JP2007002232A - Supported catalyst composition for polymerization of vinyl ester-based monomer and use of the same vinyl ester-based monomer to polymerization - Google Patents

Supported catalyst composition for polymerization of vinyl ester-based monomer and use of the same vinyl ester-based monomer to polymerization Download PDF

Info

Publication number
JP2007002232A
JP2007002232A JP2006142308A JP2006142308A JP2007002232A JP 2007002232 A JP2007002232 A JP 2007002232A JP 2006142308 A JP2006142308 A JP 2006142308A JP 2006142308 A JP2006142308 A JP 2006142308A JP 2007002232 A JP2007002232 A JP 2007002232A
Authority
JP
Japan
Prior art keywords
group
polymerization
iii
hours
vinyl ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006142308A
Other languages
Japanese (ja)
Other versions
JP4948899B2 (en
Inventor
Toshiya Uozumi
俊也 魚住
Hiroshi Ida
大嗣 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006142308A priority Critical patent/JP4948899B2/en
Publication of JP2007002232A publication Critical patent/JP2007002232A/en
Application granted granted Critical
Publication of JP4948899B2 publication Critical patent/JP4948899B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply carry out isotactic polymerization of a vinyl ester-based monomer such as vinyl acetate under milder conditions. <P>SOLUTION: In the supported catalyst composition for isotactic polymerization of the vinyl ester-based monomer, isotacticity of a polymer is ≥50% based on meso diad (m). The supported catalyst composition for isotactic polymerization comprises a catalyst obtained by supporting a metal compound (component A) selected from halides, alkylated materials, arylated materials, allylated materials, hydrogenated materials, oxygen-containing organized materials and nitrogen-containing organized materials of metals of group 4 to group 9 of the periodic table on an inorganic support or an organic support and a compound (component B) having at least one 1-20C aliphatic hydrocarbon group or 6-40C aromatic hydrocarbon group which may have a substituent and selected from compounds having ≥3 atomic numbers and belonging to elements of groups 1, 2, 12 and 13 and perchlorate. The supported catalyst composition is used for polymerization of the vinyl ester-based monomer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、周期律表第4族から第9族の金属化合物を含有するビニルエステル系モノマー重合用担持型触媒組成物、およびそれを用いたビニルエステル系モノマーのイソタクチック重合に関する。   The present invention relates to a supported catalyst composition for vinyl ester monomer polymerization containing a metal compound of Group 4 to Group 9 of the Periodic Table, and isotactic polymerization of vinyl ester monomers using the same.

一般に、酢酸ビニルなどのビニルエステル系モノマーの重合体は、鹸化することでポリビニルアルコール(PVA)へと変換され、繊維、フィルム、接着剤など多岐に渡る分野で使用されている。PVAの物性は、ポリマーの側鎖である水酸基の立体規則性により大きく変化することが知られている。例えば、イソタクチシチーまたはシンジオタクチシチーに富むPVAは、アタクチックポリマーに比べて強度、耐熱性等の点でより優れている。   In general, a polymer of a vinyl ester monomer such as vinyl acetate is converted into polyvinyl alcohol (PVA) by saponification and used in various fields such as fibers, films, and adhesives. It is known that the physical properties of PVA vary greatly depending on the stereoregularity of the hydroxyl group that is the side chain of the polymer. For example, PVA rich in isotacticity or syndiotacticity is superior in terms of strength, heat resistance and the like as compared to an atactic polymer.

ビニルエステル系モノマーの付加重合法としては、ラジカル重合が知られている。しかしながら、ラジカル重合法では立体規則性制御に限界があり、特殊な溶媒を用いる必要がある、極低温での重合が必須である等の操作の煩雑さを伴い、簡便かつ温和な条件下で立体規則性を制御することは困難である。通常工業的に用いられている酢酸ビニルのラジカル重合から得られるPVAのイソタクチシチーはメソ2連子(m)で50%以下を示し、重合溶媒や重合温度を変えても50%を超えない。   As an addition polymerization method for vinyl ester monomers, radical polymerization is known. However, the radical polymerization method has limitations in stereoregularity control, and requires complicated solvents such as the necessity of using a special solvent and the necessity of polymerization at extremely low temperatures. It is difficult to control regularity. The isotacticity of PVA obtained from radical polymerization of vinyl acetate, which is usually used industrially, shows 50% or less in meso diads (m), and does not exceed 50% even when the polymerization solvent and polymerization temperature are changed. .

一方、チグラー・ナッタ触媒またはメタロセン触媒を用いる重合に代表される配位重合は、立体規則性の制御が比較的容易であることが知られている。そのようなことから、ビニルエステル系モノマーについて遷移金属触媒を用いて立体規則性重合しようとする試みが幾つかなされており、例えば非特許文献1〜3等の報告がされている。これらの報告には、5〜10%の収率でポリマーが得られると記されているのみで、いずれも生成ポリマーの立体規則性を明らかにしていないが、これまでの均一系遷移金属触媒によるイソ特異性重合の発現機構から、イソタクチシチ−の高いポリ酢酸ビニルは、得られていないと推測される。   On the other hand, coordination polymerization represented by polymerization using a Ziegler-Natta catalyst or a metallocene catalyst is known to be relatively easy to control stereoregularity. For this reason, several attempts have been made to stereoregularly polymerize vinyl ester monomers using transition metal catalysts. For example, Non-Patent Documents 1 to 3 have been reported. These reports only mention that the polymer can be obtained in a yield of 5 to 10%, and none of them reveals the stereoregularity of the produced polymer. From the expression mechanism of isospecific polymerization, it is presumed that polyvinyl acetate having a high isotacticity has not been obtained.

また、特許文献1には、ロジウム化合物を触媒に用いたエチレン−酢酸ビニル共重合体の製造方法が報告されている。この方法により得られるエチレン−酢酸ビニル共重合体中の酢酸ビニル含量は、0.001〜50%にコントロールすることが可能と記載されているが、酢酸ビニルの単独重合およびエチレン−酢酸ビニル共重合体中の酢酸ビニル連鎖の長さおよびその立体規則性については不明である。   Patent Document 1 reports a method for producing an ethylene-vinyl acetate copolymer using a rhodium compound as a catalyst. Although it is described that the vinyl acetate content in the ethylene-vinyl acetate copolymer obtained by this method can be controlled to 0.001 to 50%, homopolymerization of vinyl acetate and ethylene-vinyl acetate copolymer The length of the vinyl acetate chain in the coalescence and its stereoregularity are unknown.

特開平3−296505号公報JP-A-3-296505 工業化学雑誌,第65巻,74頁,1962年Industrial Chemical Journal, 65, 74, 1962 Z.Anorg.Allorg.Chem.,第629巻,781頁,2003年Z. Anorg. Allorg. Chem. 629, 781, 2003 Polym.Prepr.Jpn.,第46巻,1311頁,1997年Polym. Prepr. Jpn. 46, 1311, 1997

従って、本発明の課題は上記のような従来技術の問題点を解決し、より温和な条件下でビニルエステル系モノマーからイソタクチシチーが高く、品質、物性等が良好なPVAを製造するための重合用担持型触媒組成物、およびイソタクチシチーの高いポリマーの製造方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and to produce a PVA having a high isotacticity from vinyl ester monomers under a milder condition and having good quality and physical properties. An object of the present invention is to provide a supported catalyst composition for polymerization and a method for producing a polymer having high isotacticity.

すなわち、本発明は、
重合体のイソタクチシチーがメソ2連子(m)で50%以上となるビニルエステル系モノマーのイソタクチック重合用担持型触媒組成物であって、下記成分Aから選ばれた少なくとも1種の金属化合物を無機担体または有機担体に担持させた触媒と、下記成分Bから選ばれた少なくとも1種の化合物とを含有するイソタクチック重合用担持型触媒組成物に関する。
成分A:周期律表第4族から第9族の金属のハロゲン化物、アルキル化物、アリール化物、アリル化物、水素化物、含酸素有機化物、含窒素有機化物。
成分B:置換基を有していてもよい炭素数1〜20の脂肪族炭化水素基もしくは置換基を有していてもよい炭素数6〜40の芳香族炭化水素基を少なくとも1つ有する、原子番号3以上かつ周期律表第1、2、12もしくは13族元素の化合物、または過塩素酸塩。
That is, the present invention
A supported catalyst composition for isotactic polymerization of a vinyl ester monomer having a polymer isotacticity of 50% or more in meso diads (m), and at least one metal compound selected from the following component A The present invention relates to a supported catalyst composition for isotactic polymerization, comprising a catalyst in which is supported on an inorganic carrier or an organic carrier and at least one compound selected from the following component B.
Component A: Halides, alkylates, arylates, allylates, hydrides, oxygenated organic compounds, nitrogenous organic compounds of Group 4 to Group 9 metals of the Periodic Table.
Component B: having at least one aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have a substituent or an aromatic hydrocarbon group having 6 to 40 carbon atoms which may have a substituent, A compound having an atomic number of 3 or more and a Group 1, 2, 12 or 13 element of the periodic table, or a perchlorate.

さらに本発明は、上記の重合用担持型触媒組成物の、ビニルエステル系モノマーのイソタクチック重合への使用に関する。   Furthermore, the present invention relates to the use of the above-mentioned supported catalyst composition for polymerization for isotactic polymerization of vinyl ester monomers.

本発明の重合用触媒組成物によれば、より温和な条件下でビニルエステル系モノマーを重合でき、かつイソタクチシチーが高く、品質、物性等が良好なポリビニルアルコールを与えるビニルエステル系ポリマーを製造することができる。得られるポリビニルアルコールは、高強度高弾性率材料、耐熱性材料等に有用である。   According to the polymerization catalyst composition of the present invention, a vinyl ester polymer that can polymerize a vinyl ester monomer under milder conditions, has high isotacticity, and has good quality and physical properties is produced. can do. The obtained polyvinyl alcohol is useful for high-strength and high-modulus materials, heat-resistant materials, and the like.

本発明のイソタクチック重合用担持型触媒組成物は、成分Aの金属化合物を無機担体または有機担体に担持させた触媒と、成分Bの化合物との組合せからなる。
本発明の重合用担持型触媒組成物に含有させるべき成分Aは、周期律表第4族から第9族の金属のハロゲン化物、アルキル化物、アリール化物、アリル化物、水素化物、含酸素有機化物、含窒素有機化物からなる群から選ばれた少なくとも1種類の金属化合物である。金属化合物の金属は、周期律表第4族のチタニウム、ジルコニウム、ハフニウム、周期律表第5族のバナジウム、ニオブ、タンタル、周期律表第6族のクロム、モリブデン、タングステン、周期律表第7族のマンガン、レニウム、周期律表第8族の鉄、ルテニウム、オスミウム、周期律表第9族のコバルト、ロジウム、イリジウムであり、特にチタニウム、ジルコニウム、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウムが好ましい。
The supported catalyst composition for isotactic polymerization of the present invention comprises a combination of a catalyst in which a metal compound of component A is supported on an inorganic carrier or an organic carrier and a compound of component B.
Component A to be contained in the polymerization-supported catalyst composition for polymerization of the present invention is a halide, alkylated product, arylated product, allylated product, hydride, oxygenated organic compound of group 4 to group 9 metal in the periodic table. And at least one metal compound selected from the group consisting of nitrogen-containing organic compounds. The metal of the metal compound is titanium, zirconium, hafnium of Group 4 of the periodic table, vanadium, niobium, tantalum of Group 5 of the periodic table, chromium, molybdenum, tungsten of Group 6 of the periodic table, Periodic Table 7 Group manganese, rhenium, periodic table group 8 iron, ruthenium, osmium, periodic table group 9 cobalt, rhodium, iridium, especially titanium, zirconium, vanadium, chromium, manganese, iron, ruthenium, cobalt Rhodium is preferred.

成分Aで示される周期律表第4族から第9族の金属のハロゲン化物としては、フッ化物、塩化物、臭化物、ヨウ化物、過塩素酸化物などが挙げられる。該周期律表第4族から第9族の金属のハロゲン化物の具体例としては、フッ化チタニウム(III)、フッ化チタニウム(IV)、フッ化ジルコニウム(IV)、フッ化ハフニウム(IV)、フッ化バナジウム(IV)、バナジウムオキシフルオライド(V)、フッ化ニオブ(V)、フッ化タンタル(V)、フッ化クロム(II)、フッ化クロム(III)、フッ化モリブデン(VI)、フッ化タングステン(VI)、フッ化マンガン(III)、フッ化鉄(II)、フッ化コバルト(II)、フッ化コバルト(III)、塩化チタニウム(IV)、塩化チタニウム(III)、塩化チタニウム(II)、ジクロロビス(シクロペンタジエニル)チタニウム(IV)、トリクロロ(シクロペンタジエニル)チタニウム(IV)、トリクロロ(ペンタメチルシクロペンタジエニル)チタニウム(IV)、ジクロロ(シクロペンタジエニル)チタニウム(III)、クロロビス(シクロペンタジエニル)チタニウム(III)、ジクロロビス(ペンタメチルシクロペンタジエニル)チタニウム(IV)、トリクロロ(ペンタメチルシクロペンタジエニル)ジルコニウム(IV)、ジクロロビス(シクロペンタジエニル)ジルコニウム(IV)、オキソビス[クロロビス(シクロペンタジエニル)ジルコニウム(IV)]、ジクロロ[エチレンビス(インデニル)]ジルコニウム(IV)、ジクロロ[エチレンビス(テトラヒドロインデニル)]ジルコニウム(IV)、ジクロロビス(ペンタメチルシクロペンタジエニル)ジルコニウム(IV)、塩化ジルコニウム(IV)、トリクロロ(シクロペンタジエニル)ハフニウム(IV)、トリクロロ(ペンタメチルシクロペンタジエニル)ハフニウム(IV)、ジクロロビス(シクロペンタジエニル)ハフニウム(IV)、オキソビス[クロロビス(シクロペンタジエニル)ハフニウム(IV)]、ジクロロビス(ペンタメチルシクロペンタジエニル)ハフニウム(IV)、塩化ハフニウム(IV)、クロロビス(シクロペンタジエニル)バナジウム、ジクロロビス(シクロペンタジエニル)バナジウム、クロロ(シクロペンタジエニル)(テトラヒドロフラン)バナジウム、トリクロロ(ペンタメチルシクロペンタジエニル)バナジウム、ジクロロ(シクロペンタジエニル)オキソバナジウム、塩化バナジウム(II)、塩化バナジウム(III)、塩化バナジウム(IV)、クロロトリス(トリフェニルホスフィン)コバルト(I)、塩化コバルト(II)、過塩素酸コバルト(II)、クロミルクロライド、クロロ(シクロペンタジエニル)ジカルボニル酸鉄(II)、クロロ(シクロペンタジエニル)[1,2−ビス(ジフェニルホスフィノ)エタン]鉄(II)、ジクロロビス[1,2−ビス(ジエチルホスフィノ)エタン]鉄(II)、クロロヒドリドビス[ビス(1,2−ジフェニルホスフィノ)エタン]鉄(II)、ジクロロビス(トリフェニルホスフィン)鉄(II)、塩化鉄(II)、塩化鉄(III)、過塩素酸鉄(II)、過塩素酸鉄(III)、ハフニウムオキシクロライド、クロロペンタカルボニルマンガン(I)、クロロジカルボニル(ヘキサメチルベンゼン)マンガン(I)、塩化マンガン(II)、過塩素酸マンガン(II)、ジルコニルクロライド、過塩素酸ジルコニル、塩化クロム(II)、塩化クロム(III)、塩化イリジウム(III)、塩化イリジウム(IV)、ルテニウム(III)ニトロシルクロライド、トリクロロニトロシルビス(トリフェニルホスフィン)ルテニウム(III)、テトラフルオロホウ酸クロロジニトロシルビス(トリフェニルホスフィン)ルテニウム(II)、ジクロロビス(アセトニトリル)ビス(トリフェニルホスフィン)ルテニウム(II)、ジクロロテトラキス(イソシアン化t−ブチル)ルテニウム(II)、ジクロロ(ペンタメチルシクロペンタジエニル)ルテニウム(III)、クロロ(シクロペンタジエニル)ビス(トリフェニルホスフィン)ルテニウム(II)、クロロ(シクロペンタジエニル)ビス(トリメチルホスフィン)ルテニウム(II)、クロロジカルボニル(シクロペンタジエニル)ルテニウム(II)、クロロジカルボニル(ペンタメチルシクロペンタジエニル)ルテニウム(II)、クロロ(シクロペンタジエニル)(1,5−シクロオクタジエン)ルテニウム(II)、クロロ(ペンタメチルシクロペンタジエニル)(1,5−シクロオクタジエン)ルテニウム(II)、クロロ(ペンタメチルシクロペンタジエニル)ビス(メチルジフェニルホスフィン)ルテニウム(II)、ジクロロ(ペンタメチルシクロペンタジエニル)(トリフェニルホスフィン)ルテニウム(III)、トリクロロ(ペンタメチルシクロペンタジエニル)ルテニウム(IV)、ジクロロ(アリル)(シクロペンタジエニル)ルテニウム(IV)、ジクロロ(アリル)(ペンタメチルシクロペンタジエニル)ルテニウム(IV)、テトラクロロビス(ベンゼン)二ルテニウム(II)、テトラクロロビス(ヘキサメチルベンゼン)二ルテニウム(II)、バナジウム(V)オキシクロライド、塩化レニウム(III)、ジクロロテトラカルボニル二ロジウム(I)、クロロトリス(トリフェニルホスフィン)ロジウム(I)、ジクロロテトラキス(アリル)二ロジウム(III)、塩化ロジウム(III)、ジクロロビス(クロロトリカルボニル)ルテニウム(II)、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)、塩化ルテニウム(III)、テトラクロロ(シクロペンタジエニル)ニオブ(V)、テトラクロロ(ペンタメチルシクロペンタジエニル)ニオブ(V)、ジクロロビス(シクロペンタジエニル)ニオブ(V)、ジクロロビス(ペンタメチルシクロペンタジエニル)ニオブ(V)、トリクロロ(ジフェニルアセチレン)ニオブ、塩化ニオブ(V)、塩化レニウム(V)、テトラクロロ(シクロペンタジエニル)タンタル(V)、テトラクロロ(ペンタメチルシクロペンタジエニル)タンタル(V)、ジクロロビス(ペンタメチルシクロペンタジエニル)タンタル(V)、シクロペンタジエニル)(エテン)タンタル、ジクロロシクロペンタジエニルジカルボニルタンタル、トリクロロ(2,2−ジメチルプロピリデン)ビス(トリメチルホスフィン)タンタル、塩化タンタル(V)、臭化コバルト(II)、臭化鉄(II)、ブロモペンタカルボニルマンガン、臭化マンガン(II)、ブロモペンタカルボニルレニウム(I)、ブロモトリカルボニル(アリル)鉄(II)、ブロモ(シクロペンタジエニル)カルボニル(トリメチルホスフィン)鉄(II)、臭化鉄(III)、臭化イリジウム(III)、臭化ロジウム(III)、ブロモ(シクロペンタジエニル)ビス(トリフェニルホスフィン)ルテニウム(II)、ブロモ(シクロペンタジエニル)ビス(トリメチルホスフィン)ルテニウム(II)、ブロモ(シクロペンタジエニル)(1,5−シクロオクタジエン)ルテニウム(II)、臭化ルテニウム(III)、臭化バナジウム(III)、臭化ハフニウム(IV)、臭化チタニウム(IV)、ジブロモビス(シクロペンタジエニル)チタニウム(IV)、トリブロモ(シクロペンタジエニル)チタニウム(IV)、トリブロモ(シクロペンタジエニル)ジルコニウムテトラアリルジルコニウム(IV)、臭化ジルコニウム(IV)、臭化ニオブ(V)、臭化タンタル(V)、臭化クロム(II)、臭化クロム(III)、カルボニル(シクロペンタジエニル)ジヨードコバルト(III)、(シクロペンタジエニル)(トリフェニルホスフィン)ジヨードコバルト(III)、カルボニルジヨード(ペンタメチルシクロペンタジエニル)コバルト(III)、ジヨードビス[ペンタメチルシクロペンタジエニル]ヨードコバルト(III)]、ヨウ化コバルト(II)、ヨウ化鉄(II)、ヨウ化ハフニウム(IV)、ヨウ化マンガン(II)、ヨウ化ロジウム(III)、ヨードジカルボニル(ペンタメチルシクロペンタジエニル)ルテニウム(II)、ヨウ化ルテニウム(III)、ヨウ化バナジウム(III)、ヨウ化チタニウム(IV)、ヨウ化ジルコニウム(IV)、ヨウ化ニオブ(V)、ヨウ化タンタル(V)、ヨウ化クロム(II)、ヨウ化クロム(III)、過塩素酸クロム(III)、塩化モリブデン(III)、塩化モリブデン(V)、臭化モリブデン(III)、モリブデンジクロライドジオキサイド(VI)モリブデンオキシクロライド(VI)、二塩化モリブドセン(IV)、クロロトリカルボニル(シクロペンタジエニル)モリブデン(II)、塩化タングステン(IV)、塩化タングステン(VI)、臭化タングステン(V)、タングステンジクロライドジオキサイド(VI)、タングステンオキシクロライド(VI)、ジアセトニトリル(アリル)(ジカルボニル)(クロロ)タングステン(II)、ブロモトリカルボニル(シクロペンタジエニル)タングステン(II)、ジクロロビス(シクロペンタジエニル)タングステン(IV)、ジクロロビス(シクロペンタジエニル)オキソタングステン(VI)等が挙げられる。   Examples of the metal halides of Group 4 to Group 9 of the periodic table include fluoride, chloride, bromide, iodide, perchlorate and the like. Specific examples of the group 4 to 9 metal halides of the periodic table include titanium (III) fluoride, titanium (IV) fluoride, zirconium (IV) fluoride, hafnium (IV) fluoride, Vanadium fluoride (IV), vanadium oxyfluoride (V), niobium fluoride (V), tantalum fluoride (V), chromium fluoride (II), chromium fluoride (III), molybdenum fluoride (VI), Tungsten fluoride (VI), manganese fluoride (III), iron fluoride (II), cobalt fluoride (II), cobalt fluoride (III), titanium chloride (IV), titanium chloride (III), titanium chloride ( II), dichlorobis (cyclopentadienyl) titanium (IV), trichloro (cyclopentadienyl) titanium (IV), trichloro (pentamethylcyclopentadienyl) titanium (IV), dichloro (Cyclopentadienyl) titanium (III), chlorobis (cyclopentadienyl) titanium (III), dichlorobis (pentamethylcyclopentadienyl) titanium (IV), trichloro (pentamethylcyclopentadienyl) zirconium (IV) , Dichlorobis (cyclopentadienyl) zirconium (IV), oxobis [chlorobis (cyclopentadienyl) zirconium (IV)], dichloro [ethylenebis (indenyl)] zirconium (IV), dichloro [ethylenebis (tetrahydroindenyl) ] Zirconium (IV), dichlorobis (pentamethylcyclopentadienyl) zirconium (IV), zirconium chloride (IV), trichloro (cyclopentadienyl) hafnium (IV), trichloro (pentamethylcyclopentadienyl) huff Um (IV), dichlorobis (cyclopentadienyl) hafnium (IV), oxobis [chlorobis (cyclopentadienyl) hafnium (IV)], dichlorobis (pentamethylcyclopentadienyl) hafnium (IV), hafnium chloride (IV) ), Chlorobis (cyclopentadienyl) vanadium, dichlorobis (cyclopentadienyl) vanadium, chloro (cyclopentadienyl) (tetrahydrofuran) vanadium, trichloro (pentamethylcyclopentadienyl) vanadium, dichloro (cyclopentadienyl) Oxovanadium, vanadium chloride (II), vanadium chloride (III), vanadium chloride (IV), chlorotris (triphenylphosphine) cobalt (I), cobalt chloride (II), cobalt perchlorate (II), chromyl chloride, Loro (cyclopentadienyl) dicarbonyl acid iron (II), chloro (cyclopentadienyl) [1,2-bis (diphenylphosphino) ethane] iron (II), dichlorobis [1,2-bis (diethylphos Fino) ethane] iron (II), chlorohydridobis [bis (1,2-diphenylphosphino) ethane] iron (II), dichlorobis (triphenylphosphine) iron (II), iron chloride (II), iron chloride ( III), iron (II) perchlorate, iron (III) perchlorate, hafnium oxychloride, chloropentacarbonylmanganese (I), chlorodicarbonyl (hexamethylbenzene) manganese (I), manganese chloride (II), Manganese (II) perchlorate, zirconyl chloride, zirconyl perchlorate, chromium (II) chloride, chromium (III) chloride, iridium (III) chloride, iridium chloride IV), ruthenium (III) nitrosilkyl chloride, trichloronitrosylbis (triphenylphosphine) ruthenium (III), chlorodinitrosylbis (triphenylphosphine) tetrafluoroborate ruthenium (II), dichlorobis (acetonitrile) bis (triphenylphosphine) ) Ruthenium (II), dichlorotetrakis (t-butyl isocyanate) ruthenium (II), dichloro (pentamethylcyclopentadienyl) ruthenium (III), chloro (cyclopentadienyl) bis (triphenylphosphine) ruthenium (II) ), Chloro (cyclopentadienyl) bis (trimethylphosphine) ruthenium (II), chlorodicarbonyl (cyclopentadienyl) ruthenium (II), chlorodicarbonyl (pentamethylcyclopentadienyl) l Tenium (II), chloro (cyclopentadienyl) (1,5-cyclooctadiene) ruthenium (II), chloro (pentamethylcyclopentadienyl) (1,5-cyclooctadiene) ruthenium (II), chloro (Pentamethylcyclopentadienyl) bis (methyldiphenylphosphine) ruthenium (II), dichloro (pentamethylcyclopentadienyl) (triphenylphosphine) ruthenium (III), trichloro (pentamethylcyclopentadienyl) ruthenium (IV ), Dichloro (allyl) (cyclopentadienyl) ruthenium (IV), dichloro (allyl) (pentamethylcyclopentadienyl) ruthenium (IV), tetrachlorobis (benzene) diruthenium (II), tetrachlorobis ( Hexamethylbenzene) diruthenium (II), b Palladium (V) oxychloride, rhenium (III) chloride, dichlorotetracarbonyl dirhodium (I), chlorotris (triphenylphosphine) rhodium (I), dichlorotetrakis (allyl) dirhodium (III), rhodium chloride (III), Dichlorobis (chlorotricarbonyl) ruthenium (II), dichlorotris (triphenylphosphine) ruthenium (II), carbonylchlorohydridotris (triphenylphosphine) ruthenium (II), ruthenium (III) chloride, tetrachloro (cyclopentadienyl) ) Niobium (V), Tetrachloro (pentamethylcyclopentadienyl) niobium (V), Dichlorobis (cyclopentadienyl) niobium (V), Dichlorobis (pentamethylcyclopentadienyl) niobium (V), Trichloro (diphenyl) Acetile Niobium, niobium chloride (V), rhenium chloride (V), tetrachloro (cyclopentadienyl) tantalum (V), tetrachloro (pentamethylcyclopentadienyl) tantalum (V), dichlorobis (pentamethylcyclopenta) Dienyl) tantalum (V), cyclopentadienyl) (ethene) tantalum, dichlorocyclopentadienyldicarbonyltantalum, trichloro (2,2-dimethylpropylidene) bis (trimethylphosphine) tantalum, tantalum chloride (V), Cobalt bromide (II), iron bromide (II), bromopentacarbonylmanganese, manganese bromide (II), bromopentacarbonylrhenium (I), bromotricarbonyl (allyl) iron (II), bromo (cyclopentadi) Enyl) carbonyl (trimethylphosphine) iron (II), iron (III) bromide, bromide Iridium (III), rhodium (III) bromide, bromo (cyclopentadienyl) bis (triphenylphosphine) ruthenium (II), bromo (cyclopentadienyl) bis (trimethylphosphine) ruthenium (II), bromo (cyclo Pentadienyl) (1,5-cyclooctadiene) ruthenium (II), ruthenium (III) bromide, vanadium (III) bromide, hafnium bromide (IV), titanium bromide (IV), dibromobis (cyclopenta) Dienyl) titanium (IV), tribromo (cyclopentadienyl) titanium (IV), tribromo (cyclopentadienyl) zirconium tetraallyl zirconium (IV), zirconium bromide (IV), niobium bromide (V), odor Tantalum (V), chromium (II) bromide, chromium (III) bromide, carbonyl (cyclopentadienyl) di Iodocobalt (III), (cyclopentadienyl) (triphenylphosphine) diiodocobalt (III), carbonyldiiodo (pentamethylcyclopentadienyl) cobalt (III), diiodobis [pentamethylcyclopentadienyl] iodo Cobalt (III)], cobalt iodide (II), iron iodide (II), hafnium iodide (IV), manganese iodide (II), rhodium iodide (III), iododicarbonyl (pentamethylcyclopentadi Enyl) ruthenium (II), ruthenium (III) iodide, vanadium (III) iodide, titanium (IV) iodide, zirconium (IV) iodide, niobium iodide (V), tantalum iodide (V), iodine Chromium (II) iodide, chromium (III) iodide, chromium (III) perchlorate, molybdenum (III) chloride, molybdenum chloride (V), molybdenum bromide (III), molybdenum dichloride dioxide (VI) molybdenum oxychloride (VI), molybdocene dichloride (IV), chlorotricarbonyl (cyclopentadienyl) molybdenum (II), tungsten chloride (IV), tungsten chloride (VI) , Tungsten bromide (V), tungsten dichloride dioxide (VI), tungsten oxychloride (VI), diacetonitrile (allyl) (dicarbonyl) (chloro) tungsten (II), bromotricarbonyl (cyclopentadienyl) tungsten (II), dichlorobis (cyclopentadienyl) tungsten (IV), dichlorobis (cyclopentadienyl) oxotungsten (VI), and the like.

成分Aで示される周期律表第4族から第9族の金属のアルキル化物としては、置換基を有していてもよい炭素数1〜20の脂肪族炭化水素基の少なくとも1つを配位子として有する金属化合物を示す。上記炭素数1〜20の脂肪族炭化水素基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、シクロプロピル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基等の直鎖、分岐鎖または環状の脂肪族炭化水素基が挙げられる。また、これらの基の置換基としては、上記の炭素数1〜20の脂肪族炭化水素基、炭素数6〜20の芳香族炭化水素基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert−ブトキシ基等のアルコキシ基、フェノキシ基等のアリロキシ基、ハロゲン(F、Cl、Br、I)、アセトキシ基、ニトロ基、スルホン酸基、カルボニル基、アミノ基等の官能基等が挙げられる。これらの置換基はさらに置換基を有していてもよい。周期律表第4族から第9族の金属のアルキル化物の具体例としては、トリクロロメチルチタニウム(IV)、トリブロモメチルチタニウム(IV)、ジメチルビス(シクロペンタジエニル)チタニウム(IV)、クロロ(メチル)ビス(シクロペンタジエニル)チタニウム(IV)、ジメチルビス(ペンタメチルシクロペンタジエニル)チタニウム(IV)、トリメチル(シクロペンタジエニル)チタニウム(IV)、メチルトリイソプロポキシチタニウム(IV)、トリス(ジメチルアミノ)メチルチタニウム(IV)、1,4−テトラメチレンビス(シクロペンタジエニル)チタニウム(IV)、ビス(シクロペンタジエニル)(2,3−イソプロピリデン)チタナシクロブタン(IV)、ビス(シクロペンタジエニル)ジメチルジルコニウム(IV)、ヨードメチルビス(シクロペンタジエニル)ジルコニウム(IV)、ビス(シクロペンタジエニル)ジメチルハフニウム(IV)、メチルビス(ペンタメチルシクロペンタジエニル)バナジウム、テトラクロロメチルニオブ(V)、ジクロロトリメチルニオブ(V)、エチルビス(シクロペンタジエニル)(プロピン)ニオブ、テトラクロロメチルタンタル(V)、ジクロロトリメチルタンタル(V)、トリメチルビス(シクロペンタジエニル)タンタル(V)、メチル(メチリデン)ビス(シクロペンタジエニル)タンタル、テトラメチルクロム(IV)、テトラキス(トリメチルシリルメチル)クロム(IV)、トリカルボニル(シクロペンタジエニル)メチルモリブデン(II)、トリカルボニル(シクロペンタジエニル)エチルモリブデン(II)、トリカルボニル(シクロペンタジエニル)イソプロピルモリブデン(II)、トリカルボニル(シクロペンタジエニル)クロロメチルモリブデン(II)、トリカルボニル(シクロペンタジエニル)ヨードメチルモリブデン(II)、トリカルボニル(シクロペンタジエニル)ブロモプロピルモリブデン(II)、トリカルボニル(シクロペンタジエニル)ブロモブチルモリブデン(II)、ジメチル(ベンゼン)ビス(トリメチルホスフィン)モリブデン(II)、ヘキサメチルタングステン(VI)、ヘキサキス(トリメチルシリルメチル)二タングステン(III)、ペンタカルボニルメチルマンガン(I)、ペンタカルボニルメチルレニウム(I)、カルボニルニトロシルメチル(ペンタメチルシクロペンタジエニル)レニウム(I)、メチル(トリオキソ)レニウム(VII)、(シクロペンタジエニル)メチルカルボニル鉄(II)、(シクロペンタジエニル)メチルカルボニル(トリメチルホスフィン)鉄(II)、クロロメチル(シクロペンタジエニル)カルボニル(トリフェニルホスフィン)鉄(II)、テトラキス(トリフェニルホスフィン)メチルコバルト(I)等が例示される。   As an alkylated product of Group 4 to Group 9 metal represented by Component A, at least one aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have a substituent is coordinated The metal compound which has as a child is shown. Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, Linear, branched or cyclic aliphatic hydrocarbons such as hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl Groups. Examples of the substituent for these groups include the above-described aliphatic hydrocarbon group having 1 to 20 carbon atoms, aromatic hydrocarbon group having 6 to 20 carbon atoms, methoxy group, ethoxy group, propoxy group, butoxy group, tert. -Functional groups such as alkoxy groups such as butoxy group, allyloxy groups such as phenoxy group, halogen (F, Cl, Br, I), acetoxy group, nitro group, sulfonic acid group, carbonyl group, amino group, and the like. These substituents may further have a substituent. Specific examples of group 4-9 metal alkylates in the periodic table include trichloromethyltitanium (IV), tribromomethyltitanium (IV), dimethylbis (cyclopentadienyl) titanium (IV), chloro (Methyl) bis (cyclopentadienyl) titanium (IV), dimethylbis (pentamethylcyclopentadienyl) titanium (IV), trimethyl (cyclopentadienyl) titanium (IV), methyltriisopropoxytitanium (IV) , Tris (dimethylamino) methyltitanium (IV), 1,4-tetramethylenebis (cyclopentadienyl) titanium (IV), bis (cyclopentadienyl) (2,3-isopropylidene) titanacyclobutane (IV ), Bis (cyclopentadienyl) dimethylzirconium (IV), iodomethylbi Sus (cyclopentadienyl) zirconium (IV), bis (cyclopentadienyl) dimethylhafnium (IV), methylbis (pentamethylcyclopentadienyl) vanadium, tetrachloromethyl niobium (V), dichlorotrimethylniobium (V) , Ethylbis (cyclopentadienyl) (propyne) niobium, tetrachloromethyltantalum (V), dichlorotrimethyltantalum (V), trimethylbis (cyclopentadienyl) tantalum (V), methyl (methylidene) bis (cyclopentadiene) Enyl) tantalum, tetramethylchromium (IV), tetrakis (trimethylsilylmethyl) chromium (IV), tricarbonyl (cyclopentadienyl) methylmolybdenum (II), tricarbonyl (cyclopentadienyl) ethylmolybdenum (II), tri Carbonyl (Siku Pentadienyl) isopropylmolybdenum (II), tricarbonyl (cyclopentadienyl) chloromethylmolybdenum (II), tricarbonyl (cyclopentadienyl) iodomethylmolybdenum (II), tricarbonyl (cyclopentadienyl) bromopropylmolybdenum ( II), tricarbonyl (cyclopentadienyl) bromobutylmolybdenum (II), dimethyl (benzene) bis (trimethylphosphine) molybdenum (II), hexamethyltungsten (VI), hexakis (trimethylsilylmethyl) ditungsten (III), Pentacarbonylmethylmanganese (I), pentacarbonylmethylrhenium (I), carbonylnitrosylmethyl (pentamethylcyclopentadienyl) rhenium (I), methyl (trioxo) rhenium (VII), (Si Lopentadienyl) methylcarbonyliron (II), (cyclopentadienyl) methylcarbonyl (trimethylphosphine) iron (II), chloromethyl (cyclopentadienyl) carbonyl (triphenylphosphine) iron (II), tetrakis (triphenylphosphine) ) Methyl cobalt (I) and the like.

周期律表第4族から第9族の金属のアリール化物としては、置換基を有していてもよい炭素数6〜20の芳香族炭化水素基を少なくとも1つは配位子として有する金属化合物を示す。上記炭素数6〜20の芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニル基、アントリル基、フェナントリル基、インデニル基、フルオレニル基、アズレニル基、ベンジル基、フェネチル基、スチリル基、シンナミル基、ベンズヒドリル基、トリル基、キシリル基、クメニル基、メシチル基等が挙げられる。また、これらの基の置換基としては、炭素数1〜20の脂肪族炭化水素基、炭素数6〜20の芳香族炭化水素基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert−ブトキシ基等のアルコキシ基、フェノキシ基等のアリロキシ基、ハロゲン(F、Cl、Br、I)、アセトキシ基、ニトロ基、スルホン酸基、カルボニル基、アミノ基等の官能基等が挙げられる。これらの置換基はさらに置換基を有していてもよい。周期律表第4族から第9族の金属のアリール化物の具体例としては、テトラベンジルチタニウム(IV)、ビス(シクロペンタジエニル)ジフェニルチタニウム(IV)、トリフェニルトリス(テトラヒドロフラン)クロム(III)等が例示される。   As an arylation product of a metal of Group 4 to Group 9 of the periodic table, a metal compound having at least one aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent as a ligand Indicates. Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms include phenyl group, naphthyl group, biphenyl group, anthryl group, phenanthryl group, indenyl group, fluorenyl group, azulenyl group, benzyl group, phenethyl group, styryl group, and cinnamyl group. Benzhydryl group, tolyl group, xylyl group, cumenyl group, mesityl group and the like. In addition, the substituents of these groups include aliphatic hydrocarbon groups having 1 to 20 carbon atoms, aromatic hydrocarbon groups having 6 to 20 carbon atoms, methoxy groups, ethoxy groups, propoxy groups, butoxy groups, tert-butoxy groups. And functional groups such as alkoxy groups such as groups, allyloxy groups such as phenoxy groups, halogens (F, Cl, Br, I), acetoxy groups, nitro groups, sulfonic acid groups, carbonyl groups, amino groups, and the like. These substituents may further have a substituent. Specific examples of arylates of metals from Groups 4 to 9 of the Periodic Table include tetrabenzyltitanium (IV), bis (cyclopentadienyl) diphenyltitanium (IV), triphenyltris (tetrahydrofuran) chromium (III And the like.

周期律表第4族から第9族の金属のアリル化物としては、π結合性配位子を少なくとも1つは配位子として有する金属化合物を示す。上記π結合性配位子としては、置換基を有していてもよいアリル基、シクロペンタジエニル基、インデニル基、フルオレニル基等が挙げられる。また、これらの基の置換基としては、炭素数1〜20の脂肪族炭化水素基、炭素数6〜20の芳香族炭化水素基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert−ブトキシ基等のアルコキシ基、フェノキシ基等のアリロキシ基、ハロゲン(F、Cl、Br、I)、アセトキシ基、ニトロ基、スルホン酸基、カルボニル基、アミノ基等の官能基等が挙げられる。これらの置換基はさらに置換基を有していてもよい。周期律表第4族から第9族の金属のアリル化物の具体例としては、ジシクロペンタジエニルビス(シクロペンタジエニル)チタニウム(IV)、テトラアリルジルコニウム(IV)、テトラアリルハフニウム(IV)、ビス(シクロペンタジエニル)バナジウム、ビス(ペンタメチルシクロペンタジエニル)バナジウム、トリス(アリル)クロム(III)、テトラキス(アリル)二クロム(II)、ヘキサカルボニルビス(シクロペンタジエニル)二クロム(I)、クロモセン(II)、ビス(シクロペンタジエニル)エチレンモリブデン(II)、ビス(シクロペンタジエニル)(1,2−ジフェニルエチン)モリブデン(II)、(アリル)ビス(シクロペンタジエニル)モリブデン(IV)トシラート、トリカルボニル(シクロペンタジエニル)(エチレン)タングステン(II)ヘキサフルオロリン酸塩、ヘキサカルボニルビス(シクロペンタジエニル)二タングステン(I)、カリウムトリカルボニル(シクロペンタジエニル)タングステン(0)酸カリウム、ビス(シクロペンタジエニル)タングステン(II)、アリルビス(シクロペンタジエニル)タングステン(IV)ヘキサフルオロリン酸塩、ビス(ペンタメチルシクロペンタジエニル)マンガン(II)、フェロセン、ルテノセン、コバルトセン等が例示される。   As an allylated product of Group 4 to Group 9 metal in the periodic table, a metal compound having at least one π-bonded ligand as a ligand is shown. Examples of the π-bonding ligand include an allyl group, a cyclopentadienyl group, an indenyl group, a fluorenyl group and the like which may have a substituent. In addition, the substituents of these groups include aliphatic hydrocarbon groups having 1 to 20 carbon atoms, aromatic hydrocarbon groups having 6 to 20 carbon atoms, methoxy groups, ethoxy groups, propoxy groups, butoxy groups, tert-butoxy groups. And functional groups such as alkoxy groups such as groups, allyloxy groups such as phenoxy groups, halogens (F, Cl, Br, I), acetoxy groups, nitro groups, sulfonic acid groups, carbonyl groups, amino groups, and the like. These substituents may further have a substituent. Specific examples of the allylic compounds of Group 4 to Group 9 metals in the periodic table include dicyclopentadienylbis (cyclopentadienyl) titanium (IV), tetraallylzirconium (IV), tetraallylhafnium (IV ), Bis (cyclopentadienyl) vanadium, bis (pentamethylcyclopentadienyl) vanadium, tris (allyl) chromium (III), tetrakis (allyl) dichrome (II), hexacarbonylbis (cyclopentadienyl) Dichromium (I), chromocene (II), bis (cyclopentadienyl) ethylenemolybdenum (II), bis (cyclopentadienyl) (1,2-diphenylethyne) molybdenum (II), (allyl) bis (cyclo Pentadienyl) molybdenum (IV) tosylate, tricarbonyl (cyclopentadienyl) (ethylene) Nungsten (II) hexafluorophosphate, hexacarbonylbis (cyclopentadienyl) ditungsten (I), potassium tricarbonyl (cyclopentadienyl) tungsten (0) potassium, bis (cyclopentadienyl) tungsten ( II), allyl bis (cyclopentadienyl) tungsten (IV) hexafluorophosphate, bis (pentamethylcyclopentadienyl) manganese (II), ferrocene, ruthenocene, cobaltcene and the like.

周期律表第4族から第9族の金属の水素化物としては、水素原子を少なくとも1つは配位子として有する金属化合物を示す。周期律表第4族から第9族の金属の水素化物の具体例としては、ジヒドリドビス(ペンタメチルシクロペンタジエニル)チタニウム(IV)、ジヒドリドビス[ビス(シクロペンタジエニル)チタニウム(III)]、ポリ[ヒドリドビス(シクロペンタジエニル)]チタニウム(III)、ビス(シクロペンタジエニル)ジヒドリドジルコニウム(IV)、クロロビス(シクロペンタジエニル)ヒドリドジルコニウム(IV)、ビス(ペンタメチルシクロペンタジエニル)ジヒドリドジルコニウム(IV)、クロロビス(シクロペンタジエニル)ヒドリドハフニウム(IV)、ジヒドリドビス(ペンタメチルシクロペンタジエニル)ハフニウム(IV)、トリヒドリドビス(シクロペンタジエニル)ニオブ(V)、ヒドリドビス(シクロペンタジエニル)エチレンニオブ(III)、ヒドリドビス(シクロペンタジエニル)(3,3−ジメチルブチン)ニオブ、トリヒドリドビス(シクロペンタジエニル)タンタル(V)、トリカルボニルヒドリド(シクロペンタジエニル)クロム(II)、ビス(シクロペンタジエニル)ジヒドリドモリブデン(IV)、トリカルボニル(シクロペンタジエニル)ヒドリドモリブデン(II)、トリカルボニルヒドリド(ペンタメチルシクロペンタジエニル)モリブデン(II)、ジヒドリド(ベンゼン)ビス(トリフェニルホスフィン)モリブデン(II)、テトラヒドリドビス{1,2−ビス(ジフェニルホスフィノ)エタン}モリブデン(IV)、ジヒドリドペンタキス(トリメチルホスフィン)モリブデン(II)、ホルマトヒドリドビス{1,2−ビス(ジフェニルホスフィノ)エタン}モリブデン(II)、トリカルボニル(シクロペンタジエニル)(ヒドリド)タングステン(II)、ビス(シクロペンタジエニル)ジヒドリドタングステン(II)、ビス(シクロペンタジエニル)(エチレン)(ヒドリド)タングステン(II)ヘキサフルオロリン酸塩、ヒドリドペンタカルボニルマンガン(I)、トリス(ヒドリドテトラカルボニルマンガン)(I)、ヒドリドペンタカルボニルレニウム(I)、(ヒドリド)(プロペニル)(オクタカルボニル)二レニウム、ジカルボニルジヒドリド(シクロペンタジエニル)レニウム(III)、トリヒドリドビス[1,2−ビス(ジフェニルホスフィノ)エタン]レニウム(III)、トリカルボニルヒドリド(トリフェニルホスフィン)鉄(0)酸テトラエチルアンモニウム、(シクロペンタジエニル)ヒドリドジカルボニル鉄(II)、ジヒドリドビス[1,2−ビス(ジフェニルホスフィノ)エタン]鉄(II)、ヒドリドビス[1,2−ビス(ジフェニルホスフィノ)エタン]鉄(I)、ジヒドリド(二窒素)トリス(エチルジフェニルホスフィン)鉄(II)、ジヒドリドテトラキス(トリフェニルホスフィン)ルテニウム(II)、テトラヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)、ジヒドリド(トリフルオロホスフィン)トリス(フェニルホスフィン)ルテニウム(II)、アセタトヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)、ヒドリドニトロシルトリス(トリフェニルホスフィン)ルテニウム(II)、ヒドリド(シクロペンタジエニル)ビス(トリフェニルホスフィン)ルテニウム(II)、ヒドリド(シクロペンタジエニル)(1,5−シクロオクタジエン)ルテニウム(II)、トリヒドリド(ペンタメチルシクロペンタジエニル)(トリフェニルホスフィン)ルテニウム(IV)、ヒドリドテトラカルボニルコバルト(I)、ヒドリド(二窒素)トリス(トリフェニルホスフィン)コバルト(I)、ヒドリドテトラカルボニルロジウム(I)、ヒドリドカルボニルトリス(トリフェニルホスフィン)ロジウム(I)、ヒドリドトリス(トリイソプロピルホスフィン)ロジウム(I)ヒドリドテトラキス(トリフェニルホスフィン)ロジウム(I)、[ジヒドリドビス(トリフェニルホスフィン)ビス(アセトニトリル)ロジウム(I)]過塩素酸塩、ジヒドリドビス(トリエチルシリル)ペンタメチルシクロペンタジエニルロジウム(V)等が例示される。   The metal hydride of Group 4 to Group 9 of the Periodic Table represents a metal compound having at least one hydrogen atom as a ligand. Specific examples of Group 4 to Group 9 metal hydrides in the periodic table include dihydridobis (pentamethylcyclopentadienyl) titanium (IV), dihydridobis [bis (cyclopentadienyl) titanium (III)], Poly [hydridobis (cyclopentadienyl)] titanium (III), bis (cyclopentadienyl) dihydridozirconium (IV), chlorobis (cyclopentadienyl) hydridozirconium (IV), bis (pentamethylcyclopentadienyl) ) Dihydridozirconium (IV), chlorobis (cyclopentadienyl) hydridohafnium (IV), dihydridobis (pentamethylcyclopentadienyl) hafnium (IV), trihydridobis (cyclopentadienyl) niobium (V), hydridobis (Cyclopentadienyl) ethylenenio (III), hydridobis (cyclopentadienyl) (3,3-dimethylbutyne) niobium, trihydridobis (cyclopentadienyl) tantalum (V), tricarbonylhydrido (cyclopentadienyl) chromium (II), Bis (cyclopentadienyl) dihydridomolybdenum (IV), tricarbonyl (cyclopentadienyl) hydridomolybdenum (II), tricarbonylhydrido (pentamethylcyclopentadienyl) molybdenum (II), dihydrido (benzene) bis ( Triphenylphosphine) molybdenum (II), tetrahydridobis {1,2-bis (diphenylphosphino) ethane} molybdenum (IV), dihydridopentakis (trimethylphosphine) molybdenum (II), formatohydridobis {1, 2-bis (diphenylphosphino) ethane} Ribden (II), tricarbonyl (cyclopentadienyl) (hydrido) tungsten (II), bis (cyclopentadienyl) dihydride tungsten (II), bis (cyclopentadienyl) (ethylene) (hydrido) tungsten ( II) Hexafluorophosphate, hydridopentacarbonylmanganese (I), tris (hydridotetracarbonylmanganese) (I), hydridopentacarbonylrhenium (I), (hydrido) (propenyl) (octacarbonyl) direnium, dicarbonyl Dihydrido (cyclopentadienyl) rhenium (III), trihydridobis [1,2-bis (diphenylphosphino) ethane] rhenium (III), tricarbonylhydrido (triphenylphosphine) iron (0) tetraethylammonium, (Cyclopentadie ) Hydridodicarbonyliron (II), dihydridobis [1,2-bis (diphenylphosphino) ethane] iron (II), hydridobis [1,2-bis (diphenylphosphino) ethane] iron (I), dihydride ( Dinitrogen) tris (ethyldiphenylphosphine) iron (II), dihydridotetrakis (triphenylphosphine) ruthenium (II), tetrahydridotris (triphenylphosphine) ruthenium (II), dihydrido (trifluorophosphine) tris (phenylphosphine) ) Ruthenium (II), Acetatohydridotris (triphenylphosphine) ruthenium (II), Hydridonitrosyltris (triphenylphosphine) ruthenium (II), Hydrido (cyclopentadienyl) bis (triphenylphosphine) ruthenium (II) , Hydride ( Cyclopentadienyl) (1,5-cyclooctadiene) ruthenium (II), trihydride (pentamethylcyclopentadienyl) (triphenylphosphine) ruthenium (IV), hydridotetracarbonylcobalt (I), hydride (dinitrogen) ) Tris (triphenylphosphine) cobalt (I), hydridotetracarbonylrhodium (I), hydridocarbonyltris (triphenylphosphine) rhodium (I), hydridotris (triisopropylphosphine) rhodium (I) hydridotetrakis (triphenylphosphine) ) Rhodium (I), [dihydridobis (triphenylphosphine) bis (acetonitrile) rhodium (I)] perchlorate, dihydridobis (triethylsilyl) pentamethylcyclopentadienyl rhodium (V) It is shown.

周期律表第4族から第9族の金属の含酸素有機化物としては、置換基を有していてもよいメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert−ブトキシ基等のアルコキシ基、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基等ノカルボキシル基、フェノキシ基等のアリロキシ基、アセチルアセトナート基、アセトキシ基、アミド基等の含酸素有機配位子を少なくとも1つは配位子として有する金属化合物を示す。周期律表第4族から第9族の金属の含酸素有機化物の具体例としては、アセチルクロロビス(シクロペンタジエニル)チタニウム(IV)、塩化トリイソプロポキシチタニウム(IV)、トリス(2,6−ジイソプロピルフェノキシ)(2,2−ジメチルプロピリデン)タンタル、テトラクロロ(2,6−ジイソプロピルフェノキシ)タンタル(V)、酢酸クロム(III)、ベンゾイルアセトナートクロム(III)、ヘキサフルオロアセチルアセトナートクロム(III)、ナフテン酸クロム(III)、酢酸モリブデン(II)、2−エチルへキサン酸モリブデン、ビス(アセチルアセトナート)酸化モリブデン(IV)、ビス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)酸化モリブデン(VI)、タングステン(VI)エトキシド、アセチルアセトナートクロム(III)、トリス(サリチルアルデヒダト)クロム(III)、ビス(アセチルアセトナート)ジオキソモリブデン(VI)、ペンタカルボニルアセチルレニウム(I)、ジアセタトジカルボニルビス(トリフェニルホスフィン)ルテニウム(II)、ジカルボニル(ヒドロキシメチル)(ペンタメチルシクロペンタジエニル)ルテニウム(II)、2,4−ペンタンジオナートビス(エチレン)ロジウム(I)、ビス(アセチルアセトナート)ジクロロチタニウム(IV)、トリクロロ(アセチルアセトナート)ジクロロチタニウム(IV)、アセチルアセトナートジルコニウム(IV)、アセチルアセトナートバナジウム(IV)、アセチルアセトナートマンガン(III)、アセチルアセトナートマンガン(II)、アセチルアセトナート鉄(III)、アセチルアセトナート鉄(II)、アセチルアセトナートルテニウム(III)、アセチルアセトナートコバルト(III)、アセチルアセトナートコバルト(II)、アセチルアセトナートロジウム(III)等が例示される。   Examples of the oxygenated organic compounds of Group 4 to Group 9 metals in the periodic table include alkoxy groups such as methoxy group, ethoxy group, propoxy group, butoxy group, and tert-butoxy group, which may have a substituent, At least one oxygen-containing organic ligand such as formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group or other noncarboxyl group such as phenoxy group, acetylacetonate group, acetoxy group or amide group One represents a metal compound as a ligand. Specific examples of oxygenated organic compounds of Group 4 to Group 9 metals in the periodic table include acetylchlorobis (cyclopentadienyl) titanium (IV), triisopropoxytitanium chloride (IV), tris (2, 6-diisopropylphenoxy) (2,2-dimethylpropylidene) tantalum, tetrachloro (2,6-diisopropylphenoxy) tantalum (V), chromium (III) acetate, benzoylacetonate chromium (III), hexafluoroacetylacetonate Chromium (III), chromium naphthenate (III), molybdenum acetate (II), molybdenum 2-ethylhexanoate, bis (acetylacetonato) molybdenum oxide (IV), bis (2,2,6,6-tetramethyl) -3,5-Heptanedionate) Molybdenum oxide (VI), tungsten (VI) ethoxide, acetylacetate Natochrome (III), tris (salicylaldehyde) chromium (III), bis (acetylacetonato) dioxomolybdenum (VI), pentacarbonylacetylrhenium (I), diacetatodicarbonylbis (triphenylphosphine) ruthenium ( II), dicarbonyl (hydroxymethyl) (pentamethylcyclopentadienyl) ruthenium (II), 2,4-pentanedionate bis (ethylene) rhodium (I), bis (acetylacetonato) dichlorotitanium (IV), Trichloro (acetylacetonate) dichlorotitanium (IV), acetylacetonate zirconium (IV), acetylacetonate vanadium (IV), acetylacetonate manganese (III), acetylacetonate manganese (II), acetylacetonate iron (III) ), Acetyl Examples include ruacetonate iron (II), acetylacetonate toruthenium (III), acetylacetonate cobalt (III), acetylacetonate cobalt (II), acetylacetonatotrodium (III) and the like.

周期律表第4族から第9族の金属の含窒素有機化物としては、置換基を有していてもよいアミノ基、アミド基、イミノ基、ニトリル基等の含窒素有機配位子を少なくとも1つは配位子として有する金属化合物を示す。周期律表第4族から第9族の金属の含窒素有機化物の具体例としては、臭化トリス(ジメチルアミノ)チタニウム(IV)、テトラフェニルポルフィン塩化クロム(III)、トリス(2−アミノエタノラト)クロム(III)、トリス(グリシナト)クロム(III)、(トリメチレンジアミンテトラアセタト)クロム(III)酸ナトリウム等が例示される。   As the nitrogen-containing organic compounds of Group 4 to Group 9 metals in the periodic table, at least nitrogen-containing organic ligands such as amino groups, amide groups, imino groups, and nitrile groups which may have a substituent are included. One shows the metal compound which has as a ligand. Specific examples of nitrogen-containing organic compounds of Group 4 to Group 9 metals in the periodic table include tris (dimethylamino) titanium (IV) bromide, chromium (III) tetraphenylporphine chloride, tris (2-aminoethanolato) Examples include chromium (III), tris (glycinato) chromium (III), (trimethylenediaminetetraacetato) sodium chromium (III), and the like.

上記成分Aは、無機担体または有機担体に担持させることが、ビニルエステル系モノマーのイソタクチック重合を行う上で有用である。無機担体としては、無機物、金属の酸化物やハロゲン化物などが挙げられる。例えば、活性炭、アルミナ、シリカ、アルミナ−シリカ、ゼオライト、塩化マグネシウム、酸化マグネシウム、塩化カルシウム、塩化銅などが例示される。さらには、反応によって無機担体となりうるものも使用できる。例えば、金属マグネシウムとアルコールとの反応物などが挙げられる。   When the component A is supported on an inorganic carrier or an organic carrier, it is useful for isotactic polymerization of vinyl ester monomers. Examples of the inorganic carrier include inorganic substances, metal oxides and halides. For example, activated carbon, alumina, silica, alumina-silica, zeolite, magnesium chloride, magnesium oxide, calcium chloride, copper chloride and the like are exemplified. Furthermore, what can become an inorganic support | carrier by reaction can also be used. For example, a reaction product of metallic magnesium and alcohol can be used.

有機担体としては、有機溶媒に不溶な高分子化合物、イオン交換樹脂などが挙げられる。例えば、ポリスチレンビーズ、シクロデキストリン、Amberlyst、Nafion、Dowex、Sephadex、シリカゲル等が挙げられる。   Examples of the organic carrier include a polymer compound insoluble in an organic solvent and an ion exchange resin. For example, polystyrene beads, cyclodextrin, Amberlyst, Nafion, Dowex, Sephadex, silica gel and the like can be mentioned.

上記成分Aを無機担体または有機担体に担持する方法は、触媒製造技術分野で通常用いる方法を利用することができる。例えば、上記成分Aと無機担体とを不活性ガス雰囲気下、ボールミルや振動ミル中で共粉砕する方法や、上記成分Aの溶液に無機担体または有機担体を浸漬した後乾燥担持させる方法、上記成分Aが有する配位子を有機担体と化学的に結合させる方法などが挙げられる。無機担体または有機担体への上記成分Aの担持量は、特に限定されないが0.001〜30wt%程度が好ましい。   As a method of supporting the component A on an inorganic carrier or an organic carrier, a method usually used in the technical field of catalyst production can be used. For example, a method in which the component A and an inorganic carrier are co-ground in an inert gas atmosphere in a ball mill or a vibration mill, a method in which an inorganic carrier or an organic carrier is immersed in a solution of the component A, and then dried and supported. Examples thereof include a method in which the ligand of A is chemically bonded to an organic carrier. The amount of the component A supported on the inorganic carrier or the organic carrier is not particularly limited, but is preferably about 0.001 to 30 wt%.

本発明の重合用担持型触媒組成物に含有させるべき成分Bは、置換基を有していてもよい炭素数1〜20の脂肪族炭化水素基もしくは置換基を有していてもよい炭素数6〜40の芳香族炭化水素基を少なくとも1つ有する、原子番号3以上かつ周期律表第1,2,12もしくは13族元素の化合物、または過塩素酸塩である。置換基を有していてもよい炭素数1〜20の脂肪族炭化水素基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、シクロプロピル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基等の直鎖、分岐鎖または環状の脂肪族炭化水素基が挙げられ、置換基を有していてもよい炭素数6〜20の芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニル基、アントリル基、フェナントリル基、インデニル基、フルオレニル基、アズレニル基等が挙げられる。また、これらの基の置換基としては、上記の炭素数1〜20の脂肪族炭化水素基、炭素数6〜20の芳香族炭化水素基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert−ブトキシ基等のアルコキシ基、フェノキシ基等のアリロキシ基、ハロゲン(F、Cl、Br、I)、アセトキシ基、ニトロ基、スルホン酸基、カルボニル基、アミノ基等の官能基等が挙げられる。これらの置換基はさらなる置換基を有していてもよい。   Component B to be contained in the polymerization-supported catalyst composition for polymerization of the present invention may have an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms or an optionally substituted carbon number. A compound having an atomic number of 3 or more and a Group 1, 2, 12 or 13 element in the periodic table, or a perchlorate having at least one 6 to 40 aromatic hydrocarbon group. Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have a substituent include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, etc. Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms that may have a substituent include a phenyl group, a naphthyl group, a biphenyl group, an anthryl group, and a phenanthryl group. , Indenyl group, fluorenyl group, azulenyl group and the like. Examples of the substituent for these groups include the above-described aliphatic hydrocarbon group having 1 to 20 carbon atoms, aromatic hydrocarbon group having 6 to 20 carbon atoms, methoxy group, ethoxy group, propoxy group, butoxy group, tert. -Functional groups such as alkoxy groups such as butoxy group, allyloxy groups such as phenoxy group, halogen (F, Cl, Br, I), acetoxy group, nitro group, sulfonic acid group, carbonyl group, amino group and the like. These substituents may have further substituents.

成分Bに含まれる化合物としては、アルキルリチウム、アルキルナトリウム、アルキルマグネシウム、アルキル亜鉛、アルキルアルミニウム、有機ホウ素化合物、過塩素酸塩などが挙げられる。具体例としては、メチルリチウム、ブチルリチウム、フェニルリチウム、ブチルナトリウム、ブチルエチルマグネシウム、臭化メチルマグネシウム、臭化エチルマグネシウム、臭化ブチルマグネシウム、臭化フェニルマグネシウム、塩化メチルマグネシウム、塩化エチルマグネシウム、塩化ブチルマグネシウム、塩化フェニルマグネシウム、ジエチル亜鉛、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、エチルアルミニウムジクロライド、エチルアルミニウムセスキクロライド、ジイソブチルアルミニウムメトキシド、ジイソブチルアルミニウムエトキシド、ジイソブチルアルミニウムイソプロポキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシド、エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシド、水素化ジイソプロピルアルミニウム、メチルアルミニウムビス(2,6−ジtert−ブチルフェノキシド)、メチルアルミニウムビス(2,6−ジtert−ブチル−4−メチルフェノキシド)、イソブチルアルミニウムビス(2,6−ジtert−ブチルフェノキシド)、イソブチルアルミニウムビス(2,6−ジtert−ブチル−4−メチルフェノキシド)、メチルアルミニウムビス{2−(N−フェニルイミノ)フェノキシド}、イソブチルアルミニウムビス{2−(N−フェニルイミノ)フェノキシド}、ジエチルアルミニウム{2−(N−フェニルイミノ)フェノキシド}、ジメチルアルミニウム(N,N`−ジイソプロピルアセトアミジナート)、ジメチルアルミニウム(N,N`−ジシクロヘキシルアセトアミジナート)、ジメチルガリウム(N,N`−ジイソプロピルアセトアミジナート)、ジメチルガリウム(N,N`−ジシクロヘキシルアセトアミジナート)、酸素原子や窒素原子を介して2個以上のアルミニウムが結合したアルミノキサン化合物等が挙げられる。中でもトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムクロライド、エチルアルミニウムジクロライドアルミノキサン化合物等が好ましい。   Examples of the compound contained in Component B include alkyl lithium, alkyl sodium, alkyl magnesium, alkyl zinc, alkyl aluminum, organoboron compound, perchlorate and the like. Specific examples include methyl lithium, butyl lithium, phenyl lithium, butyl sodium, butyl ethyl magnesium, methyl magnesium bromide, ethyl magnesium bromide, butyl magnesium bromide, phenyl magnesium bromide, methyl magnesium chloride, ethyl magnesium chloride, chloride. Butyl magnesium, phenyl magnesium chloride, diethyl zinc, trimethyl aluminum, triethyl aluminum, triisopropyl aluminum, triisobutyl aluminum, dimethyl aluminum chloride, diethyl aluminum chloride, ethyl aluminum dichloride, ethyl aluminum sesquichloride, diisobutyl aluminum methoxide, diisobutyl aluminum ethoxide Diisobutylaluminum isopropoxy , Diethylaluminum ethoxide, dibutylaluminum butoxide, ethylaluminum sesquiethoxide, butylaluminum sesquibutoxide, diisopropylaluminum hydride, methylaluminum bis (2,6-ditert-butylphenoxide), methylaluminum bis (2,6- Ditert-butyl-4-methylphenoxide), isobutylaluminum bis (2,6-ditert-butylphenoxide), isobutylaluminum bis (2,6-ditert-butyl-4-methylphenoxide), methylaluminum bis {2 -(N-phenylimino) phenoxide}, isobutylaluminum bis {2- (N-phenylimino) phenoxide}, diethylaluminum {2- (N-phenylimino) phenoxide}, dimethyl Aluminum (N, N`-diisopropylacetamidinate), dimethylaluminum (N, N`-dicyclohexylacetamidinate), dimethylgallium (N, N`-diisopropylacetamidinate), dimethylgallium (N, N `-Dicyclohexylacetamidinate), an aluminoxane compound in which two or more aluminums are bonded via an oxygen atom or a nitrogen atom. Of these, trimethylaluminum, triethylaluminum, triisobutylaluminum, diethylaluminum chloride, ethylaluminum dichloridealuminoxane compound and the like are preferable.

また、有機ホウ素化合物には狭義の有機ホウ素化合物の他に有機ホウ酸化合物をも含み、具体例としては、トリスペンタフルオロフェニルホウ素、トリス(トリフルオロメチル)ホウ素、テトラキスペンタフルオロフェニルホウ酸トリフェニルメチル、テトラキス[3,5−ジ(トリフルオロメチル)フェニル]ホウ酸トリフェニルメチル、テトラキス[3,5−ジ(トリフルオロメチル)フェニル]ホウ酸ナトリウムなどが挙げられる。過塩素酸塩とは過塩素酸金属塩や過塩素酸と有機カチオンとの塩を含み、具体例としては、過塩素酸銀、過塩素酸トリフェニルメチルなどが挙げられる。成分Bは、これらの化合物の1種又は2種以上混合して用いることができる。   In addition to organic boron compounds in a narrow sense, organic boron compounds include organic boric acid compounds. Specific examples include trispentafluorophenyl boron, tris (trifluoromethyl) boron, and tetrakispentafluorophenyl borate triphenyl. Examples include methyl, tetrakis [3,5-di (trifluoromethyl) phenyl] triphenylmethylborate, sodium tetrakis [3,5-di (trifluoromethyl) phenyl] borate, and the like. The perchlorate includes a metal salt of perchloric acid or a salt of perchloric acid and an organic cation, and specific examples include silver perchlorate and triphenylmethyl perchlorate. Component B can be used by mixing one or more of these compounds.

本発明で用いるビニルエステル系モノマーとしては、代表的には酢酸ビニルが示されるが、本発明では、酢酸ビニル以外にも、炭素数3〜20のビニルエステル系単量体が用いられてもよい。そのような単量体としては、例えば、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、2−エチルへキサン酸ビニル、安息香酸ビニルなどが挙げられる。また、これらは単独でも2種以上を組み合せてもよい。本発明の重合用担持型触媒組成物を用いたビニルエステル系モノマーの重合時に、ビニルエステル系単量体と共重合可能な単量体、例えばエチレン、プロピレン、イソブテンなどのα−オレフィン;アクリル酸、メタアクリル酸、クロトン酸、マレイン酸、イタコン酸、無水マレイン酸などの不飽和酸類、その塩またはモノもしくはジアルキルエステル;アクリロニトリル、メタクリロニトリル類;アクリルアミド、メタクリルアミド類;ビニルエーテル類;塩化ビニル、塩化ビニリデン;スチレン、α−メチルスチレン;ブタジエン、イソプレン、1,5−ヘキサジエン、シクロペンタジエン、ビニルノルボルネン、ノルボルナジエン;ビニルスルホン酸またはその塩;などを少量存在させることも可能である。   As the vinyl ester monomer used in the present invention, vinyl acetate is typically shown, but in the present invention, a vinyl ester monomer having 3 to 20 carbon atoms may be used in addition to vinyl acetate. . Examples of such monomers include vinyl formate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl 2-ethylhexanoate, vinyl benzoate, and the like. Moreover, these may be individual or may combine 2 or more types. A monomer that can be copolymerized with a vinyl ester monomer during polymerization of the vinyl ester monomer using the supported catalyst composition for polymerization of the present invention, for example, an α-olefin such as ethylene, propylene, and isobutene; acrylic acid Unsaturated acids such as methacrylic acid, crotonic acid, maleic acid, itaconic acid, maleic anhydride, salts or mono- or dialkyl esters thereof; acrylonitrile, methacrylonitriles; acrylamide, methacrylamides; vinyl ethers; A small amount of vinylidene chloride; styrene, α-methylstyrene; butadiene, isoprene, 1,5-hexadiene, cyclopentadiene, vinyl norbornene, norbornadiene; vinyl sulfonic acid or its salt;

重合条件は特に限定されないが、ビニルエステル系モノマーと不活性溶媒との混合溶液を用いることが好ましい。この不活性溶媒は、重合を阻害しないものであればいかなる溶媒でも使用することができるが、特に炭素数4〜20の脂肪族炭化水素、例えばイソブタン、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等;芳香族炭化水素、例えばトルエン、キシレン等;炭素数1〜20のハロゲン化脂肪族炭化水素、例えばクロロホルム、塩化メチレン、四塩化炭素、ジブロモエタン、テトラクロロエタン等;ハロゲン化芳香族炭化水素、例えばクロロベンゼン、ジクロロベンゼン等;炭素数3〜20の脂肪族エステル、例えば酢酸メチル、酢酸エチル、酢酸2−エチルへキシル、酢酸フェニル、ヘキサン酸エチル等;または芳香族エステル、例えば安息香酸メチル、安息香酸エチル等;が適当である。   The polymerization conditions are not particularly limited, but it is preferable to use a mixed solution of a vinyl ester monomer and an inert solvent. As the inert solvent, any solvent can be used as long as it does not inhibit the polymerization. In particular, an aliphatic hydrocarbon having 4 to 20 carbon atoms such as isobutane, pentane, hexane, heptane, cyclohexane, etc .; aromatic Hydrocarbons such as toluene, xylene, etc .; halogenated aliphatic hydrocarbons having 1 to 20 carbon atoms such as chloroform, methylene chloride, carbon tetrachloride, dibromoethane, tetrachloroethane, etc .; halogenated aromatic hydrocarbons such as chlorobenzene, di Chlorobenzene and the like; aliphatic esters having 3 to 20 carbon atoms such as methyl acetate, ethyl acetate, 2-ethylhexyl acetate, phenyl acetate and ethyl hexanoate; or aromatic esters such as methyl benzoate and ethyl benzoate; Is appropriate.

本発明の実施にあたり、成分Aはビニルエステル系モノマーと不活性溶媒を含有する混合溶液1Lあたり周期律表第4族から第9族の金属原子0.001〜2.5モルに相当する量で使用するのが好ましく、条件によりさらに高い濃度で使用することもできる。   In the practice of the present invention, component A is an amount corresponding to 0.001 to 2.5 moles of metal atoms of Group 4 to Group 9 of the periodic table per liter of a mixed solution containing a vinyl ester monomer and an inert solvent. It is preferable to use it, and it can be used at a higher concentration depending on the conditions.

成分Bは、成分Aの種類等により適宜濃度を変更し得るが、ビニルエステル系モノマーと不活性溶媒を含有する混合溶液1Lあたり、通常周期表第1、2、11、12または13族の金属原子0.02〜50モルの濃度で使用するのが好ましい。触媒組成物の成分B/成分Aのモル比は特に限定されないが、通常10000以下であり、好ましくは5000以下であり、より好ましくは0.1〜1000である。   Component B can be appropriately changed in concentration depending on the type of component A, etc., but is usually a metal from Group 1, 2, 11, 12 or 13 of the periodic table per liter of a mixed solution containing a vinyl ester monomer and an inert solvent. It is preferably used at a concentration of 0.02 to 50 mol of atoms. The molar ratio of component B / component A of the catalyst composition is not particularly limited, but is usually 10,000 or less, preferably 5000 or less, and more preferably 0.1 to 1000.

本重合における重合操作は、通常の単一の重合条件で行う一段重合のみならず、複数の重合条件下で行う多段重合においても行うことができる。   The polymerization operation in the main polymerization can be performed not only in a single-stage polymerization performed under normal single polymerization conditions but also in a multi-stage polymerization performed under a plurality of polymerization conditions.

本発明における重合条件は特に限定されないが、通常−100℃〜200℃であり、好ましくは−20℃〜100℃である。   Although the polymerization conditions in this invention are not specifically limited, Usually, it is -100 degreeC-200 degreeC, Preferably it is -20 degreeC-100 degreeC.

本発明の担持型触媒組成物を用い、ビニルエステル系モノマーを重合して得られたビニルエステル系重合体からは、鹸化してPVAを製造することができるが、鹸化方法やその条件には特に制限はなく、ビニルエステル系重合体のアルコール溶液を水酸化ナトリウム、水酸化カリウムなどのアルカリを触媒として公知の方法で鹸化することができる。なお、本発明の担持型触媒組成物は、ビニルエステル系モノマーを重合して、イソタクチシチーがメソ2連子(m)で50%以上となるビニルエステル系重合体を得るためのものである。本発明においてビニルエステル系重合体のイソタクチシチーとは、該ビニルエステル系重合体をアルカリ鹸化してPVAへと変換し、核磁気共鳴装置により後述の実施例に記載の方法に従って求めた値を指すものとする。   From the vinyl ester polymer obtained by polymerizing a vinyl ester monomer using the supported catalyst composition of the present invention, PVA can be produced by saponification. There is no limitation, and an alcohol solution of a vinyl ester polymer can be saponified by a known method using an alkali such as sodium hydroxide or potassium hydroxide as a catalyst. The supported catalyst composition of the present invention is for polymerizing a vinyl ester monomer to obtain a vinyl ester polymer having an isotacticity of 50% or more by meso diad (m). . In the present invention, the isotacticity of the vinyl ester polymer means that the vinyl ester polymer is alkali saponified and converted to PVA, and a value obtained by a nuclear magnetic resonance apparatus according to the method described in Examples below. Shall point to.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例に用いた測定方法は次の通りである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. In addition, the measuring method used for the Example and the comparative example is as follows.

(イソタクチシチー(二連子))
ポリ酢酸ビニルは常法に従ってアルカリ鹸化してPVAへと変換し、核磁気共鳴装置(日本電子社製、JNM−LAMBDA−400)によりプロトンNMRを測定し、三連子(mm/mr/rr)の割合(%)を求め、次式からイソタクチシチー(二連子)(m)(%)を算出した。
イソタクチシチー(二連子)(m)=mm+(mr/2)
(Isotacticity (Duplicate))
Polyvinyl acetate was saponified with alkali according to a conventional method and converted to PVA, proton NMR was measured with a nuclear magnetic resonance apparatus (JNM-LAMBDA-400, manufactured by JEOL Ltd.), and triplet (mm / mr / rr) The ratio (%) was determined, and isotacticity (duplex) (m) (%) was calculated from the following formula.
Isotacticity (doublet) (m) = mm + (mr / 2)

(重合体の分子量)
カラム(東ソー社製、TSKgelGMHHR−MおよびTSKgelG2000HHR)および示差屈折率計(東ソー社製、RI−8020)を備えたゲル浸透クロマトグラフ(東ソー社製)により、40℃、テトラヒドロフラン溶媒中で、ビニルエステル系重合体の重量平均分子量(Mw)および分子量分散度(MWD)〔重量平均分子量(Mw)/数平均分子量(Mn)〕をポリスチレン換算で求めた。
(Molecular weight of polymer)
Vinyl ester in a tetrahydrofuran solvent at 40 ° C. using a gel permeation chromatograph (manufactured by Tosoh Corporation) equipped with a column (Tosoh Corporation, TSKgelGMHHR-M and TSKgelG2000HHR) and a differential refractometer (Tosoh Corporation, RI-8020). The weight average molecular weight (Mw) and molecular weight dispersity (MWD) [weight average molecular weight (Mw) / number average molecular weight (Mn)] of the polymer were determined in terms of polystyrene.

合成例1
[担持型触媒の調製]
アセチルアセトナートクロム(III)を無機担体の塩化マグネシウムに担持させた。すなわち、内容積0.2Lのガラス製シュレンクチューブにアルゴン雰囲気下アセチルアセトナートクロム(III)0.1g、塩化マグネシウム5.0gとトルエン0.015Lを仕込み24時間攪拌した。その後、トルエンを減圧留去することで下アセチルアセトナートクロム(III)を担体上に担持させた。得られた塩化マグネシウム担持アセチルアセトナートクロム(III)触媒中のクロム含率は、0.056mmol/gであった。
Synthesis example 1
[Preparation of supported catalyst]
Acetylacetonatochrome (III) was supported on magnesium chloride as an inorganic carrier. That is, 0.1 g of acetylacetonatochromium (III), 5.0 g of magnesium chloride and 0.015 L of toluene were charged in a glass Schlenk tube having an internal volume of 0.2 L in an argon atmosphere and stirred for 24 hours. Thereafter, toluene was distilled off under reduced pressure to support lower acetylacetonatochrome (III) on the carrier. The chromium content in the obtained magnesium chloride-supported acetylacetonate chromium (III) catalyst was 0.056 mmol / g.

実施例1
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1の塩化マグネシウム担持アセチルアセトナートクロム(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表1に示した。また、クロム1mol当たりの触媒活性は、7.44kg/mol-Crであった。
Example 1
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, and magnesium chloride-supported acetylacetonate chromium (III) (1.0 g) and diethylaluminum chloride (11 mmol) in Synthesis Example 1 Further, vinyl acetate (0.01 L) was added and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 1. The catalytic activity per 1 mol of chromium was 7.44 kg / mol-Cr.

実施例2
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1の塩化マグネシウム担持アセチルアセトナートクロム(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加えた。反応溶液は、室温で10分攪拌した後、液層を除去し、同等量のトルエンを加えた。次に酢酸ビニル(0.01L)をこの溶液に加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表1に示した。
Example 2
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, and magnesium chloride-supported acetylacetonate chromium (III) (1.0 g) and diethylaluminum chloride (11 mmol) in Synthesis Example 1 Was added. The reaction solution was stirred at room temperature for 10 minutes, the liquid layer was removed, and an equivalent amount of toluene was added. Vinyl acetate (0.01 L) was then added to this solution and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 1.

実施例3
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1の塩化マグネシウム担持アセチルアセトナートクロム(III)(1.0g)とメチルアルミノキサン(アルミニウム原子換算で2mmol)を加え、さらに酢酸ビニル(0.01L)をこの溶液に加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表1に示した。
Example 3
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, and magnesium chloride-supported acetylacetonate chromium (III) (1.0 g) and methylaluminoxane (converted to aluminum atoms) in Synthesis Example 1 2 mmol) was added and vinyl acetate (0.01 L) was added to the solution and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 1.

実施例4
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにn−ヘプタン(0.01L)を装入し、合成例1の塩化マグネシウム担持アセチルアセトナートクロム(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表1に示した。
Example 4
Polymerization of vinyl acetate A 0.1 L Schlenk flask substituted with argon was charged with n-heptane (0.01 L), and magnesium chloride-supported acetylacetonate chromium (III) (1.0 g) of Synthesis Example 1 and diethylaluminum chloride ( 11 mmol), vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 1.

実施例5
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1の塩化マグネシウム担持アセチルアセトナートクロム(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で6時間撹拌した。6時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表1に示した。
Example 5
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, and magnesium chloride-supported acetylacetonate chromium (III) (1.0 g) and diethylaluminum chloride (11 mmol) in Synthesis Example 1 Then, vinyl acetate (0.01 L) was further added and stirred at room temperature for 6 hours. After 6 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 1.

実施例6
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1の塩化マグネシウム担持アセチルアセトナートクロム(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて40℃で6時間撹拌した。6時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表1に示した。
Example 6
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, and magnesium chloride-supported acetylacetonate chromium (III) (1.0 g) and diethylaluminum chloride (11 mmol) in Synthesis Example 1 Further, vinyl acetate (0.01 L) was added and stirred at 40 ° C. for 6 hours. After 6 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 1.

Figure 2007002232
Figure 2007002232

実施例7
酢酸ビニルの重合
エチレン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1の塩化マグネシウム担持アセチルアセトナートクロム(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で6時間撹拌した。6時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表2に示した。
Example 7
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an ethylene-substituted 0.1 L Schlenk flask, and magnesium chloride-supported acetylacetonate chromium (III) (1.0 g) and diethylaluminum chloride (11 mmol) in Synthesis Example 1 were used. Then, vinyl acetate (0.01 L) was further added and stirred at room temperature for 6 hours. After 6 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 2.

実施例8
酢酸ビニルの重合
エチレン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1の塩化マグネシウム担持アセチルアセトナートクロム(III)(1.0g)、安息香酸エチル(3mmol)およびジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表2に示した。
Example 8
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an ethylene-substituted 0.1 L Schlenk flask, and magnesium chloride-supporting acetylacetonate chromium (III) (1.0 g) of Synthesis Example 1 and ethyl benzoate (3 mmol) And diethylaluminum chloride (11 mmol) were added, and vinyl acetate (0.01 L) was further added, followed by stirring at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 2.

実施例9
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持トリフルオロアセチルアセトナートクロム(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表2に示した。
Example 9
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported trifluoroacetylacetonate chromium (III) (1.0 g) prepared in the same manner as in Synthesis Example 1. ) And diethylaluminum chloride (11 mmol), vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 2.

実施例10
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持ベンゾイルアセチルアセトナートクロム(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表2に示した。
Example 10
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported benzoylacetylacetonate chromium (III) (1.0 g) prepared in the same manner as in Synthesis Example 1. And diethylaluminum chloride (11 mmol) were added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 2.

実施例11
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持ビス(アセチルアセトナート)酸化モリブデン(IV)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表2に示した。
Example 11
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported bis (acetylacetonato) molybdenum oxide (IV) (1) prepared in the same manner as in Synthesis Example 1 0.0 g) and diethylaluminum chloride (11 mmol) were added, and vinyl acetate (0.01 L) was further added, followed by stirring at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 2.

Figure 2007002232
Figure 2007002232

実施例12
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持ビス(アセチルアセトナート)ジクロロチタニウム(IV)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表3に示した。
Example 12
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported bis (acetylacetonato) dichlorotitanium (IV) (1) prepared in the same manner as in Synthesis Example 1 (1) 0.0 g) and diethylaluminum chloride (11 mmol) were added, and vinyl acetate (0.01 L) was further added, followed by stirring at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 3.

実施例13
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持アセチルアセトナートジルコニウム(IV)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表3に示した。
Example 13
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, and magnesium chloride-supported acetylacetonate zirconium (IV) (1.0 g) prepared in the same manner as in Synthesis Example 1 Diethylaluminum chloride (11 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 3.

実施例14
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持アセチルアセトナートバナジウム(IV)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて0℃で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表3に示した。
Example 14
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported acetylacetonate vanadium (IV) (1.0 g) prepared in the same manner as in Synthesis Example 1 Diethylaluminum chloride (11 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at 0 ° C. for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 3.

実施例15
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコに合成例1に準じた方法で調整した塩化マグネシウム担持アセチルアセトナートバナジウム(III)(1.0g)とジエチルアルミニウムクロライド(10mmol)を加え、さらに酢酸ビニル(0.01L)を加えて0℃で6時間撹拌した。6時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表3に示した。
Example 15
Polymerization of vinyl acetate Magnesium chloride-supported acetylacetonate vanadium (III) (1.0 g) and diethylaluminum chloride (10 mmol) prepared by the method according to Synthesis Example 1 were added to an argon-substituted 0.1 L Schlenk flask, and acetic acid was further added. Vinyl (0.01 L) was added and stirred at 0 ° C. for 6 hours. After 6 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 3.

合成例2
[2−メチル−1,3−ブタンジオネートバナジウム(III)の合成]
1)2-メチル-1,3-フ゛タンシ゛オネート配位子の合成:滴下ロートを備えた500mlシュレンクチューフ゛に粉末のCH3ONa(0.24mol),HCOOCH3(0.53mol)およびTHF(300ml)を導入した。次に反応容器を0℃に冷却した後、撹拌しながらメチルエチルケトン(0.26mol)を30分かけてゆっくりと滴下した。その後、0℃で4時間,室温で20時間撹拌した。反応溶液は、2日間静置することで溶液部と固体部に分離し、溶液部のみを除去した。目的物の固体部(薄黄色)は、減圧乾燥した(収率約90%)。
2)錯体の合成:300mlシュレンクチューフ゛に上記の方法で合成した2-メチル-1,3-フ゛タンシ゛オネート(57mmol)を入れ、50mlの蒸留水に溶解した。この溶液にVCl3水溶液(3.0g/50ml)を加えて1時間撹拌した。次に、この溶液を数時間静置した後、上澄み液を除去した。このように蒸留水で10回程洗浄することで目的の錯体を精製した。最後に減圧乾燥することで茶色の錯体を得た(収率約50%)[Makromol.Chem.,Rapid Commun.,8,285(1987年)参照]。
Synthesis example 2
[Synthesis of 2-methyl-1,3-butanedioate vanadium (III)]
1) Synthesis of 2-methyl-1,3-butanionate ligand: Powdered CH 3 ONa (0.24 mol), HCOOCH 3 (0.53 mol) and THF (300 ml) were added to a 500 ml Schlenk tube equipped with a dropping funnel. Introduced. Next, after cooling the reaction vessel to 0 ° C., methyl ethyl ketone (0.26 mol) was slowly added dropwise over 30 minutes while stirring. Thereafter, the mixture was stirred at 0 ° C. for 4 hours and at room temperature for 20 hours. The reaction solution was allowed to stand for 2 days to separate into a solution part and a solid part, and only the solution part was removed. The solid part (light yellow) of the target product was dried under reduced pressure (yield: about 90%).
2) Synthesis of complex: 2-methyl-1,3-butanionate (57 mmol) synthesized by the above method was placed in a 300 ml Schlenk tube and dissolved in 50 ml of distilled water. To this solution was added an aqueous VCl 3 solution (3.0 g / 50 ml) and stirred for 1 hour. Next, this solution was allowed to stand for several hours, and then the supernatant was removed. Thus, the target complex was purified by washing about 10 times with distilled water. Finally, a brown complex was obtained by drying under reduced pressure (yield about 50%) [see Makromol. Chem., Rapid Commun., 8, 285 (1987)].

実施例16
酢酸ビニルの重合
合成例2で得た2−メチル−1,3−ブタンジオネートバナジウム(III)を合成例1に準じた方法で塩化マグネシウムに担持した。アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、塩化マグネシウム担持2−メチル−1,3−ブタンジオネートバナジウム(III)(1.0g)とジエチルアルミニウムクロライド(10mmol)を加え、さらに酢酸ビニル(0.01L)を加えて0℃で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表3に示した。
Example 16
Polymerization of vinyl acetate 2-methyl-1,3-butanedioate vanadium (III) obtained in Synthesis Example 2 was supported on magnesium chloride by a method according to Synthesis Example 1. Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, and magnesium chloride-supported 2-methyl-1,3-butanedioate vanadium (III) (1.0 g) and diethylaluminum chloride (10 mmol). Further, vinyl acetate (0.01 L) was added and stirred at 0 ° C. for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 3.

実施例17
酢酸ビニルの重合
合成例2で得た2−メチル−1,3−ブタンジオネートバナジウム(III)を合成例1に準じた方法で塩化マグネシウムに担持した。アルゴン置換した0.1Lシュレンクフラスコに塩化マグネシウム担持2−メチル−1,3−ブタンジオネートバナジウム(III)(1.0g)とジエチルアルミニウムクロライド(10mmol)を加え、さらに酢酸ビニル(0.01L)を加えて0℃で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表3に示した。
Example 17
Polymerization of vinyl acetate 2-methyl-1,3-butanedioate vanadium (III) obtained in Synthesis Example 2 was supported on magnesium chloride by a method according to Synthesis Example 1. To a 0.1 L Schlenk flask substituted with argon, magnesium chloride-supported 2-methyl-1,3-butanedioate vanadium (III) (1.0 g) and diethylaluminum chloride (10 mmol) were added, and further vinyl acetate (0.01 L) was added. And stirred at 0 ° C. for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 3.

Figure 2007002232
Figure 2007002232

実施例18
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持アセチルアセトナートマンガン(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表4に示した。
Example 18
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported acetylacetonate manganese (III) (1.0 g) prepared in the same manner as in Synthesis Example 1 Diethylaluminum chloride (11 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 4.

実施例19
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持アセチルアセトナートマンガン(II)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表4に示した。
Example 19
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported acetylacetonate manganese (II) (1.0 g) prepared in the same manner as in Synthesis Example 1 Diethylaluminum chloride (11 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 4.

Figure 2007002232
Figure 2007002232

実施例20
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持アセチルアセトナート鉄(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表5に示した。
Example 20
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported acetylacetonate iron (III) (1.0 g) prepared in the same manner as in Synthesis Example 1 Diethylaluminum chloride (11 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 5.

実施例21
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持アセチルアセトナート鉄(II)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表5に示した。
Example 21
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported acetylacetonate iron (II) (1.0 g) prepared in the same manner as in Synthesis Example 1 Diethylaluminum chloride (11 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 5.

実施例22
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持アセチルアセトナートルテニウム(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表5に示した。
Example 22
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported acetylacetonate ruthenium (III) (1.0 g) prepared in the same manner as in Synthesis Example 1 Diethylaluminum chloride (11 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 5.

Figure 2007002232
Figure 2007002232

実施例23
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持アセチルアセトナートコバルト(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表6に示した。
Example 23
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supporting acetylacetonate cobalt (III) (1.0 g) prepared in the same manner as in Synthesis Example 1 Diethylaluminum chloride (11 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 6.

実施例24
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持アセチルアセトナートコバルト(II)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表6に示した。
Example 24
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supporting acetylacetonate cobalt (II) (1.0 g) prepared in the same manner as in Synthesis Example 1 Diethylaluminum chloride (11 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 6.

実施例25
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにヘプタン(0.01L)を装入し、合成例1に準じた方法で調整した塩化マグネシウム担持アセチルアセトナートコバルト(III)(1.0g)とジエチルアルミニウムクロライド(10mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で6時間撹拌した。6時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表6に示した。
Example 25
Polymerization of vinyl acetate Heptane (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supporting acetylacetonate cobalt (III) (1.0 g) prepared by the method according to Synthesis Example 1 Diethylaluminum chloride (10 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 6 hours. After 6 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 6.

実施例26
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコに合成例1に準じた方法で調整した塩化マグネシウム担持アセチルアセトナートコバルト(III)(1.0g)とジエチルアルミニウムクロライド(5mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で6時間撹拌した。6時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表6に示した。
Example 26
Polymerization of vinyl acetate To a 0.1 L Schlenk flask substituted with argon was added magnesium chloride-supporting acetylacetonate cobalt (III) (1.0 g) and diethylaluminum chloride (5 mmol) prepared by the method according to Synthesis Example 1, and acetic acid was further added. Vinyl (0.01 L) was added and stirred at room temperature for 6 hours. After 6 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 6.

実施例27
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.02L)を装入し、合成例1に準じた方法で調整した塩化マグネシウム担持アセチルアセトナートコバルト(III)(1.0g)とジエチルアルミニウムクロライド(10mmol)を加え、さらに酢酸ビニル(0.01L)を加えて60℃で3時間撹拌した。3時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表6に示した。
Example 27
Polymerization of vinyl acetate Toluene (0.02 L) was charged into an argon-substituted 0.1 L Schlenk flask, and magnesium chloride-supported acetylacetonate cobalt (III) (1.0 g) prepared by the method according to Synthesis Example 1 and Diethylaluminum chloride (10 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at 60 ° C. for 3 hr. After 3 hours, the reaction vessel was poured into 0.1 L of a 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 6.

Figure 2007002232
Figure 2007002232

実施例28
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持アセチルアセトナートロジウム(III)(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表7に示した。
Example 28
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported acetylacetonato rhodium (III) (1.0 g) prepared in the same manner as in Synthesis Example 1 Diethylaluminum chloride (11 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 7.

実施例29
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持トリクロロ(シクロペンタジエニル)チタニウム(IV)(1.0g)とメチルアルミノキサン(アルミニウム原子換算で2mmol)を加え、さらに酢酸ビニル(0.01L)を加えて0℃で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表7に示した。
Example 29
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported trichloro (cyclopentadienyl) titanium (IV) (1) prepared in the same manner as in Synthesis Example 1 (1) 0.0 g) and methylaluminoxane (2 mmol in terms of aluminum atom) were added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at 0 ° C. for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 7.

実施例30
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、合成例1と同様の方法で調製した塩化マグネシウム担持rac-エチレンビス(インデニル)ジクロロジルコニウム(IV)(1.0g)とメチルアルミノキサン(アルミニウム原子換算で2mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。結果を表7に示した。
Example 30
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and magnesium chloride-supported rac-ethylenebis (indenyl) dichlorozirconium (IV) (IV) prepared in the same manner as in Synthesis Example 1 ( 1.0 g) and methylaluminoxane (2 mmol in terms of aluminum atom) were added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The results are shown in Table 7.

Figure 2007002232
Figure 2007002232

比較例1
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、アゾイソブチロニトリル(10mg)を加え、さらに酢酸ビニル(0.01L)を加えて60℃で24時間撹拌した。24時間後、反応溶液を濃縮し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、通常のラジカル重合としての比較例に該当する。結果を表8に示した。
Comparative Example 1
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, azoisobutyronitrile (10 mg) was added, and vinyl acetate (0.01 L) was further added at 60 ° C. for 24 hours. Stir for hours. After 24 hours, the reaction solution was concentrated to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. The said conditions correspond to the comparative example as normal radical polymerization. The results are shown in Table 8.

比較例2
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、アセチルアセトナートクロム(III)(17.5mg)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを担体に担持させていない比較例に該当する。結果を表8に示した。
Comparative Example 2
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, acetylacetonatochromium (III) (17.5 mg) and diethylaluminum chloride (11 mmol) were added, and vinyl acetate ( 0.01 L) was added and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not supported on a carrier. The results are shown in Table 8.

比較例3
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、アセチルアセトナートクロム(III)(175mg)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを担体に担持させていない比較例に該当する。結果を表8に示した。
Comparative Example 3
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, acetylacetonatochromium (III) (175 mg) and diethylaluminum chloride (11 mmol) were added, and vinyl acetate (0. 01L) was added and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not supported on a carrier. The results are shown in Table 8.

比較例4
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、ジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを用いていない比較例に該当する。結果を表8に示した。
Comparative Example 4
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, diethylaluminum chloride (11 mmol) was added, vinyl acetate (0.01 L) was further added, and the mixture was stirred at room temperature for 24 hours. . After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not used. The results are shown in Table 8.

比較例5
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、塩化マグネシウム(1.0g)とアゾイソブチロニトリル(10mg)を加え、さらに酢酸ビニル(0.01L)を加えて60℃で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、担体共存下での通常のラジカル重合としての比較例に該当する。結果を表8に示した。
Comparative Example 5
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask purged with argon, magnesium chloride (1.0 g) and azoisobutyronitrile (10 mg) were added, and vinyl acetate (0.01 L) was added. ) And stirred at 60 ° C. for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example as normal radical polymerization in the presence of a carrier. The results are shown in Table 8.

Figure 2007002232
Figure 2007002232

比較例6
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、トリフルオロアセチルアセトナートクロム(III)(25.6mg)とジエチルアルミニウムクロライド(1.1mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを担体に担持させていない比較例に該当する。結果を表9に示した。
Comparative Example 6
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, trifluoroacetylacetonatochrome (III) (25.6 mg) and diethylaluminum chloride (1.1 mmol) were added, Further, vinyl acetate (0.01 L) was added and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not supported on a carrier. The results are shown in Table 9.

比較例7
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、ベンゾイルアセチルアセトナートクロム(III)(26.8mg)とジエチルアルミニウムクロライド(1.1mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを担体に担持させていない比較例に該当する。結果を表9に示した。
Comparative Example 7
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, and benzoylacetylacetonatochrome (III) (26.8 mg) and diethylaluminum chloride (1.1 mmol) were added. Vinyl acetate (0.01 L) was added and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not supported on a carrier. The results are shown in Table 9.

比較例8
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、ビス(アセチルアセトナート)酸化モリブデン(IV)(16.3mg)とジエチルアルミニウムクロライド(1.1mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを担体に担持させていない比較例に該当する。結果を表9に示した。
Comparative Example 8
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, and bis (acetylacetonato) molybdenum oxide (IV) (16.3 mg) and diethylaluminum chloride (1.1 mmol) were added. In addition, vinyl acetate (0.01 L) was further added and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not supported on a carrier. The results are shown in Table 9.

比較例9
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、塩化マグネシウム(1.0g)とジエチルアルミニウムクロライド(11mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを用いていない比較例に該当する。結果を表9に示した。
Comparative Example 9
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, magnesium chloride (1.0 g) and diethylaluminum chloride (11 mmol) were added, and vinyl acetate (0.01 L) was further added. In addition, the mixture was stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not used. The results are shown in Table 9.

比較例10
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、メチルアルミノキサン(アルミニウム原子換算で2mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを用いていない比較例に該当する。結果を表9に示した。
Comparative Example 10
Polymerization of vinyl acetate Toluene (0.01 L) was charged into an argon-substituted 0.1 L Schlenk flask, methylaluminoxane (2 mmol in terms of aluminum atom) was added, and vinyl acetate (0.01 L) was further added at room temperature. Stir for hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not used. The results are shown in Table 9.

Figure 2007002232
Figure 2007002232

比較例11
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、アセチルアセトナートクロム(III)(17.5mg)とメチルアルミノキサン(アルミニウム原子換算で2mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを担体に担持させていない比較例に該当する。結果を表10に示した。
Comparative Example 11
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, acetylacetonatochrome (III) (17.5 mg) and methylaluminoxane (2 mmol in terms of aluminum atom) were added, and further Vinyl acetate (0.01 L) was added and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not supported on a carrier. The results are shown in Table 10.

比較例12
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、トリフルオロアセチルアセトナートクロム(III)(25.6mg)とメチルアルミノキサン(アルミニウム原子換算で2mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを担体に担持させていない比較例に該当する。結果を表10に示した。
Comparative Example 12
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and trifluoroacetylacetonate chromium (III) (25.6 mg) and methylaluminoxane (2 mmol in terms of aluminum atom) were added. Further, vinyl acetate (0.01 L) was added and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not supported on a carrier. The results are shown in Table 10.

比較例13
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、ベンゾイルアセチルアセトナートクロム(III)(26.8mg)とメチルアルミノキサン(アルミニウム原子換算で2mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを担体に担持させていない比較例に該当する。結果を表10に示した。
Comparative Example 13
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, benzoylacetylacetonatochrome (III) (26.8 mg) and methylaluminoxane (2 mmol in terms of aluminum atom) were added, Further, vinyl acetate (0.01 L) was added and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not supported on a carrier. The results are shown in Table 10.

比較例14
酢酸ビニルの重合
アルゴン置換した0.1Lシュレンクフラスコにトルエン(0.01L)を装入し、ビス(アセチルアセトナート)酸化モリブデン(IV)(16.3mg)とメチルアルミノキサン(アルミニウム原子換算で2mmol)を加え、さらに酢酸ビニル(0.01L)を加えて室温で24時間撹拌した。24時間後、反応容器に0.1M塩酸水溶液0.1L中に投入し、クロロホルムで生成物を抽出し、ポリ酢酸ビニルを得た。得られたポリ酢酸ビニルは、常法に従ってアルカリ鹸化してPVAへと変換した。当該条件は、成分Aを担体に担持させていない比較例に該当する。結果を表10に示した。
Comparative Example 14
Polymerization of vinyl acetate Toluene (0.01 L) was charged into a 0.1 L Schlenk flask substituted with argon, and bis (acetylacetonato) molybdenum oxide (IV) (16.3 mg) and methylaluminoxane (2 mmol in terms of aluminum atom). Further, vinyl acetate (0.01 L) was added and stirred at room temperature for 24 hours. After 24 hours, the reaction vessel was put into 0.1 L of 0.1 M hydrochloric acid aqueous solution, and the product was extracted with chloroform to obtain polyvinyl acetate. The obtained polyvinyl acetate was converted to PVA by alkali saponification according to a conventional method. This condition corresponds to a comparative example in which component A is not supported on a carrier. The results are shown in Table 10.

Figure 2007002232
Figure 2007002232

実施例1〜30と比較例1〜14との比較から明らかなように、本発明の重合用担持型触媒組成物を用いると、温和な条件下でイソタクチシチーの高いポリマーを製造できることがわかる。
As is clear from the comparison between Examples 1-30 and Comparative Examples 1-14, it can be seen that a polymer having high isotacticity can be produced under mild conditions by using the supported catalyst composition for polymerization of the present invention. .

Claims (7)

重合体のイソタクチシチーがメソ2連子(m)で50%以上となるビニルエステル系モノマーのイソタクチック重合用担持型触媒組成物であって、下記成分Aから選ばれた少なくとも1種の金属化合物を無機担体または有機担体に担持させた触媒と、下記成分Bから選ばれた少なくとも1種の化合物とを含有するイソタクチック重合用担持型触媒組成物。
成分A:周期律表第4族から第9族の金属のハロゲン化物、アルキル化物、アリール化物、アリル化物、水素化物、含酸素有機化物、含窒素有機化物。
成分B:置換基を有していてもよい炭素数1〜20の脂肪族炭化水素基もしくは置換基を有していてもよい炭素数6〜40の芳香族炭化水素基を少なくとも1つ有する、原子番号3以上かつ周期律表第1、2、12もしくは13族元素の化合物、または過塩素酸塩。
A supported catalyst composition for isotactic polymerization of a vinyl ester monomer having a polymer isotacticity of 50% or more in meso diads (m), and at least one metal compound selected from the following component A A supported catalyst composition for isotactic polymerization, comprising a catalyst in which is supported on an inorganic carrier or an organic carrier and at least one compound selected from the following Component B.
Component A: Halides, alkylates, arylates, allylates, hydrides, oxygenated organic compounds, nitrogenous organic compounds of Group 4 to Group 9 metals of the Periodic Table.
Component B: having at least one aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have a substituent or an aromatic hydrocarbon group having 6 to 40 carbon atoms which may have a substituent, A compound having an atomic number of 3 or more and a Group 1, 2, 12 or 13 element of the periodic table, or a perchlorate.
成分Aが、置換基を有していてもよいアセチルアセトナート基の少なくとも1つを配位子として有する金属化合物である、請求項1に記載の重合用担持型触媒組成物。   The supported catalyst composition for polymerization according to claim 1, wherein Component A is a metal compound having at least one acetylacetonate group which may have a substituent as a ligand. 成分Aを担持させる担体が、周期律表第1族または第2族の金属のハロゲン化物である、請求項1または2に記載の重合用担持型触媒組成物。   The supported catalyst composition for polymerization according to claim 1 or 2, wherein the carrier on which component A is supported is a metal halide of Group 1 or Group 2 of the Periodic Table. 成分Bが、有機リチウム化合物、有機マグネシウム化合物、有機ホウ素化合物、有機アルミニウム化合物または過塩素酸塩である、請求項1〜3のいずれかに記載の重合用担持型触媒組成物。   The supported catalyst composition for polymerization according to any one of claims 1 to 3, wherein Component B is an organolithium compound, an organomagnesium compound, an organoboron compound, an organoaluminum compound, or a perchlorate. 請求項1〜4のいずれかに記載の重合用担持型触媒組成物の、ビニルエステル系モノマーのイソタクチック重合への使用。   Use of the supported catalyst composition for polymerization according to any one of claims 1 to 4 for isotactic polymerization of a vinyl ester monomer. ビニルエステル系モノマーの炭素数が3〜20である請求項5に記載のビニルエステル系モノマーのイソタクチック重合への使用。   6. Use of vinyl ester monomer for isotactic polymerization according to claim 5, wherein the vinyl ester monomer has 3 to 20 carbon atoms. ビニルエステル系モノマーが酢酸ビニルである請求項6に記載のビニルエステル系モノマーのイソタクチック重合への使用。
The use of the vinyl ester monomer for isotactic polymerization according to claim 6, wherein the vinyl ester monomer is vinyl acetate.
JP2006142308A 2005-05-23 2006-05-23 Supported catalyst composition for polymerization of vinyl ester monomers and use thereof for polymerization of vinyl ester monomers Expired - Fee Related JP4948899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006142308A JP4948899B2 (en) 2005-05-23 2006-05-23 Supported catalyst composition for polymerization of vinyl ester monomers and use thereof for polymerization of vinyl ester monomers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005149544 2005-05-23
JP2005149544 2005-05-23
JP2006142308A JP4948899B2 (en) 2005-05-23 2006-05-23 Supported catalyst composition for polymerization of vinyl ester monomers and use thereof for polymerization of vinyl ester monomers

Publications (2)

Publication Number Publication Date
JP2007002232A true JP2007002232A (en) 2007-01-11
JP4948899B2 JP4948899B2 (en) 2012-06-06

Family

ID=37688118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142308A Expired - Fee Related JP4948899B2 (en) 2005-05-23 2006-05-23 Supported catalyst composition for polymerization of vinyl ester monomers and use thereof for polymerization of vinyl ester monomers

Country Status (1)

Country Link
JP (1) JP4948899B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017170974A1 (en) * 2016-03-31 2019-02-07 株式会社クラレ Polyvinyl alcohol and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296505A (en) * 1990-04-16 1991-12-27 Tosoh Corp Preparation of ethylene-vinyl acetate copolymer
JP2002519452A (en) * 1998-06-29 2002-07-02 インペリアル・ケミカル・インダストリーズ・ピーエルシー Living polymerization method
JP2002256015A (en) * 2001-03-01 2002-09-11 Tosoh Corp Method for producing vinyl chloride-vinyl acetate copolymer
JP2004514030A (en) * 2000-11-14 2004-05-13 アトフイナ・リサーチ・ソシエテ・アノニム Polymerization catalyst systems and their production
JP2006265541A (en) * 2005-02-25 2006-10-05 Mitsui Chemicals Inc Method for polymerizing olefin and polymer obtained thereby
JP2007308665A (en) * 2006-05-22 2007-11-29 Kuraray Co Ltd Method for producing polyvinyl ester and polyvinyl alcohol having restricted molecular weight

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296505A (en) * 1990-04-16 1991-12-27 Tosoh Corp Preparation of ethylene-vinyl acetate copolymer
JP2002519452A (en) * 1998-06-29 2002-07-02 インペリアル・ケミカル・インダストリーズ・ピーエルシー Living polymerization method
JP2004514030A (en) * 2000-11-14 2004-05-13 アトフイナ・リサーチ・ソシエテ・アノニム Polymerization catalyst systems and their production
JP2002256015A (en) * 2001-03-01 2002-09-11 Tosoh Corp Method for producing vinyl chloride-vinyl acetate copolymer
JP2006265541A (en) * 2005-02-25 2006-10-05 Mitsui Chemicals Inc Method for polymerizing olefin and polymer obtained thereby
JP2007308665A (en) * 2006-05-22 2007-11-29 Kuraray Co Ltd Method for producing polyvinyl ester and polyvinyl alcohol having restricted molecular weight

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017170974A1 (en) * 2016-03-31 2019-02-07 株式会社クラレ Polyvinyl alcohol and method for producing the same

Also Published As

Publication number Publication date
JP4948899B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP2989890B2 (en) Catalyst systems with increased productivity
Schellenberg Recent transition metal catalysts for syndiotactic polystyrene
US7655740B2 (en) Olefin polymerization process
JP4794293B2 (en) Metal compound, vinyl monomer polymerization catalyst composition using the same, and use of the vinyl monomer for polymerization using the composition
Georges et al. Efficient one-pot synthesis of end-functionalized trans-stereoregular polydiene macromonomers
CN106795229B (en) Metallocene-supported catalyst and method for preparing polyolefin using the same
Satyanarayana et al. An unusually stable supported bis (cyclopentadienyl) titanium dichloride-trialkylaluminum catalyst system for ethylene polymerization
Woodman et al. Heterogenized “ligand-Free” lanthanide catalysts for the homo-and copolymerization of ethylene and 1, 3-butadiene
EP2599801A1 (en) Catalyst composition, method for producing norbornene copolymer using catalyst composition, norbornene copolymer, and heat resistant film using copolymer
JP4948899B2 (en) Supported catalyst composition for polymerization of vinyl ester monomers and use thereof for polymerization of vinyl ester monomers
Nuyken Neodymium based Ziegler catalysts-fundamental chemistry
JP2006516954A (en) Transition metal catalysts for (co) polymerization of olefinic monomers
CN108290971B (en) Metallocene supported catalyst and method for preparing polyolefin using the same
KR20190038387A (en) A novel indene-based transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same
JP6453483B2 (en) Metallocene supported catalyst and method for producing polyolefin using the same
JP4764646B2 (en) SUPPORTED CATALYST COMPOSITION FOR VINYL MONOMER POLYMERIZATION AND USE IN POLYMERIZATION OF VINYL MONOMER USING SAME
JP5121170B2 (en) Metal compound, catalyst composition for polymerizing vinyl monomers using the same, and use of the composition for polymerization of vinyl monomers
JPH0393805A (en) Catalyst for polymerization of chromium-containing complex
WO2006093213A1 (en) Catalyst composition for vinyl monomer polymerization and use of the composition in polymerization of vinyl monomer
JP2007063470A (en) Metallic compound, catalyst composition for vinyl ester monomer polymerization containing metallic compound and use of the composition for polymerization of vinyl ester monomer
JPH09506121A (en) Preparation of Syndiotactic Vinyl Aromatic Polymers Using Reduced Metal Cationic Catalysts
JP2001055410A (en) Transition metal catalyst component for polymerization, copolymer of vinyl aromatic compound and olefin using the same and its production
KR100193152B1 (en) Binary heterometallocene catalyst and preparation method thereof
ITMI950896A1 (en) CATALYST WITH IMPROVED ACTIVITY FOR THE (CO)POLYMERIZATION OF ETHYLENE
JP4890772B2 (en) Catalyst composition for polymerization of vinyl monomers and use of the monomer for polymerization of vinyl monomers using the composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees