JP2007002522A - Earth reinforcement method - Google Patents

Earth reinforcement method Download PDF

Info

Publication number
JP2007002522A
JP2007002522A JP2005183810A JP2005183810A JP2007002522A JP 2007002522 A JP2007002522 A JP 2007002522A JP 2005183810 A JP2005183810 A JP 2005183810A JP 2005183810 A JP2005183810 A JP 2005183810A JP 2007002522 A JP2007002522 A JP 2007002522A
Authority
JP
Japan
Prior art keywords
core material
soil cement
reinforcement method
ground
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005183810A
Other languages
Japanese (ja)
Inventor
Yasuhiro Goto
泰博 後藤
Katsuaki Yokozuka
克明 横塚
Yuetsu Kikuchi
祐悦 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Menshin Kk R
OMTEC KK
PLAN DO SOIL KK
R-MENSHIN KK
Omtec Inc
Original Assignee
Menshin Kk R
OMTEC KK
PLAN DO SOIL KK
R-MENSHIN KK
Omtec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Menshin Kk R, OMTEC KK, PLAN DO SOIL KK, R-MENSHIN KK, Omtec Inc filed Critical Menshin Kk R
Priority to JP2005183810A priority Critical patent/JP2007002522A/en
Publication of JP2007002522A publication Critical patent/JP2007002522A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earth reinforcement method capable of using inexpensive materials without causing the differential settlement of an upper structure or its overturning caused by a horizontal force. <P>SOLUTION: In a system of the earth reinforcement method, a solidifying agent is injected and agitated to construct soil cement columns as excavating earth, core materials are inserted in the soil cement column and solidified. The core materials are of wood or bamboo materials. In the case that one core material is used, the interval between the bottom surface of the core material and the bottom surface of the soil cement is equal to its diameter or greater. In the case that a plurality of core materials are used, the interval between the bottom surfaces of the core materials and the bottom surface of the soil cement is equal to the diameter of their circumscribed circle or greater. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、構造物を支持する地盤の補強方法に係り、特に地盤を掘削しながらセメントミルクやその他の硬化剤を混合し、補強芯材と一体化することにより構造物の柱下の地耐力を増強する地盤補強方法に関する。   The present invention relates to a ground reinforcement method for supporting a structure, and in particular, by mixing cement milk and other hardeners while excavating the ground and integrating it with a reinforcing core material, the earth bearing strength under the pillar of the structure. It is related with the ground reinforcement method which strengthens.

従来から地盤の補強方法において、セメントミルクを地盤中に注入して撹拌し、芯材と共に硬化させる形式のものは種々知られている。
例えば特許文献1に開示された発明にあっては、逆台形のテーパー付ソイルセメント柱を造成し、そこに芯材としての鋼管杭又はH型鋼材を挿入してソイルセメントと芯材とを一体結合したものが記載されている。このような工法では、一つのソイルセメント柱体内に1本の芯体を挿入し、その芯体と一体化するもので、該芯体はストレート杭であるために芯体と地盤との間の摩擦力のみを増大するものである。
2. Description of the Related Art Conventionally, various ground reinforcement methods are known in which cement milk is poured into the ground, stirred, and cured together with a core material.
For example, in the invention disclosed in Patent Document 1, an inverted trapezoid taper soil cement column is formed, and a steel pipe pile or an H-shaped steel material as a core material is inserted therein, and the soil cement and the core material are integrated. The combination is described. In such a construction method, one core body is inserted into one soil cement pillar and integrated with the core body. Since the core body is a straight pile, the core body and the ground are Only the frictional force is increased.

また、先細りテーパー付ソイルセメント柱の造成に当たり、拡縮掘削ヘッドを用いて施工されるので、所定の位置で所定の断面を得るために相当微妙なコントロールが必要となり、それに要する時間が掛かり効率的でない。更に、同文献に図示されるごとき逆円錐台形状部分をソイルセメントによって改良するため、相当大きな体積を造成する必要があり、使用するセメントが多くなってコスト的に高いものとなる。   In addition, since it is constructed using an expansion / contraction excavation head when creating a tapered taper soil cement column, considerable subtle control is required to obtain a predetermined cross section at a predetermined position, and it takes time and is not efficient. . Furthermore, in order to improve the inverted frustoconical shape portion as shown in the same document with soil cement, it is necessary to create a considerably large volume, and the amount of cement used increases and the cost becomes high.

一方特許文献2の発明は、コンクリート杭に複数枚の螺旋状或いは円盤状の鋼製羽根を取り付けて、ソイルセメント柱体に挿入し一体化させる構造のものであり、地盤とソイルセメント柱との間で大きな摩擦力を発現させるものである。
このような発明によれば、コンクリート杭の製造後に鋼製の螺旋状又は円盤状の羽根を複数取り付けるため、その加工及び取り付け手間が煩雑であり、コスト的にも高くつく欠点があった。また、コンクリート杭には羽根が固定されているので、運搬及び工事現場での取扱い時に十分な配慮が必要であると言う難点があった。
特開2001−98542号公報 特開2001−303563号公報
On the other hand, the invention of Patent Document 2 has a structure in which a plurality of spiral or disk-shaped steel blades are attached to a concrete pile, and are inserted into a soil cement pillar body to be integrated. It expresses a large frictional force between them.
According to such an invention, since a plurality of steel spiral or disk-shaped blades are attached after the manufacture of the concrete piles, there is a disadvantage that the processing and attaching work are complicated and the cost is high. In addition, since the blades are fixed to the concrete pile, there is a difficulty that sufficient consideration is necessary for transportation and handling at the construction site.
JP 2001-98542 A JP 2001-303563 A

本発明は、上記従来技術の不具合を解消し、上部構造体が不当沈下を起こすことなく、水平力により転倒するようなことがなく、廉価な材料を利用できる地盤の補強方法を提供するものであり、ソイルセメント柱を造成し、その中に1本又は数本の木材或いは竹材を芯材として挿入一体化したことを特徴とすると共に、該芯材の下端面をソイルセメント柱の一部によって支持する形式の地盤の補強方法を提供するものである。   The present invention provides a ground reinforcement method that solves the above-mentioned problems of the prior art, prevents the upper structure from undue subsidence, does not fall down due to horizontal force, and can use inexpensive materials. There is a soil cement pillar, and one or several pieces of wood or bamboo are inserted and integrated therein as a core material, and the lower end surface of the core material is formed by a part of the soil cement pillar. The present invention provides a method for reinforcing a ground of a supporting type.

本発明は、地盤を掘削しながら固化剤を注入撹拌してソイルセメント柱体を造成し、該ソイルセメント柱体内に芯材を挿入して固化させる形式の地盤補強方法であって、芯材は木材又は竹材であることを特徴とする。そして、芯材は1本あるいは複数本の木材であり、その長手方向の途中で繋ぎ合わされているものでも束ねたものでも良い。また、上記芯材は複数本の木材あるいは竹材を環状に配列挿入されたもので合っても良い。
さらに、本発明における地盤補強方法では、上記芯材の底面と上記ソイルセメントの底面との間隔は、該芯材が一本の場合その直径以上、該芯材が複数本の場合その外接円の直径以上であることを特徴とする地盤補強方法である。
The present invention is a ground reinforcing method of a type in which a solidifying agent is injected and stirred while excavating the ground to form a soil cement pillar, and a core material is inserted into the soil cement pillar and solidified. It is made of wood or bamboo. The core material is one or a plurality of woods, which may be connected or bundled in the middle of the longitudinal direction. The core material may be a combination of a plurality of woods or bamboos arranged in an annular shape.
Further, in the ground reinforcement method of the present invention, the distance between the bottom surface of the core material and the bottom surface of the soil cement is equal to or more than the diameter of the core material when it is one, and the circumscribed circle when the core material is plural. It is a ground reinforcement method characterized by having a diameter or more.

本発明によれば、地盤の補強手段は支持すべき各柱加重に対応して、任意にソイルセメント柱の径及び深さを決定でき、ソイルセメント柱内に挿入する芯材の本数も任意に決定できる。
また、芯材端部をソイルセメント柱の底面から浮かすことにより、芯材底面から地盤に作用する単位面積あたりの荷重を地盤の強度以下に低減することが容易であって、ソイルセメント柱の周面摩擦力による抵抗と併せて、大きな支持力を得ることができる。
更に、現在全国的に問題となっている杉花粉症対策としての杉材の伐採にも対応でき、芯材に比較的廉価な杉材や竹材を利用することによって、環境にも配慮した地盤補強方法を提供することができる等の格別の効果を奏するものである。
According to the present invention, the ground reinforcing means can arbitrarily determine the diameter and depth of the soil cement column corresponding to each column load to be supported, and the number of core materials to be inserted into the soil cement column can also be arbitrarily determined. Can be determined.
In addition, by lifting the edge of the core material from the bottom surface of the soil cement column, it is easy to reduce the load per unit area that acts on the ground from the bottom surface of the core material to less than the strength of the ground material. Along with the resistance caused by the surface friction force, a large supporting force can be obtained.
In addition, it can respond to cedar logging as a countermeasure against cedar pollinosis, which is currently a problem nationwide, and by using relatively inexpensive cedar and bamboo as the core material, it is also environmentally friendly ground reinforcement. The method can provide a special effect such as providing a method.

本発明の実施の形態を図1〜図9により説明する。
図1は、1本の芯材3とソイルセメント柱2とを一体化して地盤Gの必要個所に施工した形態において、その構造体1の平面及び縦断面を表している。このような地盤補強のための補強構造体1は、例えば図9に示すようにオーガ掘削機を用いて施工され、先ず、オーガの掘削軸10に設けられた掘削ビット11により地盤Gの必要個所が掘削される。
同時に、該掘削ビット11部分からセメントミルク等の硬化剤を注入しながら、撹拌翼12によって撹拌を繰り返して施工を進め、ソイルセメント柱2が造成される。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a plane and a longitudinal section of a structure 1 in a form in which a single core material 3 and a soil cement column 2 are integrated and applied to a necessary portion of the ground G. Such a reinforcing structure 1 for ground reinforcement is constructed using an auger excavator as shown in FIG. 9, for example. First, a necessary portion of the ground G is provided by a drill bit 11 provided on a drill shaft 10 of the auger. Is excavated.
At the same time, while a hardener such as cement milk is injected from the excavation bit 11 portion, the stirring is repeated by the stirring blade 12 to proceed with construction, and the soil cement pillar 2 is formed.

そして、ソイルセメント柱2が未硬化のうちに、後に示す種々の構造の芯材3を圧入又は回転させながら挿入して一体化させる。
また、このソイルセメント柱2の大きさは、支持する建物の柱荷重及び地盤本来の地耐力等とともに芯材3の材質及び配置構造により決定される。
ここで重要なことは、ソイルセメント柱2の底面と芯材3の底面との距離Lが、芯材3の直径Dと比較して同一かそれ以上とされることである。
And while the soil cement pillar 2 is uncured, the core material 3 having various structures shown later is inserted and integrated while being pressed or rotated.
The size of the soil cement column 2 is determined by the material and arrangement structure of the core material 3 as well as the column load of the building to be supported and the inherent ground strength of the ground.
What is important here is that the distance L between the bottom surface of the soil cement column 2 and the bottom surface of the core material 3 is equal to or greater than the diameter D of the core material 3.

以下、図2〜図7は芯材3の種々の配置又は構造を有する補強構造体1を示している。
図2は、上記図1と同様の方法で構築される構造体1において、3本の芯材3A〜3Cを有する構造の平面及び縦断面を示している。即ち、図1のものと同様にオーガによるソイルセメント柱2が形成され、その中に3本の芯材3A〜3Cが挿入されると同時に一体固化される。この場合、3本の芯材3A〜3Cはなるべくソイルセメント柱2の中心をその中心とする円周上に配置される。
Hereinafter, FIG. 2 to FIG. 7 show the reinforcing structure 1 having various arrangements or structures of the core material 3.
FIG. 2 shows a plane and a longitudinal section of a structure having three core members 3A to 3C in the structure 1 constructed by the same method as in FIG. That is, the soil cement pillar 2 by an auger is formed like the thing of FIG. 1, The three core materials 3A-3C are inserted in it, and it is solidified simultaneously. In this case, the three core members 3A to 3C are arranged on a circumference having the center of the soil cement column 2 as much as possible.

図3は、芯材3として例えば多数の木材又は竹材を束ねて使用する構造の実施例を示している。即ち、多数本の木材又は竹材を纏めて針金等で結束している。このような結束手段5〜5は適宜位置において行われ、このようにして構成された芯材3を例えば図1の場合と同様に、このソイルセメント柱2の中心部に挿入して一体化したものである。   FIG. 3 shows an embodiment of a structure in which, for example, a large number of wood or bamboo materials are bundled as the core material 3. That is, a large number of wood or bamboo materials are bundled together with a wire or the like. Such binding means 5 to 5 are performed at appropriate positions, and the core material 3 thus configured is integrated by being inserted into the center portion of the soil cement pillar 2 as in the case of FIG. Is.

図4及び図5には、1本の木材を芯材3として使用する例が示されている。
図4の場合、芯材3である木材の元口3aが上方に、末口3bが下方になるようにソイルセメント柱2内に挿入固化される。
また、図5では同様の木材の末口3bが上方に、元口3aが下方にくるようにソイルセメント柱2内に挿入固化されている。
4 and 5 show an example in which one piece of wood is used as the core material 3.
In the case of FIG. 4, it inserts and solidifies in the soil cement pillar 2 so that the main port 3a of the wood which is the core material 3 is upward and the end port 3b is downward.
Further, in FIG. 5, the same wood end 3b is inserted and solidified in the soil cement column 2 so that the original port 3a is downward.

図6には、芯材3として多数本の木材3A〜3Nを、環状に挿入して一体化した例が示されている。そして、これらの木材3A〜3Nの外接円の直径をDとすると、上述の芯材3の下端面とソイルセメント柱2の下面との距離Lとの関係は同様に、該距離Lが直径Dと同じかそれ以上とするものである。   FIG. 6 shows an example in which a large number of woods 3 </ b> A to 3 </ b> N are annularly inserted and integrated as the core material 3. And if the diameter of the circumscribed circle of these timbers 3A to 3N is D, the relationship between the distance L between the lower end surface of the core material 3 and the lower surface of the soil cement column 2 is the same. Is equal to or greater than

図7及び図8には、芯材3としての木材を途中で繋ぎ合わせた構造及び繋ぎ構造の実施例が示されている。この場合の木材の本数は図2の場合と同様となっているが、3本に限るものではなく、各木材3A~3Cはそれぞれ任意の位置で、比較的短い木材同士を繋ぎ合わせて構成されている。   7 and 8 show an example of a structure in which woods as the core material 3 are joined together and an example of the joining structure. The number of timbers in this case is the same as in FIG. 2, but the number is not limited to three. Each timber 3A to 3C is formed by connecting relatively short timbers at arbitrary positions. ing.

図8は繋ぎ合わせ手段の一例を示すもので、上部芯材(一本の木材)3Xと下部芯材(同じく一本の木材)3Yとを締め付けバンド6で連結するとともに、カスガイ7〜7を用いてこれらバンドと芯材3X,3Yとを固定して、必要な長さの芯材3A~3Cを構成している。
なお、この場合にも芯材3の外接円の直径Dと芯材3及びソイルセメント柱2の底面の間隔Lとの関係は、前述の通りである。
FIG. 8 shows an example of the joining means. The upper core material (one piece of wood) 3X and the lower core member (also one piece of wood) 3Y are connected by the fastening band 6, and the scabs 7-7 are connected. These bands and the core materials 3X and 3Y are fixed to form core materials 3A to 3C having a required length.
In this case as well, the relationship between the diameter D of the circumscribed circle of the core material 3 and the interval L between the bottom surfaces of the core material 3 and the soil cement column 2 is as described above.

本発明に係る補強構造における作用を説明すると、支持される構造物の重量が柱を介して構造体1に作用すると、その力は芯材3だけでなくソイルセメント柱2に分散され、更に、芯材の底面をソイルセメント柱2の底面から浮かせることにより、芯材底面の力を分散することができる。
従って、全体としてソイルセメント柱2の周面摩擦と底面の支持力との合計の支持力が発現されることとなり、強固な地盤の補強が実現される。
Explaining the operation in the reinforcing structure according to the present invention, when the weight of the structure to be supported acts on the structure 1 via the pillar, the force is dispersed not only in the core material 3 but also in the soil cement pillar 2, By lifting the bottom surface of the core material from the bottom surface of the soil cement column 2, the force on the bottom surface of the core material can be dispersed.
Therefore, the total supporting force of the peripheral surface friction and the supporting force of the bottom surface of the soil cement column 2 is expressed as a whole, and a strong ground reinforcement is realized.

本発明の第1の実施例に係る補強構造の平面及び断面図である。It is the top and sectional view of the reinforcement structure concerning the 1st example of the present invention. 本発明の第2の実施例に係る補強構造の平面及び断面図である。It is the top view and sectional drawing of a reinforcement structure concerning the 2nd example of the present invention. 芯材として木材あるいは竹材を多数本纏めて用いた実施例に係る補強構造の平面及び断面図である。It is the top view and sectional drawing of the reinforcement structure which concerns on the Example which used many wood or bamboo materials collectively as a core material. 芯材として1本の木材を用いた実施例に係る補強構造の断面図である。It is sectional drawing of the reinforcement structure which concerns on the Example using one wood as a core material. 芯材として1本の木材を用いた実施例に係る補強構造の断面図である。It is sectional drawing of the reinforcement structure which concerns on the Example using one wood as a core material. 本発明の第3の実施例に係る補強構造の平面及び断面図である。It is a top view and a sectional view of a reinforcement structure concerning the 3rd example of the present invention. 芯材を繋ぎ合わせて構成した実施例に係る補強構造の平面及び断面図である。It is the top view and sectional drawing of the reinforcement structure which concern on the Example comprised by connecting the core material. 芯材同士の繋ぎ合わせ手段の説明図である。It is explanatory drawing of the connection means of core materials. ソイルセメント柱の作成説明図である。It is creation explanatory drawing of a soil cement pillar.

符号の説明Explanation of symbols

1 補強構造体
2 ソイルセメント柱
3 芯材
5 結束手段
6 締め付けバンド
7 カスガイ














DESCRIPTION OF SYMBOLS 1 Reinforcement structure 2 Soil cement pillar 3 Core material 5 Bundling means 6 Tightening band 7 Kasugai














Claims (6)

地盤を掘削しながら固化剤を注入撹拌してソイルセメント柱体を造成し、該ソイルセメント柱体内に芯材を挿入して固化させる形式の地盤補強方法であって、芯材は木材又は竹材であることを特徴とする地盤補強方法。 It is a ground reinforcement method in which a solidifying agent is injected and stirred while excavating the ground to form a soil cement pillar, and a core material is inserted into the soil cement pillar and solidified. The core material is made of wood or bamboo. A ground reinforcement method characterized by being. 請求項1記載の地盤補強方法であって、上記芯材は1本あるいは複数本の木材であることを特徴とする地盤補強方法。 2. The ground reinforcement method according to claim 1, wherein the core material is one or a plurality of timbers. 請求項1又は2記載の地盤補強方法であって、上記芯材はその長手方向の途中で繋ぎ合わされていることを特徴とする地盤補強方法。 The ground reinforcement method according to claim 1 or 2, wherein the core members are joined together in the longitudinal direction. 請求項1記載の地盤補強方法であって、上記芯材は木材あるいは竹材を束ねたものであることを特徴とする地盤補強方法。 2. The ground reinforcement method according to claim 1, wherein the core material is a bundle of wood or bamboo. 請求項2記載の地盤補強方法であって、上記芯材は複数本の木材あるいは竹材を環状に配列挿入されたものであることを特徴とする地盤補強方法。 3. The ground reinforcement method according to claim 2, wherein the core material is formed by inserting a plurality of wood or bamboo materials in an annular arrangement. 請求項1〜5の何れかに記載の地盤補強方法であって、上記芯材の底面と上記ソイルセメントの底面との間隔は、該芯材が一本の場合その直径以上、該芯材が複数本の場合その外接円の直径以上であることを特徴とする地盤補強方法。










The ground reinforcing method according to any one of claims 1 to 5, wherein the interval between the bottom surface of the core material and the bottom surface of the soil cement is equal to or more than the diameter of the core material when the core material is one. A ground reinforcement method characterized in that, when there are a plurality of pieces, the diameter is equal to or larger than the diameter of the circumscribed circle.










JP2005183810A 2005-06-23 2005-06-23 Earth reinforcement method Pending JP2007002522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183810A JP2007002522A (en) 2005-06-23 2005-06-23 Earth reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183810A JP2007002522A (en) 2005-06-23 2005-06-23 Earth reinforcement method

Publications (1)

Publication Number Publication Date
JP2007002522A true JP2007002522A (en) 2007-01-11

Family

ID=37688383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183810A Pending JP2007002522A (en) 2005-06-23 2005-06-23 Earth reinforcement method

Country Status (1)

Country Link
JP (1) JP2007002522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211480A (en) * 2006-02-09 2007-08-23 Traverse:Kk Soil-cement composite pile
JP2010144371A (en) * 2008-12-17 2010-07-01 System Keisoku Kk Foundation structure
CN103953205A (en) * 2014-05-15 2014-07-30 福州大学 Bamboo earthquake-proof reinforcing structure of existing raw soil wall and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211480A (en) * 2006-02-09 2007-08-23 Traverse:Kk Soil-cement composite pile
JP4566138B2 (en) * 2006-02-09 2010-10-20 株式会社トラバース Soil cement composite pile
JP2010144371A (en) * 2008-12-17 2010-07-01 System Keisoku Kk Foundation structure
CN103953205A (en) * 2014-05-15 2014-07-30 福州大学 Bamboo earthquake-proof reinforcing structure of existing raw soil wall and method thereof
CN103953205B (en) * 2014-05-15 2016-06-01 福州大学 A kind of existing immature soil wall bamboo wood seismic reinforcing structure and method thereof

Similar Documents

Publication Publication Date Title
CN100567659C (en) The base configuration of iron tower
JP5136270B2 (en) Synthetic friction pile construction method
JP5330874B2 (en) Soil cement column mountain wall
KR101203627B1 (en) Composite pile connected inner connecting member and composite construction method using the same
JP6632028B2 (en) Concrete assembly retaining wall
JP2007002522A (en) Earth reinforcement method
JP2008231816A (en) Construction method of pile foundation structure
KR20190109890A (en) Composite phc pile for soil retaining wall
JP5456627B2 (en) Connection structure and method of connection between pile and steel column
JP4830589B2 (en) Core material, soil cement wall, soil cement wall pile, method of building soil cement wall
KR101148815B1 (en) Composite pile connected inner connecting member and composite construction method using the same
JP4636478B2 (en) Liquefaction prevention structure
WO2012114529A1 (en) Method for reinforcing piling, and piling
JP4466418B2 (en) Soil cement wall pile, soil cement structure
JP2007023539A (en) Foam resin masonry pile
JP5628459B1 (en) Guard fence support structure
JP2002138486A (en) Head rigidly-coupling member for landslide suppressing combined pile group composed of steel pipe
JP2006016777A (en) Rotatingly press-fitted pile
KR102156277B1 (en) Basic file construction method of soft ground and thereof foundation file device
KR101842392B1 (en) Prefabricated steel pole for soil excavation and its construction method
JP5777435B2 (en) Reinforcement method for foundations for small buildings
JP4419456B2 (en) Method of joining reinforced concrete member and steel pipe concrete
KR100661123B1 (en) Concrete Pile with an Extended Head Using Reinforcing Plate
JP3236541B2 (en) Joint method between knotted pile and steel pipe pile
JP7360661B1 (en) boundary stake