JP2007002302A - High strength-high ductility carbon steel, and method for producing the same - Google Patents

High strength-high ductility carbon steel, and method for producing the same Download PDF

Info

Publication number
JP2007002302A
JP2007002302A JP2005184120A JP2005184120A JP2007002302A JP 2007002302 A JP2007002302 A JP 2007002302A JP 2005184120 A JP2005184120 A JP 2005184120A JP 2005184120 A JP2005184120 A JP 2005184120A JP 2007002302 A JP2007002302 A JP 2007002302A
Authority
JP
Japan
Prior art keywords
carbon steel
strength
ductility
steel material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005184120A
Other languages
Japanese (ja)
Other versions
JP4696263B2 (en
Inventor
Hongwang Zhang
ホンワン ツァン
Gopalan Raghavan
ラガバン ゴーパラン
Toshimoto Mukai
敏司 向井
Kazuhiro Houno
和博 宝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005184120A priority Critical patent/JP4696263B2/en
Publication of JP2007002302A publication Critical patent/JP2007002302A/en
Application granted granted Critical
Publication of JP4696263B2 publication Critical patent/JP4696263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon steel in which high strength and high ductility are balanced. <P>SOLUTION: Each powder of pure iron and carbon or the powder of a carbon steel is subjected to mechanical milling treatment. The obtained powder is subjected to discharge plasma sintering, so as to be a steel having a structure in which the average crystal grain size of a mother phase is <1 μm, and cementite grains with a size of ≤100 nm are uniformly dispersed, exhibiting a yield strength of ≥1,500 MPa and a true strain of ≥0.2, and also exhibiting work hardening. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、航空機、自動車等の一般構造用途をはじめ、マイクロマシン等の微小構造用部材への適用においても有用な、ナノオーダーの結晶粒で形成された、高強度と高延性とのバランスを有する炭素鋼材とその製造方法に関するものである。   The present invention has a balance between high strength and high ductility, which is formed of nano-order crystal grains, and is useful for application to microstructural members such as micromachines as well as general structural uses such as aircraft and automobiles. The present invention relates to a carbon steel material and a manufacturing method thereof.

従来より、炭素鋼の高強度化とその延性の向上について様々な観点から検討が進められている。鉄鋼材料の高強度化の方策としては、結晶粒組織の微細化が有効な手段として考えられており、そのための工夫も提案されている。   Conventionally, investigations have been made from various viewpoints on increasing the strength of carbon steel and improving its ductility. As a measure for increasing the strength of steel materials, refinement of the grain structure is considered as an effective means, and a device for that purpose has also been proposed.

たとえば、中・低炭素鋼に関して、均質な組織によって高強度化、高延性化、高靱性化を達成した鋼線、線材および棒鋼についての提案がされている。(特許文献1)
これら、フェライトを主相とし、平均フェライト粒径が2μm未満、フェライト粒のアスペクト比が1.5未満であることを特徴とする超微細粒を有する材料であって、炭素濃度範囲は0.05〜0.35wt%としている。また、この材料では、伸線加工などを熱間で行うことにより、動的再結晶を利用して、バルク材を出発材とした結晶粒組織の微細化を行っている。
For example, regarding medium and low carbon steels, proposals have been made for steel wires, wire rods and steel bars that have achieved high strength, high ductility, and high toughness with a homogeneous structure. (Patent Document 1)
These are materials having ultrafine grains characterized in that ferrite is the main phase, the average ferrite grain size is less than 2 μm, and the ferrite grain aspect ratio is less than 1.5, and the carbon concentration range is 0.05 ˜0.35 wt%. In addition, in this material, the grain structure is refined using a bulk material as a starting material by using dynamic recrystallization by performing wire drawing or the like hot.

高強度−高延性が得られた材料の例として、炭素濃度0.25重量%の材料について平均粒径1.26μmを得ており、結果として、降伏強度1290MPa、引張伸び値8.6%を得ている。   As an example of a material having high strength and high ductility, an average particle size of 1.26 μm was obtained for a material having a carbon concentration of 0.25% by weight. As a result, a yield strength of 1290 MPa and a tensile elongation value of 8.6% were obtained. It has gained.

しかし、この材料では、強度特性、延性のレベルとそのバランスは必ずしも十分ではない。   However, this material does not necessarily have sufficient strength characteristics, ductility level and balance.

そこで、炭素含有料0.2wt%以下の普通低炭素鋼または0.1%以下でマルテンサイト変態促進に有効な量のBを添加した普通低炭素鋼のオーステナイト結晶粒を粗大化させた後に水冷することにより得られたマルテンサイト相が90%以上の鋼材を低ひずみ加工することで、引張強度が800MPa以上であり、均一伸びが5%以上、破断伸びが20%以上の高強度・高延性炭素鋼とすることが提案されている。(特許文献2)
ここでは、平均結晶粒径として、1.0μm以下の超微細結晶粒フェライト組織を特徴としている。
Therefore, after austenite crystal grains of a normal low carbon steel with a carbon content of 0.2 wt% or less or a normal low carbon steel with 0.1% or less and an effective amount of B added to promote martensitic transformation are coarsened, The steel material with a martensite phase of 90% or more obtained by performing low strain processing has a high strength and high ductility with a tensile strength of 800 MPa or more, a uniform elongation of 5% or more, and a breaking elongation of 20% or more. Proposed to be carbon steel. (Patent Document 2)
Here, the average crystal grain size is characterized by an ultrafine grain ferrite structure of 1.0 μm or less.

この鋼材においては、強度−延性バランスの改善の方策として、セメンタイト粒子の均一分散を指摘している。   In this steel material, the uniform dispersion of cementite particles is pointed out as a measure for improving the strength-ductility balance.

ただ、この提案された鋼材の場合には、炭素濃度が比較的低いこととあいまって、600℃での結晶粒成長が容易に生起し、結果的に強度−延性バランスは必ずしも満足できるものとはなってないのが実情である。   However, in the case of this proposed steel material, combined with a relatively low carbon concentration, crystal grain growth at 600 ° C. occurs easily, and as a result, the strength-ductility balance is not necessarily satisfactory. The situation is not.

また、従来より結晶粒微細化の手段として、強いひずみ加工が知られており、例として、ECAEまたはECAP(Equal-Channel-Angular-Extrusion /Equal-Channel-Angular-Pressing)法がある(たとえば非特許文献1−2)。せん断押出加工、または、メカニカル・ミリング法により素材に大ひずみを導入し、再結晶による結晶粒組織の微細化が図られてきた。しかしながら、ECAPを施された合金は、引張ひずみにして0.2〜0.3程度の延性を示すものの、降伏強度は700〜800MPa程度しか無かった。また、メカニカル・ミリング法により創製された鉄鋼材料では、粉末をパルク体に固化する手法
として、これまではホットプレスが用いられてきた。(たとえば非特許文献3−4)。
Conventionally, strong strain processing is known as a means for grain refinement, and examples include ECAE or ECAP (Equal-Channel-Angular-Extrusion / Equal-Channel-Angular-Pressing) methods (for example, non- Patent Document 1-2). A large strain has been introduced into a material by shear extrusion or mechanical milling, and the crystal grain structure has been refined by recrystallization. However, although the alloy subjected to ECAP exhibits ductility of about 0.2 to 0.3 in terms of tensile strain, the yield strength is only about 700 to 800 MPa. Moreover, in the steel material created by the mechanical milling method, the hot press has been used until now as a method of solidifying the powder into a bulk material. (For example, nonpatent literature 3-4).

このホットプレスを用いた固化では、2500MPa程度の極めて高い降伏応力が得られているが、その半面、延性は6%以下と極めて低い延性しか得られていない。
特開平11−124655号公報 特開2002−28527号公報 Acta Mater 2004, 52, 1859 Metal Mater Trans 2003,34A,71 Acta Mater 2003, 51, 3490 Appl Phys Lett 2002,81,1240
In this solidification using a hot press, an extremely high yield stress of about 2500 MPa is obtained, but on the other hand, only a very low ductility of 6% or less is obtained.
Japanese Patent Laid-Open No. 11-124655 JP 2002-28527 A Acta Mater 2004, 52, 1859 Metal Mater Trans 2003,34A, 71 Acta Mater 2003, 51, 3490 Appl Phys Lett 2002,81,1240

本発明は、以上のとおりの背景から、従来技術の問題点を解消して、従来に比べてより強度と大きな延性とをバランスさせた新しい鉄鋼材料とその製造方法を提供することを課題としている。   From the background as described above, the present invention has an object to provide a new steel material and a method for manufacturing the same, which solves the problems of the prior art and balances the strength and the large ductility as compared with the prior art. .

本発明は、上記の課題を解決するものとして以下のことを特徴とする炭素鋼材とその製造方法を提供する。   In order to solve the above problems, the present invention provides a carbon steel material characterized by the following and a method for producing the same.

第1:0.1〜2.1質量%の範囲の炭素を含有する鉄と炭素並びに不可避的不純物とよりなる炭素鋼材であって、母相の平均結晶粒径が1μm未満で、100nm以下のサイズのセメンタイト粒子が分散した組織を有し、降伏強度が1500MPa以上で、真ひずみ0.2以上の延性を示し、かつ、加工硬化を示す高強度・高延性炭素鋼材。   A carbon steel material comprising iron and carbon containing carbon in the range of 1: 0.1 to 2.1% by mass and unavoidable impurities, wherein the average crystal grain size of the parent phase is less than 1 μm and 100 nm or less A high-strength, high-ductility carbon steel material having a structure in which cementite particles of a size are dispersed, having a yield strength of 1500 MPa or more, exhibiting a ductility with a true strain of 0.2 or more, and exhibiting work hardening.

第2:母相の平均結晶粒径が50〜500nmの範囲で、50nm以下のサイズのセメンタイト粒子が分散した組織を有している高強度・高延性炭素鋼材。   Second: A high-strength and high-ductility carbon steel material having a structure in which cementite particles having a size of 50 nm or less are dispersed in an average crystal grain size of the parent phase in the range of 50 to 500 nm.

第3:破断時の真応力が3GPa以上で、硬度が6GPa以上である高強度・高延性炭素鋼材。   Third: A high strength and high ductility carbon steel material having a true stress at break of 3 GPa or more and a hardness of 6 GPa or more.

第4:上記いずれかの炭素鋼材の製造方法であって、純鉄と炭素の各々の粉末、もしくは炭素鋼の粉末を出発材料としてメカニカル・ミリングを行い、得られた粉末を放電プラズマ焼結して固化させる高強度・高延性炭素鋼材の製造方法。   Fourth: A method for producing any one of the above carbon steel materials, wherein each powder of pure iron and carbon, or carbon steel powder is subjected to mechanical milling, and the obtained powder is subjected to spark plasma sintering. A method for producing high-strength, high-ductility carbon steel that is solidified by heating.

第5:メカニカル・ミリング後の粉末の内部結晶平均粒径が500nm以下であり、構成相がフェライト単相またはフェライトとセメンタイトの二相とする請求項4の高強度・高延性炭素鋼材の製造方法。   5: The method for producing a high-strength, high-ductility carbon steel material according to claim 4, wherein the powder after mechanical milling has an average internal crystal grain size of 500 nm or less and the constituent phase is a single ferrite phase or a two-phase ferrite and cementite. .

第6:不活性ガス雰囲気もしくは真空雰囲気下でメカニカル・ミリングを行う高強度・高延性炭素鋼材の製造方法。   6th: The manufacturing method of the high strength and high ductility carbon steel material which performs mechanical milling in inert gas atmosphere or a vacuum atmosphere.

第7:放電プラズマ焼結後の相対密度を95%以上とする高強度・高延性炭素鋼材の製造方法。   Seventh: A method for producing a high-strength, high-ductility carbon steel having a relative density of 95% or more after spark plasma sintering.

第8:520〜700℃の温度範囲で1分以上放電プラズマ焼結を行う高強度・高延性炭素鋼材の製造方法。   Eighth: A method for producing a high-strength, high-ductility carbon steel material in which discharge plasma sintering is performed for 1 minute or more in a temperature range of 520 to 700 ° C.

上記のとおりの本発明の鋼材の製造方法によれば、(1)メカニカル・ミリング法による結晶粒組織のナノオーダー化を行い、(2)得られた粉末を放電プラズマにより、比較的低温で焼結を行うことにより、セメンタイト相の均一分散とナノオーダーの超微細結晶粒組織を維持させている。   According to the manufacturing method of the steel material of the present invention as described above, (1) the nano-order of the crystal grain structure is performed by mechanical milling, and (2) the obtained powder is sintered at a relatively low temperature by discharge plasma. As a result of the sintering, a uniform dispersion of the cementite phase and a nano-order ultrafine grain structure are maintained.

このため、本発明によれば、極めて高い降伏強度の大きな延性そして破断に至るまでの大きな加工硬化を示す、高強度−高延性炭素鋼が提供される。   For this reason, according to the present invention, a high strength-high ductility carbon steel is provided which exhibits a high ductility with a very high yield strength and a high work hardening until rupture.

本発明の製造方法は、メカニカル・ミリングによる強いひずみ加工を所定の時間行うことにより、炭素粉末と鉄粉末の均一混合が可能である。この場合、あらかじめ所定の濃度を有する炭素鋼を出発材料とすることも可能である。上記の両出発材料ともに、メカニカル・ミリング中に新生界面が導入されることにより、結晶粒組織の超微細化を可能としている。また、メカニカル・ミリングにより製造された粉末の超微細結晶粒組織を維持するために、従来のホットプレス法と比較して、約2/3程度の温度で焼結を可能とする放電プラズマ焼結の併用が不可欠である。   In the production method of the present invention, carbon powder and iron powder can be uniformly mixed by performing strong strain processing by mechanical milling for a predetermined time. In this case, carbon steel having a predetermined concentration in advance can be used as a starting material. In both of the above starting materials, a new interface is introduced during mechanical milling, thereby enabling ultrafine grain structure. In addition, in order to maintain the ultrafine grain structure of the powder produced by mechanical milling, compared with the conventional hot press method, the discharge plasma sintering enables sintering at a temperature of about 2/3. The combined use is essential.

超微細結晶粒組織の形成と維持に不可欠なセメンタイト粒子を形成させるために、炭素濃度は、0.1〜2.1質量%の範囲になるようにする。より好適には0.3〜1.5質量%の範囲である。   In order to form cementite particles that are indispensable for the formation and maintenance of an ultrafine crystal grain structure, the carbon concentration is set in the range of 0.1 to 2.1% by mass. More preferably, it is in the range of 0.3 to 1.5% by mass.

メカニカル・ミリングを施すことにより、時間経過と共に粉末内部の結晶粒組織は微細化される。ある所定の結晶粒径に到達するためには、回転数やプロセス中の温度管理が不可欠であるが、ここではプロセス終了後の到達粒径が最終バルク材の強度−延性バランス向上に重要な因子であるため、プロセスの回転数や時間の選定は、メカニカル・ミリングプロセス後の到達結晶粒径を1μm以下となるようにする。より好ましくは粉末母相の平均結晶粒径は100nm以下となるようにする。   By applying mechanical milling, the crystal grain structure inside the powder is refined over time. In order to reach a certain crystal grain size, the rotational speed and temperature control during the process are indispensable, but here the final grain size after the end of the process is an important factor for improving the strength-ductility balance of the final bulk material. Therefore, the selection of the rotation speed and time of the process is performed so that the ultimate crystal grain size after the mechanical milling process is 1 μm or less. More preferably, the average crystal grain size of the powder matrix is set to 100 nm or less.

メカニカル・ミリング中に酸素が混入すると脆弱な酸化物相が形成されるため、延性が著しく低下する。そのため、メカニカル・ミリング開始時から酸素が極力排除された雰囲気とすることが重要である。   When oxygen is mixed during mechanical milling, a brittle oxide phase is formed, and ductility is significantly reduced. Therefore, it is important to create an atmosphere in which oxygen is excluded as much as possible from the start of mechanical milling.

放電プラズマ焼結時の温度として、結晶粒が粗大化しないための上限温度を700℃、固化後に高密度のパルク体を得るための下限温度として、520℃を設定する。なお、焼結に必要な時間を1分以上とし、保持後の結晶粒径が1μmを越えない範囲で保持時間を設定する。   As a temperature at the time of spark plasma sintering, an upper limit temperature for preventing the crystal grains from coarsening is set to 700 ° C., and a lower limit temperature for obtaining a high-density parc body after solidification is set to 520 ° C. The time required for sintering is set to 1 minute or longer, and the holding time is set in a range where the crystal grain size after holding does not exceed 1 μm.

本発明では純鉄ならびに炭素の粉末を出発材としてメカニカル・ミリングを施すことにより、ナノオーダーまで結晶粒を超微細し、高強度鉄鋼粉末材料を作製している。その後に放電プラズマ焼結による温間プレス固化を従来ホットプレス法の約2/3程度の比較的低温度で実施することにより、セメンタイト相の粗大化を抑制しながら、その均一分散を図ることにより、超微細結晶粒組織の粗大化を効果的に抑制し、例えば、実施例で示したように、平均結晶粒径150nmを得ている。この例示の材料では1.9GPaの極めて降伏強度を示しながら、圧縮ひずみにして0.35の延性と破断に至るまでの加工硬化を示している。   In the present invention, by performing mechanical milling using pure iron and carbon powder as starting materials, the crystal grains are made ultrafine to the nano order, and a high-strength steel powder material is produced. After that, by carrying out warm press solidification by spark plasma sintering at a relatively low temperature of about 2/3 of the conventional hot press method, while suppressing the coarsening of the cementite phase, the uniform dispersion is achieved. The coarsening of the ultrafine crystal grain structure is effectively suppressed, and for example, as shown in the examples, an average crystal grain size of 150 nm is obtained. While this exemplary material exhibits a very high yield strength of 1.9 GPa, it exhibits a compressive strain of 0.35 ductility and work hardening to failure.

本発明の炭素鋼材においては、その組成は、上記のとおりの0.1〜2.1質量%、より好ましくは0.3〜1.5質量%の範囲の炭素を含有する鉄と炭素並びに不可避的不純物とよりなるものである。そして母相の平均結晶粒径が1μm未満、よりこのましくは50〜500nmの範囲で、100nm以下のサイズの、より好ましくは50nm以下のサ
イズのセメンタイト粒子が均一に分散されて組織を有している。
In the carbon steel material of the present invention, the composition is 0.1 to 2.1% by mass as described above, more preferably iron and carbon containing carbon in the range of 0.3 to 1.5% by mass, and unavoidable. It is made up of mechanical impurities. The average crystal grain size of the parent phase is less than 1 μm, more preferably in the range of 50 to 500 nm, and cementite particles having a size of 100 nm or less, more preferably 50 nm or less, are uniformly dispersed and have a structure. ing.

本発明の鋼材は、降伏強度1500MPa以上、真ひずみ0.2以上の延性を示すものである。さらに好適なものとして、破断時の真応力が3GPa以上、硬度が6GPa以上、相対密度が95%以上のものが提供される。   The steel material of the present invention exhibits ductility with a yield strength of 1500 MPa or more and a true strain of 0.2 or more. More preferably, a material having a true stress at break of 3 GPa or more, a hardness of 6 GPa or more, and a relative density of 95% or more is provided.

そこで以下に、実施例と参考例を示す。もちろん、以下の例によって本発明が限定されることはない。   Then, an Example and a reference example are shown below. Of course, the present invention is not limited by the following examples.

以下の実施例と参考例は、Fe−0.8wt%Cの炭素鋼である。
<参考例1>
純度99.99%の鉄粉および純度99.999%の炭素粉末を出発材として、メカニカル・ミリングを実施した。メカニカル・ミリングには市販の遊星ボールミルを使用し、ミリングのポットならびにボールはステンレス鋼とした。ステンレスボールと混合粉末の重量比を10:1となるように混合粉末を秤量し、アルゴン雰囲気中で容器を密閉後、ミリングを開始した。ミリングの条件として、毎分250回転に設定し、合計100時間実施した。なお、20時間毎に2時間の運転停止を行い、温度上昇を防止した。
The following examples and reference examples are carbon steel of Fe-0.8 wt% C.
<Reference Example 1>
Mechanical milling was performed using iron powder with a purity of 99.99% and carbon powder with a purity of 99.999% as starting materials. A mechanical planetary ball mill was used for mechanical milling, and the milling pot and balls were made of stainless steel. Milling was started after the mixed powder was weighed so that the weight ratio of the stainless ball to the mixed powder was 10: 1 and the container was sealed in an argon atmosphere. Milling conditions were set at 250 revolutions per minute for a total of 100 hours. The operation was stopped for 2 hours every 20 hours to prevent the temperature from rising.

上記メカニカル・ミリングの後に粉末を内径10mmの炭素型に入れ、市販の放電プラズマ焼結装置(住友石炭鉱業・製)を用いて固化を実施した。固化は、10-3Pa以下の真空中で、付加荷重を5.5kN(固化応力として70MPaに相当)とし、保持時間10分、温度400℃にて実施した。 After the mechanical milling, the powder was put into a carbon mold having an inner diameter of 10 mm and solidified using a commercially available spark plasma sintering apparatus (Sumitomo Coal Mining Co., Ltd.). Solidification was performed in a vacuum of 10 −3 Pa or less, with an applied load of 5.5 kN (corresponding to 70 MPa as a solidification stress), a holding time of 10 minutes, and a temperature of 400 ° C.

固化後に得られたパルク材について、X線回折による観察を行ったところ、メカニカル・ミリング直後の粉末には見られなかったセメンタイトのピークが確認された(図1参照)。固化の後に得られたパルク材の平均結晶粒径、格子ひずみ、硬度、相対密度を測定したところ、表1に示すように40nm以下の超微細結晶粒組織が形成されているが、相対密度は78%を示しており、硬度も2.1GPa程度であった。パルク試験片について圧縮試験を行ったところ、弾性変形途中で破断に至り、高強度−高延性は得られなかった。<参考例2>
上記のプロセス条件として放電プラズマ焼結の温度のみを500℃に変更して、素材プロセスを実施した。
When the parc material obtained after solidification was observed by X-ray diffraction, a cementite peak that was not found in the powder immediately after mechanical milling was confirmed (see FIG. 1). When the average crystal grain size, lattice strain, hardness, and relative density of the pulverized material obtained after solidification were measured, an ultrafine grain structure of 40 nm or less was formed as shown in Table 1, but the relative density was The hardness was 78% and the hardness was about 2.1 GPa. When a compression test was performed on the parc test piece, it was broken during elastic deformation, and high strength-high ductility was not obtained. <Reference Example 2>
The material process was carried out by changing only the discharge plasma sintering temperature to 500 ° C. as the above process conditions.

固化後に得られたパルク材について、X線回折による観察を行ったところ、上記400℃の場合と同様にメカニカル・ミリング直後の粉末には見られなかったセメンタイトのピークが確認された(図1参照)。固化の後に得られたパルク材の平均結晶粒径、格子ひずみ、硬度、相対密度を測定したところ、表1に示すように60nm以下の超微細結晶粒組織が形成されているが、相対密度は89%を示していた。また、硬度は6GPa程度まで増加した。パルク試験片について圧縮試験を行ったところ、2GPa程度の極めて高い降伏強度が得られたが、塑性ひずみは0.05程度であり、高延性は得られなかった(図3参照)。
<実施例1>
上記のプロセス条件として放電プラズマ焼結の温度のみを600℃に変更して、素材プロセスを実施した。
When the parc material obtained after solidification was observed by X-ray diffraction, a cementite peak that was not found in the powder immediately after mechanical milling was confirmed as in the case of 400 ° C. (see FIG. 1). ). When the average crystal grain size, lattice strain, hardness, and relative density of the bulk material obtained after solidification were measured, an ultrafine grain structure of 60 nm or less was formed as shown in Table 1, but the relative density was 89%. Moreover, the hardness increased to about 6 GPa. When the compression test was performed on the parc specimen, an extremely high yield strength of about 2 GPa was obtained, but the plastic strain was about 0.05, and high ductility was not obtained (see FIG. 3).
<Example 1>
The material process was carried out by changing only the discharge plasma sintering temperature to 600 ° C. as the above process conditions.

固化後に得られたパルク材について、X線回折による観察を行ったところ、上記400および500℃の場合と同様にメカニカル・ミリング直後の粉末には見られなかったセメンタイトのピークが確認された(図1参照)。固化の後に得られたパルク材の平均結晶粒径、格子ひずみ、硬度、相対密度を測定したところ、表1に示すように150nm程度の
超微細結晶粒と30nm以下の微細なセメンタイト粒子の均一分散組織が形成されており(図2参照)、相対密度は99%と極めて高い値が得られ、硬度は6.2GPa程度まで増加した。パルク試験片について圧縮試験を行ったところ、1.9GPa程度の極めて高い降伏強度が得られたが、塑性ひずみとしては0.35程度の高延性が得られた(図3参照)。また、破断時の真応力は3.5GPa近い値が得られており、十分な加工硬化能を有することが確認された。
When the pulverized material obtained after solidification was observed by X-ray diffraction, a peak of cementite that was not found in the powder immediately after mechanical milling was confirmed as in the case of 400 and 500 ° C. (FIG. 1). When the average crystal grain size, lattice strain, hardness, and relative density of the bulk material obtained after solidification were measured, as shown in Table 1, uniform dispersion of ultrafine crystal grains of about 150 nm and fine cementite particles of 30 nm or less A structure was formed (see FIG. 2), the relative density was as high as 99%, and the hardness increased to about 6.2 GPa. When a compression test was performed on the parc specimen, an extremely high yield strength of about 1.9 GPa was obtained, but a high ductility of about 0.35 was obtained as the plastic strain (see FIG. 3). Moreover, the true stress at the time of the fracture was a value close to 3.5 GPa, and it was confirmed that it had sufficient work hardening ability.

開発合金(Fe−0.8wt%C)のX線回折結果を示した図であって、メカニカル・ミリング直後の粉末(As-milled Fe-C)ではフエライトのピークのみであり、炭素がフエライト内部に固溶していることがわかり、放電プラズマ焼結(SPS)を行った後には、セメンタイト(Fe3C)に相当するピークの存在が確認される。It is the figure which showed the X-ray diffraction result of the development alloy (Fe-0.8wt% C), and in the powder (As-milled Fe-C) just after mechanical milling, there is only the peak of ferrite, carbon is inside the ferrite After the discharge plasma sintering (SPS) is performed, the presence of a peak corresponding to cementite (Fe 3 C) is confirmed. 開発合金(Fe−0.8wt%C)の固化成型後の結晶粒組織と結晶粒径の分布を示した図であって、ここでは、実施例1の焼結温度600℃にて得られた結果を示しており、左図の左上隅に示した電子線回折パターンより、多結晶組織であることと、また、中央図にセメンタイトの分布を白色で示しており、微細なセメンタイト粒子が均一分散していることがわかり、右図の結晶粒度分布から、50〜200nmの範囲の結晶粒が大部分を占めており、平均結晶粒径が150nm程度であることがわかる。It is the figure which showed distribution of the crystal grain structure and crystal grain size after solidification shaping | molding of a development alloy (Fe-0.8 wt% C), Comprising: Here, it obtained at the sintering temperature of 600 degreeC of Example 1. The result shows that the electron diffraction pattern shown in the upper left corner of the left figure shows a polycrystalline structure, and the center figure shows the distribution of cementite in white, and fine cementite particles are uniformly dispersed. From the grain size distribution in the right figure, it can be seen that most of the crystal grains in the range of 50 to 200 nm occupy about 150 nm. 開発合金(Fe−0.8wt%C)を室温にて圧縮変形させた場合に得られる真応力−真ひずみ関係を示したものであって、ここでは、参考例2と実施例1に示す500℃ならびに600℃で放電プラズマ焼結した材料の結果について示している。This shows the true stress-true strain relationship obtained when the developed alloy (Fe-0.8 wt% C) is compressed and deformed at room temperature. Here, 500 shown in Reference Example 2 and Example 1 is shown. The results are shown for materials that were spark plasma sintered at ℃ and 600 ℃.

Claims (8)

0.1〜2.1質量%の範囲の炭素を含有する鉄と炭素並びに不可避的不純物とよりなる炭素鋼材であって、母相の平均結晶粒径が1μm未満で、100nm以下のサイズのセメンタイト粒子が分散した組織を有し、降伏強度が1500MPa以上で、真ひずみ0.2以上の延性を示し、かつ、加工硬化を示すことを特徴とする高強度・高延性炭素鋼材。   A carbon steel material comprising iron and carbon containing carbon in the range of 0.1 to 2.1% by mass and inevitable impurities, and having an average crystal grain size of a parent phase of less than 1 μm and a size of 100 nm or less. A high-strength and high-ductility carbon steel material having a structure in which particles are dispersed, having a yield strength of 1500 MPa or more, exhibiting ductility with a true strain of 0.2 or more, and exhibiting work hardening. 母相の平均結晶粒径が50〜500nmの範囲で、50nm以下のサイズのセメンタイト粒子が分散した組織を有していることを特徴とする請求項1の高強度・高延性炭素鋼材。   2. The high-strength and high-ductility carbon steel material according to claim 1, which has a structure in which cementite particles having a size of 50 nm or less are dispersed in an average crystal grain size of the parent phase in the range of 50 to 500 nm. 破断時の真応力が3GPa以上で、硬度が6GPa以上であることを特徴とする請求項1または2の高強度・高延性炭素鋼材。   The high-strength and high-ductility carbon steel material according to claim 1 or 2, wherein the true stress at break is 3 GPa or more and the hardness is 6 GPa or more. 請求項1から3のいずれかの炭素鋼材の製造方法であって、純鉄と炭素の各々の粉末、もしくは炭素鋼の粉末を出発材料としてメカニカル・ミリングを行い、得られた粉末を放電プラズマ焼結して固化させることを特徴とする高強度・高延性炭素鋼材の製造方法。   A method for producing a carbon steel material according to any one of claims 1 to 3, wherein mechanical milling is performed using pure iron and carbon powder, or carbon steel powder as a starting material, and the obtained powder is subjected to discharge plasma sintering. A method for producing a high-strength, high-ductility carbon steel material characterized by being consolidated and solidified. メカニカル・ミリング後の粉末の内部結晶平均粒径が500nm以下であり、構成相がフェライト単相またはフェライトとセメンタイトの二相であることを特徴とする請求項4の高強度・高延性炭素鋼材の製造方法。   5. The high strength and high ductility carbon steel material according to claim 4, wherein the powder after mechanical milling has an average internal crystal grain size of 500 nm or less and a constituent phase is a single phase of ferrite or two phases of ferrite and cementite. Production method. 不活性ガス雰囲気もしくは真空雰囲気下でメカニカル・ミリングを行うことを特徴とする請求項4または5の高強度・高延性炭素鋼材の製造方法。   6. The method for producing a high strength / high ductility carbon steel material according to claim 4 or 5, wherein mechanical milling is performed in an inert gas atmosphere or a vacuum atmosphere. 放電プラズマ焼結後の相対密度を95%以上とすることを特徴とする請求項4から6のいずれかの高強度・高延性炭素鋼材の製造方法。   The method for producing a high strength / high ductility carbon steel material according to any one of claims 4 to 6, wherein a relative density after spark plasma sintering is 95% or more. 520〜700℃の温度範囲で1分以上放電プラズマ焼結を行うことを特徴とする請求項4から7のいずれかの高強度・高延性炭素鋼材の製造方法。

8. The method for producing a high-strength and high-ductility carbon steel material according to any one of claims 4 to 7, wherein the discharge plasma sintering is performed for 1 minute or more in a temperature range of 520 to 700 ° C.

JP2005184120A 2005-06-23 2005-06-23 High strength and high ductility carbon steel and its manufacturing method Expired - Fee Related JP4696263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184120A JP4696263B2 (en) 2005-06-23 2005-06-23 High strength and high ductility carbon steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184120A JP4696263B2 (en) 2005-06-23 2005-06-23 High strength and high ductility carbon steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007002302A true JP2007002302A (en) 2007-01-11
JP4696263B2 JP4696263B2 (en) 2011-06-08

Family

ID=37688171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184120A Expired - Fee Related JP4696263B2 (en) 2005-06-23 2005-06-23 High strength and high ductility carbon steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4696263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087361A (en) * 2011-10-24 2013-05-13 Hitachi Powdered Metals Co Ltd Micro component and method of producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105513A (en) * 2000-09-29 2002-04-10 Kansai Tlo Kk Method for manufacturing cold worked high-speed steel powder and high-speed steel member
JP2004137599A (en) * 2002-09-27 2004-05-13 Nano Gijutsu Kenkyusho:Kk Superhard, tough nanocrystal austenitic steel bulk material having excellent corrosion resistance, and production method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105513A (en) * 2000-09-29 2002-04-10 Kansai Tlo Kk Method for manufacturing cold worked high-speed steel powder and high-speed steel member
JP2004137599A (en) * 2002-09-27 2004-05-13 Nano Gijutsu Kenkyusho:Kk Superhard, tough nanocrystal austenitic steel bulk material having excellent corrosion resistance, and production method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010043843, 川村悟史、他2名, "MM−SPSプロセスで作製した超微細粒鉄の機械的特性", 粉体粉末冶金協会講演概要集, 20041109, Vol.2004, Page.160, JP *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087361A (en) * 2011-10-24 2013-05-13 Hitachi Powdered Metals Co Ltd Micro component and method of producing the same

Also Published As

Publication number Publication date
JP4696263B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
Chen et al. Effects of Co and Ti on microstructure and mechanical behavior of Al0. 75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering
Niu et al. Breaking through the strength-ductility trade-off dilemma in powder metallurgy Ti–6Al–4V titanium alloy
CN104372230B (en) High-strength high-toughness ultrafine-grained high-entropy alloy and preparation method thereof
CN109023013B (en) Preparation method of corrosion-resistant high-strength AlCoCrFeNi-Cu high-entropy alloy
JP5760278B2 (en) Titanium material and manufacturing method thereof
JPWO2015111361A1 (en) Nitrogen solid solution titanium powder material, titanium material, and method for producing nitrogen solid solution titanium powder material
Yu et al. Effect of swaging on microstructure and mechanical properties of liquid-phase sintered 93W-4.9 (Ni, Co)-2.1 Fe alloy
CN110093548B (en) Ultrafine-grained high-toughness high-entropy alloy containing rare earth Gd and preparation method thereof
JPWO2011152553A1 (en) Titanium alloy composite powder containing copper powder, chromium powder or iron powder, titanium alloy material using the same, and method for producing the same
Kondoh et al. EXPERIMENTAL AND THEORETICAL ANALYSIS OF NITROGEN SOLID-SOLUTION STRENGTHENING OF PM TITANIUM.
JP5759426B2 (en) Titanium alloy and manufacturing method thereof
Chen et al. Effect of spark-plasma-sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs)
JP2013112862A (en) Titanium alloy and manufacturing method therefor
KR102021972B1 (en) High entropy alloy and manufacturing method of the same
Zhou et al. In-situ processing and aging behaviors of MgAl2O4 spinel whisker reinforced 6061Al composite
Li et al. Microstructure and Mechanical Properties of Ti2AlNb‐Based Alloys Synthesized by Spark Plasma Sintering from Pre‐Alloyed and Ball‐Milled Powder
Lu et al. Microstructure evolution and superelasticity of Ti-24Nb-xZr alloys fabricated by spark plasma sintering
Kumar et al. Effect of Y2O3 addition and cooling rate on mechanical properties of Fe-24Cr-20Ni-2Mn steels by powder metallurgy route
Yang et al. Deformation twinning structure and interface in a FCC-based Al0. 3FeNiCo1. 2CrCu high-entropy alloy matrix composites
Luo et al. Microstructures and mechanical properties of Mg-Gd-Zn-Zr alloys prepared by spark plasma sintering
Yang et al. Microstructure and mechanical properties of a hot-hydrostatically extruded 93W–4.9 Ni–2.1 Fe alloy
CN102021473B (en) Method for preparing Fe3Al-Al2O3 composite material
KR102447313B1 (en) Commercially pure titanium having high strength and high ductility and method of manufacturing the same
CN110983152B (en) Fe-Mn-Si-Cr-Ni based shape memory alloy and preparation method thereof
Krüger et al. In situ copper–alumina composites

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees