JP2007005440A - Superconducting magnet device and its operation method - Google Patents

Superconducting magnet device and its operation method Download PDF

Info

Publication number
JP2007005440A
JP2007005440A JP2005181791A JP2005181791A JP2007005440A JP 2007005440 A JP2007005440 A JP 2007005440A JP 2005181791 A JP2005181791 A JP 2005181791A JP 2005181791 A JP2005181791 A JP 2005181791A JP 2007005440 A JP2007005440 A JP 2007005440A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coil
coil
primary
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005181791A
Other languages
Japanese (ja)
Other versions
JP4585389B2 (en
Inventor
Kei Koyanagi
圭 小柳
Michitaka Ono
通隆 小野
Shiyunji Nomura
俊自 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005181791A priority Critical patent/JP4585389B2/en
Publication of JP2007005440A publication Critical patent/JP2007005440A/en
Application granted granted Critical
Publication of JP4585389B2 publication Critical patent/JP4585389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting magnet device capable of supplying to a sample a current exceeding an output current capacity of power supply equipment while reducing heat intrusion from room temperature. <P>SOLUTION: The superconducting magnet device comprises a primary side superconducting coil 1b, a first low temperature container 1a for accommodating the primary side superconducting coil 1b, a secondary side superconducting coil 2a magnetically coupled to the primary side superconducting coil 1b, and a second low temperature container 5 for accommodating the secondary side superconducting coil 2a. The primary side superconducting coil 1b and the secondary side superconducting coil 2a can be controlled to another temperature. The secondary side superconducting coil 2a is constructed by permitting a plurality of secondary coils to be connected in parallel. To the secondary side superconducting coil 2a there is electrically connected a superconducting conductor sample 4 controllable to another temperature from the primary side superconducting coil 1b and the secondary side superconducting coil 2a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、1次側超電導マグネットと磁気的に結合した2次側超電導コイルとを備えた超電導マグネット装置およびその運転方法に関し、特に、超電導エネルギー貯蔵システム等に用いる大電流容量導体の効率の高い大電流通電評価に好適な技術に関する。   The present invention relates to a superconducting magnet device including a secondary superconducting coil that is magnetically coupled to a primary superconducting magnet and a method for operating the superconducting magnet device, and particularly to high efficiency of a large current capacity conductor used in a superconducting energy storage system or the like. The present invention relates to a technique suitable for evaluating a large current.

超電導材料の通電特性計測装置として、たとえば、特許文献1の装置が知られている。   For example, an apparatus disclosed in Patent Document 1 is known as a current-carrying characteristic measuring apparatus for a superconducting material.

図10は、超電導導体に通電して電圧発生を観測し臨界電流値を測定するための従来の装置の基本的な構成例を示す例である。この構成例では、超電導導体サンプル4は、低温容器16内の冷媒6に浸漬されて極低温に冷却されている。冷媒6には外部磁場印加用超電導コイル12も浸漬されている。外部磁場印加用超電導コイル12は、マグネット用電流リード15bを介して低温容器16外のマグネット励磁電源13に接続されている。超電導導体サンプル4両端には電流を供給するための電流リード15aが接続され、この電流リード15aは、室温の電流導入端子を介して超電導導体サンプル用電源14に接続されている。電流リード15aとしては、通常、銅あるいはリン脱酸銅等の銅合金が使用される。   FIG. 10 is an example showing a basic configuration example of a conventional apparatus for energizing a superconducting conductor to observe voltage generation and measure a critical current value. In this configuration example, the superconducting conductor sample 4 is immersed in the refrigerant 6 in the cryogenic vessel 16 and cooled to a cryogenic temperature. A superconducting coil 12 for applying an external magnetic field is also immersed in the refrigerant 6. The superconducting coil 12 for applying an external magnetic field is connected to a magnet excitation power source 13 outside the cryogenic vessel 16 through a magnet current lead 15b. A current lead 15a for supplying current is connected to both ends of the superconducting conductor sample 4, and the current lead 15a is connected to a power source 14 for the superconducting sample through a current introduction terminal at room temperature. As the current lead 15a, a copper alloy such as copper or phosphorus deoxidized copper is usually used.

なお、別の従来例として、超電導導体サンプルが極低温小型冷凍機により伝導冷却されて試験に供される場合もある。   As another conventional example, a superconducting conductor sample may be subjected to a test after being conductively cooled by a cryogenic small refrigerator.

通常、電流リードはその長さと断面積とを最適化されて極低温部分への熱負荷を増加させないよう設計されるが、冷媒蒸発ガスとの熱交換の条件によっては1A当り50mW近い熱侵入があり、大電流をサンプルに通電する必要がある場合には、電流値に比例して電流リードの断面積が大きく設計される。また、導体サンプルの超電導特性の磁場依存性を測定するためにはサンプルに対して超電導コイル12による外部磁場を与える必要が生じ、図10の構成例のように同じ低温容器16に外部磁場印加用の超電導コイルを励磁するための電流リード15bを具備する構成になる。   Normally, the current lead is designed so that its length and cross-sectional area are optimized so as not to increase the heat load on the cryogenic part, but depending on the conditions of heat exchange with the refrigerant evaporative gas, a heat intrusion close to 50 mW per 1A may occur. If a large current needs to be applied to the sample, the cross-sectional area of the current lead is designed to be large in proportion to the current value. Further, in order to measure the magnetic field dependence of the superconducting characteristics of the conductor sample, it is necessary to apply an external magnetic field to the sample by the superconducting coil 12, and the same low-temperature vessel 16 for applying an external magnetic field as shown in the configuration example of FIG. The current lead 15b for exciting the superconducting coil is provided.

一方、図11は、外部磁場印加用超電導マグネットの1次側超電導コイル1bの内側に試験用超電導導体サンプル4と2次側超電導コイル17を設置して、電磁誘導により電流供給する方法の従来装置の基本的な構成を示した例である。この構成において、外部磁場印加用の超電導コイル1bと2次側超電導コイル17および試験用超電導導体サンプル4とは同じ低温容器16内部に設置されている。
特開2003−149278号公報
On the other hand, FIG. 11 shows a conventional apparatus in which a test superconducting conductor sample 4 and a secondary superconducting coil 17 are installed inside a primary superconducting coil 1b of an external magnetic field applying superconducting magnet and current is supplied by electromagnetic induction. This is an example showing the basic configuration of. In this configuration, the superconducting coil 1 b for applying an external magnetic field, the secondary superconducting coil 17, and the test superconducting conductor sample 4 are installed in the same low temperature container 16.
JP 2003-149278 A

従来の構成例のように外部から電流リードを介して超電導導体サンプルに電流供給する場合、熱侵入により冷媒が蒸発してしまう。さらに、外部磁場印加用の超電導コイルへ電流を供給する電流リードからも極低温部分への熱負荷が生じる。この結果、冷媒の液面が減少するために通電試験できる時間が制限されてしまう。一方、サンプルに供給できる電流値は外部電源の電流容量により制限され、従来の方式では、保有する電源設備の出力電流値を越える臨界電流値をもつ導体サンプルは評価できない。   When current is supplied to the superconducting conductor sample from the outside via a current lead as in the conventional configuration example, the refrigerant evaporates due to heat penetration. Further, a heat load is generated on the cryogenic temperature portion from the current lead that supplies current to the superconducting coil for applying the external magnetic field. As a result, the time during which the energization test can be performed is limited because the liquid level of the refrigerant decreases. On the other hand, the current value that can be supplied to the sample is limited by the current capacity of the external power supply, and the conventional method cannot evaluate a conductor sample having a critical current value that exceeds the output current value of the power supply equipment that it possesses.

また、外部磁場印加用超電導マグネットを使用して電磁誘導により電流供給する方法の場合、従来例では試験サンプルと磁場印加用超電導マグネットとが同一の低温容器内に収納されているため、試験の度にマグネット冷却のための冷媒も消費し、磁場印加用超電導マグネットを冷却、昇温するための時間も要する。   In the case of supplying current by electromagnetic induction using a superconducting magnet for applying an external magnetic field, the test sample and the superconducting magnet for applying a magnetic field are stored in the same low temperature container in the conventional example. In addition, it takes time to cool and raise the temperature of the superconducting magnet for applying a magnetic field.

この発明は上記課題に鑑みてなされたものであって、室温からの熱侵入を低減しつつ、電源設備の出力電流容量以上の電流値をサンプルへ通電可能な超電導マグネット装置およびその運転方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a superconducting magnet device capable of energizing a sample with a current value equal to or greater than the output current capacity of a power supply facility while reducing heat intrusion from room temperature, and an operating method thereof. The purpose is to do.

上記目的を達成するために、本発明による超電導マグネット装置は、1次側超電導コイルと、この1次側超電導コイルを収容する第1の低温容器と、前記1次側超電導コイルに磁気的に結合された2次側超電導コイルと、この2次側超電導コイルを収容する第2の低温容器と、を有し、前記1次側超電導コイルと2次側超電導コイルとが別の温度に制御できるように構成されていることを特徴とする。   In order to achieve the above object, a superconducting magnet device according to the present invention includes a primary superconducting coil, a first low-temperature container that accommodates the primary superconducting coil, and a magnetic coupling to the primary superconducting coil. A secondary superconducting coil and a second low-temperature container that accommodates the secondary superconducting coil so that the primary superconducting coil and the secondary superconducting coil can be controlled to different temperatures. It is comprised by these.

また、本発明による超電導マグネット装置運転方法は、1次側超電導コイルと、この1次側超電導コイルに磁気的に結合された2次側超電導コイルと、を有する超電導マグネット装置の運転方法であって、1次側超電導コイルの温度と2次側超電導コイルの温度を別個に制御すること、を特徴とする。   The superconducting magnet apparatus operating method according to the present invention is an operating method of a superconducting magnet apparatus having a primary superconducting coil and a secondary superconducting coil magnetically coupled to the primary superconducting coil. The temperature of the primary side superconducting coil and the temperature of the secondary side superconducting coil are separately controlled.

本発明によれば、室温からの熱侵入を低減しつつ、電源設備の出力電流容量以上の電流値をサンプルへ通電可能にする構造を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the structure which enables the electric current value more than the output current capacity | capacitance of a power supply installation to be able to energize a sample can be implement | achieved, reducing the heat penetration | invasion from room temperature.

以下、本発明の実施形態について図面を参照して説明する。なお本発明は下記の実施形態に限定されるものではなく、その要旨を変更しない範囲で適宜変形して実施し得るものである。また、以下の説明で、従来技術と共通の部分、あるいは相互に同一もしくは類似の部分には共通の符号を付して、重複説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to the following embodiment, It can deform | transform suitably and implement in the range which does not change the summary. In the following description, parts common to those of the prior art, or parts that are the same or similar to each other, are denoted by common reference numerals, and redundant description is omitted.

[第1の実施形態]
図1は、本発明に係る超電導マグネット装置の第1の実施形態を示す縦断面図であり、2次側超電導コイルおよび超電導導体サンプルを同じ2次側低温容器内で冷媒により浸漬冷却し試験する場合について示す。
[First Embodiment]
FIG. 1 is a longitudinal sectional view showing a first embodiment of a superconducting magnet apparatus according to the present invention, in which a secondary superconducting coil and a superconducting conductor sample are immersed and cooled in a same secondary side cryocontainer with a refrigerant and tested. Show the case.

鉛直軸を有する筒状の2次側低温容器5内に、軸を鉛直にした2次側超電導コイル2aが収容されている。2次側超電導コイル2aは複数個(たとえば4個)のコイルが上下方向の軸に沿って並べられている。2次側超電導コイル2aの電流導入端子2bはコイルの内側に配置され、これらが互いに並列に、接続部分18aでリード線20に接続されている。このリード線20は、2次側超電導コイル2aの上方に配置された超電導導体サンプル(超電導体負荷)4と、接続部分18bで接続されている。2次側低温容器5内に液体の冷媒6が溜められており、2次側超電導コイル2a、電流導入端子2b、超電導導体サンプル4、リード線20は冷媒6内に浸漬されている。   A secondary side superconducting coil 2a having a vertical axis is accommodated in a cylindrical secondary cryogenic vessel 5 having a vertical axis. The secondary superconducting coil 2a has a plurality of (for example, four) coils arranged along the vertical axis. The current introduction terminal 2b of the secondary superconducting coil 2a is arranged inside the coil, and these are connected in parallel to the lead wire 20 at the connection portion 18a. This lead wire 20 is connected to a superconducting conductor sample (superconducting load) 4 disposed above the secondary superconducting coil 2a at a connecting portion 18b. A liquid refrigerant 6 is stored in the secondary-side cryocontainer 5, and the secondary-side superconducting coil 2 a, current introduction terminal 2 b, superconducting conductor sample 4, and lead wire 20 are immersed in the refrigerant 6.

2次側低温容器5の周囲を囲むように環状の1次側超電導マグネット1が配置されていて、2次側超電導コイル2aが環状の1次側マグネット1の内側空間であるボア1d内に配置される関係になる。1次側超電導マグネット1は、環状の1次側低温容器1a内に収容された1次側超電導コイル1bを有する。1次側超電導コイル1bは、2次側超電導コイル2aと磁気的に結合されるように2次側超電導コイル2aに対向して配置され、1次側超電導マグネット用電源3に電気的に接続されている。また、1次側超電導コイル1bは1次側マグネット用極低温冷凍機1cに、固体熱伝導体によって熱的に接続されている。   An annular primary superconducting magnet 1 is disposed so as to surround the periphery of the secondary cryogenic vessel 5, and the secondary superconducting coil 2 a is disposed in a bore 1 d that is an inner space of the annular primary magnet 1. Become a relationship. The primary superconducting magnet 1 has a primary superconducting coil 1b accommodated in an annular primary cryogenic container 1a. The primary superconducting coil 1b is disposed opposite to the secondary superconducting coil 2a so as to be magnetically coupled to the secondary superconducting coil 2a, and is electrically connected to the power supply 3 for the primary superconducting magnet. ing. The primary superconducting coil 1b is thermally connected to the primary magnet cryogenic refrigerator 1c by a solid heat conductor.

この実施形態では、2次側回路は複数個の並列の超電導コイルを有し、超電導導体サンプル4に対して電流を供給する。2次側回路は複数のコイルを有することにより2次側コイルを巻回する超電導導体のコイル数倍を超電導導体サンプルに供給することができる。   In this embodiment, the secondary circuit has a plurality of parallel superconducting coils and supplies current to the superconducting conductor sample 4. Since the secondary side circuit has a plurality of coils, it is possible to supply the superconducting conductor sample with several times the number of superconducting conductors around which the secondary side coil is wound.

また、並列回路である2次側に対して1次側超電導マグネット1の磁場が印加された場合には、各回路間の幾何学的な位置関係により電流偏流が生じる恐れがあるが、並列回路を構成するコイルが独立しているため、コイルの相対位置を移動することができ、電流偏流が抑制されるように調整することが可能になる。2次側超電導コイル2aの並び方は、図2に示すように同じ大きさのコイルを4個並べてもよいが、図3あるいは図4のように1次側超電導コイルの赤道面30との距離に応じて2次側コイル2aの巻数を変えて、偏流が起こり難い設計にしておくことも可能である。一般に、2次側超電導コイル2aを1次側超電導マグネットの赤道面30に対して対称に配置するのが好ましい。ここで、「赤道面」とは、環状の1次側超電導コイルの軸方向高さの半分の高さにおいて、軸方向に対して垂直な面のことである。   Further, when the magnetic field of the primary superconducting magnet 1 is applied to the secondary side which is a parallel circuit, current drift may occur due to the geometric positional relationship between the circuits. Is independent, the relative position of the coils can be moved, and adjustment can be made such that current drift is suppressed. The secondary side superconducting coil 2a may be arranged in such a way that four coils of the same size may be arranged as shown in FIG. 2, but the distance from the equator plane 30 of the primary side superconducting coil as shown in FIG. 3 or FIG. Accordingly, the number of turns of the secondary coil 2a can be changed to make a design in which drift does not easily occur. Generally, it is preferable to arrange the secondary superconducting coil 2a symmetrically with respect to the equator plane 30 of the primary superconducting magnet. Here, the “equatorial plane” is a plane perpendicular to the axial direction at a height that is half the axial height of the annular primary superconducting coil.

また、超電導導体サンプル4の2次側低温容器5の内部での位置は冷媒6の液面を越えない範囲内で任意に選ぶことが可能であるため、1次側超電導マグネット1の発生する漏れ磁場を超電導導体サンプル4に与えて超電導導体サンプル4の超電導特性の磁場依存性を観察することも可能である。   Further, since the position of the superconducting conductor sample 4 inside the secondary-side cryocontainer 5 can be arbitrarily selected within a range not exceeding the liquid level of the refrigerant 6, leakage generated by the primary-side superconducting magnet 1 is possible. It is also possible to observe the magnetic field dependence of the superconducting characteristics of the superconducting conductor sample 4 by applying a magnetic field to the superconducting conductor sample 4.

すなわち、1次側超電導コイル1bは誘導回路として働くだけでなく、その漏れ磁場を超電導導体サンプル4に与えることができる。2次側電流値のピーク値を決める1次側電流の掃引条件には、1次側電流の掃引速度(di/dt)と、1次側電流のフラットトップ値(F/T)の二つがある。したがって、di/dtを変化させれば、F/T値を任意に選んで同じ2次側電流ピーク値を得ることができる。F/T値は1次側超電導コイル1bの発生磁場に相当するので、本装置においてF/T値をパラメタとして試験を繰り返せば、超電導導体サンプル4の磁界依存性を評価することができる。   That is, the primary superconducting coil 1b not only functions as an induction circuit, but also can provide the superconducting conductor sample 4 with its leakage magnetic field. There are two primary current sweep conditions that determine the peak value of the secondary current value: the sweep speed (di / dt) of the primary current and the flat top value (F / T) of the primary current. is there. Therefore, if di / dt is changed, the same secondary current peak value can be obtained by arbitrarily selecting the F / T value. Since the F / T value corresponds to the magnetic field generated by the primary superconducting coil 1b, the magnetic field dependence of the superconducting conductor sample 4 can be evaluated by repeating the test using the F / T value as a parameter in this apparatus.

次に、図1に示した実施形態に関して試作した試験装置の諸元および試験結果の一例について以下に示す。   Next, an example of the specifications and test results of the test apparatus that was prototyped for the embodiment shown in FIG.

試験装置を構成の諸元は、以下の通りである。なお、2個の2次側超電導コイルAは、1次側超電導マグネットの赤道面(Z=0)に対してZ=±40mmの位置に設置し、同じく2個の2次側超電導コイルBは、Z=±120mmの位置に設置した。   The specifications of the test apparatus are as follows. The two secondary superconducting coils A are installed at a position of Z = ± 40 mm with respect to the equator plane (Z = 0) of the primary superconducting magnet. Similarly, the two secondary superconducting coils B are , Z = ± 120 mm.

(1)1次側超電導マグネットについては、内径450mm、外径517mm、軸長266mm、巻回数14997ターン、定格通電電流値117A、中心磁場4T、インダクタンス101Hとした。   (1) For the primary superconducting magnet, the inner diameter was 450 mm, the outer diameter was 517 mm, the shaft length was 266 mm, the winding number was 14997 turns, the rated energization current value was 117 A, the central magnetic field was 4 T, and the inductance was 101 H.

(2)2次側超電導コイルAについては、内径160mm、外径260mm、軸長25mm、巻回数54ターン、インダクタンス0.76mHとした。   (2) For the secondary superconducting coil A, the inner diameter was 160 mm, the outer diameter was 260 mm, the shaft length was 25 mm, the number of turns was 54 turns, and the inductance was 0.76 mH.

(3)2次側超電導コイルBについては、内径122mm、外径260mm、軸長25mm、巻回数74ターン、インダクタンス1.1mHとした。   (3) For the secondary superconducting coil B, the inner diameter was 122 mm, the outer diameter was 260 mm, the shaft length was 25 mm, the number of turns was 74 turns, and the inductance was 1.1 mH.

本構成で、2次側回路にあらかじめ残留抵抗率を測定したリン脱酸銅片を直列に接続し、その両端発生電圧を測定することにより、2次側に誘導された電流値を校正した。2次側に誘導される電流値のピークは回路の有する抵抗値が律速となるため、校正試験の際には、1次側の冷凍機伝導冷却式超電導マグネットを0.078A/秒で励磁したときにピーク値で200A以下になるよう、この電流測定用のリン脱酸銅片の抵抗値を設計した。   In this configuration, a phosphorus-deoxidized copper piece whose residual resistivity was measured in advance on the secondary side circuit was connected in series, and the voltage value generated at both ends thereof was measured to calibrate the current value induced on the secondary side. Since the resistance value of the circuit is rate-limiting at the peak of the current value induced on the secondary side, the primary side refrigerator conduction cooling superconducting magnet was excited at 0.078 A / sec during the calibration test. The resistance value of the phosphorous deoxidized copper piece for current measurement was designed so that the peak value sometimes became 200 A or less.

2次側超電導コイルを液体ヘリウムで浸漬冷却し、1次側の冷凍機伝導冷却式超電導マグネットを0.078A/秒で励磁し2次側電流値を校正した結果を図5に示す。この図で、点線19は1次側電流を示し、実線20が2次側電流を示す。2次側に誘導された電流値は172Aで、数値解析による値とほぼ一致した。   FIG. 5 shows the result of calibrating the secondary current value by immersing and cooling the secondary superconducting coil with liquid helium, exciting the primary-side refrigerator conduction cooling superconducting magnet at 0.078 A / sec. In this figure, the dotted line 19 indicates the primary side current, and the solid line 20 indicates the secondary side current. The current value induced on the secondary side was 172A, which was almost the same as the value obtained by numerical analysis.

次に、1次側超電導マグネットの励磁速度を変えたときの2次側回路の電流ピーク値を図6に示す。1次側マグネットの掃引速度に比例した2次側電流のピーク値が得られた。   Next, FIG. 6 shows the current peak value of the secondary circuit when the excitation speed of the primary superconducting magnet is changed. The peak value of the secondary current proportional to the sweep speed of the primary magnet was obtained.

以上説明したように、この実施形態によれば、室温からの熱侵入を低減しつつ、電源設備の出力電流容量以上の電流値をサンプルへ通電可能にする構造を実現できる。また、1次側に伝導冷却超電導マグネットを使用し、2次側コイルの低温容器を別に構成したことで、通電試験に時間の制約が設けられることなく、かつサンプル温度を可変にできるので、冷媒の蒸発と電源出力の限界とにより試験が制約されるという不具合を回避しながら、超電導導体の評価試験を行なうことができる。   As described above, according to this embodiment, it is possible to realize a structure that allows a sample to be energized with a current value equal to or greater than the output current capacity of the power supply facility while reducing heat intrusion from room temperature. In addition, the use of a conduction-cooled superconducting magnet on the primary side and a separate low-temperature container for the secondary side coil make it possible to vary the sample temperature without any time constraints on the energization test. The superconducting conductor evaluation test can be performed while avoiding the problem that the test is restricted by the evaporation of power and the limit of the power output.

[第2の実施形態]
図7は、本発明に係る超電導マグネット装置の第2の実施形態を示す縦断面図である。この実施形態では、2次側低温容器5内で冷媒6の液面上方に真空断熱容器10aが配置され、真空断熱容器10a内に超電導導体サンプル4が配置されている。真空断熱容器10aを貫通して熱伝導部材9が配置されこの部材9が超電導導体サンプル4と直接接触している。真空断熱容器10aの上方には2次側用小型冷凍機7の冷却ステージ8が配置されて、冷却ステージ8が熱伝導部材9と接触している。
[Second Embodiment]
FIG. 7 is a longitudinal sectional view showing a second embodiment of the superconducting magnet device according to the present invention. In this embodiment, the vacuum heat insulating container 10a is arranged above the liquid level of the refrigerant 6 in the secondary low-temperature container 5, and the superconducting conductor sample 4 is arranged in the vacuum heat insulating container 10a. A heat conducting member 9 is disposed through the vacuum heat insulating container 10 a, and this member 9 is in direct contact with the superconducting conductor sample 4. The cooling stage 8 of the secondary side small refrigerator 7 is disposed above the vacuum heat insulating container 10 a, and the cooling stage 8 is in contact with the heat conducting member 9.

2次側超電導コイル2aは冷媒6で浸漬冷却される。また、超電導導体サンプル4は真空断熱容器10a内部に設置され、2次側用小型冷凍機7の冷却ステージ8から熱伝導部材9を介して伝導で冷却される。これにより、超電導導体サンプル4の温度を、冷媒6の温度よりも高くしたり低くしたりして種々の温度範囲における超電導特性の測定が可能になる。その結果、超電導導体サンプル4の超電導特性の温度依存性を測定できる。   The secondary superconducting coil 2 a is immersed and cooled by the refrigerant 6. Further, the superconducting conductor sample 4 is installed inside the vacuum heat insulating container 10 a and is cooled by conduction from the cooling stage 8 of the secondary side small refrigerator 7 through the heat conducting member 9. Thereby, the temperature of the superconducting conductor sample 4 can be made higher or lower than the temperature of the refrigerant 6 to measure the superconducting characteristics in various temperature ranges. As a result, the temperature dependence of the superconducting characteristics of the superconducting conductor sample 4 can be measured.

[第3の実施形態]
図8は、本発明に係る超電導マグネット装置の第3の実施形態を示す縦断面図である。この実施形態では、2次側低温容器5内で冷媒6の液面上方にガスヘリウム容器10bが配置され、ガスヘリウム容器10b内に超電導導体サンプル4が配置されている。2次側低温容器5の底部付近とガスヘリウム容器10bは、ニードルバルブ(絞りバルブ)11aを介して連絡管32で接続されている。また、ガスヘリウム容器10bは、真空引き用バルブ(絞りバルブ)11bを介して真空引き用配管34により図示しない真空ポンプに接続されている。
[Third Embodiment]
FIG. 8 is a longitudinal sectional view showing a third embodiment of the superconducting magnet device according to the present invention. In this embodiment, the gas helium container 10b is disposed above the liquid level of the refrigerant 6 in the secondary-side cryogenic container 5, and the superconducting conductor sample 4 is disposed in the gas helium container 10b. The vicinity of the bottom of the secondary-side cryogenic vessel 5 and the gas helium vessel 10b are connected by a communication pipe 32 via a needle valve (throttle valve) 11a. The gas helium container 10b is connected to a vacuum pump (not shown) through a vacuuming pipe 34 via a vacuuming valve (throttle valve) 11b.

2次側超電導コイル2aは冷媒6で浸漬冷却される。一方、超電導導体サンプル4は、ニードルバルブ11aを通してガスヘリウム容器10bに導入されたヘリウム蒸気によって冷却される。ニードルバルブ11aと真空引き用バルブ11bの開度を調節することによってヘリウムガス流量が調節され、超電導導体サンプル4を所定の温度に保つことができる。   The secondary superconducting coil 2 a is immersed and cooled by the refrigerant 6. On the other hand, the superconducting conductor sample 4 is cooled by helium vapor introduced into the gas helium vessel 10b through the needle valve 11a. The helium gas flow rate is adjusted by adjusting the opening degree of the needle valve 11a and the vacuuming valve 11b, and the superconducting conductor sample 4 can be kept at a predetermined temperature.

これにより、第2の実施形態(図7)と同様に、超電導導体サンプル4の温度を2次側超電導コイル1bの温度とは別個に温度調節することが可能になり、超電導特性の温度依存性の測定が可能になる。   This makes it possible to adjust the temperature of the superconducting conductor sample 4 separately from the temperature of the secondary superconducting coil 1b as in the second embodiment (FIG. 7), and the temperature dependence of the superconducting characteristics. Can be measured.

[第4の実施形態]
図9は、本発明に係る超電導マグネット装置の第4の実施形態を示す縦断面図である。この実施形態では、鉛直軸を有する筒状の真空断熱容器10a内に、軸を鉛直にした2次側超電導コイル2aが収容され、真空断熱容器10a内の2次側超電導コイル2aの上方に超電導導体サンプル4が配置されている。真空断熱容器10aには2次側用小型冷凍機7が配置されており、その冷凍機冷却ステージ8が真空断熱容器10a内に配置されている。冷凍機冷却ステージ8は、熱伝導部材9を介して2次側超電導コイル2aおよび超電導導体サンプル4に熱的に接続されている。
[Fourth Embodiment]
FIG. 9 is a longitudinal sectional view showing a fourth embodiment of the superconducting magnet device according to the present invention. In this embodiment, a secondary side superconducting coil 2a having a vertical axis is accommodated in a cylindrical vacuum heat insulating container 10a having a vertical axis, and superconducting is performed above the secondary side superconducting coil 2a in the vacuum heat insulating container 10a. A conductor sample 4 is arranged. A secondary side small refrigerator 7 is disposed in the vacuum heat insulating container 10a, and the refrigerator cooling stage 8 is disposed in the vacuum heat insulating container 10a. The refrigerator cooling stage 8 is thermally connected to the secondary side superconducting coil 2 a and the superconducting conductor sample 4 via the heat conducting member 9.

ここで、2次側超電導コイル2aは熱伝導部材9と接触しているが、磁場変動によって熱伝導部材9に渦電流が生じ発熱の要因となる可能性もある。そのため、渦電流のループを切るような形状にする、あるいは渦電流による発熱が2次側コイルに悪影響を与えないレベルに導電率を選定した材料を用いるなどの設計が好ましい。   Here, the secondary superconducting coil 2a is in contact with the heat conducting member 9, but an eddy current may be generated in the heat conducting member 9 due to a magnetic field fluctuation, which may cause heat generation. Therefore, it is preferable to design such that the eddy current loop is cut or a material whose conductivity is selected to a level at which heat generated by the eddy current does not adversely affect the secondary coil is preferable.

本発明に係る超電導マグネット装置の第1の実施形態を示す模式的縦断面図である。It is a typical longitudinal section showing a 1st embodiment of a superconducting magnet device concerning the present invention. 本発明に係る超電導マグネット装置における2次側コイルの構成例を示す模式的縦断面図である。It is a typical longitudinal section showing an example of composition of a secondary side coil in a superconducting magnet device concerning the present invention. 本発明に係る超電導マグネット装置における2次側コイルの他の構成例を示す模式的縦断面図である。It is a typical longitudinal cross-sectional view which shows the other structural example of the secondary side coil in the superconducting magnet apparatus which concerns on this invention. 本発明に係る超電導マグネット装置における2次側コイルのさらに他の構成例を示す模式的縦断面図である。It is a typical longitudinal cross-sectional view which shows the further another structural example of the secondary side coil in the superconducting magnet apparatus which concerns on this invention. 本発明に係る超電導マグネット装置の第1の実施形態に沿って試作した装置を用いて励磁・通電試験を行なった結果を示すグラフである。It is a graph which shows the result of having performed the excitation and the electricity supply test using the apparatus prototyped along 1st Embodiment of the superconducting magnet apparatus which concerns on this invention. 本発明に係る超電導マグネット装置の第1の実施形態に沿って試作した装置を用いて1次側回路の掃引速度を変化させたときの2次側回路の電流値測定結果を示すグラフである。It is a graph which shows the electric current value measurement result of the secondary side circuit when the sweep speed of the primary side circuit is changed using the apparatus manufactured as a prototype along the first embodiment of the superconducting magnet apparatus according to the present invention. 本発明に係る超電導マグネット装置の第2の実施形態を示す模式的縦断面図である。It is a typical longitudinal section showing a 2nd embodiment of a superconducting magnet device concerning the present invention. 本発明に係る超電導マグネット装置の第3の実施形態を示す模式的縦断面図である。It is a typical longitudinal section showing a 3rd embodiment of a superconducting magnet device concerning the present invention. 本発明に係る超電導マグネット装置の第4の実施形態を示す模式的縦断面図である。It is a typical longitudinal section showing a 4th embodiment of a superconducting magnet device concerning the present invention. 従来の超電導マグネット装置の基本的な構成を示す模式的縦断面図である。It is a typical longitudinal section showing the basic composition of the conventional superconducting magnet device. 電磁誘導により通電する従来の超電導マグネット装置の基本的な構成を示す模式的縦断面図である。It is a typical longitudinal section showing the basic composition of the conventional superconducting magnet device which supplies with electricity by electromagnetic induction.

符号の説明Explanation of symbols

1…1次側超電導マグネット、1a…1次側低温容器、1b…1次側超電導コイル、1c…1次マグネット用極低温冷凍機、1d…1次マグネットのボア、2a…2次側超電導コイル、2b…2次側超電導コイルの電流導入端子、3…1次側超電導マグネット用励磁電源、4…超電導導体サンプル、5…2次側低温容器、6…冷媒、7…2次側用小型冷凍機、8…冷凍機冷却ステージ、9…熱伝導部材、10a…真空断熱容器(低温容器)、10b…ガスヘリウム容器(低温容器)、11a…ニードルバルブ、11b…真空引き用バルブ、12…外部磁場印加用超電導コイル、13…マグネット励磁電源、14…超電導導体サンプル用電源、15a…サンプル通電用電流リード、15b…マグネット用電流リード、16…低温容器、17…2次側超電導コイル…18a…接続部分、18b…接続部分、30…1次側超電導コイルの赤道面、32…連絡管、34…真空引き配管 DESCRIPTION OF SYMBOLS 1 ... Primary side superconducting magnet, 1a ... Primary side cryocontainer, 1b ... Primary side superconducting coil, 1c ... Cryogenic refrigerator for primary magnet, 1d ... Bore of primary magnet, 2a ... Secondary side superconducting coil 2b ... current introduction terminal of secondary superconducting coil, 3 ... excitation power source for primary superconducting magnet, 4 ... superconducting conductor sample, 5 ... secondary cryogenic container, 6 ... refrigerant, 7 ... small refrigeration for secondary side 8 ... Refrigerator cooling stage, 9 ... Heat conducting member, 10a ... Vacuum heat insulation container (cold container), 10b ... Gas helium container (cold container), 11a ... Needle valve, 11b ... Vacuum evacuation valve, 12 ... External Superconducting coil for magnetic field application, 13 ... Magnet excitation power source, 14 ... Power source for superconducting conductor sample, 15a ... Current lead for sample energization, 15b ... Current lead for magnet, 16 ... Low temperature vessel, 17 ... 2 Side superconducting coil ... 18a ... connecting portion, 18b ... connecting portion, the equatorial plane of 30 ... primary superconducting coil, 32 ... connection pipe, 34 ... vacuum pipe

Claims (14)

1次側超電導コイルと、
この1次側超電導コイルを収容する第1の低温容器と、
前記1次側超電導コイルに磁気的に結合された2次側超電導コイルと、
この2次側超電導コイルを収容する第2の低温容器と、
を有し、
前記1次側超電導コイルと2次側超電導コイルとが別の温度に制御できるように構成されていることを特徴とする超電導マグネット装置。
A primary superconducting coil;
A first cryocontainer that houses the primary superconducting coil;
A secondary superconducting coil magnetically coupled to the primary superconducting coil;
A second cryogenic container that accommodates the secondary superconducting coil;
Have
A superconducting magnet device characterized in that the primary superconducting coil and the secondary superconducting coil can be controlled to different temperatures.
前記2次側超電導コイルは複数の2次側コイルが並列に接続されてなる構成であることを特徴とする請求項1に記載の超電導マグネット装置。   The superconducting magnet device according to claim 1, wherein the secondary superconducting coil has a configuration in which a plurality of secondary coils are connected in parallel. 前記2次側超電導コイルの複数の2次側コイルが、各コイル毎に誘導される電流が互いにほぼ等しくなるようにコイルの相対配置および巻回数が構成されていることを特徴とする請求項2に記載の超電導マグネット装置。   3. A plurality of secondary coils of the secondary superconducting coil are configured such that the relative arrangement of coils and the number of turns are configured so that the currents induced for each coil are substantially equal to each other. The superconducting magnet device described in 1. 前記2次側超電導コイルの複数の2次側コイルが、前記1次側超電導コイルの赤道面に対して対称に配置されていることを特徴とする請求項2または3に記載の超電導マグネット装置。   The superconducting magnet device according to claim 2 or 3, wherein a plurality of secondary coils of the secondary superconducting coil are arranged symmetrically with respect to the equator plane of the primary superconducting coil. 前記2次側超電導コイルに超電導導体サンプルが接続され、この超電導導体サンプルの温度が前記2次側超電導コイルの温度とは別に制御できるように構成されていることを特徴とする請求項1ないし4のいずれかに記載の超電導マグネット装置。   5. A superconducting conductor sample is connected to the secondary side superconducting coil, and the temperature of the superconducting conductor sample is configured to be controlled separately from the temperature of the secondary side superconducting coil. The superconducting magnet device according to any one of the above. 前記2次側超電導コイルは第2の低温容器内の液体冷媒内に浸漬され、
前記超電導導体サンプルは第3の低温容器内に収容され、
前記第2の低温容器と第3の低温容器とは絞りバルブを介して配管で接続されていて、前記第3の低温容器は、前記第2の低温容器から前記配管を通じて流入する前記液体冷媒の蒸気によって冷却されるように構成されていること、
を特徴とする請求項5記載の超電導マグネット装置。
The secondary superconducting coil is immersed in a liquid refrigerant in a second cryogenic container;
The superconducting conductor sample is housed in a third cryocontainer;
The second low-temperature container and the third low-temperature container are connected by piping through a throttle valve, and the third low-temperature container is a liquid refrigerant that flows from the second low-temperature container through the pipe. Being configured to be cooled by steam,
The superconducting magnet device according to claim 5.
前記2次側超電導コイルおよび超電導導体サンプルの温度は、極低温冷凍機および伝導冷却部材を含む温調機構によって制御されるように構成されていることを特徴とする請求項5記載の超電導マグネット装置。   6. The superconducting magnet apparatus according to claim 5, wherein the temperature of the secondary superconducting coil and the superconducting conductor sample is controlled by a temperature control mechanism including a cryogenic refrigerator and a conductive cooling member. . 前記超電導導体サンプルの接続部分の温度を制御する機構を有し、この温度の制御によって前記超電導導体サンプルおよび前記2次側超電導コイルを含む回路の抵抗値を調節して2次側の電流値を制御する機構を有することを特徴とする請求項5に記載の超電導マグネット装置。   It has a mechanism for controlling the temperature of the connecting portion of the superconducting conductor sample, and by controlling the temperature, the resistance value of the circuit including the superconducting conductor sample and the secondary superconducting coil is adjusted to obtain the secondary current value. 6. The superconducting magnet device according to claim 5, further comprising a mechanism for controlling. 前記2次側超電導コイルは前記1次側超電導コイルのボア内に配置され、前記2次側超電導コイルの電流を導入する端子が前記2次側超電導コイルの内側に配置されていること、を特徴とする請求項1ないし8のいずれかに記載の超電導マグネット装置。   The secondary superconducting coil is disposed in the bore of the primary superconducting coil, and a terminal for introducing a current of the secondary superconducting coil is disposed inside the secondary superconducting coil. A superconducting magnet device according to any one of claims 1 to 8. 前記1次側超電導コイルが冷凍機伝導冷却型であることを特徴とする請求項1ないし9のいずれかに記載の超電導マグネット装置。   The superconducting magnet device according to any one of claims 1 to 9, wherein the primary superconducting coil is of a refrigerator conduction cooling type. 1次側超電導コイルと、この1次側超電導コイルに磁気的に結合された2次側超電導コイルと、を有する超電導マグネット装置の運転方法であって、1次側超電導コイルの温度と2次側超電導コイルの温度を別個に制御すること、を特徴とする超電導マグネット装置運転方法。   An operating method of a superconducting magnet device having a primary side superconducting coil and a secondary side superconducting coil magnetically coupled to the primary side superconducting coil, the temperature of the primary side superconducting coil and the secondary side A method of operating a superconducting magnet device, wherein the temperature of the superconducting coil is separately controlled. 前記超電導マグネット装置は前記2次側超電導コイルに電気的に接続された電導導体サンプルを有し、
前記電導導体サンプルの温度を、前記1次側超電導コイルの温度および2次側超電導コイルの温度とはさらに別個に制御すること、を特徴とする請求項11に記載の超電導マグネット装置運転方法。
The superconducting magnet device has a conductive conductor sample electrically connected to the secondary superconducting coil;
The superconducting magnet apparatus operating method according to claim 11, wherein the temperature of the conductive conductor sample is controlled separately from the temperature of the primary superconducting coil and the temperature of the secondary superconducting coil.
前記2次側超電導コイルに超電導導体サンプルを接続し、前記1次側超電導コイルに電流を流すことによって磁場を発生させ、前記磁場を前記超電導導体サンプルに印加することによって、前記超電導導体サンプルの超電導特性の経験磁界依存性を評価すること、を特徴とする請求項11に記載の超電導マグネット装置運転方法。   A superconducting conductor sample is connected to the secondary superconducting coil, a magnetic field is generated by passing a current through the primary superconducting coil, and the magnetic field is applied to the superconducting conductor sample, thereby superconducting the superconducting sample. The superconducting magnet apparatus operating method according to claim 11, wherein the empirical magnetic field dependence of characteristics is evaluated. 前記1次側超電導コイルに電流を流すことによって励磁し、この1次側超電導コイルの励磁速度を変化させることによって、前記2次側超電導コイルに接続した超電導導体サンプルの交流損失による発熱を制御し、これによって前記超電導導体サンプルの超電導特性の温度依存性を評価すること、を特徴とする請求項11ないし13のいずれかに記載の超電導マグネット装置運転方法。
Excitation is performed by passing a current through the primary superconducting coil, and by controlling the excitation speed of the primary superconducting coil, heat generation due to AC loss of the superconducting conductor sample connected to the secondary superconducting coil is controlled. 14. The method of operating a superconducting magnet device according to claim 11, wherein the temperature dependence of the superconducting characteristics of the superconducting conductor sample is evaluated thereby.
JP2005181791A 2005-06-22 2005-06-22 Superconducting magnet device and operation method thereof Expired - Fee Related JP4585389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181791A JP4585389B2 (en) 2005-06-22 2005-06-22 Superconducting magnet device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181791A JP4585389B2 (en) 2005-06-22 2005-06-22 Superconducting magnet device and operation method thereof

Publications (2)

Publication Number Publication Date
JP2007005440A true JP2007005440A (en) 2007-01-11
JP4585389B2 JP4585389B2 (en) 2010-11-24

Family

ID=37690782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181791A Expired - Fee Related JP4585389B2 (en) 2005-06-22 2005-06-22 Superconducting magnet device and operation method thereof

Country Status (1)

Country Link
JP (1) JP4585389B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134724A (en) * 1980-03-26 1981-10-21 Toshiba Corp Superinduction transformer
JPS6416976A (en) * 1987-07-10 1989-01-20 Mitsubishi Electric Corp Superconductive sensor
JPS6423517A (en) * 1987-07-20 1989-01-26 Toshiba Corp Superconducting transformer
JPH06349628A (en) * 1993-06-07 1994-12-22 Hitachi Ltd Composite superconducting magnet device and composite superconductor
JP2000021623A (en) * 1998-06-29 2000-01-21 Sumitomo Electric Ind Ltd Circuit having superconducting transformer
JP2003149278A (en) * 2001-11-14 2003-05-21 Edmund Soji Otabe Measuring apparatus of energization characteristic in superconductive material
JP2003529923A (en) * 2000-03-21 2003-10-07 メタル マニファクチャーズ リミテッド Superconducting transformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134724A (en) * 1980-03-26 1981-10-21 Toshiba Corp Superinduction transformer
JPS6416976A (en) * 1987-07-10 1989-01-20 Mitsubishi Electric Corp Superconductive sensor
JPS6423517A (en) * 1987-07-20 1989-01-26 Toshiba Corp Superconducting transformer
JPH06349628A (en) * 1993-06-07 1994-12-22 Hitachi Ltd Composite superconducting magnet device and composite superconductor
JP2000021623A (en) * 1998-06-29 2000-01-21 Sumitomo Electric Ind Ltd Circuit having superconducting transformer
JP2003529923A (en) * 2000-03-21 2003-10-07 メタル マニファクチャーズ リミテッド Superconducting transformer
JP2003149278A (en) * 2001-11-14 2003-05-21 Edmund Soji Otabe Measuring apparatus of energization characteristic in superconductive material

Also Published As

Publication number Publication date
JP4585389B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
US8162037B2 (en) Device for generating a pulsed magnetic field
US20080227647A1 (en) Current lead with high temperature superconductor for superconducting magnets in a cryostat
US6914511B2 (en) Superconducting transformer
JP2006313924A (en) High temperature superconducting coil, and high temperature superconducting magnet and high temperature superconducting magnet system employing it
EP0207286A1 (en) Conical, unimpregnated winding for MR magnets
US4688132A (en) Superconducting magnet system for operation at 13k
WO2003044424A3 (en) A cryogenic assembly
Tanaka et al. Conduction-cooled MgB2 coil in maximum self-magnetic flux density 2.3 tesla made with 300-meter-long multifilamentary MgB2 wire
US20140066312A1 (en) Magnet system for generation of a highly stable magnetic field
US7463461B2 (en) Resistive superconducting fault current limiter
EP2839780A1 (en) Superconductor magnet and method of adjusting same
JP4585389B2 (en) Superconducting magnet device and operation method thereof
US7019608B2 (en) Superconducting transformer
JP2014187148A (en) Current supply device
JPH0510809B2 (en)
JP2006108560A (en) Current lead for superconductive apparatus
KR20190070537A (en) Superconducting switch of superconducting magnet for magnetic levitation
JP6941703B2 (en) Superconducting magnet devices and methods for magnetizing superconducting bulk magnets by field cooling via a ferromagnetic shield
JP3150507B2 (en) Superconducting magnet device
US20200076260A1 (en) Machine coil for an electric machine
US11961662B2 (en) High temperature superconducting current lead assembly for cryogenic apparatus
JP2008130860A (en) Superconductive device, and current lead
JP7370307B2 (en) Superconducting magnet device
JP2006329925A (en) Method and device for evaluating superconductor
US20240136098A1 (en) Switch assemblies of superconducting magnet assemblies and reconfigurable superconducting magnet assemblies of a cryogenic system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees