JP2007003948A - Apparatus for controlling optical element - Google Patents

Apparatus for controlling optical element Download PDF

Info

Publication number
JP2007003948A
JP2007003948A JP2005185721A JP2005185721A JP2007003948A JP 2007003948 A JP2007003948 A JP 2007003948A JP 2005185721 A JP2005185721 A JP 2005185721A JP 2005185721 A JP2005185721 A JP 2005185721A JP 2007003948 A JP2007003948 A JP 2007003948A
Authority
JP
Japan
Prior art keywords
temperature
optical element
circuit
driving
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005185721A
Other languages
Japanese (ja)
Inventor
Toshihiro Ito
敏洋 伊藤
Kazuo Fujiura
和夫 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005185721A priority Critical patent/JP2007003948A/en
Publication of JP2007003948A publication Critical patent/JP2007003948A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain an electrooptical effect of high efficiency even in a temperature adjusting circuit having low temperature controlling accuracy. <P>SOLUTION: An apparatus for controlling an optical element 31 composed of a material having an electrooptical effect having temperature dependence is provided with a temperature detecting element 33 for detecting temperature of the optical element 31 and a driving circuit 35 for controlling the amplitude of driving voltage driving the optical element 31 according to the temperature detected by the temperature detecting element 33 so that influence of the electrooptical effect may be made to be fixed without depending on the temperature. The controlling apparatus may be further provided with a Pelletier element 32 for controlling the temperature of the optical element and a temperature controlling circuit 34 for driving the Pelletier element 32 according to the temperature detected by the temperature detecting element 33. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学素子の制御装置に関し、より詳細には、光通信、光計測または電子回路に用いられる光学素子であって、電気光学効果を用いた光学素子の温度を制御する制御装置に関する。   The present invention relates to a control device for an optical element, and more particularly to a control device for controlling the temperature of an optical element using an electro-optic effect, which is an optical element used in optical communication, optical measurement, or an electronic circuit.

KTaNb1−x(0≦x≦1、以下KTNという)からなる材料は、波長変換素子などの光学素子への応用が期待されている。KTN結晶は、1200〜8000pm/Vの非線形光学係数、一定のバイアス電界の下で600pm/V以上の電気光学係数を有しており、例えば、従来から使用されているLiNb0(以下LNという)の有する光学係数と比較して、いずれも著しく大きい。また、電気光学効果は常誘電相で用い、特に、常誘電・強誘電転移点近傍で用いた場合に、非常に大きい。 A material made of KTa x Nb 1-x O 3 (0 ≦ x ≦ 1, hereinafter referred to as KTN) is expected to be applied to an optical element such as a wavelength conversion element. The KTN crystal has a nonlinear optical coefficient of 1200 to 8000 pm / V and an electro-optic coefficient of 600 pm / V or more under a constant bias electric field. For example, a conventionally used LiNbO 3 (hereinafter referred to as LN) is used. Both are significantly larger than the optical coefficients of the. The electro-optic effect is very large when used in the paraelectric phase, particularly when used near the paraelectric / ferroelectric transition point.

ところで、KTN結晶の電気光学効果は、温度依存性が非常に強いという特徴を有している。図1に、電気光学効果の温度依存性を示す。KTN結晶は、常誘電・強誘電転移温度Tcにおいて、相転移を起こし、温度Tc付近で電気光学効果が最大となる。KTN結晶を用いた光学素子を温度によらず安定して動作させるためには、光学素子の温度調整回路が必要となる。温度調整回路により、光学素子の温度をTcよりも若干高い一定の温度に制御している(例えば、非特許文献1参照)。   By the way, the electro-optic effect of the KTN crystal has a feature that the temperature dependence is very strong. FIG. 1 shows the temperature dependence of the electro-optic effect. The KTN crystal undergoes a phase transition at the paraelectric / ferroelectric transition temperature Tc, and the electrooptic effect is maximized in the vicinity of the temperature Tc. In order to stably operate an optical element using a KTN crystal regardless of temperature, a temperature adjustment circuit for the optical element is required. The temperature of the optical element is controlled to a constant temperature slightly higher than Tc by the temperature adjustment circuit (see, for example, Non-Patent Document 1).

S. Toyoda, et al., ”Low driving voltage polarozaton-independent >3GHz-response electro-optic switch using KTN waveguide” Proc. EOCE 2003S. Toyoda, et al., “Low driving voltage polarozaton-independent> 3GHz-response electro-optic switch using KTN waveguide” Proc. EOCE 2003

LN結晶を用いた光学素子の場合は、温度調整を行う必要がなかったので、KTN結晶を用いた光学素子では、温度調整回路の小型化、低コスト化が求められていた。しかしながら、図1に示したように、常誘電・強誘電転移温度Tc付近の温度依存性は非常に大きく、温度調整回路は、0.1度以下の精度で、応答速度の速い温度制御を行う必要がある。このような高精度の温度制御は、温度調整回路の回路規模が大きくなり、KTN結晶を用いた光学素子を含む装置のコストが増大するという問題があった。   In the case of an optical element using an LN crystal, it was not necessary to adjust the temperature. Therefore, an optical element using a KTN crystal has been required to reduce the size and cost of the temperature adjustment circuit. However, as shown in FIG. 1, the temperature dependence near the paraelectric-ferroelectric transition temperature Tc is very large, and the temperature adjustment circuit performs temperature control with a fast response speed with an accuracy of 0.1 degrees or less. There is a need. Such high-accuracy temperature control has a problem that the circuit scale of the temperature adjustment circuit becomes large, and the cost of an apparatus including an optical element using a KTN crystal increases.

電気光学係数をEとし、駆動電圧振幅を一定値Fとすると、電気光学効果により変化する光の強度Aは、
A=EF
と表される。光の強度Aの温度による変動幅を、一定の範囲ΔAに抑えるために、電気光学係数の温度による変動幅ΔEは、
ΔE=ΔA/F
の範囲に抑えなければならない。図2に、KTN結晶を用いた光学素子の温度制御に必要な精度を示す。電気光学係数を一定の範囲ΔEに抑えるためには、非常に小さな温度範囲ΔTに抑えなければならない。
When the electro-optic coefficient is E and the drive voltage amplitude is a constant value F, the intensity A of light that changes due to the electro-optic effect is
A = EF
It is expressed. In order to suppress the fluctuation range due to the temperature of the light intensity A to a certain range ΔA, the fluctuation range ΔE due to the temperature of the electro-optic coefficient is:
ΔE = ΔA / F
Must be kept within the range. FIG. 2 shows the accuracy required for temperature control of an optical element using a KTN crystal. In order to suppress the electro-optic coefficient to a certain range ΔE, it must be suppressed to a very small temperature range ΔT.

従来、素子の温度を検出する方法として、サーミスタなどの温度検出素子を外部に付加しているが、温度検出素子の検出精度にばらつきがある。従って、精度の高い温度制御を行うために、温度検出素子の選別を行うために、コストがかかるという問題もあった。   Conventionally, a temperature detection element such as a thermistor is added to the outside as a method for detecting the temperature of the element, but the detection accuracy of the temperature detection element varies. Accordingly, there is a problem that it is expensive to select the temperature detection element in order to perform temperature control with high accuracy.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、温度制御の精度が低い温度調整回路であっても、高い電気光学効果を得ることができる光学素子の制御装置を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to control an optical element capable of obtaining a high electro-optic effect even in a temperature adjustment circuit with low temperature control accuracy. To provide an apparatus.

本発明は、このような目的を達成するために、請求項1に記載の発明は、温度依存性を有する電気光学効果を有する材料からなる光学素子を制御する制御装置において、前記光学素子の温度を検出する検出手段と、前記検出手段で検出された温度に応じて、前記光学素子を駆動する駆動電圧の振幅を、電気光学効果の影響が前記温度によらず一定となるように制御する駆動回路とを備えたことを特徴とする。   In order to achieve such an object, the present invention provides a control device for controlling an optical element made of a material having an electro-optic effect having temperature dependence, wherein the temperature of the optical element is And a drive for controlling the amplitude of the drive voltage for driving the optical element so that the influence of the electro-optic effect is constant regardless of the temperature, according to the temperature detected by the detection means. And a circuit.

請求項2に記載の発明は、請求項1に記載の光学素子の制御装置において、前記光学素子と前記駆動回路との間に、前記光学素子を駆動する電流を積算して、駆動する電荷の量を測定する電流積分回路を備え、前記駆動回路は、前記光学素子を駆動する駆動電圧の振幅を、前記駆動する電荷が一定になるように制御することを特徴とする。   According to a second aspect of the present invention, in the control device for an optical element according to the first aspect, a current for driving the optical element is integrated between the optical element and the drive circuit, and the electric charge to be driven is integrated. A current integrating circuit for measuring the amount is provided, and the driving circuit controls the amplitude of the driving voltage for driving the optical element so that the driving charge becomes constant.

請求項3に記載の発明は、請求項1または2に記載の光学素子の制御装置において、前記光学素子と熱的に結合され、前記光学素子の温度を制御するペルチエ素子と、前記検出手段で検出された温度に応じて、前記ペルチエ素子を駆動する温度制御回路とをさらに備えたことを特徴とする。   According to a third aspect of the present invention, in the optical element control device according to the first or second aspect, the Peltier element that is thermally coupled to the optical element and controls the temperature of the optical element; And a temperature control circuit for driving the Peltier element according to the detected temperature.

請求項4に記載の発明は、請求項1、2または3に記載の前記材料は、KTaNb1-x(0≦x≦1)、K1−yLiTa1−xNb(0≦x≦1、0≦y≦1)、(Pb,La)(Zr,Ti)Oのいずれかであることを特徴とする。 According to a fourth aspect of the present invention, the material according to the first, second, or third aspect is characterized in that KTa x Nb 1-x O 3 (0 ≦ x ≦ 1), K 1-y Li y Ta 1-x Nb x O 3 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) or (Pb, La) (Zr, Ti) O 3 .

以上説明したように、本発明によれば、電気光学効果の影響が温度によらず一定となるように、光学素子を駆動する駆動電圧を制御するので、温度制御の精度が低い温度調整回路であっても、高い効率の電気光学効果を実現することが可能となる。   As described above, according to the present invention, since the drive voltage for driving the optical element is controlled so that the influence of the electro-optic effect is constant regardless of the temperature, the temperature adjustment circuit with low temperature control accuracy can be used. Even if it exists, it becomes possible to implement | achieve a highly efficient electro-optic effect.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形態においては、温度検出素子により検出した温度に基づいて、素子の温度を制御するだけでなく、光学素子を駆動する駆動電圧の振幅を調整する。従来、光学素子にかけるバイアス電圧を制御して、屈折率の温度依存性を補償することが行われている。従って、光学素子を駆動する駆動電圧の振幅制御と、バイアス電圧の制御とを併用することもできる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In this embodiment, based on the temperature detected by the temperature detection element, not only the temperature of the element is controlled, but also the amplitude of the drive voltage for driving the optical element is adjusted. Conventionally, the bias voltage applied to the optical element is controlled to compensate for the temperature dependence of the refractive index. Therefore, the drive voltage amplitude control for driving the optical element and the bias voltage control can be used in combination.

図3に、本発明の実施例1にかかる光学素子の制御装置を示す。KTN結晶を用いた光学素子31には、ペルチエ素子32と温度検出素子33とが熱的に結合されている。低精度温度制御回路34は、温度検出素子33により検出された光学素子31の温度の情報に基づいて、ペルチエ素子32を制御する。また、駆動回路35は、温度検出素子33により検出された光学素子31の温度の情報に基づいて、光学素子31を駆動する駆動電圧の振幅を調整する。   FIG. 3 shows a control device for an optical element according to Example 1 of the present invention. A Peltier element 32 and a temperature detection element 33 are thermally coupled to the optical element 31 using the KTN crystal. The low precision temperature control circuit 34 controls the Peltier element 32 based on the temperature information of the optical element 31 detected by the temperature detection element 33. The drive circuit 35 adjusts the amplitude of the drive voltage that drives the optical element 31 based on the temperature information of the optical element 31 detected by the temperature detection element 33.

図4を参照して、実施例1における温度制御の方法を説明する。低精度温度制御回路34は、ペルチエ素子32を制御して光学素子31の温度を制御する。最初に、光学素子31の温度を、常誘電・強誘電転移温度Tcよりも高い一定の温度T1に制御し、ΔT1の範囲で温度制御を行う。駆動回路35は、温度検出素子33により検出した温度が温度T1よりも低く、電気光学効果が大きくなる場合には、駆動電圧の振幅を小さくし、検出した温度が温度T1よりも高く、電気光学効果が小さくなる場合には、駆動電圧の振幅を大きくする。すなわち、図4の点線で示したように、電気光学係数Eの低下に伴って、駆動電圧の振幅Fを増加させ、光強度A=EFを一定にする。   With reference to FIG. 4, the method of temperature control in Example 1 is demonstrated. The low precision temperature control circuit 34 controls the temperature of the optical element 31 by controlling the Peltier element 32. First, the temperature of the optical element 31 is controlled to a constant temperature T1 higher than the paraelectric / ferroelectric transition temperature Tc, and the temperature is controlled within a range of ΔT1. When the temperature detected by the temperature detection element 33 is lower than the temperature T1 and the electro-optical effect is increased, the drive circuit 35 decreases the amplitude of the drive voltage, and the detected temperature is higher than the temperature T1. When the effect is reduced, the amplitude of the drive voltage is increased. That is, as shown by the dotted line in FIG. 4, the amplitude F of the drive voltage is increased with the decrease of the electro-optic coefficient E, and the light intensity A = EF is made constant.

ここで、温度変化に対する振幅Fの変化量を大きくすることで、大きな温度範囲において、光強度を一定にすることができる。一方、温度制御回路による温度制御の範囲ΔT1は、図1に示したΔTよりも大きく、温度制御に必要な精度が大幅に緩和されるので、低精度の温度制御回路を用いればよい。また、電気回路である駆動回路35によって、振幅を変化させるので、ペルチエ素子32による温度制御よりも、はるかに高速に追従させることができる。   Here, by increasing the change amount of the amplitude F with respect to the temperature change, the light intensity can be made constant in a large temperature range. On the other hand, the temperature control range ΔT1 by the temperature control circuit is larger than ΔT shown in FIG. 1, and the accuracy required for temperature control is greatly relaxed. Therefore, a low-precision temperature control circuit may be used. Further, since the amplitude is changed by the drive circuit 35 which is an electric circuit, it can be made to follow much faster than the temperature control by the Peltier element 32.

原理的には、光学素子31を駆動する駆動電圧の振幅を調整するだけで、ペルチエ素子32による温度制御を行わなくてもよい。しかし、温度変動が大きくなる場合を考慮すると、ペルチエ素子32による粗調整と、駆動回路35による微調整とを併用した方が効果的である。   In principle, it is not necessary to perform temperature control by the Peltier element 32 only by adjusting the amplitude of the drive voltage for driving the optical element 31. However, considering the case where the temperature fluctuation becomes large, it is more effective to use the coarse adjustment by the Peltier element 32 and the fine adjustment by the drive circuit 35 in combination.

ここで、光学素子31は、電気光学効果を利用したデバイスであれば、光スイッチ、光変調器、Qスイッチ、ディフレクタなどいずれであってもよい。光学素子31の材料は、KTNのみならず、KLTN(K1−yLiTa1−xNb、0≦x≦1、0≦y≦1)、PLZT((Pb,La)(Zr,Ti)O)など、電気光学効果を有する材料ならば、いずれを用いても構わない。 Here, the optical element 31 may be an optical switch, an optical modulator, a Q switch, a deflector, or the like as long as it is a device using the electro-optic effect. The material of the optical element 31 is not only KTN, but also KLTN (K 1-y Li y Ta 1-x Nb x O 3 , 0 ≦ x ≦ 1, 0 ≦ y ≦ 1), PLZT ((Pb, La) ( Any material that has an electro-optic effect, such as Zr, Ti) O 3 ), may be used.

図5に、本発明の実施例2にかかる光学素子の制御装置を示す。KTN結晶を用いた光学素子51には、ペルチエ素子52と電気容量測定回路53とが結合されている。低精度温度制御回路54は、電気容量測定回路53により検出された光学素子51の電気容量の情報に基づいて、ペルチエ素子52を制御する。また、駆動回路55は、電気容量測定回路53により検出された光学素子51の電気容量の情報に基づいて、光学素子51を駆動する駆動電圧の振幅を調整する。   FIG. 5 shows an optical element control apparatus according to Embodiment 2 of the present invention. A Peltier element 52 and a capacitance measuring circuit 53 are coupled to the optical element 51 using a KTN crystal. The low-precision temperature control circuit 54 controls the Peltier element 52 based on the information on the capacitance of the optical element 51 detected by the capacitance measurement circuit 53. The drive circuit 55 adjusts the amplitude of the drive voltage for driving the optical element 51 based on the information on the capacitance of the optical element 51 detected by the capacitance measurement circuit 53.

図6を参照して、実施例2における温度制御の方法を説明する。図6に示したように、光学素子51の電気容量は、電気光学係数Eと同様の温度依存性を有している。従って、駆動回路55は、電気容量測定回路53により検出した容量が予め定めた容量よりも低く、電気光学効果が大きくなる場合には、駆動電圧の振幅を小さくし、検出した容量が予め定めた容量よりも高く、電気光学効果が小さくなる場合には、駆動電圧の振幅を大きくする。電気容量の測定は、光学素子51を流れる電流の交流成分の測定、ブリッジ法、RFインピーダンス法などを適用することができる。   With reference to FIG. 6, a temperature control method according to the second embodiment will be described. As shown in FIG. 6, the electric capacity of the optical element 51 has the same temperature dependence as the electro-optic coefficient E. Therefore, when the capacitance detected by the capacitance measuring circuit 53 is lower than the predetermined capacitance and the electro-optic effect is increased, the drive circuit 55 reduces the amplitude of the drive voltage and the detected capacitance is predetermined. When the electro-optic effect is smaller than the capacity, the drive voltage amplitude is increased. For the measurement of electric capacity, measurement of an alternating current component of the current flowing through the optical element 51, a bridge method, an RF impedance method, or the like can be applied.

図7に、本発明の実施例3にかかる光学素子の制御装置を示す。KTN結晶を用いた光学素子71には、ペルチエ素子72と温度検出素子73とが熱的に結合されている。低精度温度制御回路74は、温度検出素子73により検出された光学素子71の温度の情報に基づいて、ペルチエ素子72を制御する。また、駆動回路75は、温度検出素子73により検出された光学素子71の温度の情報に基づいて、光学素子71を駆動する駆動電圧の振幅を調整する。   FIG. 7 shows a control device for an optical element according to Example 3 of the present invention. A Peltier element 72 and a temperature detection element 73 are thermally coupled to the optical element 71 using the KTN crystal. The low accuracy temperature control circuit 74 controls the Peltier element 72 based on the temperature information of the optical element 71 detected by the temperature detection element 73. The drive circuit 75 adjusts the amplitude of the drive voltage for driving the optical element 71 based on the temperature information of the optical element 71 detected by the temperature detection element 73.

駆動回路75は、駆動電圧の振幅を決定するに際して、駆動する電荷が一定になるようにする。駆動回路75と光学素子71との間に、電流積分回路76を挿入する。電流積分回路76は、常に流れる電流を測定して積算し、変化させた分極の量を電荷の量として測定する。測定された電荷の量は、駆動回路75にフィードバックされる。駆動回路75は、入力信号に比例した量の電荷を駆動するまで、駆動電圧を変化させる。これにより、駆動される分極の値が一定となるために、光強度A=EFを一定にすることができる。   When determining the amplitude of the driving voltage, the driving circuit 75 makes the driving charge constant. A current integration circuit 76 is inserted between the drive circuit 75 and the optical element 71. The current integration circuit 76 always measures and integrates the flowing current, and measures the changed amount of polarization as the amount of charge. The measured charge amount is fed back to the drive circuit 75. The drive circuit 75 changes the drive voltage until it drives an amount of charge proportional to the input signal. Thereby, since the value of the driven polarization becomes constant, the light intensity A = EF can be made constant.

実施例1と同様に、温度変化に対する振幅Fの変化量を大きくすることで、大きな温度範囲において、光強度を一定にすることができる。また、温度制御に必要な精度が大幅に緩和されるので、低精度の温度制御回路を用いることができる。   Similarly to the first embodiment, the light intensity can be made constant in a large temperature range by increasing the amount of change of the amplitude F with respect to the temperature change. In addition, since the accuracy required for temperature control is greatly relaxed, a low-accuracy temperature control circuit can be used.

電気光学効果の温度依存性を示す図である。It is a figure which shows the temperature dependence of an electro-optic effect. KTN結晶を用いた光学素子の温度制御に必要な精度を示す図である。It is a figure which shows the precision required for temperature control of the optical element using a KTN crystal. 本発明の実施例1にかかる光学素子の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the optical element concerning Example 1 of this invention. 実施例1における温度制御の方法を説明するための図である。6 is a diagram for explaining a temperature control method in Embodiment 1. FIG. 本発明の実施例2にかかる光学素子の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the optical element concerning Example 2 of this invention. 実施例2における温度制御の方法を説明するための図である。6 is a diagram for explaining a temperature control method in Embodiment 2. FIG. 本発明の実施例3にかかる光学素子の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the optical element concerning Example 3 of this invention.

符号の説明Explanation of symbols

31,51,71 光学素子
32,52,72 ペルチエ素子
33,73 温度検出素子
34,54,74 低精度温度制御回路
35,55,75駆動回路
53 電気容量測定回路
76 電流積分回路
31, 51, 71 Optical element 32, 52, 72 Peltier element 33, 73 Temperature detection element 34, 54, 74 Low-precision temperature control circuit 35, 55, 75 Drive circuit 53 Capacitance measurement circuit 76 Current integration circuit

Claims (4)

温度依存性を有する電気光学効果を有する材料からなる光学素子を制御する制御装置において、
前記光学素子の温度を検出する検出手段と、
前記検出手段で検出された温度に応じて、前記光学素子を駆動する駆動電圧の振幅を、電気光学効果の影響が前記温度によらず一定となるように制御する駆動回路と
を備えたことを特徴とする光学素子の制御装置。
In a control device for controlling an optical element made of a material having an electro-optic effect having temperature dependence,
Detecting means for detecting the temperature of the optical element;
A drive circuit that controls the amplitude of the drive voltage for driving the optical element according to the temperature detected by the detection means so that the influence of the electro-optic effect is constant regardless of the temperature. An optical element control device.
前記光学素子と前記駆動回路との間に、前記光学素子を駆動する電流を積算して、駆動する電荷の量を測定する電流積分回路を備え、
前記駆動回路は、前記光学素子を駆動する駆動電圧の振幅を、前記駆動する電荷が一定になるように制御することを特徴とする請求項1に記載の光学素子の制御装置。
Between the optical element and the drive circuit, a current integration circuit for integrating the current for driving the optical element and measuring the amount of charge to be driven is provided.
2. The optical element control device according to claim 1, wherein the drive circuit controls an amplitude of a drive voltage for driving the optical element so that the electric charge to be driven becomes constant. 3.
前記光学素子と熱的に結合され、前記光学素子の温度を制御するペルチエ素子と、
前記検出手段で検出された温度に応じて、前記ペルチエ素子を駆動する温度制御回路と
をさらに備えたことを特徴とする請求項1または2に記載の光学素子の制御装置。
A Peltier element that is thermally coupled to the optical element and controls the temperature of the optical element;
The optical element control device according to claim 1, further comprising: a temperature control circuit that drives the Peltier element according to the temperature detected by the detection unit.
前記材料は、KTaNb1-x(0≦x≦1)、K1−yLiTa1−xNb(0≦x≦1、0≦y≦1)、(Pb,La)(Zr,Ti)Oのいずれかであることを特徴とする請求項1、2または3に記載の光学素子の制御装置。
The materials are KTa x Nb 1-x O 3 (0 ≦ x ≦ 1), K 1-y Li y Ta 1-x Nb x O 3 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1), (Pb , La) (Zr, Ti) O 3 , The optical element control device according to claim 1, 2 or 3.
JP2005185721A 2005-06-24 2005-06-24 Apparatus for controlling optical element Pending JP2007003948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005185721A JP2007003948A (en) 2005-06-24 2005-06-24 Apparatus for controlling optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005185721A JP2007003948A (en) 2005-06-24 2005-06-24 Apparatus for controlling optical element

Publications (1)

Publication Number Publication Date
JP2007003948A true JP2007003948A (en) 2007-01-11

Family

ID=37689626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005185721A Pending JP2007003948A (en) 2005-06-24 2005-06-24 Apparatus for controlling optical element

Country Status (1)

Country Link
JP (1) JP2007003948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159896A (en) * 2017-03-24 2018-10-11 スペクトロニクス株式会社 Wavelength conversion method, wavelength conversion device and laser light source device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288123A (en) * 1990-04-04 1991-12-18 Minolta Camera Co Ltd Optical printer
JPH07270632A (en) * 1994-03-28 1995-10-20 Matsushita Electric Ind Co Ltd Optical element, optical wavelength converting element and generator of short wavelength light
JP2003043432A (en) * 2001-08-01 2003-02-13 Mitsui Chemicals Inc Variable difference time delay line and group delay time difference correcting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288123A (en) * 1990-04-04 1991-12-18 Minolta Camera Co Ltd Optical printer
JPH07270632A (en) * 1994-03-28 1995-10-20 Matsushita Electric Ind Co Ltd Optical element, optical wavelength converting element and generator of short wavelength light
JP2003043432A (en) * 2001-08-01 2003-02-13 Mitsui Chemicals Inc Variable difference time delay line and group delay time difference correcting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159896A (en) * 2017-03-24 2018-10-11 スペクトロニクス株式会社 Wavelength conversion method, wavelength conversion device and laser light source device
JP7079953B2 (en) 2017-03-24 2022-06-03 スペクトロニクス株式会社 Wavelength conversion method, wavelength conversion device and laser light source device

Similar Documents

Publication Publication Date Title
Shams-Ansari et al. Reduced material loss in thin-film lithium niobate waveguides
US4508964A (en) Electro-optically tuned rejection filter
Li et al. Optical voltage sensor based on electrooptic crystal multiplier
US7534991B2 (en) Athermalized birefringent filter apparatus and method
CN109375390A (en) A kind of electrooptic modulator based on graphene
GB2585437A (en) Energy efficient, high resolution light detection and ranging imaging receiver with large field-of-view
Takeda et al. Electro-optic effect of lithium niobate in piezoelectric resonance
JP4579762B2 (en) Optical device
Li et al. Frequency dependent electro-optic properties of potassium lithium tantalate niobate single crystal
JP2007003948A (en) Apparatus for controlling optical element
Zhao et al. Linear optical properties and second-harmonic generation of (1-x) Pb (Mg1/3Nb2/3) O3–x PbTiO3 single crystals
Marx et al. Electro‐optic modulation and self‐poling in strain‐induced waveguides in barium strontium titanate niobate
US20220107349A1 (en) Electric field sensor
Atalar et al. Optically isotropic longitudinal piezoelectric resonant photoelastic modulator for wide angle polarization modulation at megahertz frequencies
Vidal et al. Electro-optic pulse generation at the 2um wavelength range in proximity to the ferroelectric phase transition in KLTN crystals
Tatsumi et al. Reduction of ambient temperature dependence of KTa1-xNbxO3 electro-optic deflector by double-thermistor structure
Liu et al. Thermo-optic properties of epitaxial Sr 0.6 Ba 0.4 Nb 2 O 6 waveguides and their application as optical modulator
JP2007003947A (en) Optical device
Tang et al. KTN-based electro-optic beam scanner
Inagaki et al. Low-voltage optical phase modulation by electric-field-induced phase transition of KTN bulk crystal
Lv et al. A modulation efficiency enhancement method of KTN electro-optic modulator in laser 3D imaging
Zhelyazkova et al. Surface plasmon resonance on the surface: metal-liquid crystal layer
Wang et al. A PLZT optical phase modulator and its applications
Foshee et al. A novel high-speed electro-optic beam scanner based on KTN crystals
Jumonji et al. Instabilities and Their Characterization in Mach‐Zehnder Ti: LiNbO3 Optical Modulators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070815

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110826