JP2007002772A - Exhaust temperature control device for internal combustion engine - Google Patents

Exhaust temperature control device for internal combustion engine Download PDF

Info

Publication number
JP2007002772A
JP2007002772A JP2005184461A JP2005184461A JP2007002772A JP 2007002772 A JP2007002772 A JP 2007002772A JP 2005184461 A JP2005184461 A JP 2005184461A JP 2005184461 A JP2005184461 A JP 2005184461A JP 2007002772 A JP2007002772 A JP 2007002772A
Authority
JP
Japan
Prior art keywords
fuel injection
injection amount
exhaust
fuel
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005184461A
Other languages
Japanese (ja)
Other versions
JP4635736B2 (en
Inventor
Ryosuke Ogura
良介 小倉
Yoshiyuki Otake
佳幸 大嶽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005184461A priority Critical patent/JP4635736B2/en
Publication of JP2007002772A publication Critical patent/JP2007002772A/en
Application granted granted Critical
Publication of JP4635736B2 publication Critical patent/JP4635736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently raise exhaust temperature while preventing rich misfire and so on in a combustion chamber, when after burning is promoted by supplying secondary air to an exhaust passage, for the early activation of a catalyst immediately after starting, in an engine for injecting fuel from a fuel injection valve to an intake port. <P>SOLUTION: The minimum required fuel injection quantity Tie for stable combustion in the combustion chamber and a fuel injection quantity Tii for burning by secondary air in an exhaust passage are respectively calculated. Then, the fuel injection quantity Tie is injected in an exhaust stroke, and the fuel injection quantity Tii is injected in an intake stroke. In this case, injection is performed one time over an intake valve opening timing IVO, or divided injection is performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、始動直後の排気浄化触媒の早期活性化などに用いる内燃機関の排気温度制御装置に関する。   The present invention relates to an exhaust gas temperature control device for an internal combustion engine used for early activation of an exhaust purification catalyst immediately after starting.

特許文献1には、燃焼室に燃料を直接噴射する燃料噴射弁と、排気通路に2次空気を供給する2次空気供給装置(エアポンプ)とを備え、燃料噴射弁により、主燃焼用の燃料の噴射とは別に、膨張行程から排気行程の間に燃料の追加噴射を行い、追加噴射された燃料を排気通路にて2次空気供給手段からの2次空気によって燃焼させることにより、排気温度を上昇させて、始動直後の排気浄化触媒の早期活性化を図るものが開示されている。
特開2002−327619号公報
Patent Document 1 includes a fuel injection valve that directly injects fuel into a combustion chamber, and a secondary air supply device (air pump) that supplies secondary air to an exhaust passage. In addition to the injection, the fuel is additionally injected between the expansion stroke and the exhaust stroke, and the additionally injected fuel is combusted by the secondary air from the secondary air supply means in the exhaust passage to thereby reduce the exhaust temperature. A device is disclosed which is activated to activate the exhaust purification catalyst immediately after starting.
JP 2002-327619 A

しかしながら、特許文献1に記載の技術は、膨張行程から排気行程の間に燃焼室内に追加噴射を行うという直噴エンジンに固有の技術であり、吸気通路に燃料を供給するエンジンには適用できない。
吸気通路に燃料を供給するエンジンの場合、燃料供給量の増量により、筒内A/Fをリッチにして運転することで、排気通路に未燃分を多量に排出させ、これを2次空気供給装置からの2次空気によって燃焼させることで、排気温度を上昇させることが可能であり、A/Fがリッチなほど、排温上昇効果が高いことが解っている。
However, the technique described in Patent Document 1 is a technique specific to a direct injection engine in which additional injection is performed in the combustion chamber between the expansion stroke and the exhaust stroke, and cannot be applied to an engine that supplies fuel to the intake passage.
In the case of an engine that supplies fuel to the intake passage, by increasing the fuel supply amount, the in-cylinder A / F is operated to make a large amount of unburned fuel discharged into the exhaust passage, which is supplied as secondary air. It is known that the exhaust temperature can be raised by burning with the secondary air from the device, and the richer the A / F, the higher the exhaust temperature rise effect.

しかし、過リッチによるリッチ失火や燃焼安定度悪化がネックであり、リッチ限界があることから、エミッションからの最適A/Fを使用できないのが実状である。
本発明は、このような実状に鑑み、吸気通路に燃料を供給するエンジンにおいて、リッチ失火を防止しつつ、排気通路にて2次空気を最大限に活用して排気温度を十分に上昇させることができる内燃機関の排気温度制御装置を提供することを目的とする。
However, rich misfire and deterioration of combustion stability due to over-rich are the bottleneck, and since there is a rich limit, it is the actual situation that the optimum A / F from emission cannot be used.
In view of such a situation, the present invention makes it possible to sufficiently raise the exhaust temperature by making maximum use of secondary air in the exhaust passage while preventing rich misfire in an engine that supplies fuel to the intake passage. An object of the present invention is to provide an exhaust gas temperature control device for an internal combustion engine capable of

このため、本発明では、排気温度を上昇させるときに、燃焼室での安定燃焼に必要な燃料噴射量と、排気通路にて2次空気供給装置からの2次空気によって燃焼させる燃料噴射量とをそれぞれ算出し、前記安定燃焼に必要な燃料噴射量を排気行程にて噴射し、前記2次空気によって燃焼させる燃料噴射量を吸気行程にて噴射する構成とする。   For this reason, in the present invention, when raising the exhaust gas temperature, the fuel injection amount necessary for stable combustion in the combustion chamber, and the fuel injection amount burned by the secondary air from the secondary air supply device in the exhaust passage, Are calculated, the fuel injection amount necessary for the stable combustion is injected in the exhaust stroke, and the fuel injection amount burned by the secondary air is injected in the intake stroke.

本発明によれば、排気行程(吸気弁開弁前)にて噴射された燃料は吸気弁表面温度により気化されてから燃焼室内に吸入され、燃焼に寄与するのに対し、吸気行程(吸気弁開弁後)にて噴射された燃料は気化されることなく液滴のまま燃焼室内に吸入され、ほとんど燃焼されることなく排出される。従って、燃料噴射量を増やしても気化促進される燃料量を従来通りとすることで、筒内の燃焼A/Fが過剰にリッチとならず、燃焼安定度の悪化を防止できる一方、排気通路での後燃え量が増加し、大幅な排温上昇が可能となり、触媒の早期活性→エミッション低減が可能となる。   According to the present invention, the fuel injected in the exhaust stroke (before intake valve opening) is vaporized by the intake valve surface temperature and then sucked into the combustion chamber and contributes to combustion, whereas the intake stroke (intake valve) The fuel injected after the opening of the valve is sucked into the combustion chamber in the form of droplets without being vaporized, and is discharged almost without being combusted. Therefore, by setting the fuel amount that is promoted to vaporize even if the fuel injection amount is increased, the combustion A / F in the cylinder does not become excessively rich and deterioration of combustion stability can be prevented, while the exhaust passage As a result, the afterburning amount of the catalyst increases and the exhaust temperature can be significantly increased, so that the catalyst can be activated early and emissions can be reduced.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示すエンジン(内燃機関)のシステム図である。
エンジン1の吸気通路2には、上流側から、エアクリーナ3、電制スロットル弁4、吸気マニホールド(コレクタ)5が設けられている。電制スロットル弁4は吸入空気量を制御するもので、エンジンコントロールユニット(以下ECUという)30からの信号により作動するステップモータ等により開度制御される。但し、アクセルペダルにワイヤ等で連結された機械式のスロットル弁を用いてもよい。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of an engine (internal combustion engine) showing an embodiment of the present invention.
An air cleaner 3, an electric throttle valve 4, and an intake manifold (collector) 5 are provided in the intake passage 2 of the engine 1 from the upstream side. The electric throttle valve 4 controls the amount of intake air, and the opening degree is controlled by a step motor or the like that is operated by a signal from an engine control unit (hereinafter referred to as ECU) 30. However, a mechanical throttle valve connected to the accelerator pedal by a wire or the like may be used.

吸気マニホールド5の出口側のブランチ部には、各気筒の吸気ポート6に(吸気弁8傘部を指向して)燃料を噴射する燃料噴射弁7が取付けられている。燃料噴射弁7は、ECU30からエンジン回転に同期して出力される噴射パルス信号により、そのパルス幅によって定められる時間、ソレノイドに通電されて開弁し、所定圧力に調圧された燃料を噴射する。   A fuel injection valve 7 for injecting fuel to the intake port 6 of each cylinder (directed toward the umbrella portion of the intake valve 8) is attached to the branch portion on the outlet side of the intake manifold 5. The fuel injection valve 7 is opened by energizing the solenoid for a time determined by the pulse width based on the injection pulse signal output in synchronization with the engine rotation from the ECU 30, and injects the fuel adjusted to a predetermined pressure. .

電制スロットル弁4の制御を受けた空気と、燃料噴射弁7から噴射された燃料は、吸気弁8が開いたときに、エンジン1の燃焼室9に吸入される。
燃焼室9内に吸入された空気と燃料は、混合気を形成し、ECU30により制御される点火時期にて、点火プラグ10により点火されて燃焼する。燃焼後の排気は、排気弁11を介して、排気通路12(排気ポート13)へ排出される。排気通路12は、シリンダヘッド内に気筒毎に形成される排気ポート13、これらの出口側に接続される排気マニホールド14などから構成されており、排気マニホールド14の集合部直下に三元触媒等の排気浄化触媒15が設けられている。
The air controlled by the electric throttle valve 4 and the fuel injected from the fuel injection valve 7 are sucked into the combustion chamber 9 of the engine 1 when the intake valve 8 is opened.
The air and fuel sucked into the combustion chamber 9 form an air-fuel mixture, which is ignited and burned by the spark plug 10 at the ignition timing controlled by the ECU 30. The exhaust gas after combustion is discharged to the exhaust passage 12 (exhaust port 13) through the exhaust valve 11. The exhaust passage 12 includes an exhaust port 13 formed for each cylinder in the cylinder head, an exhaust manifold 14 connected to the outlet side thereof, and the like. An exhaust purification catalyst 15 is provided.

ここで、排気通路12の排気浄化触媒15上流、特に排気の高温部であるシリンダヘッド内の各気筒の排気ポート13に(排気弁11傘部を指向して)2次空気を供給すべく、2次空気供給装置として、電動式エアポンプ16が設けられ、その吐出側は、開閉弁(遮断弁)17を介し、更に分配用のギャラリー18を介して、気筒毎の排気ポート13に開口する2次空気供給通路19に接続されている。なお、ここでは2次空気を排気ポート13に供給しているが、排気通路12の触媒15上流であればよく、また、気筒毎、気筒グループ毎、全気筒共通のいずれでもよい。   Here, in order to supply the secondary air upstream of the exhaust purification catalyst 15 in the exhaust passage 12, particularly to the exhaust port 13 of each cylinder in the cylinder head, which is a high temperature portion of the exhaust (toward the exhaust valve 11 umbrella), An electric air pump 16 is provided as a secondary air supply device, and its discharge side opens to an exhaust port 13 for each cylinder via an on-off valve (shutoff valve) 17 and further via a distribution gallery 18. The secondary air supply passage 19 is connected. Here, the secondary air is supplied to the exhaust port 13 as long as it is upstream of the catalyst 15 in the exhaust passage 12, and may be any cylinder, cylinder group, or common to all cylinders.

エアポンプ16の吸入側は、配管20により、吸気通路2のエアクリーナ3下流(電制スロットル弁4上流に配置されるエアフローメータ33より上流)に設けた2次空気取出口21に接続されている。
ECU30には、アクセル開度センサ31により検出されるアクセル開度APO、クランク角センサ32により検出されるエンジン回転速度N、エアフローメータ33により検出される吸入空気量Q、吸気温センサ34により検出される吸気温Ta、水温センサ35により検出されるエンジン冷却水温Tw、空燃比センサ36により検出される排気空燃比などが入力されている。この他、図示しないが、イグニッションスイッチ及びスタートスイッチを有するエンジンキースイッチからも信号が入力されている。
The suction side of the air pump 16 is connected by a pipe 20 to a secondary air outlet 21 provided downstream of the air cleaner 3 of the intake passage 2 (upstream of the air flow meter 33 arranged upstream of the electric throttle valve 4).
The ECU 30 detects an accelerator opening APO detected by an accelerator opening sensor 31, an engine speed N detected by a crank angle sensor 32, an intake air amount Q detected by an air flow meter 33, and an intake temperature sensor 34. The intake air temperature Ta, the engine coolant temperature Tw detected by the water temperature sensor 35, the exhaust air-fuel ratio detected by the air-fuel ratio sensor 36, and the like are input. In addition, although not shown, a signal is also input from an engine key switch having an ignition switch and a start switch.

ECU30は、これらの入力信号より検出されるエンジン運転条件に基づいて、電制スロットル弁4の開度、燃料噴射弁7の燃料噴射時期及び燃料噴射量、点火プラグ10の点火時期などを制御する。また、エアポンプ16、開閉弁17の作動を制御する。なお、開閉弁17はエアポンプ16のON時に開、OFF時に閉とするもので、エアポンプ16自体がOFF時の遮断機能を有しているときは省略できる。   The ECU 30 controls the opening degree of the electric throttle valve 4, the fuel injection timing and fuel injection amount of the fuel injection valve 7, the ignition timing of the spark plug 10, and the like based on the engine operating conditions detected from these input signals. . Further, the operation of the air pump 16 and the on-off valve 17 is controlled. The on-off valve 17 is opened when the air pump 16 is turned on and closed when the air pump 16 is turned off, and can be omitted when the air pump 16 itself has a shut-off function when turned off.

次に、ECU30により実行される燃料・2次空気制御ルーチンについて、図2のフローチャートにより説明する。本ルーチンはエンジン回転中、所定時間ごとに実行される。
S11では、吸入空気量Q、エンジン回転速度N、アクセル開度APO、水温Twを読み込む。
S12では、現在クランキング中(スタートスイッチON)であるか否かを判断する。
Next, the fuel / secondary air control routine executed by the ECU 30 will be described with reference to the flowchart of FIG. This routine is executed every predetermined time during engine rotation.
In S11, the intake air amount Q, the engine speed N, the accelerator opening APO, and the water temperature Tw are read.
In S12, it is determined whether or not cranking is currently being performed (start switch ON).

S12で現在クランキング中であると判断された場合は、S13へ進み、2次空気供給装置を停止状態とする。具体的には、エアポンプを駆動するモータヘの電力供給を遮断し、2次空気供給通路に配設された開閉弁を閉状態に制御する。
次のS14では、始動時用の燃料噴射量Tiと燃料噴射時期ITを算出する。具体的には、基本燃料噴射量Tpに始動時用の増量補正係数を乗じて燃料噴射量Tiを算出するとともに、燃料噴射時期ITを排気行程中(吸気弁開弁前)の所定時期に設定する。
If it is determined in S12 that cranking is currently in progress, the process proceeds to S13, and the secondary air supply device is stopped. Specifically, power supply to the motor that drives the air pump is cut off, and the on-off valve disposed in the secondary air supply passage is controlled to be closed.
In the next S14, the fuel injection amount Ti for starting and the fuel injection timing IT are calculated. Specifically, the fuel injection amount Ti is calculated by multiplying the basic fuel injection amount Tp by an increase correction coefficient for starting, and the fuel injection timing IT is set to a predetermined timing during the exhaust stroke (before the intake valve is opened). To do.

なお、基本燃料噴射量Tpは吸入空気量Qに対する理論空燃比相当の燃料噴射量であり、次式により所定時間毎に算出されている。
Tp=K×Q/N (ただし、Kは係数)
また、本実施形態における燃料噴射量は全て燃料噴射弁の開弁時間として算出される。
S12で現在クランキング中でないと判断された場合は、S15へ進み、アクセル開度APOがほぼ0(アイドル状態)であるか否かを判断する。なお、アクセル開度センサの他にアイドルスイッチを備えている場合は、アイドルスイッチがONであるか否かを判断するようにしてもよい。
The basic fuel injection amount Tp is a fuel injection amount corresponding to the theoretical air-fuel ratio with respect to the intake air amount Q, and is calculated every predetermined time by the following equation.
Tp = K × Q / N (where K is a coefficient)
Further, the fuel injection amount in this embodiment is all calculated as the valve opening time of the fuel injection valve.
If it is determined in S12 that the cranking is not currently performed, the process proceeds to S15, and it is determined whether or not the accelerator opening APO is substantially 0 (idle state). If an idle switch is provided in addition to the accelerator opening sensor, it may be determined whether or not the idle switch is ON.

S15でアクセル開度APOがほぼ0であると判断された場合は、S16へ進み、水温Twが触媒暖機判定水温Twthより低いか否かを判断する。ここでは水温Twを用いて触媒の暖機を判定しているが、触媒温度センサを備えている場合は触媒温度を使う。
S16で水温Twが触媒暖機判定水温Twthより低いと判断された場合は、S17へ進み、2次空気供給装置を作動状態とする。具体的には、エアポンプを駆動するモータヘ所定の電力を供給し、2次空気供給通路に配設された開閉弁を開状態に制御する。
If it is determined in S15 that the accelerator opening APO is substantially 0, the process proceeds to S16, and it is determined whether or not the water temperature Tw is lower than the catalyst warm-up determination water temperature Twth. Here, the catalyst warm-up is determined using the water temperature Tw. However, when a catalyst temperature sensor is provided, the catalyst temperature is used.
If it is determined in S16 that the water temperature Tw is lower than the catalyst warm-up determination water temperature Twth, the process proceeds to S17, and the secondary air supply device is activated. Specifically, predetermined electric power is supplied to the motor that drives the air pump, and the on-off valve disposed in the secondary air supply passage is controlled to be in an open state.

次のS18では、タイマTの値が2次空気安定時間Tthより小さいか否かを判断する。タイマTは、2次空気供給装置を作動状態としてからの経過時間を計測するタイマであり、この経過時間が2次空気安定時間Tth以上となるまでは所望の2次空気流量が得られない。
S18でタイマTの値が2次空気安定時間Tthより小さいと判断された場合は、S19へ進み、通常時用の燃料噴射量Tiと燃料噴射時期ITを算出する。具体的には、基本燃料噴射量Tpに各種補正係数COEFと空燃比フィードバック補正係数αを乗じて燃料噴射量Ti(=Tp×COEF×α)を算出するとともに、燃料噴射時期ITを排気行程中の所定時期に設定する。各種補正係数COEFは始動後増量補正係数や水温増量補正係数等をまとめたものであり、基本燃料噴射量Tpに各種補正係数COEFを乗じることで安定燃焼に最低限必要な燃料噴射量が算出される。なお、空燃比センサ活性前および2次空気供給装置作動中は空燃比フィードバック補正係数αを1にクランプするので、本ステップ実行時のαは常に1となる。燃料噴射時期ITは、燃料噴射(Ti)終了から吸気弁開時期IVOまでの時間が十分な時間(噴射した燃料が吸気弁の熱によって十分に気化する時間)となるように決定される(図4(A)参照)。
In next S18, it is determined whether or not the value of the timer T is smaller than the secondary air stabilization time Tth. The timer T is a timer that measures an elapsed time since the secondary air supply device is in an operating state, and a desired secondary air flow rate cannot be obtained until the elapsed time becomes equal to or longer than the secondary air stabilization time Tth.
When it is determined in S18 that the value of the timer T is smaller than the secondary air stabilization time Tth, the process proceeds to S19, and the normal fuel injection amount Ti and the fuel injection timing IT are calculated. Specifically, the fuel injection amount Ti (= Tp × COEF × α) is calculated by multiplying the basic fuel injection amount Tp by various correction coefficients COEF and an air-fuel ratio feedback correction coefficient α, and the fuel injection timing IT is in the exhaust stroke. Is set at a predetermined time. The various correction coefficients COEF are a summary of the post-startup increase correction coefficient, the water temperature increase correction coefficient, etc., and the minimum fuel injection amount required for stable combustion is calculated by multiplying the basic fuel injection amount Tp by the various correction factors COEF. The Since the air-fuel ratio feedback correction coefficient α is clamped to 1 before the air-fuel ratio sensor is activated and the secondary air supply device is operating, α is always 1 when this step is executed. The fuel injection timing IT is determined so that the time from the end of fuel injection (Ti) to the intake valve opening timing IVO is a sufficient time (the time during which the injected fuel is sufficiently vaporized by the heat of the intake valve) (FIG. 4 (A)).

S18でタイマTの値が2次空気安定時間Tth以上であると判断された場合は、S20へ進み、2次空気導入時用の燃料噴射量Tiと燃料噴射時期ITを算出する。本ステップの処理については後に図3に基づいて詳細に説明する。なお、2次空気が安定して供給されている状態において、2次空気導入時用の制御(リッチ化)を行うのは、HC排出の悪化を防止するためである。   If it is determined in S18 that the value of the timer T is equal to or greater than the secondary air stabilization time Tth, the process proceeds to S20 to calculate the fuel injection amount Ti and the fuel injection timing IT for introducing secondary air. The processing of this step will be described later in detail with reference to FIG. In addition, in the state where the secondary air is stably supplied, the control (riching) for introducing the secondary air is performed in order to prevent deterioration of HC emission.

S15でアクセル開度APOが0より大きいと判断された場合、又はS16で水温Twが触媒暖機判定水温Twth以上であると判断された場合は、S21へ進み、通常時用の燃料噴射量Tiと燃料噴射時期ITを算出する(S19と同様)。
次のS22では、カウンタCの値が所定値Cthより小さいか否かを判断する。カウンタCは、燃料制御が2次空気導入時用から通常時用へ切換わったときにリセットされ、エンジンが1回転する毎にカウントアップされるカウンタである。
If it is determined in S15 that the accelerator opening APO is greater than 0, or if it is determined in S16 that the water temperature Tw is equal to or higher than the catalyst warm-up determination water temperature Twth, the process proceeds to S21, and the normal fuel injection amount Ti And the fuel injection timing IT is calculated (similar to S19).
In the next S22, it is determined whether or not the value of the counter C is smaller than a predetermined value Cth. The counter C is a counter that is reset when the fuel control is switched from when the secondary air is introduced to when it is normal, and is counted up every time the engine rotates once.

S22でカウンタCの値が所定値Cthより小さいと判断された場合は、S23へ進み、2次空気供給装置を作動状態とする。燃料制御を切換えた直後は前制御の影響が残っている(2次空気導入時用の燃料噴射が既に実行された気筒の排気行程が終了していない等)可能性があるので、燃料制御を切換えてからしばらくの間は2次空気の供給を縦続するためである。   When it is determined in S22 that the value of the counter C is smaller than the predetermined value Cth, the process proceeds to S23 and the secondary air supply device is activated. Immediately after switching the fuel control, there is a possibility that the effect of the previous control remains (such as the exhaust stroke of the cylinder in which the fuel injection for introducing the secondary air has already been performed has not ended). This is because the supply of secondary air is cascaded for a while after switching.

S22でカウンタCの値が所定値Cth以上であると判断された場合は、S24へ進み、2次空気供給装置を停止状態とする。
次に、図2のルーチンのS20の処理(2次空気導入時用の燃料噴射量Ti、燃料噴射時期ITの算出)について、その詳細を、図3のフローチャート(第1実施形態)により説明する。
When it is determined in S22 that the value of the counter C is equal to or greater than the predetermined value Cth, the process proceeds to S24 and the secondary air supply device is stopped.
Next, the details of the processing of S20 in the routine of FIG. 2 (calculation of the fuel injection amount Ti and the fuel injection timing IT for introducing secondary air) will be described with reference to the flowchart of FIG. 3 (first embodiment). .

S31では、基本燃料噴射量Tpに2次空気導入時用の各種補正係数COEF2を乗じて排気行程中(吸気弁開弁前)の燃料噴射量Tie(=Tp×COEF2)を算出する。排気行程燃料噴射量Tieは、吸気弁開時期IVOをまたいで実行される燃料噴射の前半(吸気弁開時期IVO前)の燃料噴射量であり、安定燃焼に最低限必要な燃料噴射量として算出される。なお、通常時の排気行程噴射と比較すると噴射燃料の気化時間が短いので、これを考慮した噴射量を算出する。具体的には、水温等の条件が同じであるとき、2次空気導入時用の各種補正係数COEF2を通常時用の各種補正係数COEFより若干増量側の値とする。   In S31, the fuel injection amount Tie (= Tp × COEF2) during the exhaust stroke (before intake valve opening) is calculated by multiplying the basic fuel injection amount Tp by various correction coefficients COEF2 for introducing secondary air. The exhaust stroke fuel injection amount Tie is the fuel injection amount in the first half of fuel injection executed before the intake valve opening timing IVO (before the intake valve opening timing IVO), and is calculated as the minimum fuel injection amount required for stable combustion. Is done. In addition, since the vaporization time of the injected fuel is shorter than that in the normal exhaust stroke injection, the injection amount considering this is calculated. Specifically, when the conditions such as the water temperature are the same, the various correction coefficients COEF2 for introducing the secondary air are set to values slightly increased from the various correction coefficients COEF for the normal time.

S32では、リッチ失火限界燃料噴射量Tp2と最大燃料噴射量Timを算出する。
リッチ失火限界燃料噴射量Tp2は、燃焼室内の混合気の空燃比がリッチ失火限界空燃比となる燃料噴射量であり、次式により算出される。
Tp2=K2×Q/N (ただし、K2はKより大きい係数)
最大燃料噴射量Timは、排気浄化用触媒に流入する排気の空燃比が理論空燃比となる燃料噴射量であり、2次空気流量Q2を用いて、次式により算出される。
In S32, a rich misfire limit fuel injection amount Tp2 and a maximum fuel injection amount Tim are calculated.
The rich misfire limit fuel injection amount Tp2 is a fuel injection amount at which the air-fuel ratio of the air-fuel mixture in the combustion chamber becomes the rich misfire limit air-fuel ratio, and is calculated by the following equation.
Tp2 = K2 × Q / N (where K2 is a coefficient greater than K)
The maximum fuel injection amount Tim is a fuel injection amount at which the air-fuel ratio of the exhaust gas flowing into the exhaust gas purification catalyst becomes the stoichiometric air-fuel ratio, and is calculated by the following equation using the secondary air flow rate Q2.

Tim=K×(Q+Q2)/N
なお、2次空気流量Q2は、2次空気供給用のエアポンプの設計流量であり、予め定まっている。本実施形態では、2次空気の供給が安定してから2次空気導入時用の燃料制御を開始するので、上式中の2次空気流量Q2として設計流量を使用することができる。排圧の影響を考慮し、エンジン回転速度Nや吸入空気量Qに応じて2次空気流量Q2の値を補正するようにすればなおよい。
Tim = K × (Q + Q2) / N
The secondary air flow rate Q2 is a design flow rate of an air pump for supplying secondary air, and is determined in advance. In the present embodiment, since the fuel control for introducing the secondary air is started after the supply of the secondary air is stabilized, the design flow rate can be used as the secondary air flow rate Q2 in the above equation. In consideration of the effect of exhaust pressure, the value of the secondary air flow rate Q2 may be corrected according to the engine speed N and the intake air amount Q.

S33では、水温Twに基づいて吸気行程噴射燃料気化率Vを算出する。吸気行程噴射燃料気化率Vは、吸気行程中(吸気弁開弁後)に噴射した燃料のうち点火時期までに気化する燃料の割合を示す値であり、水温Twが高いほど、すなわち吸気行程噴射燃料が付着するボア壁温度が高いときほど、値が大きくなる。なお、水温Twに加えて吸気温Taも考慮するとよい。点火時期までに気化しなかった燃料は膨張行程中に燃焼熱を受けて気化し、排気行程において既燃焼ガスとともに排出される。この未燃燃料が2次空気により排気ポート内および排気マニホールド内で燃焼する。   In S33, the intake stroke injection fuel vaporization rate V is calculated based on the water temperature Tw. The intake stroke injection fuel vaporization rate V is a value indicating the proportion of fuel that is vaporized by the ignition timing in the fuel injected during the intake stroke (after the intake valve is opened), and the higher the water temperature Tw, that is, the intake stroke injection. The higher the bore wall temperature to which fuel adheres, the greater the value. In addition to the water temperature Tw, the intake air temperature Ta may be considered. The fuel that has not been vaporized by the ignition timing is vaporized by receiving combustion heat during the expansion stroke, and is discharged together with the already burned gas during the exhaust stroke. This unburned fuel is combusted by the secondary air in the exhaust port and in the exhaust manifold.

S34では、2種類の吸気行程燃料噴射量Tii1、Tii2を算出する。
一方の吸気行程燃料噴射量Tii1は、燃焼室内の混合気(点火時期において形成されている混合気)の空燃比をリッチ失火限界空燃比とする吸気行程燃料噴射量であり、次式により算出される。
Tii1=(Tp2−Tie)/V
ここでは、排気行程中の噴射燃料が全て点火時期までに気化して混合気を形成すると仮定し、これをリッチ失火限界燃料噴射量Tp2から減じて余裕分を算出するとともに、この余裕分を吸気行程噴射燃料気化率Vで除して吸気行程燃料噴射量Tii1を算出する。実際には、排気行程中の噴射燃料が全て点火時期までに気化するわけではないが、リッチ失火を確実に防止するため、上記仮定に基づいて吸気行程燃料噴射量Tii1を算出している。
In S34, two types of intake stroke fuel injection amounts Tii1, Tii2 are calculated.
One intake stroke fuel injection amount Tii1 is an intake stroke fuel injection amount that makes the air-fuel ratio of the air-fuel mixture in the combustion chamber (the air-fuel mixture formed at the ignition timing) a rich misfire limit air-fuel ratio, and is calculated by the following equation. The
Tii1 = (Tp2-Tie) / V
Here, it is assumed that all of the injected fuel in the exhaust stroke is vaporized by the ignition timing to form an air-fuel mixture, which is subtracted from the rich misfire limit fuel injection amount Tp2 to calculate the margin, and this margin is taken into the intake The intake stroke fuel injection amount Tii1 is calculated by dividing by the stroke injection fuel vaporization rate V. Actually, not all of the injected fuel in the exhaust stroke is vaporized by the ignition timing, but in order to reliably prevent rich misfire, the intake stroke fuel injection amount Tii1 is calculated based on the above assumption.

他方の吸気行程燃料噴射量Tii2は、排気浄化用触媒に流入する排気の空燃比を理論空燃比とする吸気行程燃料噴射量であり、次式により算出される.
Tii2=Tim−Tie
すなわち、最大燃料噴射量Timから排気行程燃料噴射量Tieを減じた残りが吸気行程燃料噴射量Tii2である。
The other intake stroke fuel injection amount Tii2 is an intake stroke fuel injection amount in which the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is the stoichiometric air-fuel ratio, and is calculated by the following equation.
Tii2 = Tim-Tie
That is, the remainder obtained by subtracting the exhaust stroke fuel injection amount Tie from the maximum fuel injection amount Tim is the intake stroke fuel injection amount Tii2.

S35では、2種類の吸気行程燃料噴射量Tii1、Tii2のうちの小さいほうを最終的な吸気行程燃料噴射量Tiiとする。Tii1が選択された場合、点火時期における燃焼室内の混合気の空燃比はリッチ失火限界空燃比となり、排気浄化用触媒に流入する排気の空燃比は理論空燃比よりリーン側となる。Tii2が選択された場合、点火時期における燃焼室内の混合気の空燃比はリッチ失火限界空燃比よりリーン側となり、排気浄化用触媒に流入する排気の空燃比は理論空燃比となる。   In S35, the smaller one of the two types of intake stroke fuel injection amounts Tii1, Tii2 is set as the final intake stroke fuel injection amount Tii. When Tii1 is selected, the air-fuel ratio of the air-fuel mixture in the combustion chamber at the ignition timing becomes the rich misfire limit air-fuel ratio, and the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is leaner than the stoichiometric air-fuel ratio. When Tii2 is selected, the air-fuel ratio of the air-fuel mixture in the combustion chamber at the ignition timing becomes leaner than the rich misfire limit air-fuel ratio, and the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst becomes the stoichiometric air-fuel ratio.

S36では、排気行程燃料噴射量Tieと吸気行程燃料噴射量Tiiとを加算して燃料噴射量Ti(=Tie+Tii)を算出する。なお、Tii2が選択された場合の燃料噴射量Tiは最大燃料噴射量Timになる。
S37では、排気行程燃料噴射量Tieとエンジン回転速度Nに基づいて燃料噴射時期ITを算出する。具体的には、排気行程燃料噴射量Tieをエンジン回転速度Nでクランク角度に変換した値を吸気弁開時期から減じて燃料噴射時期IT(噴射開始クランク角度)を算出する。図示しない燃料噴射実行ルーチン(エンジン回転に同期して実行)では、クランク角度が燃料噴射時期ITとなったときに燃料噴射量Ti相当の長さを持った噴射パルス信号を該当気筒の燃料噴射弁へ出力する。これにより、図4(C)に示す2次空気導入時用の燃料噴射を行うことができる。
In S 36, the fuel injection amount Ti (= Tie + Tii) is calculated by adding the exhaust stroke fuel injection amount Tie and the intake stroke fuel injection amount Tii. The fuel injection amount Ti when Tii2 is selected is the maximum fuel injection amount Tim.
In S37, the fuel injection timing IT is calculated based on the exhaust stroke fuel injection amount Tie and the engine speed N. Specifically, the fuel injection timing IT (injection start crank angle) is calculated by subtracting the value obtained by converting the exhaust stroke fuel injection amount Tie into the crank angle at the engine speed N from the intake valve opening timing. In a fuel injection execution routine (not shown) (executed in synchronism with engine rotation), an injection pulse signal having a length corresponding to the fuel injection amount Ti is generated when the crank angle reaches the fuel injection timing IT. Output to. Thereby, the fuel injection for the time of secondary air introduction shown in Drawing 4 (C) can be performed.

次に本実施形態の効果について説明する。
始動時の触媒早期活性化を目的として、排気通路に2次空気を供給するシステムにおいて、排温上昇効果を最大とする場合、筒内の燃焼A/Fは可能な限りリッチとすることが望ましい。
しかし、後燃えに利用する未燃HC増加を目的として燃料噴射量を多くすると、全ての燃料が吸気弁で気化促進され、筒内が過剰にリッチとなる。すなわち、図4(A)に示すように、通常時用燃料制御では、燃料噴射終了から吸気弁開弁(IVO)までに十分な気化時間をとるように、燃料噴射時期を排気行程なかばに設定しており、図4(B)に示すように、通常時用燃料制御のままリッチ化した場合、リッチ化分も吸気弁表面温度で気化が促進されるため、筒内が過剰にリッチとなる。
Next, the effect of this embodiment will be described.
In the system for supplying secondary air to the exhaust passage for the purpose of early activation of the catalyst at start-up, it is desirable that the in-cylinder combustion A / F be as rich as possible when maximizing the exhaust temperature rise effect. .
However, if the fuel injection amount is increased for the purpose of increasing the unburned HC used for afterburning, all the fuel is promoted to be vaporized by the intake valve, and the inside of the cylinder becomes excessively rich. That is, as shown in FIG. 4 (A), in the fuel control for normal time, the fuel injection timing is set in the middle of the exhaust stroke so that a sufficient vaporization time is taken from the end of fuel injection to the intake valve opening (IVO). As shown in FIG. 4B, when the fuel is enriched with the normal fuel control, vaporization is promoted at the intake valve surface temperature, so that the inside of the cylinder becomes excessively rich. .

これにより、燃焼が不安定となり、エンジン振動が車両運転性を悪化させる。また、過渡のA/F変動時などにリッチ失火に至る可能性がある。また、全ての供給燃料の気化が促進されると、未燃のまま排出させたい燃料までも燃焼に関わるので、燃焼室から排出する未燃HCが減少し、効率よく排温上昇効果が得られない。
そこで、本発明では、燃焼室での安定燃焼に必要な燃料噴射量(Tie)と、排気通路にて2次空気によって燃焼させる燃料噴射量(Tii)とをそれぞれ算出し、前記安定燃焼に必要な燃料噴射量(Tie)を排気行程にて噴射し、前記2次空気によって燃焼させる燃料噴射量(Tii)を吸気行程にて噴射する。
As a result, combustion becomes unstable, and engine vibration deteriorates vehicle drivability. In addition, there is a possibility that rich misfire may occur during transient A / F fluctuations. Moreover, if the vaporization of all the supplied fuel is promoted, even the fuel that is to be discharged without combustion is involved in the combustion, so the unburned HC discharged from the combustion chamber is reduced, and the exhaust temperature rise effect can be obtained efficiently. Absent.
Therefore, in the present invention, the fuel injection amount (Tie) necessary for stable combustion in the combustion chamber and the fuel injection amount (Tii) to be burned by the secondary air in the exhaust passage are respectively calculated and required for the stable combustion. The fuel injection amount (Tie) is injected in the exhaust stroke, and the fuel injection amount (Tii) burned by the secondary air is injected in the intake stroke.

特に本実施形態では、図4(C)に示すように、1回の燃料噴射で、排気行程燃料噴射量Tieと吸気行程燃料噴射量Tiiとの合計燃料噴射量を、吸気弁開時期IVOをまたいで噴射する。
これによれば、排気行程(吸気弁開弁前)にて噴射された燃料は吸気弁表面温度により気化されてから燃焼室内に吸入され、吸気行程(吸気弁開弁後)にて噴射された燃料は気化されることなく液滴のまま燃焼室内に吸入される。
In particular, in the present embodiment, as shown in FIG. 4C, the total fuel injection amount of the exhaust stroke fuel injection amount Tie and the intake stroke fuel injection amount Tii in one fuel injection is set as the intake valve opening timing IVO. Inject again.
According to this, the fuel injected in the exhaust stroke (before the intake valve is opened) is sucked into the combustion chamber after being vaporized by the intake valve surface temperature, and injected in the intake stroke (after the intake valve is opened). The fuel is sucked into the combustion chamber as droplets without being vaporized.

従って、排気行程にて噴射された燃料は燃焼室内での燃焼に寄与するのに対し、吸気行程にて噴射された燃料の多くは燃焼されることなく排出される。
従って、燃料噴射量を増やしても気化促進される燃料量を従来通りとすることで、筒内の燃焼A/Fが過剰にリッチとならず(供給A/Fがリッチでも燃焼A/Fはそれよりリーンとなり)、燃焼安定度の悪化やリッチ失火を防止できる。その一方、排気通路での後燃え量が増加し、大幅な排温上昇が可能となり、触媒の早期活性→エミッション低減が可能となる。
Therefore, the fuel injected in the exhaust stroke contributes to combustion in the combustion chamber, whereas most of the fuel injected in the intake stroke is discharged without being burned.
Therefore, by setting the fuel amount that is promoted to be vaporized even if the fuel injection amount is increased, the combustion A / F in the cylinder does not become excessively rich (the combustion A / F is not increased even if the supply A / F is rich). It becomes leaner than that), and deterioration of combustion stability and rich misfire can be prevented. On the other hand, the amount of afterburning in the exhaust passage is increased, and the exhaust temperature can be significantly increased, so that the catalyst can be activated early and emissions can be reduced.

また、本実施形態によれば、吸気行程燃料噴射量Tiiは、燃焼室内の混合気の空燃比がリッチ失火限界となる燃料噴射量Tp2から排気行程燃料噴射量Tieを減じた余裕分、および吸気行程噴射燃料の気化率Vに基づいて算出することにより(Tii=Tii1の場合)、リッチ失火限界を考慮して、燃料噴射量の最適化を図ることができる。
また、本実施形態によれば、吸気行程燃料噴射量Tiiは、2次空気供給位置より下流側(触媒入口)の排気の空燃比が理論空燃比となる燃料噴射量Timから排気行程燃料噴射量Tieを減じて算出することにより(Tii=Tii2の場合)、触媒での浄化効率を考慮して、燃料噴射量の最適化を図ることができる。すなわち、供給2次空気量に対して必要以上に未燃HCが排出されることなくなり、テールパイプHCの悪化を防ぐことができる。
Further, according to the present embodiment, the intake stroke fuel injection amount Tii is the amount obtained by subtracting the exhaust stroke fuel injection amount Tie from the fuel injection amount Tp2 at which the air-fuel ratio of the air-fuel mixture in the combustion chamber becomes the rich misfire limit, and the intake air By calculating based on the vaporization rate V of the stroke injection fuel (when Tii = Tii1), the fuel injection amount can be optimized in consideration of the rich misfire limit.
Further, according to the present embodiment, the intake stroke fuel injection amount Tii is determined from the fuel injection amount Tim at which the air-fuel ratio of the exhaust downstream of the secondary air supply position (catalyst inlet) becomes the stoichiometric air-fuel ratio. By calculating by subtracting Tie (when Tii = Tii2), it is possible to optimize the fuel injection amount in consideration of the purification efficiency of the catalyst. That is, unburned HC is not discharged more than necessary with respect to the supplied secondary air amount, and deterioration of the tail pipe HC can be prevented.

また、本実施形態によれば、吸気行程燃料噴射量は、燃焼室内の混合気の空燃比がリッチ失火限界となる燃料噴射量Tp2から排気行程燃料噴射量Tieを減じた余裕分、および吸気行程噴射燃料の気化率Vに基づいて算出した第1の吸気行程燃料噴射量Tii1と、2次空気供給位置より下流側(触媒入口)の排気の空燃比が理論空燃比となる燃料噴射量Timから排気行程燃料噴射量Tieを減じて算出した第2の吸気行程燃料噴射量Tii2とのうち、小さい方とすることにより、リッチ失火限界、触媒での浄化効率を考慮して、燃料噴射量の最適化を図ることができる。   Further, according to the present embodiment, the intake stroke fuel injection amount includes the margin obtained by subtracting the exhaust stroke fuel injection amount Tie from the fuel injection amount Tp2 at which the air-fuel ratio of the air-fuel mixture in the combustion chamber becomes the rich misfire limit, and the intake stroke From the first intake stroke fuel injection amount Tii1 calculated based on the vaporization rate V of the injected fuel and the fuel injection amount Tim at which the air-fuel ratio of the exhaust downstream from the secondary air supply position (catalyst inlet) becomes the stoichiometric air-fuel ratio. Optimizing the fuel injection amount in consideration of the rich misfire limit and the purification efficiency of the catalyst by setting the smaller one of the second intake stroke fuel injection amount Tii2 calculated by subtracting the exhaust stroke fuel injection amount Tie Can be achieved.

次に本発明の第2実施形態について図5および図6に基づいて説明する。
図5は、図2のルーチンのS20の処理(2次空気導入時用の燃料噴射量Ti、燃料噴射時期ITの算出)について、第2実施形態を示すフローチャートであり、図3の代わりに実行される。
S41では、基本燃料噴射量Tpに各種補正係数COEFを乗じて排気行程燃料噴射量Tie(=Tp×COEF)を算出する。本実施形態では、排気行程噴射時期ITeを通常時の噴射時期と同じように設定する(S46)ので、通常時と同じ各種補正係数COEFを使って排気行程燃料噴射量Tieを算出している。
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 5 is a flowchart showing the second embodiment of the process of S20 of the routine of FIG. 2 (calculation of fuel injection amount Ti and fuel injection timing IT for introducing secondary air), which is executed instead of FIG. Is done.
In S41, the exhaust stroke fuel injection amount Tie (= Tp × COEF) is calculated by multiplying the basic fuel injection amount Tp by various correction coefficients COEF. In the present embodiment, since the exhaust stroke injection timing ITe is set in the same manner as the normal injection timing (S46), the exhaust stroke fuel injection amount Tie is calculated using the same various correction coefficients COEF as in the normal time.

S42では、リッチ失火限界燃料量Tp2と最大燃料噴射量Timを算出する(図3のS32と同様)。
S43では、水温Twに基づいて吸気行程噴射燃料気化率Vを算出する(図3のS33と同様)。本実施形態の吸気行程噴射時期は吸気行程のなかばに設定されるので、同じ水温で比較した場合、第1実施形態の吸気行程噴射燃料気化率Vより本実施形態の吸気行程噴射燃料気化率Vのほうが小さくなる。
In S42, the rich misfire limit fuel amount Tp2 and the maximum fuel injection amount Tim are calculated (similar to S32 in FIG. 3).
In S43, the intake stroke injection fuel vaporization rate V is calculated based on the water temperature Tw (similar to S33 in FIG. 3). Since the intake stroke injection timing of the present embodiment is set in the middle of the intake stroke, when compared at the same water temperature, the intake stroke injection fuel vaporization rate V of the present embodiment is higher than the intake stroke injection fuel vaporization rate V of the first embodiment. Is smaller.

S44では、2種類の吸気行程燃料噴射量Tii1、Tii2を算出する(図3のS34と同様)。
S45では、2種類の吸気行程燃料噴射量Tii1、Tii2のうちの小さいほうを最終的な吸気行程燃料噴射量Tiiとする(図3のS35と同様)。
S46では、排気行程燃料噴射量Tieとエンジン回転速度Nに基づいて排気行程燃料噴射時期ITeを算出する。前述の通り、排気行程燃料噴射時期ITeは通常時の噴射時期と同じ設定とする(図6参照)。
In S44, two types of intake stroke fuel injection amounts Tii1, Tii2 are calculated (similar to S34 in FIG. 3).
In S45, the smaller one of the two types of intake stroke fuel injection amounts Tii1, Tii2 is set as the final intake stroke fuel injection amount Tii (similar to S35 in FIG. 3).
In S46, the exhaust stroke fuel injection timing ITe is calculated based on the exhaust stroke fuel injection amount Tie and the engine speed N. As described above, the exhaust stroke fuel injection timing ITe is set to be the same as the normal injection timing (see FIG. 6).

S47では、吸気行程燃料噴射量Tiiとエンジン回転速度Nに基づいて吸気行程燃料噴射時期ITiを算出する。吸気行程燃料噴射時期ITiは、噴射燃料の気化量が最も少なくなる時期に設定される(図6参照)。噴射燃料が吸気弁の位置に到達する時点で吸気弁が最大リフトとなるように噴射時期を設定すると燃料が液滴のままボア壁まで到達しやすくなり、噴射燃料の気化量が少なくなる。また、吸気弁を通過するときの吸気流速(小さいほど気化量が少なくなる)や燃焼室内に流入してから点火時期までの時間(短いほど気化量が少なくなる)も考慮する。   In S47, the intake stroke fuel injection timing ITi is calculated based on the intake stroke fuel injection amount Tii and the engine speed N. The intake stroke fuel injection timing ITi is set to a time when the vaporization amount of the injected fuel is minimized (see FIG. 6). If the injection timing is set so that the intake valve reaches the maximum lift when the injected fuel reaches the position of the intake valve, the fuel can easily reach the bore wall as droplets, and the amount of vaporization of the injected fuel is reduced. In addition, the intake air flow velocity when passing through the intake valve (the smaller the vaporization amount, the smaller the vaporization amount) and the time from the flow into the combustion chamber until the ignition timing (the shorter the vaporization amount, the smaller the vaporization amount) are also taken into consideration.

図示しない燃料噴射実行ルーチンでは、排気行程燃料噴射時期ITeと吸気行程燃料噴射時期ITiに有効な値が設定されている場合に2回噴射を行う。
本実施形態では、燃焼室での安定燃焼に必要な燃料噴射量と、排気通路にて2次空気によって燃焼させる燃料噴射量とをそれぞれ算出し、前記安定燃焼に必要な燃料噴射量を排気行程にて噴射し、前記2次空気によって燃焼させる燃料噴射量を吸気行程にて噴射する際に、図6に示すように、燃料噴射を分割し、排気行程燃料噴射量Tieと吸気行程燃料噴射量Tiiとを別々の時期に噴射する。
In a fuel injection execution routine (not shown), two injections are performed when effective values are set for the exhaust stroke fuel injection timing ITe and the intake stroke fuel injection timing ITi.
In the present embodiment, a fuel injection amount required for stable combustion in the combustion chamber and a fuel injection amount burned with secondary air in the exhaust passage are respectively calculated, and the fuel injection amount required for the stable combustion is calculated as an exhaust stroke. As shown in FIG. 6, the fuel injection is divided into the exhaust stroke fuel injection amount Tie and the intake stroke fuel injection amount. Tii is injected at different times.

具体的には、排気行程燃料噴射量Tieを排気行程のなかばに噴射し、吸気行程燃料噴射量Tiiを吸気行程のなかばに噴射する。
これによれば、燃焼室での安定燃焼に必要な燃料は、排気行程の早い時期に噴射して、吸気弁開弁までの気化時間をより十分にとることができ、より燃焼安定性を向上させることができる。
Specifically, the exhaust stroke fuel injection amount Tie is injected in the middle of the exhaust stroke, and the intake stroke fuel injection amount Tii is injected in the middle of the intake stroke.
According to this, the fuel necessary for stable combustion in the combustion chamber is injected at an early stage of the exhaust stroke, and the vaporization time until the intake valve is opened can be taken more sufficiently, and the combustion stability is further improved. Can be made.

その一方、2次空気によって燃焼させる燃料は、吸気行程の遅い時期に噴射することで、点火までの気化時間を短くでき、また噴射時期が吸気弁部の開口面積が大きくなって吸気流速が遅くなる時期となることから、より気化しづらくなり、より後燃え量が増加して、排温上昇効果をより高めることができる。
なお、吸気行程燃料噴射は、できるだけ遅くして、吸気弁閉時期IVC近くで噴射を終了させる方が、気化時間が短くなり、燃焼に寄与しづらくなるのでよい。但し、噴射燃料が吸気弁に付着しない程度とする。
On the other hand, the fuel combusted by the secondary air is injected at a time when the intake stroke is late, so that the vaporization time until ignition can be shortened, and the injection timing increases the opening area of the intake valve portion and the intake flow velocity becomes slow. Therefore, it becomes more difficult to vaporize, the afterburning amount is increased, and the exhaust temperature increasing effect can be further enhanced.
It should be noted that if the intake stroke fuel injection is made as late as possible and the injection is terminated near the intake valve closing timing IVC, the vaporization time is shortened and it is difficult to contribute to combustion. However, the injection fuel is set so as not to adhere to the intake valve.

また、分割噴射の場合、通常燃焼分とリッチ化分とを明確に分けることできるので、多少の噴射タイミングのばらつきに影響を受けないという利点もある。
次に本発明の第3実施形態について図7に基づいて説明する。
図7は、図2のルーチンのS20の処理(2次空気導入時用の燃料噴射量Ti、燃料噴射時期ITの算出)について、第3実施形態を示すフローチャートである。
Further, in the case of split injection, the normal combustion portion and the enriched portion can be clearly divided, so that there is an advantage that there is no influence on a slight variation in injection timing.
Next, a third embodiment of the present invention will be described with reference to FIG.
FIG. 7 is a flowchart showing the third embodiment regarding the processing of S20 of the routine of FIG. 2 (calculation of fuel injection amount Ti and fuel injection timing IT for introducing secondary air).

S51では、第2実施形態(図5)のS41〜S45と同じ処理を実施して、2回噴射用の排気行程燃料噴射量Tieと吸気行程燃料噴射量Tiiを算出する。
S52では、吸気行程燃料噴射量Tiiが燃料噴射弁の最小燃料噴射量Timin より大きいか否かを判断する。最小燃料噴射量Timin は、燃料噴射弁の仕様によって予め定まる値であり、燃料噴射弁はこれ以下の量の燃料を精度よく噴射することができない。
In S51, the same processing as S41 to S45 of the second embodiment (FIG. 5) is performed to calculate the exhaust stroke fuel injection amount Tie and the intake stroke fuel injection amount Tii for the second injection.
In S52, it is determined whether or not the intake stroke fuel injection amount Tii is larger than the minimum fuel injection amount Timin of the fuel injection valve. The minimum fuel injection amount Timin is a value determined in advance by the specifications of the fuel injection valve, and the fuel injection valve cannot inject fuel of an amount smaller than this with high accuracy.

S52で吸気行程燃料噴射量Tiiが燃料噴射弁の最小燃料噴射量Timin より大きいと判断された場合は、S53へ進み、第2実施形態(図5)のS46、S47と同じ処理を実施して、排気行程燃料噴射時期ITeと吸気行程燃料噴射時期ITiを算出する。
S52で吸気行程燃料噴射量Tiiが燃料噴射弁の最小燃料噴射量Timin 以下であると判断された場合は、S54へ進み、第1実施形態(図3)のS31〜S37と同じ処理を実施して、1回噴射での燃料噴射量Tiと燃料噴射時期ITを算出する。
When it is determined in S52 that the intake stroke fuel injection amount Tii is larger than the minimum fuel injection amount Timin of the fuel injection valve, the process proceeds to S53, and the same processing as S46 and S47 in the second embodiment (FIG. 5) is performed. Then, the exhaust stroke fuel injection timing ITe and the intake stroke fuel injection timing ITi are calculated.
If it is determined in S52 that the intake stroke fuel injection amount Tii is less than or equal to the minimum fuel injection amount Timin of the fuel injection valve, the process proceeds to S54, and the same processing as S31 to S37 in the first embodiment (FIG. 3) is performed. Thus, the fuel injection amount Ti and the fuel injection timing IT in one injection are calculated.

本実施形態では、燃焼室での安定燃焼に必要な燃料噴射量と、排気通路にて2次空気によって燃焼させる燃料噴射量とをそれぞれ算出し、前記安定燃焼に必要な燃料噴射量を排気行程にて噴射し、前記2次空気によって燃焼させる燃料噴射量を吸気行程にて噴射する際に、吸気行程燃料噴射量を燃料噴射装置(燃料噴射弁)の最小燃料噴射量と比較し、比較結果に応じて、排気行程燃料噴射量と吸気行程燃料噴射量との合計燃料噴射量を吸気弁開時期をまたいで噴射する1回噴射と、排気行程燃料噴射量と吸気行程燃料噴射量とを別々の時期に噴射する分割噴射とを切換える。   In the present embodiment, a fuel injection amount required for stable combustion in the combustion chamber and a fuel injection amount burned with secondary air in the exhaust passage are respectively calculated, and the fuel injection amount required for the stable combustion is calculated as an exhaust stroke. When the fuel injection amount that is injected by the secondary air and burned by the secondary air is injected in the intake stroke, the intake stroke fuel injection amount is compared with the minimum fuel injection amount of the fuel injection device (fuel injection valve). In response, the single injection in which the total fuel injection amount of the exhaust stroke fuel injection amount and the intake stroke fuel injection amount is injected across the intake valve opening timing, and the exhaust stroke fuel injection amount and the intake stroke fuel injection amount are separated. The divided injection that is injected at this time is switched.

本実施形態によれば、分割噴射により第2実施形態と同様の効果が得られる他、リッチ化燃料の量が少なくなるときには1回噴射に切換えることで、燃料噴射制御不可能となる事態を回避できる。
図8は、始動後(ファーストアイドル)20秒後の排気マニホールド入口温度(℃)とHC排出量(g/km)との関係を示している。これからわかるように、始動直後の排気温度を上昇させることで、エミッションを向上させることができる。
According to the present embodiment, the effect similar to that of the second embodiment can be obtained by the divided injection, and when the amount of the enriched fuel is reduced, switching to the single injection is avoided to avoid the situation where the fuel injection control becomes impossible. it can.
FIG. 8 shows the relationship between the exhaust manifold inlet temperature (° C.) and the HC discharge amount (g / km) 20 seconds after the start (first idle). As can be seen, the emission can be improved by raising the exhaust temperature immediately after starting.

図9は排温別(高、中、低)に始動後の時間経過に伴う触媒出口HC濃度(ppm )の推移を示したもので、これも排温上昇を早めることで、エミッションを向上できることを示している。   Fig. 9 shows the transition of the catalyst outlet HC concentration (ppm) over time after start-up according to the exhaust temperature (high, medium, low). This also improves the emission by increasing the exhaust temperature rise. Is shown.

本発明の一実施形態を示すエンジンのシステム図Engine system diagram showing an embodiment of the present invention 燃料・2次空気制御ルーチンのフローチャートFlow chart of fuel / secondary air control routine 2次空気導入時用のサブルーチンの第1実施形態のフローチャートFlowchart of the first embodiment of a subroutine for introducing secondary air 第1実施形態の2次空気導入時用燃料制御の説明図Explanatory drawing of fuel control for introducing secondary air according to the first embodiment 2次空気導入時用のサブルーチンの第2実施形態のフローチャートFlowchart of the second embodiment of the subroutine for introducing secondary air 第2実施形態の2次空気導入時用燃料制御の説明図Explanatory drawing of the fuel control for the secondary air introduction of 2nd Embodiment 2次空気導入時用のサブルーチンの第3実施形態のフローチャートFlowchart of the third embodiment of the subroutine for introducing secondary air 排温上昇の効果を示す図Diagram showing the effect of increased exhaust temperature 排温上昇の効果を示す図Diagram showing the effect of increased exhaust temperature

符号の説明Explanation of symbols

1 エンジン
2 吸気通路
3 エアクリーナ
4 電制スロットル弁
5 吸気マニホールド
6 吸気ポート
7 燃料噴射弁
8 吸気弁
9 燃焼室
10 点火プラグ
11 排気弁
12 排気通路
13 排気ポート
14 排気マニホールド
15 排気浄化触媒
16 エアポンプ
17 開閉弁
18 ギャラリー
19 2次空気供給通路
20 配管
21 2次空気取出口
30 エンジンコントロールユニット(ECU)
31 アクセル開度センサ
32 クランク角センサ
33 エアフローメータ
34 吸気温センサ
35 水温センサ
36 空燃比センサ
DESCRIPTION OF SYMBOLS 1 Engine 2 Intake passage 3 Air cleaner 4 Electric throttle valve 5 Intake manifold 6 Intake port 7 Fuel injection valve 8 Intake valve 9 Combustion chamber 10 Spark plug 11 Exhaust valve 12 Exhaust passage 13 Exhaust port 14 Exhaust manifold 15 Exhaust purification catalyst 16 Air pump 17 On-off valve 18 Gallery 19 Secondary air supply passage 20 Piping 21 Secondary air outlet 30 Engine control unit (ECU)
31 Accelerator opening sensor 32 Crank angle sensor 33 Air flow meter 34 Intake air temperature sensor 35 Water temperature sensor 36 Air-fuel ratio sensor

Claims (8)

吸気通路に燃料を噴射する燃料噴射装置と、排気通路に2次空気を供給する2次空気供給装置とを備える内燃機関において、
排気温度を上昇させるときに、燃焼室での安定燃焼に必要な燃料噴射量と、排気通路にて前記2次空気供給装置からの2次空気によって燃焼させる燃料噴射量とをそれぞれ算出し、前記安定燃焼に必要な燃料噴射量を排気行程にて噴射し、前記2次空気によって燃焼させる燃料噴射量を吸気行程にて噴射することを特徴とする内燃機関の排気温度制御装置。
An internal combustion engine comprising: a fuel injection device that injects fuel into an intake passage; and a secondary air supply device that supplies secondary air to an exhaust passage.
Calculating the fuel injection amount required for stable combustion in the combustion chamber when raising the exhaust temperature and the fuel injection amount combusted by the secondary air from the secondary air supply device in the exhaust passage, An exhaust temperature control device for an internal combustion engine, wherein a fuel injection amount required for stable combustion is injected in an exhaust stroke, and a fuel injection amount burned by the secondary air is injected in an intake stroke.
1回の燃料噴射で、排気行程燃料噴射量と吸気行程燃料噴射量との合計燃料噴射量を、吸気弁開時期をまたいで噴射することを特徴とする請求項1記載の内燃機関の排気温度制御装置。   2. The exhaust temperature of an internal combustion engine according to claim 1, wherein the total fuel injection amount of the exhaust stroke fuel injection amount and the intake stroke fuel injection amount is injected across the intake valve opening timing in one fuel injection. Control device. 燃料噴射を分割し、排気行程燃料噴射量と吸気行程燃料噴射量とを別々の時期に噴射することを特徴とする請求項1記載の内燃機関の排気温度制御装置。   2. An exhaust temperature control apparatus for an internal combustion engine according to claim 1, wherein the fuel injection is divided and the exhaust stroke fuel injection amount and the intake stroke fuel injection amount are injected at different timings. 吸気行程燃料噴射量を燃料噴射装置の最小燃料噴射量と比較し、比較結果に応じて、排気行程燃料噴射量と吸気行程燃料噴射量との合計燃料噴射量を吸気弁開時期をまたいで噴射する1回噴射と、排気行程燃料噴射量と吸気行程燃料噴射量とを別々の時期に噴射する分割噴射とを切換えることを特徴とする請求項1記載の内燃機関の排気温度制御装置。   The intake stroke fuel injection amount is compared with the minimum fuel injection amount of the fuel injection device, and the total fuel injection amount of the exhaust stroke fuel injection amount and the intake stroke fuel injection amount is injected across the intake valve opening timing according to the comparison result. 2. The exhaust temperature control device for an internal combustion engine according to claim 1, wherein the one-time injection and the split injection in which the exhaust stroke fuel injection amount and the intake stroke fuel injection amount are injected at different timings are switched. 吸気行程燃料噴射量は、燃焼室内の混合気の空燃比がリッチ失火限界となる燃料噴射量から排気行程燃料噴射量を減じた余裕分、および吸気行程噴射燃料の気化率に基づいて算出することを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の排気温度制御装置。   The intake stroke fuel injection amount is calculated on the basis of the margin obtained by subtracting the exhaust stroke fuel injection amount from the fuel injection amount at which the air-fuel ratio of the air-fuel ratio in the combustion chamber becomes the rich misfire limit, and the evaporation rate of the intake stroke injected fuel The exhaust gas temperature control device for an internal combustion engine according to any one of claims 1 to 4, wherein the exhaust gas temperature control device is an internal combustion engine. 吸気行程燃料噴射量は、2次空気供給位置より下流側の排気の空燃比が理論空燃比となる燃料噴射量から排気行程燃料噴射量を減じて算出することを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の排気温度制御装置。   The intake stroke fuel injection amount is calculated by subtracting the exhaust stroke fuel injection amount from the fuel injection amount at which the air-fuel ratio of the exhaust downstream of the secondary air supply position becomes the stoichiometric air-fuel ratio. Item 5. The exhaust gas temperature control device for an internal combustion engine according to any one of Items 4 to 6. 吸気行程燃料噴射量は、
燃焼室内の混合気の空燃比がリッチ失火限界となる燃料噴射量から排気行程燃料噴射量を減じた余裕分、および吸気行程噴射燃料の気化率に基づいて算出した第1の吸気行程燃料噴射量と、
2次空気供給位置より下流側の排気の空燃比が理論空燃比となる燃料噴射量から排気行程燃料噴射量を減じて算出した第2の吸気行程燃料噴射量とのうち、
小さい方とすることを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の排気温度制御装置。
The intake stroke fuel injection amount is
The first intake stroke fuel injection amount calculated based on a margin obtained by subtracting the exhaust stroke fuel injection amount from the fuel injection amount at which the air-fuel ratio of the air-fuel ratio in the combustion chamber becomes the rich misfire limit, and the evaporation rate of the intake stroke injected fuel When,
Of the second intake stroke fuel injection amount calculated by subtracting the exhaust stroke fuel injection amount from the fuel injection amount at which the air fuel ratio of the exhaust downstream from the secondary air supply position becomes the stoichiometric air fuel ratio,
The exhaust temperature control device for an internal combustion engine according to any one of claims 1 to 4, wherein the exhaust temperature control device is smaller.
前記排気通路に排気浄化触媒を備え、前記触媒の昇温要求があった時に、排気温度を上昇させることを特徴とする請求項1〜請求項7のいずれか1つに記載の内燃機関の排気温度制御装置。   The exhaust gas of the internal combustion engine according to any one of claims 1 to 7, wherein an exhaust gas purification catalyst is provided in the exhaust passage, and the exhaust gas temperature is raised when a temperature increase request for the catalyst is made. Temperature control device.
JP2005184461A 2005-06-24 2005-06-24 Exhaust temperature control device for internal combustion engine Expired - Fee Related JP4635736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184461A JP4635736B2 (en) 2005-06-24 2005-06-24 Exhaust temperature control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184461A JP4635736B2 (en) 2005-06-24 2005-06-24 Exhaust temperature control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007002772A true JP2007002772A (en) 2007-01-11
JP4635736B2 JP4635736B2 (en) 2011-02-23

Family

ID=37688613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184461A Expired - Fee Related JP4635736B2 (en) 2005-06-24 2005-06-24 Exhaust temperature control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4635736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157043A1 (en) * 2011-05-13 2012-11-22 トヨタ自動車株式会社 Internal combustion engine control apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281937A (en) * 1988-09-20 1990-03-22 Fuji Heavy Ind Ltd Air-fuel ratio control device
JPH0868348A (en) * 1994-08-30 1996-03-12 Daihatsu Motor Co Ltd Method for correcting fuel injection amount after complete warming up
JPH11343913A (en) * 1998-04-01 1999-12-14 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
JP2002295296A (en) * 2001-03-30 2002-10-09 Toyota Motor Corp Fuel injection control device for cylinder injection type internal combustion engine
JP2004124788A (en) * 2002-10-01 2004-04-22 Toyota Motor Corp Secondary air supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281937A (en) * 1988-09-20 1990-03-22 Fuji Heavy Ind Ltd Air-fuel ratio control device
JPH0868348A (en) * 1994-08-30 1996-03-12 Daihatsu Motor Co Ltd Method for correcting fuel injection amount after complete warming up
JPH11343913A (en) * 1998-04-01 1999-12-14 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
JP2002295296A (en) * 2001-03-30 2002-10-09 Toyota Motor Corp Fuel injection control device for cylinder injection type internal combustion engine
JP2004124788A (en) * 2002-10-01 2004-04-22 Toyota Motor Corp Secondary air supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157043A1 (en) * 2011-05-13 2012-11-22 トヨタ自動車株式会社 Internal combustion engine control apparatus
JP5273310B2 (en) * 2011-05-13 2013-08-28 トヨタ自動車株式会社 Control device for internal combustion engine
US9121364B2 (en) 2011-05-13 2015-09-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Also Published As

Publication number Publication date
JP4635736B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4148233B2 (en) Engine fuel injection control device
US6561158B2 (en) Enhanced engine response to torque demand during cold-start and catalyst warm-up
KR980009784A (en) Exhaust Emission Apparatus for In-cylinder Injection-Type Internal Combustion Engine
JP2009185741A (en) Fuel injection control device of internal combustion engine
JP2002130013A (en) Controller for cylinder injection type internal combustion engine
JP4135643B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP3931820B2 (en) Internal combustion engine and control method for internal combustion engine
JP2008045459A (en) Control device for internal combustion engine
JP2006177189A (en) Exhaust temperature controlling device for internal combustion engine
JP4378829B2 (en) Control device for internal combustion engine
JP4000926B2 (en) Control device and control method for direct-injection spark ignition engine
JP2010203326A (en) Control device for internal combustion engine
JP4635736B2 (en) Exhaust temperature control device for internal combustion engine
JP2002013430A (en) Catalyst early warming controller of cylinder injection internal combustion engine
US10883439B2 (en) Internal combustion engine
US7131266B2 (en) Secondary air supply control apparatus for internal combustion engine
JP2001082220A (en) Control device for direct injection spark-ignition type internal combustion engine
JP2006214272A (en) Starting time control device of internal combustion engine
JP2007154693A (en) Device for controlling exhaust gas temperature of internal combustion engine
JP2019100227A (en) Control device of internal combustion engine
JP2004197674A (en) Catalyst temperature rise device for cylinder injection internal combustion engine
JP2011099399A (en) Control method and control device of internal combustion engine
JP4415803B2 (en) Control device for internal combustion engine
JP2008190478A (en) Internal combustion engine
JP2008202466A (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees