいて設定される仮入出力制限Wintmp,Wouttmpを更に制限する方向に補正してバッテリ26の入出力制限Win,Woutを設定するのである。   When it is determined in step S170 that the remaining capacity SOC of the battery 26 is accurate, the temporary input / output limits Wintmp, Wouttmp of the battery 26 are set (step S230), and the previous correction value ( The correction value α is set by subtracting the predetermined value Δα from the previous α) (step S240), the set correction value α is compared with the value 0 (step S250), and when the correction value α is greater than or equal to 0, the correction value α is set. Using the temporary input / output limits Wintmp, Wouttmp of the battery 26 and the correction value α, the input / output limits Win, Wout of the battery 26 are set (step S280), and the motor 22 is operated within the set input / output limits Win, Wout. Drive control is performed (steps S290 to S310). Here, the predetermined value Δα is determined by the characteristics of the battery 26 and the like, and is set to a value smaller than the predetermined value W1. In this way, the correction value α is gradually reduced, that is, the input / output limits Win, Wout of the battery 26 are made closer to the temporary input / output limits Wintmp, Woutmp set based on the battery temperature Tb and the remaining capacity SOC, When the correction value α is less than 0, the value 0 is reset to the correction value α (step S260), and the value 0 is set to both the remaining capacity reset flag F1 and the remaining capacity storage flag F2 (step S270). ), Input / output limits Win, Wout are calculated using the set temporary input / output limits Wintmp, Wouttmp and the correction value α (step S280), and the motor 22 is driven and controlled within the range of the input / output limits Win, Wout (step S280). Steps S290 to S310). Thus, when the remaining capacity reset flag F1 and the remaining capacity storage flag F2 are both set to 0, the next time this routine is executed, the remaining capacity reset flag F1 is assumed to be 0 in step S130, and in step S140. It is determined whether or not the remaining capacity SOC of the battery 26 has been reset. As described above, when the remaining capacity SOC is accurate when the remaining capacity SOC of the battery 26 is reset, the provisional input set based on the battery temperature Tb and the remaining capacity SOC until the correction value α reaches the value 0. The input / output limits Win and Wout of the battery 26 are set by correcting the output limits Wintmp and Wouttmp so as to further limit the output limits.

以上説明した実施例の電気自動車20によれば、バッテリ26の残容量SOCがリセットされたときには、バッテリ26の電池温度Tbと残容量SOCとに基づいて設定されるバッテリ26の仮入出力制限Wintmp,Wouttmpを更に制限する方向に補正してバッテリ26の入出力制限Win,Woutを設定すると共に設定した入出力制限Win,Woutの範囲内でモータ22を駆動制御するから、残容量SOCがリセットされたときにバッテリ26に過大な電力が入出力されるのを抑制することができる。   According to the electric vehicle 20 of the embodiment described above, when the remaining capacity SOC of the battery 26 is reset, the temporary input / output limit Wintmp of the battery 26 set based on the battery temperature Tb of the battery 26 and the remaining capacity SOC. , Wouttmp is corrected in a further restricting direction, and the input / output limits Win and Wout of the battery 26 are set and the motor 22 is driven and controlled within the set input / output limits Win and Wout, so that the remaining capacity SOC is reset. It is possible to prevent excessive electric power from being input / output to / from the battery 26 at the time.

実施例の電気自動車20では、バッテリ26の電池温度Tbと残容量SOCとに基づいて仮入出力制限Wintmp,Wouttmpを設定するものとしたが、バッテリ26の残容量SOCだけに基づいて仮入出力制限Wintmp,Wouttmpを設定するものとしてもよいし、電池温度Tbや残容量SOCに加えて他のパラメータを考慮して仮入出力制限Wintmp,Wouttmpを設定するものとしてもよい。   In the electric vehicle 20 of the embodiment, the temporary input / output limits Wintmp, Wouttmp are set based on the battery temperature Tb of the battery 26 and the remaining capacity SOC, but the temporary input / output is based only on the remaining capacity SOC of the battery 26. The limits Wintmp and Wouttmp may be set, or the temporary input / output limits Wintmp and Wouttmp may be set in consideration of other parameters in addition to the battery temperature Tb and the remaining capacity SOC.

実施例の電気自動車20では、図2の駆動制御ルーチンのステップS170,S180でバッテリ26の残容量SOCが正確でないと判定されると共に残容量格納フラグF2が値0のときには、前回このルーチンが実行されたときの残容量(前回SOC)を格納値SOCsetとして格納するものとしたが、残容量SOCの初期値を格納値SOCsetとして格納するものとしたり、ステップS100で入力した残容量SOCを格納値SOCsetとして格納するものとしてもよい。   In the electric vehicle 20 of the embodiment, when the remaining capacity SOC of the battery 26 is determined to be inaccurate in steps S170 and S180 of the drive control routine of FIG. 2, this routine is executed last time when the remaining capacity storage flag F2 is 0. The remaining capacity (previous SOC) when stored is stored as the stored value SOCset, but the initial value of the remaining capacity SOC is stored as the stored value SOCset, or the remaining capacity SOC input in step S100 is stored. It is good also as what stores as SOCset.

実施例の電気自動車20では、バッテリ26の残容量SOCがリセットされたときに、バッテリ26の仮入出力制限Wintmp,Wouttmpを更に制限する方向に補正してバッテリ26の入出力制限Win,Woutを設定するものとしたが、これに代えて、イグニッションスイッチ50がオフされている最中に補機バッテリ60から電子制御ユニット40への電力供給が一旦遮断されたときなどに、バッテリ26の仮入出力制限Wintmp,Wouttmpを更に制限する方向に補正してバッテリ26の入出力制限Win,Woutを設定するものとしてもよい。この場合、補機バッテリ60からの電力供給が遮断されたときにバッテリ26の残容量SOCは消去されたと考えられるため、図2の駆動制御ルーチンのステップS170,S180でバッテリ26の残容量SOCが正確でないと判定されると共に残容量格納フラグF2が値0のときには、ステップS190の処理に代えて、残容量SOCの初期値を格納値SOCsetとして格納するものとしてもよい。また、バッテリ26の残容量SOCがリセットされた条件やイグニッションスイッチ50がオフされている最中に補機バッテリ60から電子制御ユニット40への電力供給が一旦遮断された条件などの複数の条件の少なくとも一つが成立したときに、バッテリ26の仮入出力制限Wintmp,Wouttmpを更に制限する方向に補正してバッテリ26の入出力制限Win,Woutを設定するものとしてもよい。   In the electric vehicle 20 of the embodiment, when the remaining capacity SOC of the battery 26 is reset, the temporary input / output limits Wintmp, Wouttmp of the battery 26 are corrected in a direction to further limit the input / output limits Win, Wout of the battery 26. However, instead of this, when the power supply from the auxiliary battery 60 to the electronic control unit 40 is temporarily interrupted while the ignition switch 50 is turned off, the battery 26 is temporarily turned on. The input / output limits Win and Wout of the battery 26 may be set by correcting the output limits Wintmp and Wouttmp so as to further limit the output limits. In this case, since the remaining capacity SOC of the battery 26 is considered to have been deleted when the power supply from the auxiliary battery 60 is cut off, the remaining capacity SOC of the battery 26 is determined in steps S170 and S180 of the drive control routine of FIG. When it is determined that the remaining capacity is not accurate and the remaining capacity storage flag F2 is 0, the initial value of the remaining capacity SOC may be stored as the stored value SOCset instead of the process of step S190. In addition, there are a plurality of conditions such as a condition in which the remaining capacity SOC of the battery 26 is reset and a condition in which the power supply from the auxiliary battery 60 to the electronic control unit 40 is temporarily interrupted while the ignition switch 50 is turned off. When at least one of them is established, the temporary input / output limits Wintmp and Wouttmp of the battery 26 may be corrected in a direction to further limit and the input / output limits Win and Wout of the battery 26 may be set.

実施例の電気自動車20では、バッテリ26の残容量SOCがリセットされたか否かの判定を、入力した残容量SOCが初期値であるか否かを調べることにより行なうものとしたが、これに代えてまたは加えて、イグニッションスイッチ50がオフされている最中に補機バッテリ60から電子制御ユニット40への電力供給が一旦遮断されたか否かを調べたりすることなどにより行なうものとしてもよい。   In the electric vehicle 20 of the embodiment, the determination as to whether or not the remaining capacity SOC of the battery 26 has been reset is made by examining whether or not the input remaining capacity SOC is an initial value. Alternatively or additionally, it may be performed by checking whether or not the power supply from the auxiliary battery 60 to the electronic control unit 40 is once interrupted while the ignition switch 50 is turned off.

実施例の電気自動車20では、図2の駆動制御ルーチンのステップS170で残容量SOCが正確であると判定されたときには、時間の経過に伴って補正値αを小さくしていくものとしたが、バッテリ26の残容量SOCが正確でないときの補正値α(前述の値W1)以下の値であれば、時間の経過に拘わらず所定値を設定するものとしてもよい。この場合、残容量SOCがリセットされたと判定されてから所定時間を経過したときに残容量リセットフラグF1と残容量格納フラグF2とに共に値0を設定するものとしてもよい。   In the electric vehicle 20 of the embodiment, when it is determined that the remaining capacity SOC is accurate in step S170 of the drive control routine of FIG. 2, the correction value α is decreased with the passage of time. A predetermined value may be set regardless of the passage of time as long as it is a value equal to or less than the correction value α (the aforementioned value W1) when the remaining capacity SOC of the battery 26 is not accurate. In this case, the value 0 may be set to both the remaining capacity reset flag F1 and the remaining capacity storage flag F2 when a predetermined time has elapsed since it was determined that the remaining capacity SOC was reset.

実施例の電気自動車20では、図2の駆動制御ルーチンのステップS120で残容量リセットフラグF1が値1のときやステップS130でバッテリ26の残容量SOCがリセットされたと判定されたときには、残容量SOCが正確であるか否かに応じて補正値αを設定するものとしたが、残容量SOCが正確であるか否かに拘わらず所定値(例えば、前述の値W1など)を補正値αに設定するものとしてもよい。この場合、残容量SOCがリセットされたと判定されてから所定時間を経過したときに残容量リセットフラグF1と残容量格納フラグF2とに共に値0を設定するものとしてもよい。   In the electric vehicle 20 of the embodiment, when the remaining capacity reset flag F1 is 1 in step S120 of the drive control routine of FIG. 2 or when it is determined in step S130 that the remaining capacity SOC of the battery 26 is reset, the remaining capacity SOC The correction value α is set according to whether or not the current value is accurate. However, a predetermined value (for example, the aforementioned value W1 or the like) is set as the correction value α regardless of whether or not the remaining capacity SOC is accurate. It may be set. In this case, the value 0 may be set to both the remaining capacity reset flag F1 and the remaining capacity storage flag F2 when a predetermined time has elapsed since it was determined that the remaining capacity SOC was reset.

実施例の電気自動車20では、図2の駆動制御ルーチンのステップS100で入力した残容量SOCとバッテリ26の端子間電圧Vbから設定される残容量SOCとに基づいてステップS170でバッテリ26の残容量SOCが正確であるか否かを判定するものとしたが、ステップS130でバッテリ26の残容量SOCがリセットされたと判定されてから所定時間を経過したか否かに基づいてバッテリ26の残容量SOCが正確であるか否かを判定するものとしてもよい。ここで、所定時間は、バッテリ26の特性や電子制御ユニット40の性能などにより定められる。   In the electric vehicle 20 of the embodiment, the remaining capacity of the battery 26 in step S170 based on the remaining capacity SOC input in step S100 of the drive control routine of FIG. 2 and the remaining capacity SOC set from the terminal voltage Vb of the battery 26. Although it is determined whether or not the SOC is accurate, the remaining capacity SOC of the battery 26 is determined based on whether or not a predetermined time has elapsed since it was determined in step S130 that the remaining capacity SOC of the battery 26 was reset. It is good also as what determines whether is correct. Here, the predetermined time is determined by the characteristics of the battery 26, the performance of the electronic control unit 40, and the like.

実施例の電気自動車20では、図2の駆動制御ルーチンのステップS120で残容量リセットフラグF1が値1のときやステップS130でバッテリ26の残容量SOCがリセットされたと判定されたときには、バッテリ26の入出力制限Win,Woutを設定する際に共に補正値αを用いて設定するものとしたが、入力制限Winを設定する際に用いる補正値α1と出力制限Woutを設定する際に用いる補正値α2とに異なる値を用いるものとしてもよい。ここで、補正値α1と補正値α2との関係は、バッテリ26の特性などにより定めることができる。   In the electric vehicle 20 of the embodiment, when the remaining capacity reset flag F1 is 1 in step S120 of the drive control routine of FIG. 2 or when it is determined in step S130 that the remaining capacity SOC of the battery 26 is reset, Although the input / output limits Win and Wout are both set using the correction value α, the correction value α1 used when setting the input limit Win and the correction value α2 used when setting the output limit Wout are set. Different values may be used. Here, the relationship between the correction value α1 and the correction value α2 can be determined by the characteristics of the battery 26 and the like.

実施例の電気自動車20では、バッテリ26の残容量SOCがリセットされたときに残容量SOCが正確でないときには、残容量SOCが正確でないと判定される直前の残容量SOCを用いて設定されるバッテリ26の仮入出力制限Wintmp,Wouttmpを用いてバッテリ26の入出力制限Win,Woutを設定するものとしたが、残容量SOCが正確でないと判定される直前のバッテリ26の仮入出力制限Wintmp,Wouttmpを用いてバッテリ26の入出力制限Win,Woutを設定するものとしてもよい。この場合の駆動制御ルーチンの一例の一部を図6に示す。なお、図6の駆動制御ルーチンのうち図2の駆動制御ルーチンと同一の処理について同一のステップ番号を付し、その詳細な説明は省略する。図6の駆動制御ルーチンでは、ステップS120で残容量リセットフラグF1が値1のときやステップS130でバッテリ26の残容量SOCがリセットされたと判定されたときには、残容量SOCが正確であるか否かを判定し(ステップS170)、残容量SOCが正確でないと判定されたときには、仮入出力制限格納フラグF3の値を調べ(ステップS400)、仮入出力制限格納フラグF3が値0のときには、前回このルーチンが実行されたときに設定されたバッテリ26の仮入出力制限(前回Wintmp),(前回Wouttmp)を格納値Winset,Woutsetとして格納すると共に(ステップS410)、仮入出力制限格納フラグF3に値1を設定し(ステップS420)、格納値Winset,Woutsetを仮入出力制限Wintmp,Wouttmpに設定し(ステップS430)、補正値αに値W1を設定し(ステップS220)、設定した仮入出力制限Wintmp,Wouttmpと補正値αとを用いてバッテリ26の入出力制限Win,Woutを設定する(ステップS280)。ここで、仮入出力制限格納フラグF3は、初期値として値0が設定されると共に前回の仮入出力制限(前回Wintmp),(前回Wouttmp)、即ち残容量SOCが正確でないと判定される直前の仮入出力制限Wintmp,Wouttmpが格納されたときに値1が設定されるフラグである。ステップS400で仮入出力制限格納フラグF3が値1のときには、ステップS410で格納した格納値Winset,Woutsetを用いてS430以降の処理を実行する。即ち、バッテリ26の残容量SOCが正確でないときには、残容量SOCが正確でないと判定される直前の仮入出力制限Wintmp,Wouttmpを用いてバッテリ26の入出力制限Win,Woutを設定するのである。なお、仮入出力制限格納フラグF3は、ステップS170で残容量SOCが正確であると判定され且つステップS240で補正値αが値0未満のときに値0にリセットされる(ステップS440)。このようにバッテリ26の入出力制限Win,Woutを設定することにより、実施例と同様の効果を奏することができる。   In the electric vehicle 20 of the embodiment, when the remaining capacity SOC is not accurate when the remaining capacity SOC of the battery 26 is reset, the battery set using the remaining capacity SOC immediately before it is determined that the remaining capacity SOC is not accurate. The temporary input / output limits Wintmp, Wouttmp of the battery 26 are used to set the input / output limits Win, Wout of the battery 26, but the temporary input / output limits Wintmp of the battery 26 immediately before it is determined that the remaining capacity SOC is not accurate. The input / output limits Win and Wout of the battery 26 may be set using Wouttmp. A part of an example of the drive control routine in this case is shown in FIG. 6 that are the same as those in the drive control routine of FIG. 2 are assigned the same step numbers, and detailed descriptions thereof are omitted. In the drive control routine of FIG. 6, when the remaining capacity reset flag F1 is 1 in step S120 or when it is determined in step S130 that the remaining capacity SOC of the battery 26 has been reset, whether or not the remaining capacity SOC is accurate. (Step S170), when it is determined that the remaining capacity SOC is not accurate, the value of the temporary input / output restriction storage flag F3 is checked (step S400). The temporary input / output limits (previous Wintmp) and (previous Wtmpmp) of the battery 26 set when this routine is executed are stored as stored values Winset and Woutset (step S410), and the temporary input / output limit storage flag F3 is stored. The value 1 is set (step S420), and the stored values Winset, Woutset are temporarily set. The output limits Wintmp, Wouttmp are set (step S430), the value W1 is set as the correction value α (step S220), and the input / output limit of the battery 26 is set using the set temporary input / output limits Wintmp, Wouttmp and the correction value α. Win and Wout are set (step S280). Here, the temporary input / output restriction storage flag F3 is set to an initial value of 0, and immediately before the previous temporary input / output restriction (previous Wintmp), (previous Wouttmp), that is, immediately before it is determined that the remaining capacity SOC is not accurate. This flag is set to 1 when the temporary input / output limits Wintmp, Wouttmp are stored. When the temporary input / output restriction storage flag F3 is 1 in step S400, the processing after S430 is executed using the stored values Winset and Woutset stored in step S410. That is, when the remaining capacity SOC of the battery 26 is not accurate, the input / output limits Win, Wout of the battery 26 are set using the temporary input / output limits Wintmp, Wouttmp immediately before it is determined that the remaining capacity SOC is not accurate. The temporary input / output restriction storage flag F3 is reset to 0 when it is determined in step S170 that the remaining capacity SOC is accurate and the correction value α is less than 0 in step S240 (step S440). By setting the input / output limits Win and Wout of the battery 26 in this way, the same effects as in the embodiment can be obtained.

実施例では、駆動軸32に動力を入出力可能なモータ22と、モータ22と電力をやりとりするバッテリ26とを備える電気自動車20について説明したが、モータ22やバッテリ26に加えて、図7の変形例の電気自動車120に例示するように、駆動軸32に遊星歯車機構126を介してエンジン122とモータ124とを接続した電気自動車120に適用するものとしてもよいし、図8の変形例の電気自動車220に例示するように、エンジン222と、エンジン222のクランクシャフトに接続されたインナーロータ232と駆動輪30a,30bに連結された駆動軸32に接続されたアウターロータ234とを有しエンジン222の動力の一部を駆動軸32に伝達すると共に残余の動力を電力に変換する対ロータ電動機230とを備える電気自動車220に適用するものとしてもよいし、図9の変形例の電気自動車320に例示するように、モータ22にインバータを介して接続され燃料の供給を受けて発電可能な燃料電池FCを備える電気自動車320に適用するものとしてもよい。また、図9の変形例の電気自動車320における燃料電池FCを、エンジンとエンジンからの動力を用いて発電する発電機とに置き換えてもよい。   In the embodiment, the electric vehicle 20 including the motor 22 that can input and output power to the drive shaft 32 and the battery 26 that exchanges electric power with the motor 22 has been described, but in addition to the motor 22 and the battery 26, FIG. As exemplified in the electric vehicle 120 of the modification, the present invention may be applied to the electric vehicle 120 in which the engine 122 and the motor 124 are connected to the drive shaft 32 via the planetary gear mechanism 126, or the modification of FIG. As exemplified in the electric vehicle 220, the engine includes an engine 222, an inner rotor 232 connected to the crankshaft of the engine 222, and an outer rotor 234 connected to the drive shaft 32 connected to the drive wheels 30a and 30b. A counter-rotor motor 230 that transmits a part of the power of 222 to the drive shaft 32 and converts the remaining power into electric power; The fuel cell FC may be applied to an electric vehicle 220, or a fuel cell FC connected to the motor 22 via an inverter and capable of generating power by being supplied with fuel, as illustrated in the electric vehicle 320 of the modification of FIG. It may be applied to the electric vehicle 320 provided. Further, the fuel cell FC in the electric vehicle 320 of the modified example of FIG. 9 may be replaced with an engine and a generator that generates electric power using power from the engine.

実施例では、駆動軸32に動力を入出力可能なモータ22と、モータ22と電力をやりとりするバッテリ26とを備える駆動装置を搭載する電気自動車20について説明したが、この駆動装置を自動車以外の車両や船舶,航空機などの移動体に搭載するものとしてもよいし、移動体以外の建設設備などに組み込むものとしてもよい。また、駆動装置の形態や駆動装置の制御方法の形態として用いるものとしてもよい。さらに、バッテリ26の入出力を管理する入出力管理装置の形態やバッテリ26の入出力を管理する入出力管理方法の形態として用いるものとしてもよい。   In the embodiment, the electric vehicle 20 including the motor 22 that can input and output power to the drive shaft 32 and the battery 26 that exchanges electric power with the motor 22 has been described. It is good also as what is mounted in moving bodies, such as a vehicle, a ship, and an aircraft, and is good also as incorporating in construction facilities other than a moving body. Moreover, it is good also as what is used as a form of a drive device or a control method of a drive device. Furthermore, it may be used as a form of an input / output management device that manages the input / output of the battery 26 or a form of an input / output management method that manages the input / output of the battery 26.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明の一実施例である駆動装置を搭載する電気自動車20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the electric vehicle 20 carrying the drive device which is one Example of this invention. 実施例の電子制御ユニット40により実行される駆動制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the drive control routine performed by the electronic control unit 40 of an Example. 要求トルク設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for request | requirement torque setting. バッテリ26における電池温度Tbと仮入出力制限Wintmp,Wouttmpの基本値との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the battery temperature Tb in the battery 26, and the basic value of temporary input / output restrictions Wintmp and Wouttmp. バッテリ26の残容量SOCと仮入出力制限Wintmp,Wouttmpの補正係数との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the remaining capacity SOC of the battery 26, and the correction coefficient of temporary input / output restrictions Wintmp and Wouttmp. 変形例の駆動制御ルーチンの一例の一部を示す説明図である。It is explanatory drawing which shows a part of example of the drive control routine of a modification. 変形例の電気自動車120の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the electric vehicle 120 of a modification. 変形例の電気自動車220の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the electric vehicle 220 of a modification. 変形例の電気自動車320の構成の概略を示す構成図である。FIG. 11 is a configuration diagram illustrating an outline of a configuration of a modified example of an electric vehicle 320.

符号の説明Explanation of symbols

20,120,220,320 電気自動車、22 モータ、23 回転角センサ、24 インバータ、26 バッテリ、27a 電圧センサ、27b 電流センサ、27c 温度センサ、30a,30b 駆動輪、31 デファレンシャルギヤ、32 駆動軸、40 電子制御ユニット、42 CPU、44 ROM、46 RAM、50 イグニッションスイッチ、51 シフトポジション、52 シフトポジションセンサ、53 アクセルペダル、54 アクセルペダルポジションセンサ、55 ブレーキペダル、56ブレーキペダルポジションセンサ、58 車速センサ、60 補機バッテリ、61a,61b 補機、122、222 エンジン、124 モータ、126 遊星歯車機構、230 対ロータ電動機、232 インナーロータ、234 アウターロータ、FC 燃料電池。   20, 120, 220, 320 Electric vehicle, 22 Motor, 23 Rotation angle sensor, 24 Inverter, 26 Battery, 27a Voltage sensor, 27b Current sensor, 27c Temperature sensor, 30a, 30b Drive wheel, 31 Differential gear, 32 Drive shaft, 40 electronic control unit, 42 CPU, 44 ROM, 46 RAM, 50 ignition switch, 51 shift position, 52 shift position sensor, 53 accelerator pedal, 54 accelerator pedal position sensor, 55 brake pedal, 56 brake pedal position sensor, 58 vehicle speed sensor , 60 Auxiliary battery, 61a, 61b Auxiliary machine, 122, 222 Engine, 124 Motor, 126 Planetary gear mechanism, 230 Counter rotor motor, 232 Inner rotor, 234 A Tarota, FC fuel cell.

Claims (9)

充放電可能な蓄電手段の入出力を管理する入出力管理装置であって、
前記蓄電手段の状態を検出する状態検出手段と、
所定の補正要因が生じていないときには前記検出された蓄電手段の状態に基づいて該蓄電手段の入出力制限を設定し、前記所定の補正要因が生じているときには前記検出された蓄電手段の状態に基づいて設定される入出力制限に更に制限が課される方向への補正を施して該蓄電手段の入出力制限を設定する入出力制限設定手段と、
該設定された入出力制限の範囲内で前記蓄電手段の入出力を許可する入出力許可手段と、
を備える入出力管理装置。
An input / output management device for managing input / output of chargeable / dischargeable power storage means,
State detecting means for detecting the state of the power storage means;
When the predetermined correction factor does not occur, the input / output limit of the power storage unit is set based on the detected state of the power storage unit, and when the predetermined correction factor occurs, the detected state of the power storage unit is set. An input / output restriction setting means for setting an input / output restriction of the power storage means by performing correction in a direction in which the restriction is further imposed on the input / output restriction set based on
Input / output permission means for permitting input / output of the power storage means within the set input / output restriction range;
An input / output management device.
前記入出力制限設定手段は、前記所定の補正要因が生じているときに、前記蓄電手段の状態を所定の正確さをもって検出することができないときには前記蓄電手段の状態を前記所定の正確さをもって検出することができなくなる直前に検出された蓄電手段の状態に基づいて設定される入出力制限に第1の補正値を用いた補正を施して前記入出力制限を設定し、前記蓄電手段の状態を所定の正確さをもって検出することができるときには該所定の正確さをもって検出された蓄電手段の状態に基づいて設定される入出力制限に前記第1の補正値より小さい第2の補正値を用いた補正を施して前記入出力制限を設定する手段である請求項1記載の入出力管理装置。   The input / output restriction setting unit detects the state of the power storage unit with the predetermined accuracy when the state of the power storage unit cannot be detected with the predetermined accuracy when the predetermined correction factor occurs. The input / output restriction set based on the state of the power storage means detected immediately before it can no longer be performed is corrected using the first correction value to set the input / output restriction, and the state of the power storage means is set. When the detection can be performed with a predetermined accuracy, the second correction value smaller than the first correction value is used for the input / output restriction set based on the state of the power storage means detected with the predetermined accuracy. The input / output management device according to claim 1, wherein the input / output management device is means for performing correction to set the input / output restriction. 前記第2の補正値は、時間の経過に伴って徐々に小さくなるよう設定されてなる請求項2記載の入出力管理装置。   The input / output management device according to claim 2, wherein the second correction value is set so as to gradually decrease as time elapses. 請求項1ないし3いずれか記載の入出力管理装置であって、
前記蓄電手段の温度を検出する温度検出手段を備え、
前記状態検出手段は、前記蓄電手段から放電可能な電力量である蓄電状態を検出する手段であり、
前記入出力制限設定手段は、前記所定の補正要因が生じていないときには前記検出された蓄電手段の蓄電状態と前記検出された蓄電手段の温度とに基づいて該蓄電手段の入出力制限を設定し、前記所定の補正要因が生じているときには前記検出された蓄電手段の蓄電状態と前記検出された蓄電手段の温度とに基づいて設定される入出力制限に更に制限が課される方向への補正を施して該蓄電手段の入出力制限を設定する手段である
入出力管理装置。
The input / output management device according to any one of claims 1 to 3,
Temperature detecting means for detecting the temperature of the power storage means,
The state detection means is means for detecting a power storage state that is an amount of power that can be discharged from the power storage means,
The input / output restriction setting means sets the input / output restriction of the power storage means based on the detected power storage state of the power storage means and the detected temperature of the power storage means when the predetermined correction factor has not occurred. When the predetermined correction factor is generated, the correction is performed in such a way that a further restriction is imposed on the input / output restriction set based on the detected storage state of the power storage means and the detected temperature of the power storage means. An input / output management device which is a means for setting an input / output limit of the power storage means.
前記所定の補正要因は、入出力管理装置の記憶領域における少なくとも一部がリセットされた要因である請求項1ないし4いずれか記載の入出力管理装置。   The input / output management apparatus according to claim 1, wherein the predetermined correction factor is a factor that at least a part of the storage area of the input / output management apparatus is reset. 前記所定の補正要因は、入出力管理装置に電力供給する電源の遮断である請求項1ないし5いずれか記載の入出力管理装置。   6. The input / output management apparatus according to claim 1, wherein the predetermined correction factor is a cutoff of a power supply for supplying power to the input / output management apparatus. 駆動軸を駆動する駆動装置であって、
前記駆動軸に動力を出力可能な電動機と、
該電動機と電力のやりとりが可能な蓄電手段と、
該蓄電手段の入出力を管理する請求項1ないし6いずれか記載の入出力管理装置と、
前記電動機から出力すべき駆動指令を設定する駆動指令設定手段と、
前記入出力許可手段により許可された前記蓄電手段の入出力の範囲内で前記設定された駆動指令により前記電動機が駆動されるよう該電動機を制御する制御手段と、
を備える駆動装置。
A drive device for driving a drive shaft,
An electric motor capable of outputting power to the drive shaft;
Power storage means capable of exchanging electric power with the motor;
The input / output management device according to any one of claims 1 to 6, which manages input / output of the power storage means;
Drive command setting means for setting a drive command to be output from the electric motor;
Control means for controlling the electric motor so that the electric motor is driven by the set drive command within an input / output range of the power storage means permitted by the input / output permission means;
A drive device comprising:
請求項7記載の駆動装置を搭載し、車軸が前記駆動軸に連結されてなる自動車。   An automobile comprising the drive device according to claim 7 and an axle connected to the drive shaft. 充放電可能な蓄電手段の入出力を管理する入出力管理方法であって、
所定の補正要因が生じていないときには前記蓄電手段の状態に基づいて該蓄電手段の入出力制限を設定し、前記所定の補正要因が生じているときには前記蓄電手段の状態に基づいて設定される入出力制限に更に制限が課される方向への補正を施して該蓄電手段の入出力制限を設定し、該設定した入出力制限の範囲内で前記蓄電手段の入出力を許可する
ことを特徴とする入出力管理方法。
An input / output management method for managing input / output of chargeable / dischargeable power storage means,
When the predetermined correction factor does not occur, the input / output limit of the power storage unit is set based on the state of the power storage unit, and when the predetermined correction factor occurs, the input is set based on the state of the power storage unit. Correcting the output restriction in a direction in which a further restriction is imposed, setting the input / output limit of the power storage means, and allowing the input / output of the power storage means within the set input / output limit range. I / O management method.
JP2005183084A 2005-06-23 2005-06-23 INPUT / OUTPUT MANAGEMENT DEVICE, DRIVE DEVICE INCLUDING THE SAME, AUTOMOBILE MOUNTING THE SAME, INPUT / OUTPUT MANAGEMENT METHOD Expired - Fee Related JP4240012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183084A JP4240012B2 (en) 2005-06-23 2005-06-23 INPUT / OUTPUT MANAGEMENT DEVICE, DRIVE DEVICE INCLUDING THE SAME, AUTOMOBILE MOUNTING THE SAME, INPUT / OUTPUT MANAGEMENT METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183084A JP4240012B2 (en) 2005-06-23 2005-06-23 INPUT / OUTPUT MANAGEMENT DEVICE, DRIVE DEVICE INCLUDING THE SAME, AUTOMOBILE MOUNTING THE SAME, INPUT / OUTPUT MANAGEMENT METHOD

Publications (2)

Publication Number Publication Date
JP2007006600A true JP2007006600A (en) 2007-01-11
JP4240012B2 JP4240012B2 (en) 2009-03-18

Family

ID=37691648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183084A Expired - Fee Related JP4240012B2 (en) 2005-06-23 2005-06-23 INPUT / OUTPUT MANAGEMENT DEVICE, DRIVE DEVICE INCLUDING THE SAME, AUTOMOBILE MOUNTING THE SAME, INPUT / OUTPUT MANAGEMENT METHOD

Country Status (1)

Country Link
JP (1) JP4240012B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290951A (en) * 2008-05-28 2009-12-10 Toyota Motor Corp Power storage means controller and electric vehicle
CN111845703A (en) * 2020-07-28 2020-10-30 中国第一汽车股份有限公司 Battery SOC management method of hybrid electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290951A (en) * 2008-05-28 2009-12-10 Toyota Motor Corp Power storage means controller and electric vehicle
CN111845703A (en) * 2020-07-28 2020-10-30 中国第一汽车股份有限公司 Battery SOC management method of hybrid electric vehicle

Also Published As

Publication number Publication date
JP4240012B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4947045B2 (en) Cooling device and vehicle equipped with the same
JP5500250B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP2006094689A (en) Electric vehicle and its control method
JP6414112B2 (en) Display device
JP2010273492A (en) Battery device
JP5655831B2 (en) Driving environment estimation apparatus and method
JP4311400B2 (en) Hybrid vehicle and control method thereof
JPH11121048A (en) Battery charged amount detecting device
JP2019126226A (en) Electric vehicle
JP2008284972A (en) Automobile and control method therefor
JP6369389B2 (en) Power control device
JP2009227078A (en) Power system, its control method, and vehicle
JP2010218976A (en) Driving device, method of determining abnormality thereof, and vehicle
JP4240012B2 (en) INPUT / OUTPUT MANAGEMENT DEVICE, DRIVE DEVICE INCLUDING THE SAME, AUTOMOBILE MOUNTING THE SAME, INPUT / OUTPUT MANAGEMENT METHOD
JP5450238B2 (en) Electric vehicle
JP4067001B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND AUTOMOBILE
JP2012010503A (en) Power supply system for electric vehicle
JP2004328905A (en) Battery control unit of automobile
JP2021011155A (en) Hybrid vehicle control device
JP2006304389A (en) Vehicle and its control method
JP2006219118A (en) Hybrid vehicle and its control method
JP2013038977A (en) Method for evaluating life of battery
JP5954188B2 (en) Secondary battery management device
JP6227465B2 (en) Engine control device and hybrid vehicle
JP4983635B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4240012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees