JP2007003152A - Cooling device, and electronic component handler provided therewith - Google Patents

Cooling device, and electronic component handler provided therewith Download PDF

Info

Publication number
JP2007003152A
JP2007003152A JP2005186506A JP2005186506A JP2007003152A JP 2007003152 A JP2007003152 A JP 2007003152A JP 2005186506 A JP2005186506 A JP 2005186506A JP 2005186506 A JP2005186506 A JP 2005186506A JP 2007003152 A JP2007003152 A JP 2007003152A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
flow path
electronic component
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005186506A
Other languages
Japanese (ja)
Inventor
Hiroaki Fujimori
広明 藤森
Daisuke Kirihara
大輔 桐原
Satoshi Nakamura
敏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005186506A priority Critical patent/JP2007003152A/en
Publication of JP2007003152A publication Critical patent/JP2007003152A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device with superior responsiveness during heating by a simple composition. <P>SOLUTION: The cooling device is provided with: at least one heat exchanger 4 having a structure 42 formed with a hollow part 41 passing a fluid; a refrigerant supply passage 5 supplying a refrigerant to the hollow part 41 of the heat exchanger 4 from a refrigerant sending passage 2; a refrigerant recovery passage 6 recovering the refrigerant from the hollow part 41 of the heat exchanger 4 to a refrigerant return passage 3; a compressed air source 7 being a supply source of compressed air; a compressed air supply passage 9 supplying the compressed air from the compressed air source 7 to a refrigerant intake side of the hollow part 41; a passage selector valve 11 carrying out a change-over of passages between two passages being the refrigerant supply passage 5 and the compressed air supply passage 9; and at least one of a heater 43 heating a structure 42 or a heater 8 heating air supplied to the hollow part 41. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自己発熱を生じる電子部品(各種電子デバイスを含む)の温度制御、特にそのような電子部品の検査や製造の過程で要求される温度制御のために使用される冷却装置、及びそれを備えた電子部品ハンドラに関する。   The present invention relates to a cooling device used for temperature control of electronic components (including various electronic devices) that generate self-heating, in particular, temperature control required in the inspection and manufacturing process of such electronic components, and The present invention relates to an electronic component handler provided with

自己発熱を生じる電子部品、特にCPU、MPUなどにおいては、その検査や製造時、あるいは装置に組み込まれた状態で、それらを高精度かつ一定に保つ環境が求められてきている。そのために従来から、様々な冷却装置が開発されている(例えば、特許文献1、特許文献2)。
実開平7−27161号公報 実開平6−23259号公報
For electronic components that generate self-heating, particularly CPUs, MPUs, and the like, an environment that maintains them with high accuracy and constant during inspection and manufacturing or in a state where they are incorporated in an apparatus has been demanded. For this purpose, various cooling devices have been conventionally developed (for example, Patent Document 1 and Patent Document 2).
Japanese Utility Model Publication No. 7-27161 Japanese Utility Model Publication No. 6-23259

特許文献1は、使用した水冷方式の電子部品冷却装置である。冷却水は二枚の金属板の間を流れる。金属板には貫通孔が形成され、その貫通孔部分にダイアフラムとバネと伝熱板とからなる電子備品との熱交換部が設けられている。
特許文献2は、IC冷却用のコールドブロックと称する熱交換部の内部に冷却水を通してICを冷却する。コールドブロックは複数設置することが可能で、熱交換器同士がベローズと呼ばれる蛇腹式ゴムで直列に結合されている。
これらの冷却装置において、冷却しすぎた場合などには、ヒータなどを利用して熱交換部を加熱する必要がある。しかしながら、従来の装置の場合、ヒータによる加熱が、熱交換部を通過する冷媒の影響を受けるため、加熱時における熱交換器の温度上昇の応答性の点で問題があった。これを避けるため、熱交換器から冷媒流路とヒータとを物理的に切り離す対応も可能であるが、それは冷却装置の構造を複雑にする。
Patent Document 1 is a water-cooled electronic component cooling device used. The cooling water flows between the two metal plates. A through hole is formed in the metal plate, and a heat exchanging portion for electronic equipment including a diaphragm, a spring, and a heat transfer plate is provided in the through hole portion.
Patent Document 2 cools an IC by passing cooling water through a heat exchange section called a cold block for cooling the IC. A plurality of cold blocks can be installed, and the heat exchangers are connected in series with bellows type rubber called bellows.
In these cooling devices, when the cooling is excessive, it is necessary to heat the heat exchanging part using a heater or the like. However, in the case of the conventional apparatus, since the heating by the heater is affected by the refrigerant passing through the heat exchanging section, there is a problem in the responsiveness of the temperature rise of the heat exchanger during the heating. To avoid this, it is possible to physically separate the refrigerant flow path and the heater from the heat exchanger, but this complicates the structure of the cooling device.

本発明は上記課題に対応してなされたもので、加熱時の応答性に優れた冷却装置を簡易な構成により得ることを目的とし、併せて冷却能力、加熱能力にも優れた冷却装置、並びにそれを備えた電子部品ハンドラを提案するものである。   The present invention has been made in response to the above problems, and aims to obtain a cooling device having excellent response during heating with a simple configuration. In addition, a cooling device having excellent cooling ability and heating ability, and We propose an electronic component handler equipped with it.

本発明の冷却装置は、冷媒の供給源である冷媒供給源と、前記冷媒供給源から冷媒を外部へ送り出す冷媒送出流路と、外部から前記冷媒供給源へ冷媒を戻す冷媒戻り流路と、流体が通る中空部が形成された構造体を有した少なくとも1つの熱交換器と、前記構造体を加熱する加熱手段と、前記冷媒送出流路から前記熱交換器の中空部に冷媒を供給する冷媒供給流路と、前記冷媒戻り流路に前記熱交換器の中空部から冷媒を回収する冷媒回収流路と、圧空の供給源である圧空源と、前記圧空源から圧空を前記中空部の冷媒取込側へ供給する圧空供給流路と、前記冷媒供給流路と前記圧空供給流路との2つの流路の間で流路の切換を行う流路切換装置と、前記構造体を加熱する構造体加熱手段又は前記中空部へ供給される空気を加熱する空気加熱手段の少なくとも一方とを、備えたものである。   The cooling device of the present invention includes a refrigerant supply source that is a refrigerant supply source, a refrigerant delivery channel that sends the refrigerant from the refrigerant supply source to the outside, a refrigerant return channel that returns the refrigerant from the outside to the refrigerant supply source, At least one heat exchanger having a structure in which a hollow portion through which a fluid passes is formed, heating means for heating the structure, and a refrigerant is supplied from the refrigerant delivery channel to the hollow portion of the heat exchanger. A refrigerant supply channel, a refrigerant recovery channel that recovers the refrigerant from the hollow portion of the heat exchanger to the refrigerant return channel, a pressurized air source that is a compressed air supply source, and a compressed air from the compressed air source A compressed air supply flow path for supplying to the refrigerant intake side, a flow path switching device for switching the flow path between the two flow paths of the refrigerant supply flow path and the compressed air supply flow path, and heating the structure Air heating for heating the structure heating means or the air supplied to the hollow part And at least one of the stages, those with.

上記冷却装置によれば、流路切換装置の流路切換により、熱交換器の中空部への冷媒の供給を停止するのとほぼ同時に中空部に圧空を流入させ、熱交換器の中空部内にある冷媒を素早くその外に排出させることが可能となる。このため、熱交換器の加熱時における応答性の改善が可能となった。また、熱交換器を加熱する際の加熱手段の負荷が軽減されるため、熱交換器の加熱能力が向上するとともに、冷媒の温度も低くできそれにより冷却能力も向上する。したがって、熱交換器の温度制御範囲も拡大する。
なお、この装置において、構造体加熱手段だけを備えた場合にはそれにより熱交換器が加熱され、空気加熱手段だけを備えた場合にはそれにより熱交換器が加熱されるが、構造体加熱手段と空気加熱手段の両方を備えた場合にはそれらの何れか一方を利用して又はそれらを適宜に組み合わせて熱交換器を加熱できる。
According to the cooling device, by switching the flow channel of the flow channel switching device, the compressed air is caused to flow into the hollow portion almost simultaneously with stopping the supply of the refrigerant to the hollow portion of the heat exchanger, and into the hollow portion of the heat exchanger. A certain refrigerant can be quickly discharged outside. For this reason, the improvement of the responsiveness at the time of the heating of a heat exchanger was attained. Moreover, since the load of the heating means when heating the heat exchanger is reduced, the heating capacity of the heat exchanger is improved and the temperature of the refrigerant can be lowered, thereby improving the cooling capacity. Therefore, the temperature control range of the heat exchanger is also expanded.
In this apparatus, when only the structure heating means is provided, the heat exchanger is heated thereby, and when only the air heating means is provided, the heat exchanger is heated thereby. When both the means and the air heating means are provided, the heat exchanger can be heated by using any one of them or appropriately combining them.

上記冷却装置は、前記熱交換器が前記構造体の温度を検出する温度検出装置を備えるのが好ましい。温度制御の対象となる電子部品には内部に温度検出装置相当物を備えているものもあるが、それを有さないものもある。そのため、熱交換器に温度検出装置を備えておくことで、電子部品の種類にかかわらず温度制御の際の温度管理が容易に可能となる。   It is preferable that the cooling device includes a temperature detection device in which the heat exchanger detects the temperature of the structure. Some electronic components subject to temperature control have a temperature detection device equivalent inside, but some do not. Therefore, by providing a temperature detection device in the heat exchanger, temperature management during temperature control can be easily performed regardless of the type of electronic component.

なお、前記冷媒回収流路にその流路を開閉する流路開閉装置を備えることが好ましい。この流路開閉装置を利用して、中空部から排出した冷媒の中空部への逆流を防止することが可能となる。
また、前記熱交換器の前記構造体に、一端が真空源の真空引き流路に接続され他端が前記構造体の外面側に開口した貫通孔が形成されており、前記貫通孔の前記開口部周囲に吸着パッドが設けられていることが好ましい。これによれば、吸着パッドを利用して、温度制御の対象となる電子部品を熱交換器に密着保持することが可能となる。
In addition, it is preferable to provide a flow path opening / closing device for opening / closing the flow path in the refrigerant recovery flow path. By using this flow path opening / closing device, it is possible to prevent the refrigerant discharged from the hollow part from flowing back to the hollow part.
Further, the structure of the heat exchanger is formed with a through hole in which one end is connected to a vacuum flow path of a vacuum source and the other end is opened to the outer surface side of the structure, and the opening of the through hole is formed. It is preferable that a suction pad is provided around the part. According to this, it becomes possible to closely hold the electronic component that is the object of temperature control on the heat exchanger using the suction pad.

前記冷媒供給源は冷媒の温度制御が可能なチラーシステムとすることが好ましい。これによれば、冷媒の温度を適宜調整することができる。
また、前記冷媒供給源の冷媒として工場内を循環する冷却水を利用してもよい。これによれば、冷却装置専用の冷媒供給源が不要となるので、その分の置き場所が節約でき、また低コスト化も可能となる。
The refrigerant supply source is preferably a chiller system capable of controlling the temperature of the refrigerant. According to this, the temperature of the refrigerant can be adjusted as appropriate.
Moreover, you may utilize the cooling water which circulates in the factory as a refrigerant | coolant of the said refrigerant | coolant supply source. According to this, since a refrigerant supply source dedicated to the cooling device is not required, the place for the storage can be saved, and the cost can be reduced.

前記熱交換器の加熱時、前記流路切換装置の流路切換により前記熱交換器の中空部への冷媒の供給を停止するとともに前記中空部に圧空を流入させて前記中空部内にある冷媒をその外に排出するようにしていることが好ましい。このようにすることで、熱交換器の加熱時には、流路切換装置の流路切換が行われて、熱交換器の中空部内にある冷媒を圧空により素早くその外に排出させることが確実に実行されることとなる。これにより、熱交換器の温度を上昇させるための過熱時、冷媒の影響が低減されて熱交換器の加熱の応答性が改善される。また、熱交換器を加熱する際の加熱手段の負荷が軽減されるため、熱交換器の加熱能力が向上するとともに、冷媒の温度も低くできそれにより冷却能力も向上する。したがって、熱交換器の温度制御範囲も拡大する。   When the heat exchanger is heated, supply of the refrigerant to the hollow portion of the heat exchanger is stopped by switching the flow path of the flow path switching device, and compressed air is allowed to flow into the hollow section so that the refrigerant in the hollow section is removed. It is preferable to discharge to the outside. In this way, when the heat exchanger is heated, the flow path switching of the flow path switching device is performed, and the refrigerant in the hollow portion of the heat exchanger is surely discharged to the outside by compressed air. Will be. Thereby, the influence of a refrigerant | coolant is reduced at the time of the overheating for raising the temperature of a heat exchanger, and the responsiveness of the heating of a heat exchanger is improved. Moreover, since the load of the heating means when heating the heat exchanger is reduced, the heating capacity of the heat exchanger is improved and the temperature of the refrigerant can be lowered, thereby improving the cooling capacity. Therefore, the temperature control range of the heat exchanger is also expanded.

なお、前記流路切換装置は、前記熱交換器の構造体の温度又は前記熱交換器で制御される電子部品の温度に基づいて間欠的に作動させてもよい。このようにすることで、熱交換器の温度を所定温度に保持することが可能となる。   The flow path switching device may be operated intermittently based on the temperature of the heat exchanger structure or the temperature of the electronic component controlled by the heat exchanger. By doing in this way, it becomes possible to hold | maintain the temperature of a heat exchanger to predetermined temperature.

本発明の電子部品ハンドラは、電子部品を保持して該電子部品を所定位置に位置決めするアームを備えた電子部品ハンドラに、上記いずれかの冷却装置を備え、前記アームの電子部品保持部に前記熱交換器を配して、前記電子部品を前記熱交換器の構造体に接触させて保持することを可能にしたものである。これによれば、電子部品保持部を構成している熱交換器の応答性が改善されているため、この電子部品ハンドラを利用した電子部品の検査の精度が向上する。   An electronic component handler according to the present invention includes an electronic component handler including an arm that holds an electronic component and positions the electronic component at a predetermined position. A heat exchanger is provided, and the electronic component can be held in contact with the structure of the heat exchanger. According to this, since the responsiveness of the heat exchanger which comprises the electronic component holding part is improved, the precision of the inspection of the electronic component using this electronic component handler is improved.

実施形態1
図1は本発明の実施形態1に係る冷却装置の構成図である。この冷却装置は、冷媒の供給源である冷媒供給源1と、冷媒供給源1から冷媒を外部へ送り出す冷媒送出流路2と、外部から冷媒供給源1へ冷媒を戻す冷媒戻り流路3と、流体が通る中空部41が形成された構造体42を有した少なくとも1つの熱交換器4と、冷媒送出流路2から熱交換器4の中空部41に冷媒を供給する冷媒供給流路5と、冷媒戻り流路3に熱交換器4の中空部41から冷媒を回収する冷媒回収流路6とを備える。各流路2,3,5,6は配管で構成されており、冷媒送出流路2と冷媒供給流路5、冷媒戻り流路3と冷媒回収流路6とは、それぞれ管継手13を介して接続されている。なお、熱交換器4が1個だけの場合には、管継手13を用いることなく、接続冷媒送出流路2と冷媒供給流路5とをそれらが連続した1つの配管路から構成し、冷媒戻り流路3と冷媒回収流路6とをそれらが連続した1つの配管路から構成してもよい。
Embodiment 1
FIG. 1 is a configuration diagram of a cooling device according to Embodiment 1 of the present invention. The cooling device includes a refrigerant supply source 1 that is a refrigerant supply source, a refrigerant delivery flow path 2 that sends the refrigerant from the refrigerant supply source 1 to the outside, and a refrigerant return flow path 3 that returns the refrigerant from the outside to the refrigerant supply source 1. , At least one heat exchanger 4 having a structure 42 in which a hollow portion 41 through which a fluid passes is formed, and a refrigerant supply passage 5 for supplying a refrigerant from the refrigerant delivery passage 2 to the hollow portion 41 of the heat exchanger 4 And a refrigerant recovery flow path 6 for recovering the refrigerant from the hollow portion 41 of the heat exchanger 4 in the refrigerant return flow path 3. Each of the flow paths 2, 3, 5 and 6 is constituted by a pipe, and the refrigerant delivery flow path 2 and the refrigerant supply flow path 5, and the refrigerant return flow path 3 and the refrigerant recovery flow path 6 are respectively connected via a pipe joint 13. Connected. When only one heat exchanger 4 is used, the connecting refrigerant delivery flow path 2 and the refrigerant supply flow path 5 are configured by one continuous pipe without using the pipe joint 13, and the refrigerant You may comprise the return flow path 3 and the refrigerant | coolant collection | recovery flow path 6 from one piping path in which they continued.

冷媒供給源1は、水などの冷媒を外部へ供給できるものであればよいが、冷媒の温度制御が可能なチラーシステムや冷凍サイクル装置などを利用した冷媒供給源1とするのが好ましい。また、工場内を循環する冷却水などがある場合には、専用の冷媒供給源1に代えて、その循環冷却水を冷媒供給源1として利用してもよい。その場合には、チラーシステムなどの冷却装置に専用の冷媒供給源が不要となるので、設置スペースの削減やコストの低減が図れる。   The refrigerant supply source 1 is not limited as long as it can supply a refrigerant such as water to the outside, but is preferably the refrigerant supply source 1 using a chiller system or a refrigeration cycle apparatus capable of controlling the temperature of the refrigerant. Further, when there is cooling water circulating in the factory, the circulating cooling water may be used as the refrigerant supply source 1 instead of the dedicated refrigerant supply source 1. In that case, a dedicated refrigerant supply source is not required for a cooling device such as a chiller system, so that installation space and cost can be reduced.

この冷却装置は、また、圧空の供給源である圧空源7と、圧空源7内の空気を加熱する加熱手段としてのヒータ8と、圧空源7から圧空を熱交換器4の中空部41の冷媒取込側へ供給する圧空供給流路9とを備える。圧空供給流路9は配管で構成されており、熱交換器4が複数ある場合には、管継手10を介して、各熱交換器4へ圧空供給流路9が分岐されている。なお、圧空源7から送出される空気(圧空)の圧力は、それが中空部41の内にある冷媒を中空部41の外へ押し出すことができる圧力とする。   The cooling device also includes a compressed air source 7 that is a supply source of compressed air, a heater 8 that heats the air in the compressed air source 7, and the compressed air from the compressed air source 7 in the hollow portion 41 of the heat exchanger 4. And a compressed air supply passage 9 for supplying the refrigerant to the refrigerant intake side. The compressed air supply flow path 9 is constituted by piping, and when there are a plurality of heat exchangers 4, the compressed air supply flow paths 9 are branched to the respective heat exchangers 4 through pipe joints 10. Note that the pressure of the air (pressure air) sent from the pressure source 7 is a pressure at which the refrigerant in the hollow part 41 can be pushed out of the hollow part 41.

さらに、冷媒供給流路5と圧空供給流路9との2つの流路の間で流路の切換を行う流路切換装置である流路切換弁11が、冷媒供給流路5の途中に設けられ、その流路切換弁11に圧空供給流路9の一端が接続されている。なお、冷媒供給流路5と圧空供給流路9との2つの流路の間で流路の切換が可能な構成となっていればよく、冷媒供給流路5、圧空供給流路9及び流路切換弁11の配置態様は特に問わない。また、冷媒回収流路6には、その流路を開閉可能なできる封止弁12が備えられている。これらの流路切換弁11や封止弁12は、温度制御の対象となる電子部品の検査や製造中に必要とされる設定温度に基づいて予め設定されたプログラムと、実際の温度とを基に、それらの動作が制御される。ここでは、流路切換弁11と封止弁12のそのような制御のために、上記プログラムを備えたプログラマブルコントローラ15を備えている。流路切換弁11又は封止弁12とプログラマブルコントローラ15とは信号線16により接続されている。   Further, a flow path switching valve 11, which is a flow path switching device that switches the flow path between the two flow paths of the refrigerant supply flow path 5 and the compressed air supply flow path 9, is provided in the middle of the refrigerant supply flow path 5. In addition, one end of the compressed air supply flow path 9 is connected to the flow path switching valve 11. Note that it is sufficient that the flow path can be switched between the two flow paths of the refrigerant supply flow path 5 and the compressed air supply flow path 9, and the refrigerant supply flow path 5, the compressed air supply flow path 9 and the flow The arrangement mode of the path switching valve 11 is not particularly limited. Further, the refrigerant recovery flow path 6 is provided with a sealing valve 12 that can open and close the flow path. The flow path switching valve 11 and the sealing valve 12 are based on a program set in advance based on a set temperature required during inspection or manufacturing of an electronic component to be temperature controlled and an actual temperature. These operations are controlled. Here, the programmable controller 15 provided with the said program is provided for such control of the flow-path switching valve 11 and the sealing valve 12. FIG. The flow path switching valve 11 or the sealing valve 12 and the programmable controller 15 are connected by a signal line 16.

ところで、熱交換器4が複数設けられる場合には、中空部41を通過する冷媒の流量を調節する流量制御装置(図示なし)を、冷媒供給流路5あるいは冷媒回収流路6に設けるのが好ましい。それは、この流量制御装置により、各熱交換器4毎に冷媒の供給量を調整して、各熱交換器4毎に冷却制御が可能となるからである。   When a plurality of heat exchangers 4 are provided, a flow rate control device (not shown) for adjusting the flow rate of the refrigerant passing through the hollow portion 41 is provided in the refrigerant supply channel 5 or the refrigerant recovery channel 6. preferable. This is because the flow rate control device adjusts the amount of refrigerant supplied to each heat exchanger 4 to enable cooling control for each heat exchanger 4.

図2は熱交換器4の一例を示す構成図である。熱交換器4は、中空部41が形成された構造体42からなり、中空部41の一端は冷媒供給流路5に連通し、中空部41の他端は冷媒回収流路6に連通する構造となっている。また、構造体42にはその構造体42を加熱する手段としてヒータ43が組み込まれている。この構造体42の外面に温度制御の対象である電子部品が接触、特に好ましくは密着接触されて、その電子部品が構造体42を介して、冷却又は加熱される。したがって、構造体42は金属などの熱伝導率の良好な材料から構成されるのが好ましい。さらに、構造体42の電子部品との接触部分には、その部分の温度を検出する温度検出装置としての温度センサ17が設けられているのが好ましい。温度センサ17の検出温度は、信号線16を介してプログラマブルコントローラ15にフィードバックされている。また、構造体42を加熱するヒータ43の動作は、信号線16を介してプログラマブルコントローラ15により制御される。   FIG. 2 is a configuration diagram illustrating an example of the heat exchanger 4. The heat exchanger 4 includes a structure 42 in which a hollow portion 41 is formed, and one end of the hollow portion 41 communicates with the refrigerant supply channel 5 and the other end of the hollow portion 41 communicates with the refrigerant recovery channel 6. It has become. In addition, a heater 43 is incorporated in the structure 42 as means for heating the structure 42. An electronic component that is the object of temperature control is brought into contact with the outer surface of the structure 42, particularly preferably in close contact, and the electronic component is cooled or heated via the structure 42. Therefore, the structure 42 is preferably made of a material having good thermal conductivity such as metal. Furthermore, it is preferable that a temperature sensor 17 serving as a temperature detection device for detecting the temperature of the portion of the structure 42 in contact with the electronic component is provided. The temperature detected by the temperature sensor 17 is fed back to the programmable controller 15 via the signal line 16. The operation of the heater 43 that heats the structure 42 is controlled by the programmable controller 15 via the signal line 16.

熱交換器4の構造体42には、一端が真空源18の真空引き流路14に接続され、他端が構造体42の外面側に開口した貫通孔44が形成されており、貫通孔44の開口部周囲には柔軟性を有する吸着パッド45が設けられている。このようにしておくことで、温度制御対象の電子部品を貫通孔44の開口を塞ぐように構造体42に接触させた状態で、真空源18を利用して貫通孔44の真空引きを行うと、吸着パッド45を介して電子部品が真空吸着されて、熱交換器4にその電子部品が密着保持される。この真空吸着の動作制御も、プログラマブルコントローラ15を利用して真空源18を制御して行うようにしてよい。図2は、吸着パッド45を介して被検査電子部品25が熱交換器4に密着保持されている状態を示している。   The structure 42 of the heat exchanger 4 is formed with a through hole 44 having one end connected to the evacuation channel 14 of the vacuum source 18 and the other end opened to the outer surface side of the structure 42. A flexible suction pad 45 is provided around the opening. In this way, when the vacuum source 18 is used to evacuate the through hole 44 in a state where the electronic component to be temperature controlled is in contact with the structure 42 so as to block the opening of the through hole 44. The electronic component is vacuum-sucked through the suction pad 45, and the electronic component is held in close contact with the heat exchanger 4. This vacuum suction operation control may also be performed by controlling the vacuum source 18 using the programmable controller 15. FIG. 2 shows a state where the electronic component 25 to be inspected is held in close contact with the heat exchanger 4 via the suction pad 45.

次に、上記冷却装置の作用について説明する。熱交換器4を冷却する場合には、圧空を停止させ冷媒を通過させるように流路切換弁11が制御され、封止弁12は作動させない。これにより、冷媒供給源1からの冷媒が、冷媒送出流路3、冷媒供給流路5、中空部41、冷媒回収流路6、冷媒戻り流路3を介して冷媒供給源1に戻る流路を循環し、それによって、熱交換器4の構造体42が冷却される。   Next, the operation of the cooling device will be described. When cooling the heat exchanger 4, the flow path switching valve 11 is controlled so that the compressed air is stopped and the refrigerant is allowed to pass, and the sealing valve 12 is not operated. Thereby, the refrigerant from the refrigerant supply source 1 returns to the refrigerant supply source 1 via the refrigerant delivery channel 3, the refrigerant supply channel 5, the hollow portion 41, the refrigerant recovery channel 6, and the refrigerant return channel 3. , Thereby cooling the structure 42 of the heat exchanger 4.

これに対して、熱交換器4を加熱する場合(熱交換器4の温度を上昇させる場合を意味し、本明細書では単に熱交換器4の加熱時ともいう)には、冷媒を停止させ圧空を通過させるように流路切換弁11が制御される。これにより、熱交換器4の中空部41への冷媒の供給が停止されるとともに、圧空源7から中空部41に圧空が流入されて中空部41内にある冷媒がその外に排出される。これに加えて、(1)ヒータ43により構造体42を加熱して、(2)中空部にヒータ8で加熱された空気を送ることにより、あるいは(3)ヒータ43により構造体42を加熱するとともに中空部にヒータ8で加熱された空気を送ることによって、熱交換器4の構造体42が加熱される。   On the other hand, when the heat exchanger 4 is heated (meaning that the temperature of the heat exchanger 4 is increased, and is simply referred to as heating of the heat exchanger 4 in this specification), the refrigerant is stopped. The flow path switching valve 11 is controlled so as to allow the compressed air to pass therethrough. Thereby, supply of the refrigerant to the hollow part 41 of the heat exchanger 4 is stopped, and the compressed air flows into the hollow part 41 from the pressurized air source 7 and the refrigerant in the hollow part 41 is discharged to the outside. In addition to this, (1) the structure 42 is heated by the heater 43, (2) the air heated by the heater 8 is sent to the hollow portion, or (3) the structure 42 is heated by the heater 43. At the same time, the structure 42 of the heat exchanger 4 is heated by sending air heated by the heater 8 to the hollow portion.

なお、上記(1)の加熱方法を採用する場合には、封止弁12を作動させて冷媒回収流路6を塞いでおくと、冷媒の中空部41への逆流が防止され、冷媒の影響を確実に低減できる。(2)又は(3)の加熱方法を採用する場合には、中空部41への流入空気によって冷媒の中空部41への逆流が防止されるため、封止弁12を作動させる必要はない。   In the case of adopting the heating method (1) above, if the sealing valve 12 is operated to close the refrigerant recovery flow path 6, the reverse flow of the refrigerant to the hollow portion 41 is prevented, and the influence of the refrigerant Can be reliably reduced. When the heating method of (2) or (3) is adopted, since the backflow of the refrigerant to the hollow portion 41 is prevented by the air flowing into the hollow portion 41, it is not necessary to operate the sealing valve 12.

また、熱交換器4の構造体42の温度を所定の温度に保つために、熱交換器4の構造体42の温度又は熱交換器で制御される電子部品の温度に基づいて、流路切換弁11を間欠的に作動させるように制御してもよい。この場合の流路切換弁11の間欠作動は、構造体42に組み込まれた温度センサ17の検出値又は熱交換器4で制御される電子部品が備える温度センサの情報をプログラマブルコントローラ15で監視し、それらが所定の許容値になったら、流路切換弁11により冷却と加熱、又は加熱と冷却を切換ることで行う。   Further, in order to keep the temperature of the structure 42 of the heat exchanger 4 at a predetermined temperature, the flow path is switched based on the temperature of the structure 42 of the heat exchanger 4 or the temperature of the electronic component controlled by the heat exchanger. The valve 11 may be controlled to operate intermittently. In the intermittent operation of the flow path switching valve 11 in this case, the programmable controller 15 monitors the detection value of the temperature sensor 17 incorporated in the structure 42 or the information of the temperature sensor included in the electronic component controlled by the heat exchanger 4. When they reach a predetermined allowable value, the flow switching valve 11 is used to switch between cooling and heating, or heating and cooling.

以上のような作用を果たす実施形態1の冷却装置は、以下のような効果を奏する。
・加熱時に、構造体加熱用のヒータ43が受ける冷媒からの負荷を軽減されるため、その分、熱交換器4の加熱能力が向上する。
・構造体加熱用のヒータ43が受ける冷媒からの負荷を軽減されて加熱能力が向上したことで、冷媒の温度を低く設定でき、熱交換器4の加熱能力が向上する。
・構造体加熱用のヒータ43の負荷が軽減されるので、ヒータ43の容量を小さくできサイズも小型化できる。
・熱交換器4を、加熱空気により加熱することが可能であり、構造体加熱用のヒータ43をなくした熱交換器4が利用できる。
・冷媒の負荷の軽減が流路切換弁11の切換だけで行えるので、冷媒の負荷軽減機構が単純で信頼性が向上する。
・冷媒供給流路5と冷媒回収流路6とを利用して、複数の熱交換器4を冷媒送出流路2と冷媒戻り流路3に対して並列に配置しているので、各熱交換器4にほぼ同じ条件で冷媒を供給することができ、各熱交換器4の冷却能力を均一化できる。
The cooling device according to the first embodiment that achieves the above-described effects has the following effects.
Since the load from the refrigerant received by the heater 43 for heating the structure is reduced during heating, the heating capacity of the heat exchanger 4 is improved accordingly.
-Since the load from the refrigerant received by the heater 43 for heating the structure is reduced and the heating capacity is improved, the temperature of the refrigerant can be set low, and the heating capacity of the heat exchanger 4 is improved.
Since the load on the heater 43 for heating the structure is reduced, the capacity of the heater 43 can be reduced and the size can be reduced.
The heat exchanger 4 can be heated with heated air, and the heat exchanger 4 without the heater 43 for heating the structure can be used.
Since the refrigerant load can be reduced only by switching the flow path switching valve 11, the refrigerant load reduction mechanism is simple and the reliability is improved.
Since a plurality of heat exchangers 4 are arranged in parallel with respect to the refrigerant delivery channel 2 and the refrigerant return channel 3 using the refrigerant supply channel 5 and the refrigerant recovery channel 6, each heat exchange The refrigerant can be supplied to the units 4 under substantially the same conditions, and the cooling capacity of each heat exchanger 4 can be made uniform.

上記実施形態の冷却装置においては、熱交換器4の構造体42を加熱するヒータ43と、熱交換器4の中空部41に供給される空気を加熱するヒータ8とを両方備える構成としたが、それらのいずれか一方が備えられていればよい。また、熱交換器4の中空部41に供給される空気を加熱するヒータ8を圧空源7に設けたが、ヒータ8は圧空供給流路9に設けてもよい。更に、ヒータ8,43は基本的には電気ヒータを想定しているが、火力を利用したヒータの利用も可能である。
また、上記実施形態の冷却装置において用いられた流路切換弁11、封止弁12は、それと同等の作用を果たす、流路切換装置や封止装置で代用してもよい。
In the cooling device of the above embodiment, the heater 43 that heats the structure 42 of the heat exchanger 4 and the heater 8 that heats the air supplied to the hollow portion 41 of the heat exchanger 4 are provided. Any one of them may be provided. In addition, although the heater 8 for heating the air supplied to the hollow portion 41 of the heat exchanger 4 is provided in the compressed air source 7, the heater 8 may be provided in the compressed air supply flow path 9. Furthermore, although the heaters 8 and 43 are basically assumed to be electric heaters, it is possible to use heaters using thermal power.
Moreover, the flow path switching valve 11 and the sealing valve 12 used in the cooling device of the above embodiment may be replaced with a flow path switching apparatus or a sealing device that performs the same function.

実施形態2
図3は本発明の実施形態2に係る電子部品ハンドラを説明する電子部品検査装置の全体構成図である。この電子部品検査装置は、本発明に係る冷却装置、例えば実施形態1の冷却装置を備えた電子部品ハンドラ(一般的にはICハンドラと称されている)と、電子部品の検査を行う検査装置30とからなる。図3中における図1及び図2中の符号と同じ符号は、各図で説明したのと同一物又は相当物を表している。なお、符号15で示されたコントローにより、実施形態1において説明した温度管理の制御を含めて、この電子部品検査装置の動作の全体を一元的にコントロールさせるようにしてもよい。
Embodiment 2
FIG. 3 is an overall configuration diagram of an electronic component inspection apparatus for explaining an electronic component handler according to Embodiment 2 of the present invention. This electronic component inspection apparatus includes a cooling device according to the present invention, for example, an electronic component handler (generally referred to as an IC handler) provided with the cooling device of Embodiment 1, and an inspection device that inspects an electronic component. 30. The same reference numerals as those in FIGS. 1 and 2 in FIG. 3 represent the same or equivalent parts as described in each figure. It should be noted that the entire operation of the electronic component inspection apparatus, including the temperature management control described in the first embodiment, may be centrally controlled by the controller indicated by reference numeral 15.

この電子部品ハンドラは、ロボットアーム20の先端の被検査デバイス保持部に熱交換器4を配し、被検査電子部品25を熱交換器4の構造体43の底面に接触させて保持可能としたものである。被検査電子部品25を構造体43の底面に接触させて保持する方法としては、既に実施形態1で示した真空吸着法がある。なお、図3では、熱交換器4の構造体43に接触保持された被検査電子部品25を、検査装置30のソケット31に位置決めしている状態を示している。   In this electronic component handler, the heat exchanger 4 is arranged in the device-to-be-inspected holding unit at the tip of the robot arm 20 so that the electronic component 25 to be inspected can be held in contact with the bottom surface of the structure 43 of the heat exchanger 4. Is. As a method for holding the electronic component to be inspected 25 in contact with the bottom surface of the structure 43, there is the vacuum suction method already described in the first embodiment. 3 shows a state where the electronic component 25 to be inspected held in contact with the structure 43 of the heat exchanger 4 is positioned in the socket 31 of the inspection device 30. FIG.

次に、この電子部品ハンドラによる被検査電子部品25の温度制御について説明する。被検査電子部品25の冷却は、冷媒供給源1の冷媒を、冷媒送出流路2、冷媒供給流路5、熱熱交換器4の中空部41、冷媒回収流路6、及び冷媒戻り流路3を介して循環させることにより、熱交換器4の構造体43を冷却することで行われる。
一方、被検査電子部品25の加熱は既に説明した以下のような態様で行うことができる。すなわち、(1)構造体加熱用のヒータ43を利用して構造体42を加熱することにより、(2)構造体加熱用のヒータ43により構造体42を加熱するとともに、空気加熱用のヒータ8で加熱された空気を中空部41内に送ることにより、(3)空気加熱用のヒータ8で加熱された空気を中空部41内に送ることにより、それぞれ構造体43を加熱して行うことができる。
なお、上記(1)による加熱の場合には、中空部41内へ冷媒が逆流するのを防止するために、封止弁12により冷媒回収流路6を遮断するのが好ましい。
Next, temperature control of the electronic component 25 to be inspected by the electronic component handler will be described. The electronic component 25 to be inspected is cooled by using the refrigerant from the refrigerant supply source 1 as the refrigerant delivery channel 2, the refrigerant supply channel 5, the hollow portion 41 of the heat exchanger 4, the refrigerant recovery channel 6, and the refrigerant return channel. The structure 43 of the heat exchanger 4 is cooled by being circulated through the heat exchanger 4.
On the other hand, the electronic component 25 to be inspected can be heated in the following manner already described. That is, (1) the structure 42 is heated by using the heater 43 for heating the structure, and (2) the structure 42 is heated by the heater 43 for heating the structure, and the air heater 8 is heated. (3) The structure 43 can be heated by sending the air heated by the air heating heater 8 into the hollow portion 41, respectively. it can.
In the case of heating according to the above (1), it is preferable to shut off the refrigerant recovery flow path 6 by the sealing valve 12 in order to prevent the refrigerant from flowing back into the hollow portion 41.

上記構成の電子部品ハンドラは、被検査電子部品25を保持している熱交換器4の冷却の応答性とともに、熱交換器4の加熱の応答性が改善されているため、被検査電子部品25の検査や製造の際にそれを応答性良く温度管理でき、電子部品の検査や製造の精度及び効率が向上する。
また、加熱時に冷媒の影響が低減されるため、使用するヒータの負荷が軽減されて、熱交換器の加熱能力が向上するとともに、冷媒の温度も低くできそれにより冷却能力も向上する。したがって、熱交換器ひいては被検査電子部品25の温度制御範囲も拡大する。
なお、本発明の電子部品ハンドラに備えられる冷却装置は、図3に示したものに限定されることなく、実施形態1中で説明したような様々の形態の冷却装置が採用できる。
In the electronic component handler having the above-described configuration, the heat response of the heat exchanger 4 and the heat response of the heat exchanger 4 holding the electronic component 25 to be inspected are improved. Therefore, the temperature can be controlled with good responsiveness during the inspection and manufacturing, and the accuracy and efficiency of the inspection and manufacturing of electronic parts are improved.
Further, since the influence of the refrigerant during heating is reduced, the load on the heater to be used is reduced, the heating capacity of the heat exchanger is improved, and the temperature of the refrigerant can be lowered, thereby improving the cooling capacity. Therefore, the temperature control range of the heat exchanger and thus the electronic component 25 to be inspected is also expanded.
The cooling device provided in the electronic component handler of the present invention is not limited to the one shown in FIG. 3, and various types of cooling devices as described in the first embodiment can be adopted.

本発明の実施形態1に係る冷却装置の構成図。The block diagram of the cooling device which concerns on Embodiment 1 of this invention. 図1の冷却装置を構成する熱交換器の一例を示す構成図。The block diagram which shows an example of the heat exchanger which comprises the cooling device of FIG. 本発明の実施形態2に係る電子部品ハンドラを説明する電子部品検査装置の全体構成図。The whole block diagram of the electronic component inspection apparatus explaining the electronic component handler which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 冷媒供給源、2 冷媒送出流路、3 冷媒戻り流路、4 熱交換器、5 冷媒供給流路、6 冷媒回収流路、7 圧空源、8 ヒータ(空気加熱用)、9 圧空供給流路、10 管継手、11 流路切換弁、12 封止弁、13 管継手、14 真空引き流路、15 プログラマブルコントローラ、16 信号線、17 温度センサ、18 真空ポンプ、20 ロボットアーム、25 被検査電子部品、30 検査装置、31 ソケット、41 中空部、42 構造体、43 ヒータ(構造体加熱用)、44 貫通孔、45 吸着パッド。
DESCRIPTION OF SYMBOLS 1 Refrigerant supply source, 2 Refrigerant delivery flow path, 3 Refrigerant return flow path, 4 Heat exchanger, 5 Refrigerant supply flow path, 6 Refrigerant recovery flow path, 7 Pressure air source, 8 Heater (for air heating), 9 Pressure air supply flow Path, 10 pipe joint, 11 flow path switching valve, 12 sealing valve, 13 pipe joint, 14 evacuation flow path, 15 programmable controller, 16 signal line, 17 temperature sensor, 18 vacuum pump, 20 robot arm, 25 inspected Electronic component, 30 inspection device, 31 socket, 41 hollow part, 42 structure, 43 heater (for heating structure), 44 through hole, 45 suction pad.

Claims (9)

冷媒の供給源である冷媒供給源と、
前記冷媒供給源から冷媒を外部へ送り出す冷媒送出流路と、
外部から前記冷媒供給源へ冷媒を戻す冷媒戻り流路と、
流体が通る中空部が形成された構造体を有した少なくとも1つの熱交換器と、
前記冷媒送出流路から前記熱交換器の中空部に冷媒を供給する冷媒供給流路と、
前記冷媒戻り流路に前記熱交換器の中空部から冷媒を回収する冷媒回収流路と、
圧空の供給源である圧空源と、
前記圧空源から圧空を前記中空部の冷媒取込側へ供給する圧空供給流路と、
前記冷媒供給流路と前記圧空供給流路との2つの流路の間で流路の切換を行う流路切換装置と、
前記構造体を加熱する構造体加熱手段又は前記中空部へ供給される空気を加熱する空気加熱手段の少なくとも一方とを、
備えたことを特徴とする冷却装置。
A refrigerant supply source that is a refrigerant supply source;
A refrigerant delivery flow path for delivering the refrigerant to the outside from the refrigerant supply source;
A refrigerant return flow path for returning the refrigerant from the outside to the refrigerant supply source;
At least one heat exchanger having a structure in which a hollow portion through which a fluid passes is formed;
A refrigerant supply channel for supplying the refrigerant from the refrigerant delivery channel to the hollow portion of the heat exchanger;
A refrigerant recovery passage for recovering the refrigerant from the hollow portion of the heat exchanger in the refrigerant return passage;
A compressed air source that is a source of compressed air;
A compressed air supply passage for supplying compressed air from the compressed air source to the refrigerant intake side of the hollow portion;
A flow path switching device for switching the flow path between the two flow paths of the refrigerant supply flow path and the compressed air supply flow path;
At least one of a structure heating means for heating the structure or an air heating means for heating the air supplied to the hollow part,
A cooling device comprising:
前記熱交換器が前記構造体の温度を検出する温度検出装置を備えたことを特徴とする請求項1記載の冷却装置。   The cooling device according to claim 1, wherein the heat exchanger includes a temperature detection device that detects a temperature of the structure. 前記冷媒回収流路にその流路を開閉する流路開閉装置を備えたことを特徴とする請求項1又は2記載の冷却装置。   The cooling apparatus according to claim 1 or 2, further comprising a flow path opening / closing device that opens and closes the refrigerant recovery flow path. 前記熱交換器の前記構造体に、一端が真空源の真空引き流路に接続され他端が前記構造体の外面側に開口した貫通孔が形成されており、前記貫通孔の前記開口部周囲に吸着パッドが設けられていることを特徴とする請求項1ないし3のいずれかに記載の冷却装置。   The structure of the heat exchanger is formed with a through hole having one end connected to a vacuum suction flow path of a vacuum source and the other end opened to the outer surface side of the structure, and around the opening of the through hole. The cooling device according to claim 1, further comprising a suction pad. 前記冷媒供給源は冷媒の温度制御が可能なチラーシステムであることを特徴とする請求項1ないし4のいずれかに記載の冷却装置。   The cooling device according to any one of claims 1 to 4, wherein the refrigerant supply source is a chiller system capable of controlling a temperature of the refrigerant. 前記冷媒供給源の冷媒が工場内を循環する冷却水であることを特徴とする請求項1ないし4のいずれかに記載の冷却装置。   The cooling device according to any one of claims 1 to 4, wherein the refrigerant of the refrigerant supply source is cooling water circulating in a factory. 前記熱交換器の加熱時、前記流路切換装置の流路切換により前記熱交換器の中空部への冷媒の供給を停止するとともに前記中空部に圧空を流入させて前記中空部内にある冷媒をその外に排出するようにしていることを特徴とする請求項1ないし6のいずれかに記載の冷却装置。   When the heat exchanger is heated, the supply of the refrigerant to the hollow part of the heat exchanger is stopped by switching the flow path of the flow path switching device, and the compressed air is allowed to flow into the hollow part so that the refrigerant in the hollow part is discharged. 7. The cooling device according to claim 1, wherein the cooling device is discharged to the outside. 前記流路切換装置は、前記熱交換器の構造体の温度又は前記熱交換器で制御される電子部品の温度に基づいて間欠的に作動することを特徴とする請求項7記載の冷却装置。   8. The cooling device according to claim 7, wherein the flow path switching device operates intermittently based on a temperature of a structure of the heat exchanger or a temperature of an electronic component controlled by the heat exchanger. 電子部品を保持して該電子部品を所定位置に位置決めするアームを備えた電子部品ハンドラに、前記請求項1ないし8のいずれかに記載の冷却装置を備え、
前記アームの電子部品保持部に前記熱交換器を配して、前記電子部品を前記熱交換器の構造体に接触させて保持することを可能にしたことを特徴とする電子部品ハンドラ。
An electronic component handler including an arm that holds an electronic component and positions the electronic component at a predetermined position includes the cooling device according to any one of claims 1 to 8.
An electronic component handler, wherein the heat exchanger is disposed in an electronic component holding portion of the arm so that the electronic component can be held in contact with a structure of the heat exchanger.
JP2005186506A 2005-06-27 2005-06-27 Cooling device, and electronic component handler provided therewith Withdrawn JP2007003152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186506A JP2007003152A (en) 2005-06-27 2005-06-27 Cooling device, and electronic component handler provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186506A JP2007003152A (en) 2005-06-27 2005-06-27 Cooling device, and electronic component handler provided therewith

Publications (1)

Publication Number Publication Date
JP2007003152A true JP2007003152A (en) 2007-01-11

Family

ID=37688950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186506A Withdrawn JP2007003152A (en) 2005-06-27 2005-06-27 Cooling device, and electronic component handler provided therewith

Country Status (1)

Country Link
JP (1) JP2007003152A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275512A (en) * 2007-05-01 2008-11-13 Espec Corp Aging device
JP2010006151A (en) * 2008-06-25 2010-01-14 Mitsubishi Electric Corp Cooling method of radio wave transceiver
JP2010534844A (en) * 2007-10-05 2010-11-11 ムルティテスト・エレクトロニッシェ・ジステーメ・ゲーエムベーハー Plunger with thermal conductor that holds and moves electronic components, especially ICs
JP2013167482A (en) * 2012-02-14 2013-08-29 Seiko Epson Corp Handler and component inspection apparatus
US9207272B2 (en) 2012-09-17 2015-12-08 Samsung Eletronics Co., Ltd. Test handler that rapidly transforms temperature and method of testing semiconductor device using the same
CN113286507A (en) * 2020-02-20 2021-08-20 鸿劲精密股份有限公司 Energy recovery temperature control structure and electronic component operation equipment applying same
WO2023112221A1 (en) * 2021-12-15 2023-06-22 株式会社アドバンテスト Temperature adjusting unit, electronic component handling device, and electronic component testing device
WO2024018536A1 (en) * 2022-07-19 2024-01-25 株式会社アドバンテスト Heat exchanger, electronic component handling device, and electronic component testing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275512A (en) * 2007-05-01 2008-11-13 Espec Corp Aging device
JP2010534844A (en) * 2007-10-05 2010-11-11 ムルティテスト・エレクトロニッシェ・ジステーメ・ゲーエムベーハー Plunger with thermal conductor that holds and moves electronic components, especially ICs
JP2010006151A (en) * 2008-06-25 2010-01-14 Mitsubishi Electric Corp Cooling method of radio wave transceiver
JP2013167482A (en) * 2012-02-14 2013-08-29 Seiko Epson Corp Handler and component inspection apparatus
US9207272B2 (en) 2012-09-17 2015-12-08 Samsung Eletronics Co., Ltd. Test handler that rapidly transforms temperature and method of testing semiconductor device using the same
CN113286507A (en) * 2020-02-20 2021-08-20 鸿劲精密股份有限公司 Energy recovery temperature control structure and electronic component operation equipment applying same
WO2023112221A1 (en) * 2021-12-15 2023-06-22 株式会社アドバンテスト Temperature adjusting unit, electronic component handling device, and electronic component testing device
WO2024018536A1 (en) * 2022-07-19 2024-01-25 株式会社アドバンテスト Heat exchanger, electronic component handling device, and electronic component testing device

Similar Documents

Publication Publication Date Title
JP2007003152A (en) Cooling device, and electronic component handler provided therewith
US7818972B2 (en) Water removal apparatus and inspection apparatus including same
CN100576128C (en) The temperature-controlled process of controlled temperature body and device thereof and high-low temperature processing system
TWI569023B (en) Temperature of the test apparatus and temperature control method of the adapter
KR100844001B1 (en) Temperature controlling apparatus and driving method thereof
KR102253932B1 (en) Air conditioner
CN101749881A (en) Cooling apparatus and cooling method
KR20160097127A (en) Cooling fluid supply apparatus with safety mechanism and method for cooling heat load
JP4648877B2 (en) Liquid discharge method and liquid discharge device in temperature control device
JP2021124457A (en) Power cycle test device and power cycle test method
KR101484562B1 (en) Cooling Water Supply System using Heat Pump
JP2019148417A5 (en)
JP4476214B2 (en) Air conditioner and environmental test equipment
KR20020010874A (en) Air conditioner
JP2015232410A (en) Heat interchanging facility
JP2004150664A (en) Cooling device
JP6631613B2 (en) Cooling device using air refrigerant cycle
JP2011114279A (en) Temperature control unit
JP2010069493A (en) Circulation type spot welding gun cooling system
KR100640849B1 (en) multi airconditioning system and method for controlling the system
JP2009138982A (en) Cooling/heating device and method
CN110767945B (en) Battery thermal management system and vehicle with same
WO2022220121A1 (en) Battery cooling device and operation method for same
JP2002115930A (en) Air conditioning apparatus
JP5217721B2 (en) Cooling system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902