JP2007002856A - Polygon mirror scanner motor - Google Patents

Polygon mirror scanner motor Download PDF

Info

Publication number
JP2007002856A
JP2007002856A JP2005180109A JP2005180109A JP2007002856A JP 2007002856 A JP2007002856 A JP 2007002856A JP 2005180109 A JP2005180109 A JP 2005180109A JP 2005180109 A JP2005180109 A JP 2005180109A JP 2007002856 A JP2007002856 A JP 2007002856A
Authority
JP
Japan
Prior art keywords
dynamic pressure
polygon mirror
pressure generating
bearing
scanner motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005180109A
Other languages
Japanese (ja)
Inventor
Toshiaki Matsumoto
才明 松本
Akimitsu Maetani
昭光 前谷
Masaki Sumi
正貴 角
Yasutsugu Fukui
康嗣 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005180109A priority Critical patent/JP2007002856A/en
Publication of JP2007002856A publication Critical patent/JP2007002856A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize an eccentric rate inside a bearing by solving the precession of a sleeve by a bearing load generated at the iron core part of a coil and increase accuracy and life in a polygon mirror scanner motor used for laser scanning of a laser beam printer and a laser beam copying machine. <P>SOLUTION: The folded part 104a of one of two sets of dynamic pressure generating grooves is disposed at a position facing a polygon mirror 106, and the folded part 105a of the other dynamic pressure generating groove is disposed at a position facing the core part 108 of the coil generating a magnetic rotating force so that a bearing load by the polygon mirror 106 and the bearing load generated at the core part 108 of the coil are pivotally supported at positions where these dynamic pressure generating grooves face each other to minimize the eccentric rate inside the bearing. As a result, the polygon mirror scanner motor increased in accuracy and life can be provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はレーザビームプリンタやレーザ複写機などのレーザ走査に用いられ、特に、高速回転・低消費電力化・小型化、長寿命化に適したポリゴンミラースキャナモータに関するものである。   The present invention relates to a polygon mirror scanner motor that is used for laser scanning of a laser beam printer, a laser copying machine, and the like, and particularly suitable for high-speed rotation, low power consumption, miniaturization, and long life.

従来、この高速回転・高精度・長寿命に適するポリゴンミラースキャナモータの一つとして、下記のようなものがあった(例えば、特許文献1参照)。   Conventionally, as a polygon mirror scanner motor suitable for this high speed rotation, high accuracy, and long life, there has been the following (for example, see Patent Document 1).

図7に従来のポリゴンミラースキャナモータの構造を示す。図7において固定軸101がベース板102に直接固定されており、スリーブ103は前記固定軸101に回転可能に挿入された構成において、固定軸101またはスリーブ103の少なくともいずれか一方には、回転により動圧を発生させる溝115(以降、動圧発生溝と呼ぶ)が配置されており、動圧軸受部を形成している。   FIG. 7 shows the structure of a conventional polygon mirror scanner motor. In FIG. 7, the fixed shaft 101 is directly fixed to the base plate 102, and the sleeve 103 is rotatably inserted into the fixed shaft 101, and at least one of the fixed shaft 101 and the sleeve 103 is rotated by rotation. A groove 115 for generating dynamic pressure (hereinafter referred to as a dynamic pressure generating groove) is arranged to form a dynamic pressure bearing portion.

ポリゴンミラー106の厚み方向の重心位置106aは、前記動圧軸受部の中心114に位置するように配されている。
特許第3312695号公報(第5頁、図1)
The gravity center position 106a in the thickness direction of the polygon mirror 106 is arranged so as to be positioned at the center 114 of the dynamic pressure bearing portion.
Japanese Patent No. 3312695 (page 5, FIG. 1)

しかしながら、上記従来の構成では、ポリゴンミラー106のスラスト方向中心、いわゆる、ポリゴンミラーの重心位置106aを、動圧軸受部の中心114に配置することにより、ポリゴンミラー106の回転中の偏芯は抑制される傾向にあるものの、現実には、ポリゴンミラー106による動圧軸受部への負荷荷重に対し、コイル鉄心部108に通電し、対向する位置に配されたロータマグネット110との間で、回転体を駆動させる為に発生させる磁気回転力の方が、動圧軸受部への負荷荷重としては、大きくなる場合が多く、ポリゴンミラー106の重心位置106aを動圧軸受部の中心に配置し、ポリゴンミラー106の偏芯を抑制しようとした場合においても、前記、磁気回転力の影響により、反ポリゴンミラー側がすりこぎ運動をすることによって、ポリゴンミラー106も、すりこぎ運動をしてしまい、偏芯してしまうという課題があった。また、特に、30000〜50000min-1といった高速回転化が求められている中で、動圧軸受部を磁気回転力が生じるコイル鉄心部108から離れた位置に配する場合、コイル鉄心部108で発生する磁気回転力によるすりこぎ運動が、動圧軸受部へ与える影響が大きく、一般的に起動停止を繰り返して使用されるポリゴンミラースキャナモータにとっては、軸受寿命を著しく低下させるという課題を有しており、この課題を解決する為に、固定軸101の径を大きくし、軸受剛性を高める構造をとることとなるが、この場合、軸受損失の増大による消費電力の増加や、モータの小型化が困難になるという課題を有していた。 However, in the conventional configuration described above, the center of the polygon mirror 106 in the thrust direction, that is, the center of gravity position 106a of the polygon mirror 106 is arranged at the center 114 of the hydrodynamic bearing, thereby suppressing eccentricity during rotation of the polygon mirror 106. In reality, however, the coil core 108 is energized with respect to the load applied to the hydrodynamic bearing by the polygon mirror 106, and rotates between the rotor magnet 110 disposed at the opposite position. The magnetic rotational force generated to drive the body is often larger as the load applied to the dynamic pressure bearing portion, and the gravity center position 106a of the polygon mirror 106 is arranged at the center of the dynamic pressure bearing portion. Even when the eccentricity of the polygon mirror 106 is to be suppressed, the anti-polygon mirror side is rubbed due to the influence of the magnetic rotational force. By the to, polygon mirror 106, will be the precession, a problem arises in that the eccentric. In particular, when high-speed rotation of 30000 to 50000 min −1 is required, when the dynamic pressure bearing portion is arranged at a position away from the coil core portion 108 where the magnetic rotational force is generated, it occurs in the coil core portion 108. The impact of the pulsating motion due to the magnetic rotational force exerted on the hydrodynamic bearing is large, and for polygon mirror scanner motors that are generally used by repeatedly starting and stopping, there is a problem of significantly reducing the bearing life. In order to solve this problem, the diameter of the fixed shaft 101 is increased to increase the bearing rigidity. In this case, however, an increase in power loss due to an increase in bearing loss and a reduction in the size of the motor. It had the problem of becoming difficult.

本発明は、このような従来の課題を解決するものであり、軸受寿命を低下させることなく、回転から生じる軸受部への負荷荷重を軽減し、且つ、低消費電力化、小型化に適したポリゴンミラースキャナモータを提供することを目的とする。   The present invention solves such a conventional problem, reduces the load applied to the bearing portion resulting from rotation without reducing the bearing life, and is suitable for low power consumption and miniaturization. An object is to provide a polygon mirror scanner motor.

上記課題を解決するために本発明は、2組の動圧発生溝の内、1方の動圧発生溝の折り返し部を、ポリゴンミラーの重心位置とおおよそ対向した位置に、他方の動圧発生溝の折り返し部を、駆動トルクを発生させるコイル鉄心部のスラスト方向中心部とおおよそ対向
した位置に配置することにより、ポリゴンミラーによる軸受負荷荷重と、コイル鉄心部に生じる軸受負荷荷重を、回転より動圧発生溝で生じる軸支力(以降、動圧と呼ぶ)の発生が極めて少ない動圧発生溝端部を避け、それぞれの動圧発生溝の折り返し部とおおよそ正対した位置で軸支することで、動圧軸受部の偏芯量を最小限に抑制できると共に、高精度で且つ長寿命にすることを特徴とするポリゴンミラースキャナモータ。
In order to solve the above-mentioned problems, the present invention is to generate one of the two sets of dynamic pressure generating grooves, with the folded portion of one of the dynamic pressure generating grooves facing the center of gravity of the polygon mirror. By disposing the groove turn-up part at a position approximately opposite to the central part in the thrust direction of the coil core that generates the drive torque, the bearing load load caused by the polygon mirror and the bearing load load generated in the coil core part can be reduced by rotation. Avoid the end of the dynamic pressure generating groove where the axial support force generated in the dynamic pressure generating groove (hereinafter referred to as dynamic pressure) is extremely small, and support the shaft at a position that is roughly opposite to the folded part of each dynamic pressure generating groove. Therefore, the polygon mirror scanner motor is characterized in that the eccentric amount of the hydrodynamic bearing portion can be suppressed to a minimum, and the accuracy and the life are increased.

請求項1記載の発明によれば、ポリゴンミラーによる軸受負荷荷重が作用するポリゴンミラーの重心位置と、コイル鉄心部に生じる軸受負荷荷重が作用するコイル鉄心部のスラスト方向中心部に、それぞれの動圧発生溝により発生する動圧、いわゆる軸受荷重力が安定して得られる動圧発生溝の折り返し部とおおよそ正対した位置で軸支することで、軸受隙間に対する回転体(スリーブ)の偏芯量(以降、軸受内偏芯率)を最小限に抑制することができ、高精度で且つ長寿命という有利な効果が得られる。   According to the first aspect of the invention, the center of gravity position of the polygon mirror to which the bearing load load by the polygon mirror acts and the center of the coil core portion to which the bearing load load generated in the coil core portion acts in the thrust direction are respectively different. The eccentricity of the rotating body (sleeve) with respect to the bearing gap is supported by a pivotal support at a position approximately opposite to the folded portion of the dynamic pressure generating groove where the dynamic pressure generated by the pressure generating groove, so-called bearing load force is stably obtained. The amount (hereinafter referred to as the eccentricity in the bearing) can be minimized, and an advantageous effect of high accuracy and long life can be obtained.

また、請求項3記載の発明によれば、軸受内偏芯率を低下させること無く、軸受損失を低減できるという効果が得られるものである。   Further, according to the invention described in claim 3, it is possible to obtain an effect that the bearing loss can be reduced without reducing the eccentricity in the bearing.

本発明の請求項1に記載の発明は、ベース板に直接又はハウジングを介して固定された固定軸に回転自在に挿入されたスリーブの内面には、2組の動圧発生溝が設けられ、それぞれの動圧発生溝は折り返し部を有するV溝を形成しており、1方の動圧発生溝の折り返し部は、ポリゴンミラーの重心位置とおおよそ対向した位置に、他方の動圧発生溝の折り返し部は、駆動トルクを発生させるコイル鉄心部のスラスト方向中心部とおおよそ対向した位置に配置することで、軸受内偏芯率を最小限に抑制することができるという作用を有する。   According to the first aspect of the present invention, two sets of dynamic pressure generating grooves are provided on the inner surface of the sleeve rotatably inserted in a fixed shaft fixed to the base plate directly or via the housing, Each of the dynamic pressure generating grooves forms a V-groove having a folded portion, and the folded portion of one dynamic pressure generating groove is positioned substantially opposite to the center of gravity of the polygon mirror, and the other dynamic pressure generating groove is The folded portion has an effect that the eccentricity in the bearing can be suppressed to a minimum by disposing the folded portion at a position approximately opposite to the central portion in the thrust direction of the coil core that generates the drive torque.

請求項2に記載の発明は、ポリゴンミラー側の動圧発生溝より、コイル鉄心部側の動圧発生溝の長さを長く設定した請求項1記載のポリゴンミラースキャナモータとしたものであり、常に一定負荷荷重を発生するポリゴンミラーに対し、コイル鉄心部には、停止状態から定格回転数まで、急速に立ち上げる起動時は、ポリゴンミラースキャナモータが有する最大の磁気回転力が発生すると共に、定常回転時には、ある一定の周期を持った磁気回転力が生じる変動負荷荷重を抑制し、ポリゴンミラー側の動圧軸受部の軸受内偏芯率とコイル鉄心側の動圧軸受部で発生する軸受偏芯率をおおよそ同じ、又は、小さくすることにより、すりこぎ運動を抑制し、間欠運転時の寿命を長寿命化するという作用を有する。   The invention according to claim 2 is the polygon mirror scanner motor according to claim 1, wherein the length of the dynamic pressure generating groove on the coil core portion side is set longer than the dynamic pressure generating groove on the polygon mirror side, In contrast to the polygon mirror that always generates a constant load load, the coil core has the maximum magnetic rotational force that the polygon mirror scanner motor has at the time of start-up when it starts up rapidly from the stopped state to the rated rotation speed. Bearings generated by the dynamic pressure bearing part on the coil core side and the eccentricity ratio in the dynamic pressure bearing part on the polygon mirror side are suppressed by suppressing the variable load generated by the magnetic rotational force having a certain period during steady rotation. By making the eccentricity ratio approximately the same or smaller, the pestle movement is suppressed, and the life during intermittent operation is prolonged.

請求項3に記載の発明は、固定軸の外径又はスリーブの内径寸法をΦDとした場合、Φ2≦ΦD≦Φ3に設定した請求項1及び請求項2のポリゴンミラースキャナモータとしたものであり、固定軸の径を大きくすることによる軸受損失の増加を避け、軸受内偏芯率を悪化させることなく、また、軸のたわみ量が許容できる最適な範囲に設定することが可能な作用を有する。   The invention according to claim 3 is the polygon mirror scanner motor according to claim 1 or 2, wherein the outer diameter of the fixed shaft or the inner diameter of the sleeve is ΦD, and Φ2 ≦ ΦD ≦ Φ3 is set. It has the effect of avoiding an increase in bearing loss due to an increase in the diameter of the fixed shaft, without deteriorating the eccentricity in the bearing, and allowing the shaft deflection to be set within an optimum range. .

以下本発明のより具体的な実施の形態について、図面を参照して説明する。   Hereinafter, more specific embodiments of the present invention will be described with reference to the drawings.

(実施例1)
図1は、本発明の実施例1におけるポリゴンミラースキャナモータの構造断面図である

図1において、図7と同じ構成については、同じ符号を用い説明を省略する。
Example 1
FIG. 1 is a structural sectional view of a polygon mirror scanner motor in Embodiment 1 of the present invention.
In FIG. 1, the same components as those in FIG.

固定軸101は、ベース板102に直接又はハウジング107を介して固定されており
、前記固定軸101に回転自在に挿入されたスリーブ103の内面には、2組の動圧発生溝104及び105が設けられている。ベース板102には、コイル鉄心部108が配されており、スリーブ103には、ロータフレーム109を介してロータマグネット110が、コイル鉄心部108と対向するように締結固定されると共に、ポリゴンミラー106が備え付けられている。スリーブ103の内面に施された動圧発生溝104の折り返し部104aは、ポリゴンミラー106のスラスト方向の中心、いわゆるポリゴンミラーの重心位置106aと、もう一方の動圧発生溝105の折り返し部105aはコイル鉄心部108のスラスト方向中心部108aとおおよそ対向する位置となるように構成されている。
The fixed shaft 101 is fixed to the base plate 102 directly or via a housing 107, and two sets of dynamic pressure generating grooves 104 and 105 are formed on the inner surface of the sleeve 103 that is rotatably inserted into the fixed shaft 101. Is provided. A coil core 108 is disposed on the base plate 102, and a rotor magnet 110 is fastened and fixed to the sleeve 103 via a rotor frame 109 so as to face the coil core 108, and the polygon mirror 106. Is provided. The folded portion 104a of the dynamic pressure generating groove 104 formed on the inner surface of the sleeve 103 is the center in the thrust direction of the polygon mirror 106, the so-called polygon mirror center of gravity position 106a, and the folded portion 105a of the other dynamic pressure generating groove 105. The coil iron core portion 108 is configured to be substantially opposite to the thrust direction center portion 108a.

図2aは、本発明によるポリゴンミラースキャナモータにおける動圧発生溝104及び105の詳細を示した軸受断面図であり、図2bは動圧発生溝104の折り返し部104a及び動圧発生溝105の折り返し部105aと、前記動圧発生溝104及び105の端部104b及び105bに回転により生じる動圧の分布を示した模式図である。   2A is a bearing cross-sectional view showing details of the dynamic pressure generating grooves 104 and 105 in the polygon mirror scanner motor according to the present invention, and FIG. 2B is a folded portion 104a of the dynamic pressure generating groove 104 and the folded back of the dynamic pressure generating groove 105. FIG. 6 is a schematic diagram showing a distribution of dynamic pressure generated by rotation at a portion 105a and end portions 104b and 105b of the dynamic pressure generating grooves 104 and 105.

図3は、本発明によるポリゴンミラースキャナモータと従来の構成での30000min-1中における固定軸101に対するスリーブ103の偏芯量を軸受内偏芯率として示したグラフである。 FIG. 3 is a graph showing the eccentricity of the sleeve 103 with respect to the fixed shaft 101 during 30000 min −1 in the polygon mirror scanner motor according to the present invention and the conventional configuration as the eccentricity in the bearing.

上記構成により、コイル鉄心部108とロータマグネット110との間で、磁気回転力を発生させ、ポリゴンミラー106を回転させた場合、ポリゴンミラー106の重心位置106a部に遠心力による軸受負荷荷重が働きコイル鉄心部108のスラスト方向の中心部108aには、磁気回転力による軸受負荷荷重が働くと共に、回転により動圧発生溝104及び105部には、図2bに示す通り、動圧が発生する。   With the above configuration, when a magnetic rotational force is generated between the coil core portion 108 and the rotor magnet 110 and the polygon mirror 106 is rotated, a bearing load due to centrifugal force acts on the gravity center position 106a of the polygon mirror 106. A bearing load due to a magnetic rotational force acts on the central portion 108a in the thrust direction of the coil core portion 108, and dynamic pressure is generated in the dynamic pressure generating grooves 104 and 105 by rotation as shown in FIG. 2b.

前記軸受負荷荷重と回転から生じる動圧の関係により、固定軸101とスリーブ103がすりこぎ運動を始めることとなるが、前記すりこぎ運動の影響を最も受ける部分として、動圧発生溝104及び105内で動圧の発生が最も少ない、動圧発生溝104及び105の端部104bと及び105bとなるが、それぞれの軸受負荷荷重が生じるポリゴンミラー106の重心位置106a及びコイル鉄心部108のスラスト方向中心部108aと動圧が最も高く発生する動圧発生溝104及び105の折り返し部104a及び105aをおおよそ正対し対抗した位置に配置することにより、前記負荷荷重を安定して軸支し、図3に示す通り軸受内偏芯率を0℃から80℃の環境内において10%以下に抑制でき、回転体のすりこぎ運動を抑制することで、高精度で且つ長寿命なポリゴンミラースキャナモータが得られる。   Depending on the relationship between the bearing load and the dynamic pressure resulting from the rotation, the fixed shaft 101 and the sleeve 103 start a plowing motion. The dynamic pressure generating grooves 104 and 105 are the most affected by the plowing motion. Are the end portions 104b and 105b of the dynamic pressure generating grooves 104 and 105, in which the generation of the dynamic pressure is the least, the center of gravity position 106a of the polygon mirror 106 and the thrust direction of the coil core portion 108 where the respective bearing load is generated. By placing the central portion 108a and the folded portions 104a and 105a of the dynamic pressure generating grooves 104 and 105 where the dynamic pressure is generated at the highest position, approximately in a position facing each other, the load load is stably supported. As shown in Fig. 2, the eccentricity in the bearing can be suppressed to 10% or less in an environment of 0 ° C to 80 ° C, and the revolving motion of the rotating body can be suppressed. It is, and long life polygon mirror scanner motor with high accuracy can be obtained.

(実施例2)
図4は、本発明の実施例2におけるスリーブの構造断面図である。
(Example 2)
FIG. 4 is a structural cross-sectional view of a sleeve according to the second embodiment of the present invention.

図4において、スリーブ103の内面は、動圧発生溝104と105が設けられており

ポリゴンミラーと対向した位置にある動圧発生溝104より、コイル鉄心部と対向した位

置にある動圧発生溝105の長さを長く設定されている。
4, the inner surface of the sleeve 103 is provided with dynamic pressure generating grooves 104 and 105.
Position facing the coil core from the dynamic pressure generating groove 104 located facing the polygon mirror

The length of the dynamic pressure generating groove 105 in the installation is set to be long.

図5は、回転開始時の軸受負荷荷重を示した構造断面図である。   FIG. 5 is a structural sectional view showing the bearing load at the start of rotation.

図5において、動圧流体軸受の特徴として、回転体が停止状態の場合、シャフト101とスリーブ103は動圧発生溝104、105の任意の位置で接触状態となっているが、回転体が回転を始めることにより、動圧発生溝104、105部には、回転数に比例した
動圧が発生する。
In FIG. 5, as a feature of the hydrodynamic bearing, when the rotating body is in a stopped state, the shaft 101 and the sleeve 103 are in contact with each other at any position of the dynamic pressure generating grooves 104 and 105, but the rotating body rotates. Is started, dynamic pressure proportional to the number of rotations is generated in the dynamic pressure generating grooves 104 and 105.

動圧流体軸受を搭載したポリゴンスキャナモータの場合、起動停止を繰り返す、いわゆる間欠運転で使用されるケースが一般的であり、この間欠運転寿命に大きく影響を及ぼす動圧発生溝104、105部に働く負荷荷重は、ラジアル方向に磁気回転力を発生させるコイル鉄心部108と対向した位置にある動圧発生溝105とポリゴンミラー106と対向した位置にある動圧発生溝104とでは異なる。   In the case of a polygon scanner motor equipped with a hydrodynamic bearing, it is generally used in a so-called intermittent operation where the start and stop are repeated, and the dynamic pressure generation grooves 104 and 105 that greatly affect the intermittent operation life are generally used. The applied load is different between the dynamic pressure generating groove 105 at a position facing the coil core portion 108 that generates a magnetic rotational force in the radial direction and the dynamic pressure generating groove 104 at a position facing the polygon mirror 106.

固定軸に回転自在に挿入されたスリーブで構成される流体軸受の場合、回転体の支点は、シャフト101の先端であるスラスト方向支点113であるが、回転体の起動初期においては、ポリゴンミラー106と対向した位置にある動圧発生溝104に作用する軸受負荷荷重111は、回転体の質量が重力方向に働くだけであるの対して、磁気回転力を発生させるコイル鉄心部108と対向した位置にある動圧発生溝105には、モータ姿勢に関係無く、スラスト方向支点113から離れた位置で、動圧軸受105と対向するように磁気回転力が働くことがわかる。起動開始時においては、前記軸受負荷荷重の関係が顕著であり、また、動圧発生溝105に作用する軸受負荷荷重112はポリゴンミラースキャナモータが有する最大の磁気回転力が発生している。   In the case of a hydrodynamic bearing composed of a sleeve rotatably inserted into a fixed shaft, the fulcrum of the rotating body is a thrust fulcrum 113 which is the tip of the shaft 101, but at the initial stage of starting the rotating body, the polygon mirror 106 The bearing load 111 acting on the dynamic pressure generating groove 104 at a position opposite to the position of the rotor is only at a position facing the coil core 108 that generates a magnetic rotational force, whereas the mass of the rotating body only acts in the direction of gravity. It can be seen that the magnetic rotational force acts on the dynamic pressure generating groove 105 at the position apart from the thrust direction fulcrum 113 so as to face the dynamic pressure bearing 105 regardless of the motor posture. At the start of startup, the relationship between the bearing load loads is significant, and the bearing load load 112 acting on the dynamic pressure generating groove 105 generates the maximum magnetic rotational force that the polygon mirror scanner motor has.

この実施例によれば、回転開始時にスラスト方向に働く軸受負荷111を軸支する動圧発生溝104の長さに対し、スラスト方向支点113から離れた位置でラジアル方向に働く軸受負荷荷重112を軸支する動圧発生溝105の長さを長く設定することにより、ポリゴンミラースキャナモータの回転開始時のすりこぎ運動を抑制し、特に間欠運転時の寿命を長寿命化すると共に、2組の動圧発生溝104、105の長さを最適化することで、小型化薄型化が可能となる。   According to this embodiment, the bearing load load 112 acting in the radial direction at a position away from the thrust direction fulcrum 113 with respect to the length of the dynamic pressure generating groove 104 that pivotally supports the bearing load 111 acting in the thrust direction at the start of rotation. By setting the length of the dynamic pressure generating groove 105 that supports the shaft to be long, the plowing motion at the start of the rotation of the polygon mirror scanner motor is suppressed, and in particular, the lifetime during intermittent operation is prolonged, and two sets of By optimizing the length of the dynamic pressure generating grooves 104 and 105, it is possible to reduce the size and thickness.

(実施例3)
図6aは、本発明の実施例3における固定軸101の外径と軸受損失を示したグラフであり、図6bは、固定軸101の外径とたわみ量の関係を示したグラフである。
(Example 3)
FIG. 6A is a graph showing the outer diameter and bearing loss of the fixed shaft 101 in Example 3 of the present invention, and FIG. 6B is a graph showing the relationship between the outer diameter of the fixed shaft 101 and the amount of deflection.

一般的に、固定軸101の外径を大きくした場合、軸受損失が増大し消費電力が増加することが知られている。   Generally, it is known that when the outer diameter of the fixed shaft 101 is increased, the bearing loss increases and the power consumption increases.

逆に、固定軸101の外径を小さくすることで、軸受損失を低減することが可能となる
Conversely, by reducing the outer diameter of the fixed shaft 101, it is possible to reduce bearing loss.

一方で、固定軸101のたわみ量は、固定軸101の外径と反比例の関係にあり、固定軸101の外径を小さくすることにより、たわみ量は増加していく。   On the other hand, the deflection amount of the fixed shaft 101 is inversely proportional to the outer diameter of the fixed shaft 101, and the deflection amount increases as the outer diameter of the fixed shaft 101 is reduced.

高速回転且つ、低消費電力、回転精度が求められるポリゴンミラースキャナモータにおいて、固定軸101の外径をΦ2≦ΦD≦Φ3の範囲に設定することにより、軸受損失を低減し、固定軸101のたわみ量も著しく悪化することが無く、低消費電力化、小型化が可能となる。   In a polygon mirror scanner motor that requires high-speed rotation, low power consumption, and rotation accuracy, setting the outer diameter of the fixed shaft 101 in the range of Φ2 ≦ ΦD ≦ Φ3 reduces the bearing loss and the deflection of the fixed shaft 101. The amount is not significantly deteriorated, and low power consumption and miniaturization are possible.

本発明のポリゴンミラースキャナモータは、ポリゴンミラーによる軸受負荷荷重と、コイル鉄心部に生じる軸受負荷荷重を、スリーブの内面に施された動圧発生溝のそれぞれの折り返し部とおおよそ正対した位置で軸支することで、軸受内偏芯率を最小限に抑制する有利な効果を有し、高速回転、高精度、低消費電力、小型化で且つ長寿命が求められるレーザビームプリンタ等のレーザスキャン用に適したポリゴンミラースキャナモータとして有用である。   In the polygon mirror scanner motor of the present invention, the bearing load by the polygon mirror and the bearing load generated in the coil core are approximately opposite to the respective folded portions of the dynamic pressure generating grooves formed on the inner surface of the sleeve. By supporting the shaft, it has the advantageous effect of minimizing the eccentricity in the bearing, and laser scanning such as laser beam printers that require high speed rotation, high accuracy, low power consumption, downsizing and long life. It is useful as a polygon mirror scanner motor suitable for use.

本発明の実施例1におけるポリゴンミラースキャナモータを示す構造断面図1 is a structural sectional view showing a polygon mirror scanner motor in Embodiment 1 of the present invention. (a)本発明の実施例1におけるポリゴンミラースキャナモータの動圧軸受部を示した詳細図、(b)本発明の実施例1における動圧軸受部の動圧発生状態を示した模式図(A) Detailed view showing the dynamic pressure bearing portion of the polygon mirror scanner motor in the first embodiment of the present invention, (b) Schematic diagram showing the dynamic pressure generation state of the dynamic pressure bearing portion in the first embodiment of the present invention. 本発明の実施例1におけるポリゴンミラースキャナモータの動作説明のための軸受内偏芯率を示したグラフThe graph which showed the eccentricity in a bearing for operation | movement description of the polygon mirror scanner motor in Example 1 of this invention 本発明の実施例2におけるポリゴンモータを示すスリーブ構造断面図Sectional view of a sleeve structure showing a polygon motor in Embodiment 2 of the present invention 本発明の実施例2におけるポリゴンモータの動作説明のための回転開始時の軸受負荷加重を示す構造断面図Structural sectional drawing which shows the bearing load weight at the time of the rotation for the operation | movement description of the polygon motor in Example 2 of this invention (a)本発明の実施例3におけるシャフト外径と軸受損失の関係を示したグラフ、(b)本発明の実施例3におけるシャフト外径とたわみ量の関係を示したグラフ(A) A graph showing the relationship between the shaft outer diameter and the bearing loss in Example 3 of the present invention, (b) a graph showing the relationship between the shaft outer diameter and the deflection amount in Example 3 of the present invention. 従来のポリゴンミラースキャナモータの構造断面図Cross-sectional view of a conventional polygon mirror scanner motor

符号の説明Explanation of symbols

101 シャフト
102 ベース板
103 スリーブ
104、105、115 動圧発生溝
104a、105a 動圧発生溝104及び105の折り返し部
104b、105b 動圧発生溝104及び105の端部
106 ポリゴンミラー
106a ポリゴンミラー106の重心位置
107 ハウジング
108 コイル鉄心部
108a コイル鉄心部のスラスト方向中心部
109 ロータフレーム
110 ロータマグネット
111 動圧発生溝104に作用する軸受負荷荷重
112 動圧発生溝105に作用する軸受負荷荷重
113 スラスト方向支点
114 動圧軸受部の中心位置
101 Shaft 102 Base plate 103 Sleeve 104, 105, 115 Dynamic pressure generating grooves 104a, 105a Folded portions 104b, 105b of dynamic pressure generating grooves 104 and 105 Ends of dynamic pressure generating grooves 104 and 105 106 Polygon mirror 106a Polygon mirror 106 Center of gravity position 107 Housing 108 Coil core portion 108a Thrust direction center portion of coil core portion 109 Rotor frame 110 Rotor magnet 111 Bearing load load acting on dynamic pressure generating groove 104 112 Bearing load load acting on dynamic pressure generating groove 105 113 Thrust direction Support point 114 Center position of hydrodynamic bearing

Claims (3)

ベース板に直接又はハウジングを介して固定された固定軸に回転自在に挿入されたスリーブの内面には、2組の動圧発生溝が設けられ、それぞれの動圧発生溝は折り返し部を有するV溝を形成しており、1方の動圧発生溝の折り返し部は、ポリゴンミラーの重心位置とおおよそ対向した位置に他方の動圧発生溝の折り返し部は、駆動トルクを発生させるコイル鉄心部のスラスト方向中心部とおおよそ対向した位置に配置したことを特徴とするポリゴンミラースキャナモータ。 Two sets of dynamic pressure generating grooves are provided on the inner surface of the sleeve rotatably inserted in a fixed shaft fixed to the base plate directly or via the housing, and each of the dynamic pressure generating grooves has a folded portion. A folded portion of one dynamic pressure generating groove is positioned substantially opposite to the center of gravity of the polygon mirror, and the folded portion of the other dynamic pressure generating groove is a coil core portion that generates driving torque. A polygon mirror scanner motor characterized by being disposed at a position substantially opposite the central portion in the thrust direction. ポリゴンミラー側の動圧発生溝より、コイル鉄心側の動圧発生溝の長さを長く設定した請求項1記載のポリゴンミラースキャナモータ。 2. The polygon mirror scanner motor according to claim 1, wherein the dynamic pressure generating groove on the coil core side is set to be longer than the dynamic pressure generating groove on the polygon mirror side. シャフトの外径又はスリーブの内径寸法をΦDとした場合、Φ2≦ΦD≦Φ3に設定した請求項1のポリゴンミラースキャナモータ。

2. The polygon mirror scanner motor according to claim 1, wherein when the outer diameter of the shaft or the inner diameter of the sleeve is ΦD, Φ2 ≦ ΦD ≦ Φ3 is set.

JP2005180109A 2005-06-21 2005-06-21 Polygon mirror scanner motor Pending JP2007002856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180109A JP2007002856A (en) 2005-06-21 2005-06-21 Polygon mirror scanner motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180109A JP2007002856A (en) 2005-06-21 2005-06-21 Polygon mirror scanner motor

Publications (1)

Publication Number Publication Date
JP2007002856A true JP2007002856A (en) 2007-01-11

Family

ID=37688682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180109A Pending JP2007002856A (en) 2005-06-21 2005-06-21 Polygon mirror scanner motor

Country Status (1)

Country Link
JP (1) JP2007002856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846131A (en) * 2010-06-10 2010-09-29 北京前沿科学研究所 Magnetic suspension bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846131A (en) * 2010-06-10 2010-09-29 北京前沿科学研究所 Magnetic suspension bearing

Similar Documents

Publication Publication Date Title
JP2001275306A (en) Scanner motor
JP2007202240A (en) Motor
JP2004218823A (en) Dynamic-pressure bearing motor
US20060001939A1 (en) Dynamic bearing and beam deflecting apparatus employing the same
JP2007002856A (en) Polygon mirror scanner motor
JP2000304033A (en) Dynamic pressure bearing
JP3574266B2 (en) Shaft bearing structure of small motor
WO1996038679A1 (en) High-speed rotary body
JP2002364637A (en) Kinetic pressure gas bering device
JPH1155918A (en) Spindle motor, and rotating apparatus adopting spindle motor
JP3978978B2 (en) Spindle motor
RU2230652C1 (en) Spindle with electric drive
JP2007228678A (en) Polygon mirror scanner motor
JPS60200221A (en) Rotating device
JP4789591B2 (en) Polygon mirror scanner motor
JP4351840B2 (en) Gas bearing device
JPH1031187A (en) Polygon scanner and manufacture therefor
JP3407960B2 (en) High-speed rotating body
JPH08163817A (en) Polygon motor
JP2008089155A (en) Dynamic pressure bearing device and deflection scanning device
JPH0932850A (en) Dynamic pressure bearing device
JPH1031188A (en) Polygon scanner
JP2002349570A (en) Dynamic pressure bearing
KR100213908B1 (en) Journal bearing with a variable clearance
JP4928194B2 (en) Drive motor and rotary polygon mirror drive device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223