JP2009227078A - Power system, its control method, and vehicle - Google Patents

Power system, its control method, and vehicle Download PDF

Info

Publication number
JP2009227078A
JP2009227078A JP2008074231A JP2008074231A JP2009227078A JP 2009227078 A JP2009227078 A JP 2009227078A JP 2008074231 A JP2008074231 A JP 2008074231A JP 2008074231 A JP2008074231 A JP 2008074231A JP 2009227078 A JP2009227078 A JP 2009227078A
Authority
JP
Japan
Prior art keywords
voltage
supply
abnormality
power
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008074231A
Other languages
Japanese (ja)
Other versions
JP5109743B2 (en
Inventor
Eiji Kitano
英司 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008074231A priority Critical patent/JP5109743B2/en
Publication of JP2009227078A publication Critical patent/JP2009227078A/en
Application granted granted Critical
Publication of JP5109743B2 publication Critical patent/JP5109743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To discriminate the abnormality of a first voltage sensor which detects the battery side voltage of a boost converter from the abnormality of the overvoltage of a battery, and to achieve much more appropriate control in a power system for supplying a voltage from a battery to an invertor by booting it by a boost converter, and for supplying the voltage from the battery to an auxiliary unit by decreasing it by a DC/DC converter. <P>SOLUTION: Even when a battery side voltage VL1 from a first voltage sensor becomes equal to or more than a voltage Vref for decision, and the generation of any temporary abnormality is decided (step S100, S110, S130), a battery side voltage VL2 from a second voltage sensor which detects a battery side voltage VL2 of a DC/DC converter is compared with a voltage Vref for decision. Thus, it is possible to discriminate overvoltage abnormality and the abnormality of a first voltage sensor (step S150 to S200), and to control the invertor or a boost converter based on the discrimination result (steps S140, S180, S210). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、動力システムとその制御方法並びに車両に関する。   The present invention relates to a power system, a control method thereof, and a vehicle.

従来、この種の動力システムとしては、モータジェネレータと、モータジェネレータを駆動するインバータと、バッテリからの電圧を昇圧してインバータに供給する昇圧コンバータと、インバータの正母線と負母線との間に接続された平滑用のコンデンサと、インバータの正母線と負母線との間にコンデンサと並列に接続された放電抵抗と、バッテリから昇圧コンバータへの電力の供給を遮断するリレーとを備えるものが提案されている(例えば、特許文献1参照)。この動力システムでは、電圧センサの検出値が許容電圧を超えたときに、所定期間インバータや昇圧コンバータの運転を停止すると共にリレーをオフしてバッテリを昇圧コンバータから切り離してコンデンサに蓄えられている電荷を放電抵抗で放電させることにより、電圧センサの検出値の時間変化に基づいて実際に電圧が許容電圧を超える過電圧異常と電圧センサの異常とを判別している。
特開2007−252134号公報
Conventionally, this type of power system includes a motor generator, an inverter that drives the motor generator, a boost converter that boosts the voltage from the battery and supplies it to the inverter, and a connection between the positive and negative buses of the inverter. And a smoothing capacitor, a discharge resistor connected in parallel with the capacitor between the positive and negative buses of the inverter, and a relay for cutting off power supply from the battery to the boost converter are proposed. (For example, refer to Patent Document 1). In this power system, when the detected value of the voltage sensor exceeds the allowable voltage, the operation of the inverter and boost converter is stopped for a predetermined period and the relay is turned off to disconnect the battery from the boost converter and the charge stored in the capacitor Is discharged with a discharge resistor, and an overvoltage abnormality in which the voltage actually exceeds the allowable voltage and an abnormality in the voltage sensor are discriminated based on the time change of the detection value of the voltage sensor.
JP 2007-252134 A

上述したように、こうした動力システムでは、電圧センサの検出値が許容電圧を超えたときに、過電圧異常と電圧センサの異常とを判別することは重要な課題の一つである。上述の動力システムでは、過電圧異常と電圧センサの異常とを判別するために放電抵抗を用いているが、こうした放電抵抗を動力システムに設けると部品点数の増加を招いてしまう。したがって、より適正な方法で過電圧異常と電圧センサの異常とを判別することが望ましい。また、上述の動力システムでは、電圧センサの検出値が許容電圧を超えるとリレーをオフしてバッテリを昇圧コンバータから切り離すためモータジェネレータへ電力を供給することができないが、電圧センサの検出値が許容電圧を超えてもそれが電圧センサの異常によるものであればモータジェネレータへ電力を供給しても差し支えないため、こうした場合にもモータジェネレータへ電力を供給するのが望ましい場合もある。したがって、こうしたことを考慮してより適正な制御を行なうことが望ましい。   As described above, in such a power system, when the detected value of the voltage sensor exceeds the allowable voltage, it is one of important issues to discriminate between an overvoltage abnormality and a voltage sensor abnormality. In the power system described above, a discharge resistance is used to discriminate between an overvoltage abnormality and a voltage sensor abnormality. However, if such a discharge resistance is provided in the power system, the number of parts increases. Therefore, it is desirable to discriminate between an overvoltage abnormality and a voltage sensor abnormality by a more appropriate method. In the power system described above, if the detected value of the voltage sensor exceeds the allowable voltage, the relay is turned off and the battery is disconnected from the boost converter, so that power cannot be supplied to the motor generator. Even if the voltage exceeds the voltage, if it is due to an abnormality of the voltage sensor, it may be possible to supply power to the motor generator. In such a case, it may be desirable to supply power to the motor generator. Therefore, it is desirable to perform more appropriate control in consideration of such matters.

本発明の動力システムおよびその制御方法並びに車両は、より適正な方法で過電圧異常と電圧検出器の異常とを判別すると共により適正な制御を行なうことを主目的とする。   A power system, a control method thereof, and a vehicle according to the present invention are mainly intended to discriminate between an overvoltage abnormality and a voltage detector abnormality by a more appropriate method and to perform more appropriate control.

本発明の動力システムおよびその制御方法並びに車両は、上述の主目的を達成するために以下の手段を採った。   The power system, the control method thereof, and the vehicle according to the present invention employ the following means in order to achieve the main object described above.

本発明の動力システムは、
駆動機器と、
該駆動機器を駆動するための駆動回路と、
充放電可能な直流電源と、
該直流電源の電圧を昇圧して前記駆動回路に供給可能な昇圧供給手段と、
前記直流電源の電圧を変換して補機に供給可能な電圧変換供給手段と、
前記昇圧供給手段の前記直流電源側の電圧である第1電圧を検出する第1電圧検出手段と、
前記電圧変換供給手段の前記直流電源側の電圧である第2電圧を検出する第2電圧検出手段と、
前記第1電圧検出手段により検出された第1電圧が前記直流電源を通常制御する電圧の範囲としての通常制御用電圧範囲を超えているときに仮異常と判定する仮異常判定手段と、
前記仮異常判定手段により仮異常と判定されたときに、前記第2電圧検出手段により検出された第2電圧が前記通常制御用電圧範囲を超えているときには過電圧異常と判定し、前記第2電圧検出手段により検出された第2電圧が所定時間に亘って前記通常制御用電圧範囲内にあるときには前記第1電圧検出手段の異常と判定する本異常判定手段と、
前記仮異常判定手段により仮異常と判定されたときには前記昇圧供給手段の動作が停止されると共に前記駆動機器への電力の供給が遮断されるよう前記駆動回路と前記昇圧供給手段とを制御し、前記仮異常と判定された状態で前記本異常判定手段により過電圧異常と判定されたときには前記昇圧供給手段の動作の停止および前記駆動機器への電力の供給の遮断を継続した状態で前記電圧変換供給手段の動作が停止されるよう前記駆動回路と前記昇圧供給手段と前記電圧変換供給手段とを制御し、前記仮異常と判定された状態で前記本異常判定手段により前記第1電圧検出手段の異常と判定されたときには前記昇圧供給手段の動作が開始されると共に前記駆動機器への電力の供給が開始されるよう前記駆動回路と前記昇圧供給手段とを制御する異常時制御手段と、
を備えることを要旨とする。
The power system of the present invention is
Driving equipment,
A drive circuit for driving the drive device;
A chargeable / dischargeable DC power supply,
Boosting supply means capable of boosting the voltage of the DC power supply and supplying the boosted voltage to the drive circuit;
Voltage conversion supply means capable of converting the voltage of the DC power source and supplying the converted voltage to the auxiliary machine;
First voltage detection means for detecting a first voltage which is a voltage on the DC power supply side of the boost supply means;
Second voltage detecting means for detecting a second voltage that is a voltage on the DC power supply side of the voltage conversion supply means;
Temporary abnormality determination means for determining a temporary abnormality when the first voltage detected by the first voltage detection means exceeds a normal control voltage range as a voltage range for normally controlling the DC power supply;
When it is determined that the temporary abnormality is detected by the temporary abnormality determination unit, an overvoltage abnormality is determined when the second voltage detected by the second voltage detection unit exceeds the normal control voltage range, and the second voltage is determined. A main abnormality determination unit that determines that the first voltage detection unit is abnormal when the second voltage detected by the detection unit is within the normal control voltage range for a predetermined time;
Controlling the driving circuit and the boosting supply means so that the operation of the boosting supply means is stopped and the power supply to the driving device is interrupted when the temporary abnormality determining means determines that the temporary abnormality has occurred; When it is determined that an overvoltage abnormality is detected by the main abnormality determination unit in a state where the temporary abnormality is determined, the voltage conversion supply is performed in a state where the operation of the boosting supply unit is stopped and the supply of power to the driving device is continuously stopped. The drive circuit, the boost supply means, and the voltage conversion supply means are controlled so that the operation of the means is stopped, and the abnormality of the first voltage detection means is detected by the abnormality determination means in a state where the temporary abnormality is determined. When it is determined, the drive circuit and the boost supply means are controlled so that the operation of the boost supply means is started and the supply of power to the drive device is started. And constantly control means,
It is a summary to provide.

この本発明の動力システムでは、第1電圧検出手段により検出された第1電圧が直流電源を通常制御する電圧の範囲としての通常制御用電圧範囲を超えているときに仮異常と判定し、仮異常が判定されたときに、第2電圧検出手段により検出された第2電圧が通常制御用電圧範囲を超えているときには過電圧異常と判定し、第2電圧検出手段により検出された第2電圧が所定時間に亘って通常制御用電圧範囲内にあるときには第1電圧検出手段の異常と判定する。これにより、第1電圧検出手段により検出された第1電圧が通常制御用電圧範囲を超えているときに、より適正な方法で過電圧異常と第1電圧検出手段の異常とを判別することができる。そして、仮異常と判定されたときには昇圧供給手段の動作が停止されると共に駆動機器への電力の供給が遮断されるよう駆動回路と昇圧供給手段とを制御し、仮異常と判定された状態で過電圧異常と判定されたときには昇圧供給手段の動作の停止および駆動機器への電力の供給の遮断を継続した状態で電圧変換供給手段の動作が停止されるよう駆動回路と昇圧供給手段と電圧変換供給手段とを制御し、仮異常と判定された状態で第1電圧検出手段の異常と判定されたときには昇圧供給手段の動作が開始されると共に駆動機器への電力の供給が開始されるよう駆動回路と昇圧供給手段とを制御する。これにより、第1電圧検出手段により検出された第1電圧が通常制御用電圧範囲を超えているときに、直流電源から駆動回路への電力の供給を一律に遮断するものに比してより適正な制御を行なうことができる。   In the power system of the present invention, when the first voltage detected by the first voltage detecting means exceeds the normal control voltage range as the voltage range for normally controlling the DC power supply, it is determined that there is a temporary abnormality, When the abnormality is determined, if the second voltage detected by the second voltage detecting means exceeds the normal control voltage range, it is determined that the overvoltage is abnormal, and the second voltage detected by the second voltage detecting means is When the voltage is within the normal control voltage range for a predetermined time, it is determined that the first voltage detecting means is abnormal. Thereby, when the first voltage detected by the first voltage detection means exceeds the normal control voltage range, it is possible to discriminate between an overvoltage abnormality and an abnormality of the first voltage detection means by a more appropriate method. . When it is determined that there is a temporary abnormality, the operation of the boosting supply unit is stopped, and the drive circuit and the boosting supply unit are controlled so that the supply of power to the driving device is interrupted. When it is determined that there is an overvoltage abnormality, the drive circuit, the boost supply means, and the voltage conversion supply so that the operation of the voltage conversion supply means is stopped in a state where the operation of the boost supply means is stopped and the supply of power to the drive device is continued. The drive circuit is configured to start the operation of the boost supply unit and start the supply of electric power to the drive device when it is determined that the first voltage detection unit is abnormal in a state where it is determined as a temporary abnormality. And the boosting supply means. As a result, when the first voltage detected by the first voltage detecting means exceeds the normal control voltage range, it is more appropriate than the one that uniformly cuts off the power supply from the DC power supply to the drive circuit. Control can be performed.

こうした本発明の動力システムにおいて、前記異常時制御手段は、前記駆動回路をゲート遮断することにより前記駆動機器への電力の供給を遮断する手段であるものとすることもできる。こうすれば、ゲート遮断することにより駆動機器への電力の供給をより適正に遮断することができる。   In such a power system of the present invention, the abnormal time control means may be means for shutting off the supply of electric power to the drive device by shutting off the gate of the drive circuit. By so doing, it is possible to more appropriately cut off the supply of power to the drive device by shutting off the gate.

本発明の車両は、上述したいずれかの態様の本発明の動力システム、即ち、基本的には、駆動機器と、該駆動機器を駆動するための駆動回路と、充放電可能な直流電源と、該直流電源の電圧を昇圧して前記駆動回路に供給可能な昇圧供給手段と、前記直流電源の電圧を変換して補機に供給可能な電圧変換供給手段と、前記昇圧供給手段の前記直流電源側の電圧である第1電圧を検出する第1電圧検出手段と、前記電圧変換供給手段の前記直流電源側の電圧である第2電圧を検出する第2電圧検出手段と、前記第1電圧検出手段により検出された第1電圧が前記直流電源を通常制御する電圧の範囲としての通常制御用電圧範囲を超えているときに仮異常と判定する仮異常判定手段と、前記仮異常判定手段により仮異常と判定されたときに、前記第2電圧検出手段により検出された第2電圧が前記通常制御用電圧範囲を超えているときには過電圧異常と判定し、前記第2電圧検出手段により検出された第2電圧が所定時間に亘って前記通常制御用電圧範囲内にあるときには前記第1電圧検出手段の異常と判定する本異常判定手段と、前記仮異常判定手段により仮異常と判定されたときには前記昇圧供給手段の動作が停止されると共に前記駆動機器への電力の供給が遮断されるよう前記駆動回路と前記昇圧供給手段とを制御し、前記仮異常と判定された状態で前記本異常判定手段により過電圧異常と判定されたときには前記昇圧供給手段の動作の停止および前記駆動機器への電力の供給の遮断を継続した状態で前記電圧変換供給手段の動作が停止されるよう前記駆動回路と前記昇圧供給手段と前記電圧変換供給手段とを制御し、前記仮異常と判定された状態で前記本異常判定手段により前記第1電圧検出手段の異常と判定されたときには前記昇圧供給手段の動作が開始されると共に前記駆動機器への電力の供給が開始されるよう前記駆動回路と前記昇圧供給手段とを制御する異常時制御手段と、を備える動力システムが搭載され、前記駆動機器として走行用の動力を出力可能な電動機を備えることを要旨とする。   The vehicle of the present invention includes any one of the above-described power systems of the present invention, that is, basically a drive device, a drive circuit for driving the drive device, a chargeable / dischargeable DC power source, Boosting supply means capable of boosting the voltage of the DC power supply and supplying it to the drive circuit, voltage conversion supply means capable of converting the voltage of the DC power supply and supplying it to an auxiliary machine, and the DC power supply of the boosting supply means First voltage detection means for detecting a first voltage that is a voltage on the side of the power supply; second voltage detection means for detecting a second voltage that is a voltage on the DC power supply side of the voltage conversion supply means; and the first voltage detection means Temporary abnormality determination means for determining a temporary abnormality when the first voltage detected by the means exceeds a normal control voltage range as a voltage range for normally controlling the DC power supply, and the temporary abnormality determination means When determined to be abnormal, When the second voltage detected by the two voltage detecting means exceeds the normal control voltage range, it is determined that the overvoltage is abnormal, and the second voltage detected by the second voltage detecting means is the normal voltage over a predetermined time. When it is within the control voltage range, the abnormality determining means for determining that the first voltage detecting means is abnormal, and when the temporary abnormality determining means determines that there is a temporary abnormality, the operation of the boosting supply means is stopped and the operation is stopped. The drive circuit and the boosting supply means are controlled so that power supply to the driving device is cut off, and the boosting supply is performed when the abnormal determination means determines an overvoltage abnormality in a state where the temporary abnormality is determined. The drive circuit and the booster supply unit are stopped so that the operation of the voltage conversion supply means is stopped in a state in which the operation of the means is stopped and the supply of electric power to the drive device is continued And the voltage conversion supply means, and when the primary abnormality determination means determines that the first voltage detection means is abnormal in a state where the temporary abnormality is determined, the operation of the boost supply means is started. A power system including an abnormality time control means for controlling the drive circuit and the boosting supply means so that the supply of electric power to the drive equipment is started is mounted, and driving power can be output as the drive equipment The main point is to provide a simple electric motor.

この本発明の動力システムでは、上述したいずれかの態様の本発明の動力システムが搭載されているから、本発明の動力システムが奏する効果、例えば、第1電圧検出手段により検出された第1電圧が通常制御用電圧範囲を超えているときにより適正な方法で過電圧異常と第1電圧検出手段の異常とを判別することができると共により適正な制御を行なうことができる効果などと同様の効果を奏することができる。   In the power system of the present invention, since the power system of the present invention according to any one of the aspects described above is mounted, the effects exhibited by the power system of the present invention, for example, the first voltage detected by the first voltage detecting means. When the voltage exceeds the normal control voltage range, it is possible to discriminate between an overvoltage abnormality and an abnormality in the first voltage detection means by a more appropriate method, and at the same time, an effect similar to the effect that more appropriate control can be performed. Can play.

本発明の動力システムの制御方法は、
駆動機器と、該駆動機器を駆動するための駆動回路と、充放電可能な直流電源と、該直流電源の電圧を昇圧して前記駆動回路に供給可能な昇圧供給手段と、前記直流電源の電圧を変換して補機に供給可能な電圧変換供給手段と、前記昇圧供給手段の前記直流電源側の電圧である第1電圧を検出する第1電圧検出手段と、前記電圧変換供給手段の前記直流電源側の電圧である第2電圧を検出する第2電圧検出手段と、を備える動力システムの制御方法であって、
前記第1電圧検出手段により検出された第1電圧が前記直流電源を通常制御する電圧の範囲としての通常制御用電圧範囲を超えているときに仮異常と判定すると共に前記昇圧供給手段の動作が停止されると共に前記駆動機器への電力の供給が遮断されるよう前記駆動回路と前記昇圧供給手段とを制御し、
前記仮異常が判定されたときに、前記第2電圧検出手段により検出された第2電圧が前記通常制御用電圧範囲を超えているときには過電圧異常と判定すると共に前記昇圧供給手段の動作の停止および前記駆動機器への電力の供給の遮断を継続した状態で前記電圧変換供給手段の動作が停止されるよう前記駆動回路と前記昇圧供給手段と前記電圧変換供給手段とを制御し、前記第2電圧検出手段により検出された第2電圧が所定時間に亘って前記通常制御用電圧範囲内にあるときには前記第1電圧検出手段の異常と判定すると共に前記昇圧供給手段の動作が開始されると共に前記駆動機器への電力の供給が開始されるよう前記駆動回路と前記昇圧供給手段とを制御する、
ことを要旨とする。
The power system control method of the present invention includes:
Drive device, drive circuit for driving the drive device, chargeable / dischargeable DC power supply, boost supply means capable of boosting the voltage of the DC power supply and supplying it to the drive circuit, and voltage of the DC power supply Voltage conversion supply means capable of converting the voltage to supply to the auxiliary machine, first voltage detection means for detecting a first voltage which is a voltage on the DC power supply side of the boost supply means, and the DC of the voltage conversion supply means A power system control method comprising: a second voltage detecting means for detecting a second voltage that is a voltage on a power supply side,
When the first voltage detected by the first voltage detection means exceeds a normal control voltage range as a voltage range for normally controlling the DC power supply, a temporary abnormality is determined and the operation of the boost supply means is Controlling the drive circuit and the boost supply means so that the supply of power to the drive device is interrupted and stopped,
When the temporary abnormality is determined, if the second voltage detected by the second voltage detection means exceeds the normal control voltage range, it is determined that the overvoltage abnormality is present, and the operation of the boost supply means is stopped and Controlling the drive circuit, the boosting supply means, and the voltage conversion supply means so that the operation of the voltage conversion supply means is stopped in a state in which the supply of power to the drive device is continuously interrupted, and the second voltage When the second voltage detected by the detection means is within the normal control voltage range for a predetermined time, it is determined that the first voltage detection means is abnormal, the operation of the boosting supply means is started, and the driving is performed. Controlling the drive circuit and the boost supply means so that the supply of power to the device is started;
This is the gist.

この本発明の動力システムの制御方法では、第1電圧検出手段により検出された第1電圧が直流電源を通常制御する電圧の範囲としての通常制御用電圧範囲を超えているときに仮異常と判定し、仮異常が判定されたときに、第2電圧検出手段により検出された第2電圧が通常制御用電圧範囲を超えているときには過電圧異常と判定し、第2電圧検出手段により検出された第2電圧が所定時間に亘って通常制御用電圧範囲内にあるときには第1電圧検出手段の異常と判定する。これにより、第1電圧検出手段により検出された第1電圧が通常制御用電圧範囲を超えているときにより適正な方法で過電圧異常と第1電圧検出手段の異常とを判別することができる。そして、仮異常と判定されたときには昇圧供給手段の動作が停止されると共に駆動機器への電力の供給が遮断されるよう駆動回路と昇圧供給手段とを制御し、仮異常と判定されたときに過電圧異常と判定されたときには昇圧供給手段の動作の停止および駆動機器への電力の供給の遮断を継続した状態で電圧変換供給手段の動作が停止されるよう駆動回路と昇圧供給手段と電圧変換供給手段とを制御し、仮異常と判定されたときに第1電圧検出手段の異常と判定されたときには昇圧供給手段の動作が開始されると共に駆動機器への電力の供給が開始されるよう駆動回路と昇圧供給手段とを制御する。これにより、第1電圧検出手段により検出された第1電圧が通常制御用電圧範囲を超えているときに直流電源から駆動回路への電力の供給を一律に遮断するものに比してより適正な制御を行なうことができる。   In this power system control method according to the present invention, a temporary abnormality is determined when the first voltage detected by the first voltage detection means exceeds the normal control voltage range as a voltage range for normally controlling the DC power supply. If the second voltage detected by the second voltage detecting means exceeds the normal control voltage range when the temporary abnormality is determined, it is determined that the overvoltage is abnormal, and the second voltage detected by the second voltage detecting means is detected. When the two voltages are within the normal control voltage range for a predetermined time, it is determined that the first voltage detecting means is abnormal. Thereby, when the first voltage detected by the first voltage detection means exceeds the normal control voltage range, it is possible to discriminate between an overvoltage abnormality and an abnormality of the first voltage detection means by a more appropriate method. When it is determined that there is a temporary abnormality, the operation of the boosting supply unit is stopped and the drive circuit and the boosting supply unit are controlled so that the power supply to the driving device is cut off. When it is determined that there is an overvoltage abnormality, the drive circuit, the boost supply means, and the voltage conversion supply so that the operation of the voltage conversion supply means is stopped in a state where the operation of the boost supply means is stopped and the supply of power to the drive device is continued. A drive circuit for starting the operation of the boosting supply means and starting the supply of electric power to the drive device when it is determined that the first voltage detection means is abnormal when it is determined that there is a temporary abnormality. And the boosting supply means. As a result, when the first voltage detected by the first voltage detection means exceeds the normal control voltage range, it is more appropriate than that which uniformly cuts off the supply of power from the DC power supply to the drive circuit. Control can be performed.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例としての動力システムを搭載したハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、エンジン22の出力軸としてのクランクシャフト24にキャリアが接続されると共に駆動輪28a,28bにデファレンシャルギヤ30を介して連結された駆動軸32にリングギヤが接続された遊星歯車機構26と、遊星歯車機構26のサンギヤに接続されたモータMG1と、駆動軸32に接続されたモータMG2と、モータMG1,MG2を駆動するインバータ42,44と、高圧バッテリ46と、高圧バッテリ46の電圧を昇圧してインバータ42,44へ供給する昇圧コンバータ50と、昇圧コンバータ50に昇圧された電圧を平滑する平滑コンデンサ51と、昇圧コンバータ50と高圧バッテリ46とを接続する電力ライン48に接続され高圧バッテリ46からの高圧直流電力を低圧直流電力に変換して低電圧系の補機52や低圧バッテリ54に供給するDC/DCコンバータ56と、車両全体をコントロールする電子制御ユニット70とを備える。ここで、実施例の動力システムは、主として、モータMG1,MG2と、インバータ42,44と,高圧バッテリ46と,昇圧コンバータ50と,DC/DCコンバータ56と、電子制御ユニット70とを備える。   FIG. 1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 equipped with a power system as an embodiment of the present invention. In the hybrid vehicle 20 of the embodiment, as shown in the figure, a drive is coupled to an engine 22 and a crankshaft 24 as an output shaft of the engine 22 and coupled to drive wheels 28a and 28b via a differential gear 30. A planetary gear mechanism 26 having a ring gear connected to the shaft 32, a motor MG1 connected to the sun gear of the planetary gear mechanism 26, a motor MG2 connected to the drive shaft 32, and inverters 42 and 44 for driving the motors MG1 and MG2. A high voltage battery 46, a boost converter 50 that boosts the voltage of the high voltage battery 46 and supplies the boosted voltage to the inverters 42, 44, a smoothing capacitor 51 that smoothes the voltage boosted by the boost converter 50, the boost converter 50, and the high voltage battery 46 connected to the power line 48 connected to the A high-voltage DC power is converted to low voltage DC power comprises a DC / DC converter 56 supplies the auxiliary machine 52 and the low voltage battery 54 a low voltage system, and an electronic control unit 70 that controls the entire vehicle. Here, the power system of the embodiment mainly includes motors MG 1 and MG 2, inverters 42 and 44, a high voltage battery 46, a boost converter 50, a DC / DC converter 56, and an electronic control unit 70.

電子制御ユニット70は、CPU72を中心とするマイクロコンピュータとして構成されており、CPU72の他に処理プログラムを記憶するROM74や一時的にデータを記憶するRAM76,図示しない入出力ポートなどを備える。電子制御ユニット70には、エンジン22のクランクシャフト24の回転位置を検出する図示しないクランクポジションセンサからのクランクポジションなどのエンジン22の制御に必要な信号やモータMG1,MG2のロータの回転位置を検出する図示しない回転位置検出センサからの回転位置などモータMG1,MG2の制御に必要な信号,高圧バッテリ46の出力端子近傍に取り付けられた図示しない電圧センサなど高圧バッテリ46の管理に必要な信号,昇圧コンバータ50の高圧バッテリ46側に取り付けられた電圧センサ60からのバッテリ側電圧VL1や昇圧コンバータ50のインバータ42,44側に取り付けられた電圧センサ62からのインバータ側電圧など昇圧コンバータ50の制御に必要な信号,DC/DCコンバータ56の高圧バッテリ46側に取り付けられた電圧センサ64からのバッテリ側電圧VL2などDC/DCコンバータ56の制御に必要な信号,イグニッションスイッチ80からのイグニッション信号,シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vなどが入力ポートを介して入力されている。電子制御ユニット70からは、エンジン22への制御信号やインバータ42,44のスイッチング素子へのスイッチング制御信号,昇圧コンバータ50のスイッチング素子へのスイッチング制御信号,DC/DCコンバータ56のスイッチング素子へのスイッチング制御信号などが出力ポートを介して出力されている。電子制御ユニット70は、高圧バッテリ46を管理するために電流センサにより検出された充放電電流の積算値に基づいて残容量SOCを演算したり、演算した残容量SOCとバッテリ温度Tbとに基づいて高圧バッテリ46を充放電してもよい最大許容電力である入出力制限Win,Woutを演算している。   The electronic control unit 70 is configured as a microcomputer centering on the CPU 72, and includes a ROM 74 for storing processing programs, a RAM 76 for temporarily storing data, an input / output port (not shown), and the like in addition to the CPU 72. The electronic control unit 70 detects signals necessary for controlling the engine 22 such as a crank position from a crank position sensor (not shown) that detects the rotational position of the crankshaft 24 of the engine 22 and the rotational positions of the rotors of the motors MG1 and MG2. Signals necessary for control of the motors MG1, MG2, such as rotational positions from a rotational position detection sensor (not shown), signals necessary for management of the high voltage battery 46, such as voltage sensors (not shown) attached in the vicinity of the output terminals of the high voltage battery 46, and boosting Necessary for control of boost converter 50 such as battery side voltage VL1 from voltage sensor 60 attached to high voltage battery 46 side of converter 50 and inverter side voltage from voltage sensor 62 attached to inverters 42 and 44 side of boost converter 50. Signal, DC / DC converter 56, a signal required for controlling the DC / DC converter 56 such as a battery side voltage VL2 from the voltage sensor 64 attached to the high voltage battery 46 side, an ignition signal from the ignition switch 80, and a shift for detecting the operation position of the shift lever 81. The shift position SP from the position sensor 82, the accelerator opening Acc from the accelerator pedal position sensor 84 that detects the depression amount of the accelerator pedal 83, and the brake pedal position BP from the brake pedal position sensor 86 that detects the depression amount of the brake pedal 85 The vehicle speed V from the vehicle speed sensor 88 is input via the input port. From the electronic control unit 70, a control signal to the engine 22, a switching control signal to the switching element of the inverters 42 and 44, a switching control signal to the switching element of the boost converter 50, and a switching to the switching element of the DC / DC converter 56 A control signal or the like is output via the output port. The electronic control unit 70 calculates the remaining capacity SOC based on the integrated value of the charge / discharge current detected by the current sensor to manage the high voltage battery 46, or based on the calculated remaining capacity SOC and the battery temperature Tb. Input / output limits Win and Wout, which are the maximum allowable power that may charge and discharge the high-voltage battery 46, are calculated.

こうして構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸32に出力すべき要求トルクを計算し、この要求トルクに対応する要求動力が駆動軸32に出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが遊星歯車機構26とモータMG1とモータMG2とによってトルク変換されて駆動軸32に出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや要求動力と高圧バッテリ46の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共に高圧バッテリ46の充放電を伴ってエンジン22から出力される動力の全部またはその一部が遊星歯車機構26とモータMG1とモータMG2とによるトルク変換を伴って要求動力が駆動軸32に出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2からの要求動力に見合う動力を駆動軸32に出力するよう運転制御するモータ運転モードなどがある。   The hybrid vehicle 20 of the embodiment configured in this way calculates the required torque to be output to the drive shaft 32 based on the accelerator opening Acc and the vehicle speed V corresponding to the amount of depression of the accelerator pedal 83 by the driver. The operation of the engine 22, the motor MG1, and the motor MG2 is controlled so that the required power corresponding to the torque is output to the drive shaft 32. As operation control of the engine 22, the motor MG1, and the motor MG2, the operation of the engine 22 is controlled so that the power corresponding to the required power is output from the engine 22, and all of the power output from the engine 22 is transmitted to the planetary gear mechanism 26. Torque conversion operation mode for driving and controlling the motor MG1 and the motor MG2 so that torque is converted by the motor MG1 and the motor MG2 and output to the drive shaft 32, and the required power and the power required for charging and discharging the high voltage battery 46. Operation of the engine 22 is controlled so that a suitable power is output from the engine 22, and all or a part of the power output from the engine 22 with charge / discharge of the high voltage battery 46 is transmitted to the planetary gear mechanism 26, the motor MG1, and the motor. The required power is output to the drive shaft 32 with torque conversion by MG2. Charge-discharge drive mode for driving and controlling the motors MG1 and MG2, there is a motor operation mode in which operation control to output a power commensurate to stop the operation of the engine 22 to the required power from the motor MG2 to the drive shaft 32.

次に、こうして構成された実施例のハイブリッド自動車20の動作、特に、高圧バッテリ46に通常印加可能な電圧の範囲としての通常制御用電圧範囲を超える過電圧異常と電圧センサ60の異常とを判別する際の動作について説明する。図2は、電子制御ユニット70により実行される異常判定処理ルーチンの一例を示すフローチャートである。なお、通常制御用電圧範囲は、高圧バッテリ46に許容される最大電圧や車両の仕様により設定されるものとした。   Next, the operation of the hybrid vehicle 20 of the embodiment thus configured, particularly, an overvoltage abnormality exceeding the normal control voltage range as a voltage range that can be normally applied to the high voltage battery 46 and an abnormality of the voltage sensor 60 are discriminated. The operation at that time will be described. FIG. 2 is a flowchart showing an example of an abnormality determination processing routine executed by the electronic control unit 70. The normal control voltage range is set according to the maximum voltage allowed for the high voltage battery 46 and the vehicle specifications.

異常判定処理ルーチンが実行されると、電子制御ユニット70のCPU72は、まず、電圧センサ60からのバッテリ側電圧VL1を入力し(ステップS100)、入力したバッテリ側電圧VL1と判定用電圧Vrefとを比較する処理を実行する(ステップS110)。ここで、判定用電圧Vrefは、高圧バッテリ46の通常制御用電圧範囲の上限電圧より若干高い電圧として設定するものとした。入力したバッテリ側電圧VL1が判定用電圧Vref未満のときは、正常と判定して(ステップS120)異常判定処理ルーチンを終了し、バッテリ側電圧VL1が判定用電圧Vref以上であるときには、何らかの異常が生じていると判断して、仮異常と判定して(ステップS130)、インバータ42,44をゲート遮断すると共に昇圧コンバータ50の動作を停止する(ステップS140)。こうした処理により、仮異常が判定されたときには、高圧バッテリ46に過大な電圧が印加されるのを抑制することができると共に車両の走行を停止することができる。   When the abnormality determination processing routine is executed, the CPU 72 of the electronic control unit 70 first inputs the battery side voltage VL1 from the voltage sensor 60 (step S100), and uses the input battery side voltage VL1 and the determination voltage Vref. Processing for comparison is executed (step S110). Here, the determination voltage Vref is set as a voltage slightly higher than the upper limit voltage of the normal control voltage range of the high voltage battery 46. When the input battery side voltage VL1 is less than the determination voltage Vref, it is determined as normal (step S120), and the abnormality determination processing routine is terminated. When the battery side voltage VL1 is equal to or higher than the determination voltage Vref, some abnormality is present. It is determined that it has occurred, it is determined that there is a temporary abnormality (step S130), the inverters 42 and 44 are shut off, and the operation of the boost converter 50 is stopped (step S140). By such a process, when a temporary abnormality is determined, it is possible to suppress an excessive voltage from being applied to the high voltage battery 46 and to stop the traveling of the vehicle.

続いて、電圧センサ64からバッテリ側電圧VL2を入力して(ステップS150)、入力したバッテリ側電圧VL2と判定用電圧Vrefとを比較する(ステップS160)。バッテリ側電圧VL2が判定用電圧Vref以上であるときや(ステップS160)バッテリ側電圧VL2が判定用電圧Vref未満であっても仮異常が判定されてから所定時間trefが経過する前にバッテリ側電圧VL2が判定用電圧Vref以上となったときには(ステップS150,S160,S190)バッテリ46に実際に印加されている電圧が通常制御用電圧範囲を超えている過電圧異常であると判定して(ステップS170)、インバータ42,44のゲート遮断と昇圧コンバータ50の動作の停止を継続しつつDC/DCコンバータ56の動作を停止して(ステップS180)、異常判定処理ルーチンを終了する。ステップS190の処理で、所定時間trefは、過電圧異常が発生したときに電圧センサ60からのバッテリ側電圧VL1が判定用電圧Vrefを超えてから電圧センサ64からのバッテリ側電圧VL2が判定用電圧Vrefを超えるまでの時間の上限値であり、電圧センサ64からの信号の遅延等を考慮して、例えば300msや400ms,500msなどに設定されるものとした。こうした処理により、仮異常と判定されたときに電圧センサ64からのバッテリ側電圧VL2と判定用電圧Vrefとを比較することにより過電圧異常を判定することができ、放電抵抗を用いるものに比してより適正な方法で過電圧異常を判定することができる。また、インバータ42,44のゲート遮断と昇圧コンバータ50の動作の停止を継続しつつDC/DCコンバータ56の動作を停止するから、低圧バッテリ54に過大な電圧が印加されるのを抑制することができる。   Subsequently, the battery side voltage VL2 is input from the voltage sensor 64 (step S150), and the input battery side voltage VL2 is compared with the determination voltage Vref (step S160). When the battery side voltage VL2 is equal to or higher than the determination voltage Vref (step S160), even if the battery side voltage VL2 is less than the determination voltage Vref, the battery side voltage VL2 before the predetermined time tref elapses after the provisional abnormality is determined. When VL2 becomes equal to or higher than the determination voltage Vref (steps S150, S160, S190), it is determined that the voltage actually applied to the battery 46 is an overvoltage abnormality exceeding the normal control voltage range (step S170). The operation of the DC / DC converter 56 is stopped while continuing the gate shutoff of the inverters 42 and 44 and the stop of the operation of the boost converter 50 (step S180), and the abnormality determination processing routine is ended. In the process of step S190, the predetermined time tref is determined so that the battery-side voltage VL2 from the voltage sensor 64 becomes the determination voltage Vref after the battery-side voltage VL1 from the voltage sensor 60 exceeds the determination voltage Vref when an overvoltage abnormality occurs. It is assumed that the upper limit of the time until the value exceeds is set, and is set to, for example, 300 ms, 400 ms, 500 ms, etc. in consideration of the delay of the signal from the voltage sensor 64 and the like. By such processing, when it is determined that there is a temporary abnormality, an overvoltage abnormality can be determined by comparing the battery-side voltage VL2 from the voltage sensor 64 and the determination voltage Vref, compared to those using a discharge resistor. An overvoltage abnormality can be determined by a more appropriate method. Further, since the operation of the DC / DC converter 56 is stopped while the gates of the inverters 42 and 44 are shut off and the operation of the boost converter 50 is stopped, it is possible to suppress the application of an excessive voltage to the low voltage battery 54. it can.

所定時間trefに亘ってバッテリ側電圧VL2が判定用電圧Vref未満であるときには(ステップS150,S160,S190)、過電圧異常でなく電圧センサ60の異常と判定して(ステップS200)、インバータ42,44におけるスイッチング制御を再開すると共に昇圧コンバータ50のバッテリ側電圧VL1が高圧バッテリ46の定格電圧V1であるものとして昇圧コンバータ50の動作を開始して(ステップS210)、異常判定処理ルーチンを終了する。こうした処理により、仮異常と判定されたときでも電圧センサ64からのバッテリ側電圧VL2と判定用電圧Vrefとを比較することにより電圧センサ60の異常を判定することができ、放電抵抗を用いるものに比してより適正な方法で電圧センサ60の異常を判定することができる。また、仮異常と判定されたときでも電圧センサ60の異常と判定されたときにはインバータ42,44を駆動してモータMG1,MG2を駆動して車両を走行させることができ、高圧バッテリ46からインバータ42,44への電力の供給を一律に遮断するものに比してより適正な制御を行なうことができる。   When the battery side voltage VL2 is less than the determination voltage Vref for a predetermined time tref (steps S150, S160, S190), it is determined that the voltage sensor 60 is not abnormal but not an overvoltage abnormality (step S200), and the inverters 42, 44 are used. The switching control is restarted, and the operation of the boost converter 50 is started assuming that the battery side voltage VL1 of the boost converter 50 is the rated voltage V1 of the high voltage battery 46 (step S210), and the abnormality determination processing routine is ended. By such processing, even when a temporary abnormality is determined, the abnormality of the voltage sensor 60 can be determined by comparing the battery side voltage VL2 from the voltage sensor 64 with the determination voltage Vref, and the discharge resistance is used. The abnormality of the voltage sensor 60 can be determined by a more appropriate method. Further, even when it is determined that there is a temporary abnormality, if it is determined that the voltage sensor 60 is abnormal, the inverters 42 and 44 can be driven to drive the motors MG1 and MG2 to drive the vehicle. , 44 can be controlled more appropriately than those that uniformly cut off the supply of electric power to.

以上説明した実施例のハイブリッド自動車20によれば、電圧センサ60からのバッテリ側電圧VL1が判定用電圧Vref以上となったときに仮異常と判定して、仮異常と判定されたときには電圧センサ64からのバッテリ側電圧VL2と判定用電圧Vrefとを比較することにより過電圧異常と電圧センサ60の異常とを判別できるから、放電抵抗を用いて過電圧異常と電圧センサ60の異常とを判別するものに比してより適正な方法で過電圧異常と電圧センサ60の異常とを判別することができる。また、電圧センサ60からのバッテリ側電圧VL1が判定用電圧Vref以上となり仮異常と判定されたときに過電圧異常ではなく電圧センサ60の異常と判定されたときには、インバータ42,44を駆動してモータMG1,MG2を駆動するから、高圧バッテリ46からインバータ42,44への電力の供給を一律に遮断するものに比してより適正な制御を行なうことができる。   According to the hybrid vehicle 20 of the embodiment described above, a temporary abnormality is determined when the battery-side voltage VL1 from the voltage sensor 60 is equal to or higher than the determination voltage Vref, and the voltage sensor 64 is determined when the temporary abnormality is determined. By comparing the battery-side voltage VL2 from the battery and the determination voltage Vref, the overvoltage abnormality and the abnormality of the voltage sensor 60 can be discriminated, so that the overvoltage abnormality and the abnormality of the voltage sensor 60 are discriminated using the discharge resistance. In comparison, it is possible to discriminate between an overvoltage abnormality and an abnormality of the voltage sensor 60 by a more appropriate method. When the battery-side voltage VL1 from the voltage sensor 60 is equal to or higher than the determination voltage Vref and is determined to be a temporary abnormality, when it is determined that the voltage sensor 60 is not abnormal but not an overvoltage abnormality, the inverters 42 and 44 are driven to drive the motor. Since MG1 and MG2 are driven, more appropriate control can be performed as compared with the case where power supply from the high voltage battery 46 to the inverters 42 and 44 is uniformly cut off.

実施例のハイブリッド自動車20では、インバータ42,44をゲート遮断することにより高圧バッテリ46からモータMG1,MG2への電力の供給を遮断するものとしたが、モータMG1,MG2と高圧バッテリ46との間(例えば、昇圧コンバータ50と高圧バッテリ46との間)にリレーを設けて、このリレーをオフにすることにより高圧バッテリ46からモータMG1,MG2への電力の供給を遮断するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, power supply from the high voltage battery 46 to the motors MG1 and MG2 is interrupted by shutting off the gates of the inverters 42 and 44, but between the motors MG1 and MG2 and the high voltage battery 46. A relay may be provided (for example, between boost converter 50 and high voltage battery 46), and power supply from high voltage battery 46 to motors MG1 and MG2 may be shut off by turning this relay off.

また、こうしたエンジンとモータとを備えるハイブリッド自動車に適用するものに限定されるものではなく、走行用の動力源としてモータのみを備える電気自動車に適用するものとしてもよく、自動車以外の車両の形態としてもよく、動力システムの形態としても構わない。また、こうした動力システムの制御方法の形態としてもよい。   Further, the present invention is not limited to those applied to a hybrid vehicle including an engine and a motor, and may be applied to an electric vehicle including only a motor as a driving power source. Alternatively, the power system may be used. Moreover, it is good also as a form of the control method of such a power system.

ここで、実施例や変形例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。動力システムにおいて、実施例では、モータMG2が「駆動機器」に相当し、インバータ44が「駆動回路」に相当し、高圧バッテリ46が「直流電源」に相当し、昇圧コンバータ50が「昇圧供給手段」に相当し、DC/DCコンバータ56が「電圧変換供給手段」に相当し、電圧センサ60が「第1電圧検出手段」に相当し、電圧センサ64が「第2電圧検出手段」に相当し、電圧センサ60により検出されたバッテリ側電圧VL1が判定用電圧Vref以上であるときに仮異常と判定する図2の異常判定処理ルーチンのステップS100,S110,S130の処理を実行する電子制御ユニット70が「仮異常判定手段」に相当し、仮異常と判定されたときに電圧センサ64により検出されたバッテリ側電圧VL2が判定用電圧Vref以上であるときに過電圧異常と判定する図2の異常判定処理ルーチンのステップS150〜S170の処理や仮異常と判定されたときに電圧センサ64により検出されたバッテリ側電圧VL2が所定時間に亘って判定用電圧Vref未満であるときに電圧センサ60の異常と判定するステップS150,S160,S190,S200の処理を実行する電子制御ユニット70が「本異常判定手段」に相当し、仮異常と判定されたときにインバータ42,44をゲート遮断すると共に昇圧コンバータ50の動作を停止するステップS140の処理や仮異常と判定されたときに電圧センサ64により検出されたバッテリ側電圧VL2が判定用電圧Vref以上であるときにインバータ42,44のゲート遮断と昇圧コンバータ50の動作の停止とを継続しつつDC/DCコンバータ56の動作を停止する図2の異常判定処理ルーチンのステップS180の処理や仮異常と判定されたときに電圧センサ64により検出されたバッテリ側電圧VL2が所定時間に亘って判定用電圧Vref未満であるときにインバータ42,44をゲート復帰すると共に昇圧コンバータ50の動作を開始するステップS210の処理を実行する電子制御ユニット70が「異常時制御手段」に相当する。また、モータMG1も「駆動機器」に相当する。対ロータ電動機230も「駆動機器」に相当する。インバータ42も「駆動回路」に相当する。車両において、モータMG2が「電動機」に相当する。   Here, the correspondence between the main elements of the embodiments and the modified examples and the main elements of the invention described in the column of means for solving the problems will be described. In the power system, in the embodiment, the motor MG2 corresponds to the “drive device”, the inverter 44 corresponds to the “drive circuit”, the high voltage battery 46 corresponds to the “DC power supply”, and the boost converter 50 includes the “boost supply means”. The DC / DC converter 56 corresponds to “voltage conversion supply means”, the voltage sensor 60 corresponds to “first voltage detection means”, and the voltage sensor 64 corresponds to “second voltage detection means”. The electronic control unit 70 that executes the processing of steps S100, S110, and S130 of the abnormality determination processing routine of FIG. 2 that determines a temporary abnormality when the battery-side voltage VL1 detected by the voltage sensor 60 is equal to or higher than the determination voltage Vref. Corresponds to “temporary abnormality determination means”, and the battery-side voltage VL2 detected by the voltage sensor 64 when it is determined as a temporary abnormality is the determination voltage Vre. The battery-side voltage VL2 detected by the voltage sensor 64 when it is determined as a temporary abnormality or the processing of steps S150 to S170 of the abnormality determination processing routine of FIG. The electronic control unit 70 that executes the processing of steps S150, S160, S190, and S200, which determines that the voltage sensor 60 is abnormal when it is less than the determination voltage Vref, corresponds to “main abnormality determination means” and is determined to be a temporary abnormality. Battery-side voltage VL2 detected by voltage sensor 64 when it is determined that the process of step S140 that stops gates of inverters 42 and 44 and stops the operation of boosting converter 50 or a temporary abnormality is greater than determination voltage Vref. Is shut off, and the operation of the boost converter 50 is stopped. The battery-side voltage VL2 detected by the voltage sensor 64 when it is determined as a temporary abnormality or the process in step S180 of the abnormality determination processing routine of FIG. The electronic control unit 70 that executes the process of step S210 that returns the gates of the inverters 42 and 44 and starts the operation of the boost converter 50 when the voltage is lower than the determination voltage Vref corresponds to “anomaly control means”. The motor MG1 also corresponds to “driving device”. The anti-rotor motor 230 also corresponds to a “drive device”. The inverter 42 also corresponds to a “drive circuit”. In the vehicle, the motor MG2 corresponds to an “electric motor”.

ここで、動力システムにおいて、「駆動機器」としては、モータMG1やモータMG2に限定されるものではなく、モータとは異なる電力の供給を受けて駆動する機器など如何なるものであっても構わない。「駆動回路」としては、インバータ42やインバータ44に限定されるものではなく、駆動機器を駆動するためのものであれば如何なるものとしても構わない。「直流電源」としては、高圧バッテリ46に限定されるものではなく、充放電可能なものであれば如何なるものとしても構わない。「昇圧供給手段」としては、昇圧コンバータ50に限定されるものではなく、直流電源の電圧を昇圧して駆動回路に供給可能なものであれば如何なるものとしても構わない。「電圧変換供給手段」としては、DC/DCコンバータ56に限定されるものではなく、直流電源の電圧を変換して補機に供給可能なものであれば如何なるものとしても構わない。「第1電圧検出手段」としては、電圧センサ60に限定されるものではなく、昇圧供給手段の直流電源側の電圧である第1電圧を検出するものであれば如何なるものとしても構わない。「第2電圧検出手段」としては、電圧センサ64に限定されるものではなく、電圧変換供給手段の直流電源側の電圧である第2電圧を検出するものであれば如何なるものとしても構わない。「仮異常判定手段」としては、電圧センサ60により検出されたバッテリ側電圧VL1が判定用電圧Vref以上であるときに仮異常と判定するものに限定されるものではなく、第1電圧検出手段により検出された第1電圧が直流電源を通常制御する電圧の範囲としての通常制御用電圧範囲を超えているときに仮異常と判定するものであれば如何なるものとしても構わない。「本異常判定手段」としては、仮異常と判定されたときに電圧センサ64により検出されたバッテリ側電圧VL2が判定用電圧Vref以上であるときに過電圧異常と判定し、仮異常と判定されたときに電圧センサ64により検出されたバッテリ側電圧VL2が所定時間に亘って判定用電圧Vref未満であるときに電圧センサ60の異常と判定するものに限定されるものではなく、仮異常判定手段により仮異常と判定されたときに、前記電圧検出手段により検出された第2電圧が通常制御用電圧範囲を超えているときには過電圧異常と判定し、前記電圧検出手段により検出された第2電圧が所定時間に亘って通常制御用電圧範囲内にあるときには第1電圧検出手段の異常と判定するものであれば如何なるものしても構わない。「異常時制御手段」としては、仮異常と判定されたときにインバータ42,44をゲート遮断すると共に昇圧コンバータ50の動作を停止し、仮異常と判定されたときに電圧センサ64により検出されたバッテリ側電圧VL2が判定用電圧Vref以上であるときにインバータ42,44のゲート遮断と昇圧コンバータ50の動作の停止とを継続しつつDC/DCコンバータ56の動作を停止し、仮異常と判定されたときに電圧センサ64により検出されたバッテリ側電圧VL2が所定時間に亘って判定用電圧Vref未満であるときにインバータ42,44をゲート復帰すると共に昇圧コンバータ50の動作を開始するものに限定されるものではなく、仮異常判定手段により仮異常と判定されたときには供給手段の動作が停止されると共に駆動機器への電力の供給が遮断されるよう駆動回路と昇圧供給手段とを制御し、仮異常と判定された状態で本異常判定手段により過電圧異常と判定されたときには昇圧供給手段の動作の停止および駆動機器への電力の供給の遮断を継続した状態で電圧変換供給手段の動作が停止されるよう駆動回路と昇圧供給手段と電圧変換供給手段とを制御し、仮異常と判定された状態で本異常判定手段により第1電圧検出手段の異常と判定されたときには昇圧供給手段の動作が開始されると共に駆動機器への電力の供給が開始されるよう駆動回路と昇圧供給手段とを制御するものであれば如何なるものとしても構わない。また、車両において、「電動機」としては、モータMG2に限定されるものではなく、走行用の動力を出力可能なものであれば如何なるものとしても構わない。   Here, in the power system, the “drive device” is not limited to the motor MG1 or the motor MG2, and may be any device that is driven by receiving power supplied from a motor different from the motor MG1. The “drive circuit” is not limited to the inverter 42 and the inverter 44, and any drive circuit may be used as long as it is for driving a drive device. The “DC power supply” is not limited to the high voltage battery 46 and may be any battery that can be charged and discharged. The “boosting supply means” is not limited to the boosting converter 50, and any means can be used as long as it can boost the voltage of the DC power supply and supply it to the drive circuit. The “voltage conversion supply means” is not limited to the DC / DC converter 56, and any means can be used as long as it can convert the voltage of the DC power supply and supply it to the auxiliary machine. The “first voltage detecting means” is not limited to the voltage sensor 60, and any means may be used as long as it detects the first voltage that is the voltage on the DC power supply side of the boosting supply means. The “second voltage detecting means” is not limited to the voltage sensor 64, and any means can be used as long as it detects the second voltage that is the voltage on the DC power supply side of the voltage conversion supply means. The “temporary abnormality determination unit” is not limited to the one that determines a temporary abnormality when the battery-side voltage VL1 detected by the voltage sensor 60 is equal to or higher than the determination voltage Vref. As long as the detected first voltage exceeds the normal control voltage range as the voltage range for normally controlling the DC power supply, any temporary abnormality may be used. As the “normal abnormality determination means”, an overvoltage abnormality is determined when the battery side voltage VL2 detected by the voltage sensor 64 when the temporary abnormality is determined is equal to or higher than the determination voltage Vref, and the temporary abnormality is determined. When the battery-side voltage VL2 detected by the voltage sensor 64 is less than the determination voltage Vref for a predetermined time, the present invention is not limited to the case where the abnormality of the voltage sensor 60 is determined. If the second voltage detected by the voltage detection means exceeds the normal control voltage range when it is determined as a temporary abnormality, it is determined as an overvoltage abnormality, and the second voltage detected by the voltage detection means is predetermined. Anything may be used as long as it is determined that the first voltage detection means is abnormal when it is within the normal control voltage range over time. As the “abnormal control means”, the gates of the inverters 42 and 44 are shut off when the temporary abnormality is determined and the operation of the boost converter 50 is stopped, and the voltage sensor 64 is detected when the temporary abnormality is determined. When the battery-side voltage VL2 is equal to or higher than the determination voltage Vref, the operation of the DC / DC converter 56 is stopped while the gates of the inverters 42 and 44 are stopped and the operation of the boost converter 50 is stopped. When the battery side voltage VL2 detected by the voltage sensor 64 is lower than the determination voltage Vref for a predetermined time, the inverters 42 and 44 are returned to the gate and the operation of the boost converter 50 is started. When the provisional abnormality determination means determines that the provisional abnormality is present, the operation of the supply means is stopped and The drive circuit and the boosting supply means are controlled so that the power supply to the moving equipment is cut off, and the operation of the boosting supply means is stopped when the abnormality determining means determines that an overvoltage abnormality is detected in a state where it is determined as a temporary abnormality. In addition, the drive circuit, the boost supply means, and the voltage conversion supply means are controlled so that the operation of the voltage conversion supply means is stopped in a state in which the supply of power to the drive device is continuously interrupted. When the abnormality determining means determines that the first voltage detecting means is abnormal, the operation of the boosting supply means is started and the drive circuit and the boosting supply means are controlled so that the supply of power to the driving device is started. Anything can be used. Further, in the vehicle, the “electric motor” is not limited to the motor MG2, and any motor can be used as long as it can output driving power.

なお、実施例や変形例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   Note that the correspondence between the main elements of the embodiment and the modified example and the main elements of the invention described in the column of means for solving the problem is described in the column of means for the embodiment to solve the problem. Since this is an example for specifically describing the best mode for carrying out the invention, the elements of the invention described in the column of means for solving the problems are not limited. That is, the interpretation of the invention described in the column of means for solving the problems should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problems. It is only a specific example.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明は、動力システムや車両の製造産業などに利用可能である。   The present invention is applicable to a power system, a vehicle manufacturing industry, and the like.

本発明の一実施例としての動力システムを搭載したハイブリッド自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 equipped with a power system as one embodiment of the present invention. 電子制御ユニット70により実行される異常判定処理ルーチンの一例を示すフローチャートである。4 is a flowchart showing an example of an abnormality determination processing routine executed by an electronic control unit 70.

符号の説明Explanation of symbols

20 ハイブリッド自動車、22 エンジン、24 クランクシャフト、26 遊星歯車機構、28a,28b 駆動輪、30 デファレンシャルギヤ、32 駆動軸、42,44 インバータ、46 高圧バッテリ、48 電力ライン、50 昇圧コンバータ、51 平滑コンデンサ、52 補機、54 低圧バッテリ、56 DC/DCコンバータ、60,62,64 電圧センサ、70 電子制御ユニット、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、MG1,MG2 モータ。   20 hybrid vehicle, 22 engine, 24 crankshaft, 26 planetary gear mechanism, 28a, 28b drive wheel, 30 differential gear, 32 drive shaft, 42, 44 inverter, 46 high voltage battery, 48 power line, 50 boost converter, 51 smoothing capacitor , 52 Auxiliary machine, 54 Low voltage battery, 56 DC / DC converter, 60, 62, 64 Voltage sensor, 70 Electronic control unit, 72 CPU, 74 ROM, 76 RAM, 80 Ignition switch, 81 Shift lever, 82 Shift position sensor, 83 accelerator pedal, 84 accelerator pedal position sensor, 85 brake pedal, 86 brake pedal position sensor, 88 vehicle speed sensor, MG1, MG2 motor.

Claims (4)

駆動機器と、
該駆動機器を駆動するための駆動回路と、
充放電可能な直流電源と、
該直流電源の電圧を昇圧して前記駆動回路に供給可能な昇圧供給手段と、
前記直流電源の電圧を変換して補機に供給可能な電圧変換供給手段と、
前記昇圧供給手段の前記直流電源側の電圧である第1電圧を検出する第1電圧検出手段と、
前記電圧変換供給手段の前記直流電源側の電圧である第2電圧を検出する第2電圧検出手段と、
前記第1電圧検出手段により検出された第1電圧が前記直流電源を通常制御する電圧の範囲としての通常制御用電圧範囲を超えているときに仮異常と判定する仮異常判定手段と、
前記仮異常判定手段により仮異常と判定されたときに、前記第2電圧検出手段により検出された第2電圧が前記通常制御用電圧範囲を超えているときには過電圧異常と判定し、前記第2電圧検出手段により検出された第2電圧が所定時間に亘って前記通常制御用電圧範囲内にあるときには前記第1電圧検出手段の異常と判定する本異常判定手段と、
前記仮異常判定手段により仮異常と判定されたときには前記昇圧供給手段の動作が停止されると共に前記駆動機器への電力の供給が遮断されるよう前記駆動回路と前記昇圧供給手段とを制御し、前記仮異常と判定された状態で前記本異常判定手段により過電圧異常と判定されたときには前記昇圧供給手段の動作の停止および前記駆動機器への電力の供給の遮断を継続した状態で前記電圧変換供給手段の動作が停止されるよう前記駆動回路と前記昇圧供給手段と前記電圧変換供給手段とを制御し、前記仮異常と判定された状態で前記本異常判定手段により前記第1電圧検出手段の異常と判定されたときには前記昇圧供給手段の動作が開始されると共に前記駆動機器への電力の供給が開始されるよう前記駆動回路と前記昇圧供給手段とを制御する異常時制御手段と、
を備える動力システム。
Driving equipment,
A drive circuit for driving the drive device;
A chargeable / dischargeable DC power supply,
Boosting supply means capable of boosting the voltage of the DC power supply and supplying the boosted voltage to the drive circuit;
Voltage conversion supply means capable of converting the voltage of the DC power source and supplying the converted voltage to the auxiliary machine;
First voltage detection means for detecting a first voltage that is a voltage on the DC power supply side of the boost supply means;
Second voltage detection means for detecting a second voltage that is a voltage on the DC power supply side of the voltage conversion supply means;
Temporary abnormality determination means for determining a temporary abnormality when the first voltage detected by the first voltage detection means exceeds a normal control voltage range as a voltage range for normally controlling the DC power supply;
When it is determined that the temporary abnormality is detected by the temporary abnormality determination unit, an overvoltage abnormality is determined when the second voltage detected by the second voltage detection unit exceeds the normal control voltage range, and the second voltage is determined. A main abnormality determination unit that determines that the first voltage detection unit is abnormal when the second voltage detected by the detection unit is within the normal control voltage range for a predetermined time;
Controlling the driving circuit and the boosting supply means so that the operation of the boosting supply means is stopped and the power supply to the driving device is interrupted when the temporary abnormality determining means determines that the temporary abnormality has occurred; When it is determined that an overvoltage abnormality is detected by the main abnormality determination unit in a state where the temporary abnormality is determined, the voltage conversion supply is performed in a state where the operation of the boosting supply unit is stopped and the supply of power to the driving device is continuously stopped. The drive circuit, the boost supply means, and the voltage conversion supply means are controlled so that the operation of the means is stopped, and the abnormality of the first voltage detection means is detected by the abnormality determination means in a state where the temporary abnormality is determined. When it is determined, the drive circuit and the boost supply means are controlled so that the operation of the boost supply means is started and the supply of power to the drive device is started. And constantly control means,
Power system with
前記異常時制御手段は、前記駆動回路をゲート遮断することにより前記駆動機器への電力の供給を遮断する手段である請求項1記載の動力システム。   2. The power system according to claim 1, wherein the abnormality control unit is a unit that interrupts the supply of electric power to the drive device by blocking the gate of the drive circuit. 3. 請求項1または2記載の動力システムが搭載され、前記駆動機器として走行用の動力を出力可能な電動機を備える車両。   A vehicle equipped with an electric motor on which the power system according to claim 1 or 2 is mounted and capable of outputting driving power as the driving device. 駆動機器と、該駆動機器を駆動するための駆動回路と、充放電可能な直流電源と、該直流電源の電圧を昇圧して前記駆動回路に供給可能な昇圧供給手段と、前記直流電源の電圧を変換して補機に供給可能な電圧変換供給手段と、前記昇圧供給手段の前記直流電源側の電圧である第1電圧を検出する第1電圧検出手段と、前記電圧変換供給手段の前記直流電源側の電圧である第2電圧を検出する第2電圧検出手段と、を備える動力システムの制御方法であって、
前記第1電圧検出手段により検出された第1電圧が前記直流電源を通常制御する電圧の範囲としての通常制御用電圧範囲を超えているときに仮異常と判定すると共に前記昇圧供給手段の動作が停止されると共に前記駆動機器への電力の供給が遮断されるよう前記駆動回路と前記昇圧供給手段とを制御し、
前記仮異常が判定されたときに、前記第2電圧検出手段により検出された第2電圧が前記通常制御用電圧範囲を超えているときには過電圧異常と判定すると共に前記昇圧供給手段の動作の停止および前記駆動機器への電力の供給の遮断を継続した状態で前記電圧変換供給手段の動作が停止されるよう前記駆動回路と前記昇圧供給手段と前記電圧変換供給手段とを制御し、前記第2電圧検出手段により検出された第2電圧が所定時間に亘って前記通常制御用電圧範囲内にあるときには前記第1電圧検出手段の異常と判定すると共に前記昇圧供給手段の動作が開始されると共に前記駆動機器への電力の供給が開始されるよう前記駆動回路と前記昇圧供給手段とを制御する、
動力システムの制御方法。
Drive device, drive circuit for driving the drive device, chargeable / dischargeable DC power supply, boost supply means capable of boosting the voltage of the DC power supply and supplying it to the drive circuit, and voltage of the DC power supply Voltage conversion supply means capable of converting the voltage to supply to the auxiliary machine, first voltage detection means for detecting a first voltage which is a voltage on the DC power supply side of the boost supply means, and the DC of the voltage conversion supply means A power system control method comprising: a second voltage detecting means for detecting a second voltage that is a voltage on a power supply side,
When the first voltage detected by the first voltage detection means exceeds a normal control voltage range as a voltage range for normally controlling the DC power supply, a temporary abnormality is determined and the operation of the boost supply means is Controlling the drive circuit and the boost supply means so that the supply of power to the drive device is interrupted and stopped,
When the temporary abnormality is determined, if the second voltage detected by the second voltage detection means exceeds the normal control voltage range, it is determined that the overvoltage abnormality is present, and the operation of the boost supply means is stopped and Controlling the drive circuit, the boosting supply means, and the voltage conversion supply means so that the operation of the voltage conversion supply means is stopped in a state in which the supply of power to the drive device is continuously interrupted, and the second voltage When the second voltage detected by the detection means is within the normal control voltage range for a predetermined time, it is determined that the first voltage detection means is abnormal, the operation of the boosting supply means is started, and the driving is performed. Controlling the drive circuit and the boost supply means so that the supply of power to the device is started;
Power system control method.
JP2008074231A 2008-03-21 2008-03-21 Power system, control method therefor, and vehicle Active JP5109743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074231A JP5109743B2 (en) 2008-03-21 2008-03-21 Power system, control method therefor, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074231A JP5109743B2 (en) 2008-03-21 2008-03-21 Power system, control method therefor, and vehicle

Publications (2)

Publication Number Publication Date
JP2009227078A true JP2009227078A (en) 2009-10-08
JP5109743B2 JP5109743B2 (en) 2012-12-26

Family

ID=41243004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074231A Active JP5109743B2 (en) 2008-03-21 2008-03-21 Power system, control method therefor, and vehicle

Country Status (1)

Country Link
JP (1) JP5109743B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167002A (en) * 2010-02-12 2011-08-25 Toyota Motor Corp Device for power control
WO2012086057A1 (en) 2010-12-24 2012-06-28 トヨタ自動車株式会社 Power supply system, vehicle mounted therewith, and method of controlling power storage apparatus
JP2013112098A (en) * 2011-11-28 2013-06-10 Toyota Motor Corp Hybrid vehicle
JP2014138451A (en) * 2013-01-15 2014-07-28 Sumitomo Electric Ind Ltd Conversion device, failure determination method and control program
JP2014205386A (en) * 2013-04-11 2014-10-30 スズキ株式会社 Battery charge/discharge control device
WO2018110502A1 (en) * 2016-12-14 2018-06-21 株式会社デンソー Abnormality detection device
WO2021125193A1 (en) * 2019-12-17 2021-06-24 株式会社デンソー Control device for in-vehicle power source device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069607A (en) * 1999-08-25 2001-03-16 Honda Motor Co Ltd Hybrid vehicle controller
JP2001119809A (en) * 1999-10-13 2001-04-27 Honda Motor Co Ltd Motor control device for hybrid electric vehicle
JP2003047107A (en) * 2001-08-01 2003-02-14 Aisin Aw Co Ltd Driving control device for hybrid vehicle, driving control system for hybrid vehicle and its program
JP2004274945A (en) * 2003-03-11 2004-09-30 Toyota Motor Corp Motor drive device, hybrid vehicle drive device equipped therewith, and computer readable storage medium recording program for making computer implement control of motor drive device
JP2005020944A (en) * 2003-06-27 2005-01-20 Honda Motor Co Ltd Vehicle controller
JP2006311775A (en) * 2005-05-02 2006-11-09 Toyota Motor Corp Load-drive device and vehicle with load-driving device mounted
JP2007028803A (en) * 2005-07-15 2007-02-01 Honda Motor Co Ltd Control unit of electric vehicle
JP2007245776A (en) * 2006-03-13 2007-09-27 Toyota Motor Corp Power output device, vehicle therewith, and method for controlling power output device
JP2007252134A (en) * 2006-03-17 2007-09-27 Toyota Motor Corp Load driver and automobile mounting it
JP2008013119A (en) * 2006-07-07 2008-01-24 Toyota Motor Corp Power output device of vehicle and its control method
JP2008022640A (en) * 2006-07-13 2008-01-31 Toyota Motor Corp Vehicle driving device, its control method, program for making computer perform the same and computer readable recording medium recording the program

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069607A (en) * 1999-08-25 2001-03-16 Honda Motor Co Ltd Hybrid vehicle controller
JP2001119809A (en) * 1999-10-13 2001-04-27 Honda Motor Co Ltd Motor control device for hybrid electric vehicle
JP2003047107A (en) * 2001-08-01 2003-02-14 Aisin Aw Co Ltd Driving control device for hybrid vehicle, driving control system for hybrid vehicle and its program
JP2004274945A (en) * 2003-03-11 2004-09-30 Toyota Motor Corp Motor drive device, hybrid vehicle drive device equipped therewith, and computer readable storage medium recording program for making computer implement control of motor drive device
JP2005020944A (en) * 2003-06-27 2005-01-20 Honda Motor Co Ltd Vehicle controller
JP2006311775A (en) * 2005-05-02 2006-11-09 Toyota Motor Corp Load-drive device and vehicle with load-driving device mounted
JP2007028803A (en) * 2005-07-15 2007-02-01 Honda Motor Co Ltd Control unit of electric vehicle
JP2007245776A (en) * 2006-03-13 2007-09-27 Toyota Motor Corp Power output device, vehicle therewith, and method for controlling power output device
JP2007252134A (en) * 2006-03-17 2007-09-27 Toyota Motor Corp Load driver and automobile mounting it
JP2008013119A (en) * 2006-07-07 2008-01-24 Toyota Motor Corp Power output device of vehicle and its control method
JP2008022640A (en) * 2006-07-13 2008-01-31 Toyota Motor Corp Vehicle driving device, its control method, program for making computer perform the same and computer readable recording medium recording the program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167002A (en) * 2010-02-12 2011-08-25 Toyota Motor Corp Device for power control
WO2012086057A1 (en) 2010-12-24 2012-06-28 トヨタ自動車株式会社 Power supply system, vehicle mounted therewith, and method of controlling power storage apparatus
US8922170B2 (en) 2010-12-24 2014-12-30 Toyota Jidosha Kabushiki Kaisha Electric power supply system and vehicle having the same mounted therein, and method of controlling electric power storage device
JP2013112098A (en) * 2011-11-28 2013-06-10 Toyota Motor Corp Hybrid vehicle
JP2014138451A (en) * 2013-01-15 2014-07-28 Sumitomo Electric Ind Ltd Conversion device, failure determination method and control program
JP2014205386A (en) * 2013-04-11 2014-10-30 スズキ株式会社 Battery charge/discharge control device
WO2018110502A1 (en) * 2016-12-14 2018-06-21 株式会社デンソー Abnormality detection device
JP2018098932A (en) * 2016-12-14 2018-06-21 株式会社デンソー Abnormality detection device
WO2021125193A1 (en) * 2019-12-17 2021-06-24 株式会社デンソー Control device for in-vehicle power source device
JP2021097486A (en) * 2019-12-17 2021-06-24 株式会社デンソー Control device of in-vehicle power source device
JP7172977B2 (en) 2019-12-17 2022-11-16 株式会社デンソー Control device for in-vehicle power supply

Also Published As

Publication number Publication date
JP5109743B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
US9878620B2 (en) Hybrid vehicle
US8253359B2 (en) Electric rotating machine control system and vehicle driving system including the electric rotating machine control system
JP5477339B2 (en) Electric vehicle
JP5716694B2 (en) Electric vehicle
US11458844B2 (en) Power supply system for vehicle
JP5109743B2 (en) Power system, control method therefor, and vehicle
JP6694156B2 (en) Control device for hybrid vehicle
JP2013098170A (en) Device and method for monitoring main relay of green vehicle
US10000123B2 (en) Hybrid vehicle
US10179516B2 (en) Vehicle power control system and power control method
JP2011155743A (en) Electric vehicle
JP2015070661A (en) Power supply control device
JP2008278561A (en) Electric apparatus and control method thereof
JP5310640B2 (en) Drive device
JP4980686B2 (en) Electric power system, driving device including the electric power system, vehicle equipped with the electric power system, and control method for the electric power system
JP2016129460A (en) Power supply
JP2015084614A (en) Vehicle
JP4285638B2 (en) Vehicle charging control device
JP2005022561A (en) Electric charge controlling device of vehicle
CN110861494B (en) Control device for rotating electric machine
JP2011101542A (en) Power control device
JP2005065392A (en) Charge controller of vehicle
JP2005065390A (en) Charge controller of vehicle
JP2013070492A (en) Power supply
JP2010259265A (en) Vehicle, and method for determining abnormal condition in step-up circuit mounted on vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5109743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250