JP2007001829A - 凹部付き基板の製造方法、凹部付き基板、レンズ基板、透過型スクリーンおよびリア型プロジェクタ - Google Patents

凹部付き基板の製造方法、凹部付き基板、レンズ基板、透過型スクリーンおよびリア型プロジェクタ Download PDF

Info

Publication number
JP2007001829A
JP2007001829A JP2005185806A JP2005185806A JP2007001829A JP 2007001829 A JP2007001829 A JP 2007001829A JP 2005185806 A JP2005185806 A JP 2005185806A JP 2005185806 A JP2005185806 A JP 2005185806A JP 2007001829 A JP2007001829 A JP 2007001829A
Authority
JP
Japan
Prior art keywords
substrate
mask
etching
recesses
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005185806A
Other languages
English (en)
Inventor
Makoto Ishii
誠 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005185806A priority Critical patent/JP2007001829A/ja
Publication of JP2007001829A publication Critical patent/JP2007001829A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 所望の形状で、かつ、各凹部間で形状のばらつきが小さい凹部を有する凹部付き基板を提供すること、そのような凹部付き基板を効率良く製造することが可能な凹部付き基板の製造方法を提供すること、レンズ基板、透過型スクリーンおよびリア型プロジェクタを提供すること。
【解決手段】 平面視した際の幅が40μm以上の多数の凹部を有する凹部付き基板の製造方法であって、ガラス基板上に、マスク形成用膜を形成する工程と、マスク形成用膜に初期孔を形成し、マスクを形成するマスク形成工程と、オーバーフローによってエッチング液を循環させて、マスクが形成されたガラス基板にエッチング液を供給し、エッチングを施すエッチング工程とを有し、エッチング液の循環速度が、5〜28cm/minであることを特徴とする。マスクの平均厚さは、5〜500nmである。
【選択図】 図1

Description

本発明は、凹部付き基板の製造方法、凹部付き基板、レンズ基板、透過型スクリーンおよびリア型プロジェクタに関するものである。
スクリーン上に画像を投影する表示装置が知られている。このような表示装置としては、ホームシアター用モニター、大画面テレビ等に適用されるリア型プロジェクタが知られており、近年、その需要が高まりつつある。
このようなリア型プロジェクタでは、その画像形成に主として透過型スクリーンが用いられる。
このようなリア型プロジェクタに用いられる透過型スクリーンは、フレネルレンズが形成されたフレネルレンズ部と、微小のレンズ部が形成されたマイクロレンズ基板やレンチキュラレンズ基板等のレンズ基板とを有するものが知られている。
このような透過型スクリーンに用いるレンズ基板は、精細に作ることが求められ、所望の形状からのずれ等が大きいと、光学特性に大きな影響を与えてしまう。
このようなレンズ基板は、一般に、多数の凹部を有する凹部付き基板を用いて製造される。この凹部付き基板の製造方法としては、所定パターンの開口を有するマスクを用いたエッチングにより製造する方法が知られている(例えば、特許文献1参照)。
しかし、従来の凹部付き基板の製造方法では、所望の形状のものを十分に製造するのが困難で、また、凹部の形状にばらつきが生じ、十分に均一な形状の凹部を形成するのが困難であった。
特開平9−101401号公報
本発明の目的は、所望の形状で、かつ、各凹部間で形状のばらつきが小さい凹部を有する凹部付き基板を提供すること、そのような凹部付き基板を効率良く製造することが可能な凹部付き基板の製造方法を提供すること、レンズ基板、透過型スクリーンおよびリア型プロジェクタを提供することにある。
このような目的は、下記の本発明により達成される。
本発明の凹部付き基板の製造方法は、多数の凹部を有する凹部付き基板の製造方法であって、
基板上に、多数の初期孔を有するマスクを形成するマスク形成工程と、
オーバーフローによってエッチング液を循環させつつ、前記エッチング液により、前記マスクが形成された基板をエッチングするエッチング工程とを有し、
前記凹部付き基板を平面視した際の凹部の幅が40μm以上であり、
前記エッチング液の循環速度が、0.5〜28cm/minであることを特徴とする。
これにより、所望の形状で、かつ、各凹部間で形状のばらつきが小さい凹部を有する凹部付き基板を提供することができる。
本発明の凹部付き基板の製造方法では、前記マスクの平均厚さは、5〜500nmであることが好ましい。
これにより、エッチングに対する耐性を保持しつつ、初期孔の形成が容易になり、初期孔の大きさをより容易に制御することができる。また、エッチング工程において、エッチング途中の凹部に対応する部位のマスクを除去することができる。その結果、より均一にエッチングを施すことができる。
本発明の凹部付き基板の製造方法では、前記マスクは、主としてクロムで構成される層と、主として酸化クロムで構成される層とを有する積層体であることが好ましい。
これにより、マスク全体としての内部応力を調整し、所望の形状や大きさの初期孔を精度よく形成することができ、結果として、凹部の形状や大きさを容易かつ確実に制御することができる。また、エッチング液への耐性を保持しつつ、マスクの厚さを薄くすることができる。その結果、エッチング工程において、エッチング途中の凹部に対応する部位のマスクを除去することができる。その結果、より均一にエッチングを施すことができる。
本発明の凹部付き基板の製造方法では、前記初期孔は、レーザ加工により形成されたものであることが好ましい。
これにより、初期孔の大きさや間隔等を容易にかつ精確に制御することができる。
本発明の凹部付き基板の製造方法では、前記初期孔の幅は、10μm以下であることが好ましい。
これにより、エッチング工程において形成される凹部の中心部付近の曲率半径をより好適なものとしつつ、エッチングの速度を適度なものとすることができる。
本発明の凹部付き基板の製造方法では、前記エッチング工程において、フッ化アンモニウムと、酸とを含むエッチング液を用いて施されることが好ましい。
これにより、ガラス基板をエッチングする際に生じる難溶性の副生成物の生成を抑制することができ、ガラス基板に対し均一にエッチングを施すことができる。
本発明の凹部付き基板の製造方法では、前記フッ化アンモニウムは、主として一水素二フッ化アンモニウムで構成されたものであることが好ましい。
これにより、ガラス基板に対して、より効率よくエッチングを施すことができる。
本発明の凹部付き基板の製造方法では、前記酸は、主として硫酸で構成されたものであることが好ましい。
これにより、エッチング液とガラスとの反応の副生成物をより効果的に除去することができる。また、特に、マスクとして、Cr、CrOの膜を用いた場合に、硫酸を含むエッチング液を用いることで、マスクへの影響をより効果的に抑制しつつ、ガラス基板に対してより均一にエッチングを施すことができる。
本発明の凹部付き基板は、本発明の凹部付き基板の製造方法を用いて製造されたことを特徴とする。
これにより、均一な形状の凹部を備えた凹部付き基板を提供することができる。
本発明のレンズ基板は、本発明の凹部付き基板を用いて製造されたことを特徴とする。
これにより、均一な形状のレンズを備えたレンズ基板を提供することができる。
本発明の透過型スクリーンは、本発明のレンズ基板を備えたことを特徴とする。
これにより、鮮明な画像を表示することが可能な透過型スクリーンを提供することができる。
本発明のリア型プロジェクタは、本発明の透過型スクリーンを備えたことを特徴とする。
これにより、鮮明な画像を表示することが可能なリア型プロジェクタを提供することができる。
以下、本発明の凹部付き基板の製造方法、凹部付き基板、レンズ基板、透過型スクリーンおよびリア型プロジェクタについて、添付図面に示す好適実施形態に基づいて詳細に説明する。
[凹部付き基板]
まず、本発明の凹部付き基板の製造方法に先立ち、本発明の凹部付き基板について説明する。
図1は、本発明の凹部付き基板を示す縦断面図、図2は、本発明の凹部付き基板の平面図、図3、図4は、本発明の凹部付き基板の製造工程を示す模式的な縦断面図である。
凹部付き基板6は、後に詳述する方法により製造されるものであって、図1および図2に示すように、表面に多数の凹部61を有している。
凹部付き基板6は、いかなる材料で構成されたものであってもよいが、たわみを生じ難く、傷つき難い材料で構成されたものであるのが好ましい。凹部付き基板6の構成材料としては、例えば、ソーダガラス、結晶性ガラス、石英ガラス、鉛ガラス、カリウムガラス、ホウケイ酸ガラス、無アルカリガラス等が挙げられる。中でも、ソーダガラスは、後述するような製造工程において、加工が容易であるとともに、得られる凹部付き基板6を好適な光学的特性を有するものとすることができる。また、ソーダガラスは、比較的安価であり、製造コストの面からも有利である。また、ソーダガラスは、一般にエッチング液との反応によって水に難溶性の生成物(副生成物)が生じるという問題が起こりやすく、このような副生成物が生じると、後述するようなマスク8の初期孔が副生成物によって塞がってしまう場合等があるが、後に詳述するような凹部付き基板の製造方法によれば、このような問題を効果的に防止することができる。また、特に、後に詳述するようなエッチング液を用いた場合、前述したような問題をより確実に防止することができる。
凹部61は、後述するマイクロレンズ基板1のマイクロレンズ21に対応した形状を有している。
本実施形態において、凹部61は、凹部付き基板6を平面視した際の縦幅(鉛直方向の幅)が横幅(水平方向の幅)よりも小さい扁平形状(略楕円形、略俵形)を有している。凹部61がこのような形状を有することにより、得られるマイクロレンズ基板1は、視野角特性に特に優れたものとなる。特に、水平方向および鉛直方向の視野角特性をともに優れたものとなる。また、投影される画像の輝度がより高いものとなる。
平面視したときの凹部61の短軸方向(縦方向)の長さをX[μm]、長軸方向(横方向)の長さをY[μm]としたとき、0.10≦X/Y≦0.99の関係を満足するのが好ましく、0.50≦X/Y≦0.95の関係を満足するのがより好ましく、0.60≦X/Y≦0.80の関係を満足するのがさらに好ましい。上記のような関係を満足することにより、上述したような効果がさらに顕著なものとなる。
本発明では、凹部は、平面視したときの凹部の幅が、40μm以上のものである。ところで、幅が40μm以上の凹部を形成する場合、長時間のエッチングを必要となり、十分に均一にエッチング液が行き渡らすのが困難で、所望の形状の凹部を形成することができず、また、各凹部間での形状等のばらつきが大きくなってしまう。しかしながら、後に詳述するような本発明の方法によれば、このような比較的大きい凹部を形成する場合であっても、所望の形状の凹部を形成することができる。また、各凹部間での形状のばらつきを小さいものとすることができる。なお、凹部付き基板を平面視した時の凹部の形状が、図示のように楕円形である場合、凹部の幅とは、短軸方向の長さをいう。
本発明の凹部付き基板の凹部は、その幅が40μm以上のものであるが、40〜100μmのものであるのが好ましく、40〜70μmのものであるのがより好ましい。凹部の幅が前記範囲内の値であると、このような凹部を有する凹部付き基板を用いてマイクロレンズ基板を製造した場合、モアレ等の不都合の発生を効果的に防止しつつ、スクリーンに投影される画像において十分な解像度を得ることができるとともに、マイクロレンズ基板(透過型スクリーン)の生産性をさらに高めることができる。
また、平面視したときの凹部61の長軸方向の長さは、70〜400μmであるのが好ましく、70〜100μmであるのがより好ましい。凹部61の長軸方向の長さが前記範囲内の値であると、スクリーンに投影される画像において十分な解像度を得ることができるとともに、マイクロレンズ基板1(透過型スクリーン10)の生産性をさらに高めることができる。
また、凹部61の曲率半径は、35〜200μmであるのが好ましく、35〜50μmであるのがより好ましい。凹部61の曲率半径が前記範囲内の値であると、視野角特性を特に優れたものとすることができる。特に、水平方向および鉛直方向の視野角特性をともに優れたものとすることができる。なお、凹部61は、短軸方向についての曲率半径と、長軸方向の曲率半径が異なるものであってもよいが、このような場合、短軸方向の曲率半径が上記の範囲内の値であるのが好ましい。
また、凹部61の深さは、30〜100μmであるのが好ましく、30〜50μmであるのがより好ましい。凹部61の高さが前記範囲内の値であると、最終的に得られる透過型スクリーン10(リア型プロジェクタ300)の視野角特性を、特に優れたものとすることができる。
また、凹部61の深さをH[μm]、凹部61の短軸方向の長さをX[μm]としたとき、1.0≦X/H≦2.7の関係を満足するのが好ましく、1.1≦X/H≦2.3の関係を満足するのがより好ましく、1.3≦X/H≦2.1の関係を満足するのがさらに好ましい。このような関係を満足することにより、光の干渉によるモアレの発生を効果的に防止しつつ、視野角特性を特に優れたものとすることができる。
また、これら複数個の凹部61は、千鳥状(千鳥格子状)に配列している。このように凹部61が配列することにより、最終的に得られる透過型スクリーン10(リア型プロジェクタ300)において、モアレ等の不都合の発生を効果的に防止することができる。これに対し、例えば、凹部61が正方格子状等に配列したものであると、凹部61の大きさ等によっては、モアレ等の不都合の発生を十分に防止することが困難となる場合がある。また、凹部をランダムに配した場合、凹部61の大きさ等によっては、凹部が形成されている有効領域における凹部の占有率を十分に高めるのが困難となり、得られるマイクロレンズ基板の光の透過率(光の利用効率)を十分に高めるのが困難となり、得られる画像が暗いものとなる。
上記のように、凹部61は、凹部付き基板6を平面視したときに、千鳥格子状に配列しているが、複数の凹部61で構成される第1の行25と、それに隣接する第2の行26とが、縦方向に半ピッチ分だけずれているのが好ましい。これにより、最終的に得られる透過型スクリーン10(リア型プロジェクタ300)において、光の干渉によるモアレの発生等をより効果的に防止するとともに、かつ、視野角特性を特に優れたものとすることができる。
上記のように、凹部の形状や配列方式、占有率等を厳密に規定することにより、最終的に得られる透過型スクリーン10(リア型プロジェクタ300)において、光の干渉によるモアレの発生を効果的に防止しつつ、視野角特性等を特に優れたものとすることができる。
また、凹部付き基板6を平面視したときの、凹部61が形成されている有効領域において、凹部61の占有率は、90%以上であるのが好ましく、96%以上であるのがより好ましく、97%以上であるのがさらに好ましい。凹部61の占有率が90%以上であると、得られるマイクロレンズ基板1の光利用効率をさらに向上させることができる。なお、凹部61の占有率は、平面視したときの凹部61の中心612と、当該凹部61に隣接する、凹部61が形成されていない部位の中心部とを結ぶ線分において、凹部61が形成されている部位の長さL[μm]と、前記線分の長さL[μm]との比率(L/L×100[%])として求めることができる(図2参照)。
次に、本発明の凹部付き基板の製造方法の一例について説明する。
図3、図4は、本発明の凹部付き基板の製造工程を示す模式的な縦断面図、図5は、エッチング工程において用いられるエッチング装置の概略図である。なお、以下の説明では、図5中、上側を「上」または「上方」、下側を「下」または「下方」と言う。
まず、凹部付き基板6を製造するに際し、基板(ガラス基板)7を用意する。
この基板7は、厚さが均一で、たわみや傷のないものが好適に用いられる。また、基板7は、洗浄等により、その表面が清浄化されているものが好ましい。
このような清浄化は、例えば、基板7の表面をエッチング(ライトエッチング)することにより行うことができる。
エッチングの方法は、特に限定されず、例えば、ウェットエッチング、ドライエッチング等が挙げられる。
ウェットエッチングを用いた場合、エッチング液としては特に限定されないが、一水素二フッ化アンモニウムと硫酸との混合液を用いるのが好ましい。これにより、基板7の表面の平滑性を高くすることができるとともに、基板7表面の不純物(Na、K等)を好適に除去することができる。その結果、後述するマスキング工程において、マスク形成用膜4(マスク8)をピンホール等欠陥の少ないものとすることができる。これにより、レーザによる開口部以外が不本意にエッチングされることを防ぐことができる。
基板7の厚さは、基板7を構成する材料、屈折率等の種々の条件により異なるが、通常、0.3〜20mm程度であるのが好ましく、2〜8mm程度であるのがより好ましい。厚さをこの範囲内とすると、例えば、必要な光学特性を備えたコンパクトな凹部付き基板6を得ることができる。
<A1>用意した基板7の表面に、多数個の初期孔(第1の開口部)81を有するマスク8を形成するとともに、基板7の裏面(マスク8が形成される面と反対側の面)に裏面保護膜89を形成する(マスキング工程、図3(a)、図3(b)参照)。
特に、本実施形態では、まず、図3(a)に示すように、用意した基板7の裏面に裏面保護膜89を形成するとともに、基板7の表面にマスク形成用膜4を形成し(マスク形成用膜形成工程)、その後、図3(b)に示すように、マスク形成用膜4に初期孔81を形成すること(初期孔形成工程)によりマスク8を得る。マスク形成用膜4および裏面保護膜89は同時に形成することもできる。
マスク形成用膜4は、レーザ光の照射等により、後述する初期孔81を形成することができるとともに、後述するエッチング工程におけるエッチングに対する耐性を有するものが好ましい。換言すれば、マスク形成用膜4(マスク8)は、エッチングレートが、基板7と略等しいか、または、基板7に比べて小さくなるように構成されるのが好ましい。
かかる観点からは、マスク形成用膜4(マスク8)を構成する材料としては、例えばCr、Au、Ni、Ti、Pt等の金属やこれらから選択される2種以上を含む合金、前記金属の酸化物(金属酸化物)、シリコン、樹脂等が挙げられる。
また、マスク形成用膜4(マスク8)は、例えば、実質的に均一な組成を有するものであってもよいし、異なる複数の層を有する積層体等であってもよい。
上記のように、マスク形成用膜4(マスク8)の構成は、特に限定されるものではないが、主としてクロムで構成される層と、主として酸化クロムで構成される層とを有する積層体であるのが好ましい。このような構成のマスク形成用膜4は、後述するようなレーザ光の照射等により、所望の形状の開口部を容易かつ確実に形成することができるものであり、また、このような構成のマスク形成用膜4を用いて得られるマスク8は、様々な組成のエッチング液に対して優れた安定性を有している(後述するエッチング工程において基板7をより確実に保護することができる)。また、マスク形成用膜4(マスク8)が上記のような構成であると、エッチング液への耐性を保持しつつ、マスク8の厚さを薄くすることができる。その結果、後述するエッチング工程において、形成過程の凹部が所定の大きさとなったときに、確実に、マスクのその凹部に対応する部位を確実に除去することができる。また、マスク形成用膜4(マスク8)のが上記のような構成のものであると、例えば、後述するエッチング工程において、エッチング液として一水素二フッ化アンモニウムを含む液体を好適に用いることができる。一水素二フッ化アンモニウムは毒劇物ではないため、作業中の人体や環境への影響をより確実に防止することができる。また、上記のような構成のマスク形成用膜4(マスク8)は、マスクの内部応力を効率良く緩和することができ、基板7との密着性(特に、エッチング工程における密着性)に特に優れている。このようなことから、上記のような構成のマスク形成用膜4(マスク8)を用いることにより、所望の形状の凹部61を容易かつ確実に形成することができる。
マスク形成用膜4の形成方法は特に限定されないが、マスク形成用膜4(マスク8)をクロム(Cr)、金(Au)等の金属材料(合金を含む)や金属酸化物(例えば酸化クロム)で構成されたものとする場合、マスク形成用膜4は、例えば、蒸着法やスパッタリング法等により、好適に形成することができる。また、マスク形成用膜4(マスク8)をシリコンで構成されたものとする場合、マスク形成用膜4は、例えば、スパッタリング法やCVD法等により、好適に形成することができる。
マスク8が、主としてクロムで構成される層と、主として酸化クロムで構成される層とを有する積層体である、クロムの層の平均厚さをX[nm]、酸化クロムの層の平均厚さをY[nm]としたとき、0.01≦Y/X≦0.8の関係を満足するのが好ましく、0.1≦Y/X≦0.5の関係を満足するのがより好ましい。このような関係を満足することにより、所望の大きさの初期孔をより高い精度で形成することができる。
マスク形成用膜4(マスク8)の厚さは、マスク形成用膜4(マスク8)を構成する材料によっても異なるが、5〜500nmであるのが好ましく、40〜150nmであるのがより好ましい。これにより、エッチングに対する耐性を保持しつつ、初期孔の形成が容易になり、初期孔の大きさをより容易に制御することができる。また、後述するエッチング工程において、形成過程の凹部が所定の大きさとなったときに、確実に、マスクのその凹部に対応する部位を確実に除去することができる。その結果、より均一にエッチングを施すことができる。厚さが前記下限値未満であると、マスク形成用膜4の構成材料等によっては、後述する初期孔形成工程(開口部形成工程)において形成される初期孔81の形状が歪んでしまう可能性がある。また、後述するエッチング工程でウェットエッチングを施す際に、基板7のマスクした部分を十分に保護できない可能性がある。一方、上限値を超えると、マスク形成用膜4の構成材料等によっては、後述する初期孔形成工程において、貫通する初期孔81を形成するのが困難になるほか、マスク形成用膜4(マスク8)の内部応力によりマスク形成用膜4(マスク8)が剥がれ易くなる場合がある。
裏面保護膜89は、次工程以降で基板7の裏面を保護するためのものである。この裏面保護膜89により、基板7の裏面の侵食、劣化等が好適に防止される。この裏面保護膜89は、例えば、マスク形成用膜4(マスク8)と同様の構成を有している。このため、裏面保護膜89は、マスク形成用膜4の形成と同時に、マスク形成用膜4と同様に設けることができる。
次に、図3(b)に示すように、マスク形成用膜4に、複数個の初期孔(第1の開口部)81を形成し、マスク8を得る(初期孔形成工程)。本工程で形成される初期孔81は、後述するエッチングの際のマスク開口として機能するものである。
初期孔81の形成方法は、特に限定されないが、レーザ光の照射による方法であるのが好ましい。これにより、所望のパターンに配列した所望の形状の初期孔81を容易かつ精確に形成することができる。その結果、凹部61の形状、配列方式等をより確実に制御することができる。また、初期孔81をレーザの照射により形成することにより、凹部付き基板を生産性良く製造することができる。特に、大面積の基板にも簡単に凹部を形成することができる。また、レーザ光の照射により初期孔81を形成する場合、その照射条件を制御することにより、後述するような初期凹部71を形成することなく初期孔81のみを形成したり、初期孔81とともに、形状、大きさ、深さのばらつきの小さい初期凹部71を、容易かつ確実に形成することができる。また、レーザ光の照射でマスク形成用膜4に初期孔81を形成することで、従来のようなフォトリソグラフィ法によってレジスト膜に開口部を形成する場合に比べて、簡単かつ安価に開口部(初期孔81)を形成することができる。
また、レーザ光の照射により初期孔81を形成する場合、使用するレーザ光の種類は、特に限定されないが、ルビーレーザ、半導体レーザ、YAGレーザ、フェムト秒レーザ、ガラスレーザ、YVOレーザ、Ne−Heレーザ、Arレーザ、COレーザ、エキシマレーザ等が挙げられる。また、各レーザのSHG、THG、FHG等の波長を使っても良い。
マスク形成用膜4に初期孔81を形成するとき、図3(b)に示すように、マスク形成用膜4だけでなく基板7の表面の一部も同時に除去し、初期凹部71を形成してもよい。これにより、後述するエッチング工程でエッチングを施す際に、エッチング液との接触面積が大きくなり、侵食を好適に開始することができる。また、この初期凹部71の深さの調整により、凹部61の深さ(レンズの最大厚さ)を調整することもできる。初期凹部71の深さは、特に限定されないが、5μm以下とするのが好ましく、0.1〜0.5μm程度とするのがより好ましい。なお、初期孔81の形成をレーザの照射により行う場合、初期孔81とともに形成される複数個の初期凹部71について、深さのばらつきをより確実に小さくすることができる。これにより、凹部付き基板6を構成する各凹部61の深さのばらつきも小さくなり、最終的に得られるマイクロレンズ基板1の各マイクロレンズ21の大きさ、形状のばらつきも小さくなる。その結果、各マイクロレンズ21の直径、焦点距離、レンズ厚さのばらつきを特に小さくさせることができる。
本工程で形成する初期孔81は、その形状、大きさは特に限定されないが、略円形で、その直径が、0.8〜20μmであるのが好ましく、1.0〜10μmであるのがより好ましく、1.5〜4μmであるのがさらに好ましい。初期孔81の直径が前記範囲内の値であると、後述するエッチング工程において、前述したような形状の凹部61を確実に形成することができる。ただし、初期孔81が、略楕円形のように扁平形状のものである場合、短軸方向の長さを、直径の値として代用することができる。すなわち、本工程で形成する初期孔81が扁平形状のものである場合、初期孔81の幅(短軸方向の長さ)は、特に限定されないが、0.8〜20μmであるのが好ましく、1.0〜10μmであるのがより好ましく、1.5〜4μmであるのがさらに好ましい。初期孔81の幅が前記範囲内の値であると、後述するエッチング工程において、前述したような形状の凹部61を確実に形成することができる。
また、本工程で形成する初期孔81が扁平形状のものである場合、初期孔81の長さ(長軸方向の長さ)は、0.9〜30μmであるのが好ましく、1.5〜15μmであるのがより好ましく、2.0〜6μmであるのがさらに好ましい。初期孔81の長さが前記範囲内の値であると、後述するエッチング工程において、前述したような形状の凹部61をより確実に形成することができる。
また、マスク形成用膜4に対してレーザ光の照射で初期孔81を形成するだけでなく、例えば、基板7にマスク形成用膜4を形成する際に、予め基板7上に所定パターンで異物を配しておき、その上にマスク形成用膜4を形成することでマスク形成用膜4に積極的に欠陥を形成し、当該欠陥を初期孔81としてもよい。
<A2>次に、初期孔81が形成されたマスク8を用いて基板7にエッチングを施し、図4(e)に示すように、基板7上に多数の凹部61を形成する(エッチング工程)。
本工程では、エッチング液9をオーバーフローによって液循環させつつ、エッチング液9により、マスク8を形成した基板7をエッチングする。
このようなエッチングは、例えば、図5に示すようなエッチング装置を用いて行うことができる。
エッチング装置E1は、図5に示すように、エッチング糟E11と、エッチング糟E11からオーバーフローした(溢れた)エッチング液9を回収する回収部E12と、回収部E12に回収されたエッチング液9をエッチング糟E11に搬送する搬送路E13と、搬送路E13の途中に設けられ、エッチング液9の循環速度を制御するポンプE14とを有している。
エッチング装置E1において、エッチング液9は、図中の矢印で示したように循環する。すなわち、エッチング液9は、エッチング糟E11内を上方に向かって移動し、エッチング糟E11からオーバーフローしたエッチング液9は回収部E12に回収され、回収されたエッチング液は、ポンプE14により搬送路E13を通り、エッチング糟E11内に戻される。
エッチング糟E11内において、エッチング液9の循環方向は、マスク8が形成された基板7の面方向と略平行な方向となっている。言い換えると、マスク8が形成された基板7は、図5に示すように、エッチング糟E11内に、その面方向が、エッチング液9の循環方向と略平行となるように設置される。
エッチング槽E11内において、所定の循環速度で液循環すると、図3(c)および図3(d)に示すように、凹部61の形成途中(エッチングの途中)において、形成途中の凹部61’の周縁部に沿ってマスク8が破断し、マスク8の凹部61’に対応する部位が除去され、第2の開口部82が形成される。このように第2の開口部82が形成されることにより、エッチング液9を凹部61’内部において十分に循環させることができ、効率良くエッチングすることができる。また、各凹部61’間でのエッチング速度のばらつきを抑えることができる。
本発明では、エッチング液の循環速度を、0.5〜28cm/minとした点に特徴を有している。これにより、第2の開口部を確実に形成することができるとともに、エッチング液の循環の、凹部の形状へ与える影響を小さいものとすることができる。その結果、所望の形状で、かつ、各凹部間での形状ばらつきの小さい凹部を有する凹部付き基板を形成することができる。これに対して、循環速度が前記下限値未満であると、エッチングの際に、エッチング途中の凹部に対応する部位のマスクを除去することができず、形成されつつある凹部内部での液循環が阻害されるため、エッチング速度が遅くなる。また、液循環が阻害されると、凹部内にエッチングによる副生成物等が蓄積しやすく、それによって、ますますエッチング速度が遅くなり、エッチングが不均一に進行し、所望の形状のものが得られず、また、各凹部間において形状の均一性が得られない。一方、循環速度が前記上限値を超えると、エッチング液の流れが、形成される凹部の形状に悪影響を及ぼし、所望の形状の凹部を形成することができない。また、マスク8の一部の脱離(除去)が早期に生じてしまい、所望の形状の凹部を形成できない。
なお、循環速度とは、オーバーフローするエッチング液の単位時間当たりの量を高さに換算したものである。
このように本発明におけるエッチング液の循環速度は、0.5〜28cm/minであるが、1〜28cm/minであるのが好ましく、5〜28cm/minであるのがより好ましく、10〜28cm/minであるのがさらに好ましい。これにより、本発明の効果がより顕著なものとなる。
さらに、上記のような条件を満足し、かつ、マスクとして、前述したような、主としてクロムで構成される層と、主として酸化クロムで構成される層とを有する積層体を用いた場合、本発明の効果が特に顕著に現れる。
エッチング液としては、特に限定されず、いずれのものを用いてもよいが、フッ化アンモニウムを用いるのが好適である。フッ化アンモニウムとしては、正塩(NHF)と、水素塩(NHHF:一水素二フッ化アンモニウム)とがあり、いずれのものを用いてもよいし、その両方を含むものを用いてもよい。
特に、フッ化アンモニウムとして、一水素二フッ化アンモニウムを主成分とするものを用いた場合、基板7に対して、より効率よくエッチングを施すことができる。また、一水素二フッ化アンモニウム溶液は毒劇物ではないため、作業中の人体や環境への影響を防止することができる。
エッチング液中のフッ化アンモニウムの含有量は、特に限定されないが、1〜500g/Lであるのが好ましく、1〜200g/Lであるのがより好ましく、10〜100g/Lであるのがさらに好ましい。これにより、基板7に対して、より効率よくエッチングを施すことができる。これに対して、フッ化アンモニウムの含有量が前記下限値未満であると、エッチング液の温度等の条件等によっては、十分なエッチング速度が得られない可能性がある。また、フッ化アンモニウムの含有量が前記上限値を超えると、含有量に見合うだけの十分な効果が得られない場合がある。
また、エッチング液には前述したフッ化アンモニウムの他に、酸を含んでいてもよい。このような酸としては、水に溶けた際に、FイオンやHF イオン等を生じない酸であれば、特に限定されず、例えば、硫酸、塩酸、硝酸等の無機酸、酢酸、コハク酸等の有機酸が挙げられ、これらのうち、1種または2種以上を組み合わせて用いることができる。これらの中でも、無機酸を用いるのが好ましく、硫酸、硝酸等のオキソ酸を用いるのがより好ましく、硫酸を用いるのがさらに好ましい。これにより、エッチング液とガラスとの反応の副生成物をより効果的に除去することができる。また、特に、マスク8として、主としてクロムで構成される層と、主として酸化クロムで構成される層とを有する積層体を用いた場合に、硫酸を含むエッチング液を用いることで、マスク8への影響をより効果的に抑制しつつ、基板7に対してより均一にエッチングを施すことができる。
エッチング液中の酸の含有量は、特に限定されないが、1.7〜920g/Lであるのが好ましく、1.7〜370g/Lであるのがより好ましく、1.7〜190g/Lであるのがさらに好ましい。これにより、エッチング液とガラスとの反応の副生成物をより効果的に除去することができる。これに対して、酸の含有量が前記下限値未満であると、基板7の組成やフッ化アンモニウムの含有量等によっては、前述のような効果が十分に発揮されない場合がある。また、酸の含有量が前記上限値を超えると、マスク8の組成やフッ化アンモニウムの含有量等によっては、マスク8に不本意な影響を与えてしまう場合がある。
エッチング液中のフッ化アンモニウムの含有量をA[g/L]、酸の含有量をB[g/L]としたとき、1.0≦B/A≦4.0の関係を満足するのが好ましく、1.0≦B/A≦3.0の関係を満足するのがより好ましく、1.3≦B/A≦2.7の関係を満足するのがさらに好ましい。これにより、エッチング液とガラスとの反応の副生成物をより効果的に除去しつつ、基板7に対してより均一にかつ効率的にエッチングを施すことができる。
なお、上記エッチング液には、前述したフッ化アンモニウム、酸の他に、水等の溶媒を含んでいてもよい。
また、上記エッチング液には、上記成分の他、過酸化水素、界面活性剤等の添加物を含んでいてもよい。このような添加物を含むことにより、基板7に対してより均一にエッチングを施すことができる。前述した中でも、特に過酸化水素を含む場合には、エッチングスピートをより速くすることができる。
<A3>次に、図4(f)に示すように、マスク8を除去する(マスク除去工程)。また、この際、マスク8の除去とともに、裏面保護膜89も除去することにより、凹部付き基板6が得られる。
マスク8が、前述したような主としてクロムで構成される層と、主として酸化クロムで構成される層とを有する積層体である場合、マスク8の除去は、例えば、硝酸第二セリウムアンモニウムと過塩素酸とを含む混合物を用いたエッチングにより行うことができる。
また、例えば、凹部付き基板6の凹部61が設けられている面側に、離型処理を施してもよい。これにより、後に詳述するマイクロレンズ基板1の製造方法において、基板本体2が有するマイクロレンズ21にカケ等の欠陥が生じるのを十分に防止しつつ、凹部付き基板6を容易に取り外すことができる。離型処理としては、アルキルポリシロキサン等のシリコーン系樹脂、ポリテトラフルオロエチレン等のフッ素系樹脂等の離型性を有する物質で構成される被膜の形成、ヘキサメチルジシラザン([(CHSi]NH)等のシリル化剤による表面処理、フッ素系ガスによる表面処理等が挙げられる。
以上により、図4(f)および図1に示すように、基板7上に多数の凹部61が千鳥状に形成された凹部付き基板6が得られる。
次に、上述した凹部付き基板6を用いて、マイクロレンズ基板1を製造する方法について説明する。
図6、図7は、マイクロレンズ基板の製造方法の一例を示す模式的な縦断面図である。なお、以下の説明では、図6、図7中の下側を「(光の)入射側」、上側を「(光の)出射側」と言う。
<B1>まず、図6(a)に示すように、凹部付き基板6の凹部61が形成された側の面に、流動性を有する状態の樹脂材料23(例えば、軟化状態の樹脂材料23、未重合(未硬化)の樹脂材料23)を付与し、樹脂材料23を平板11で押圧する。特に、本実施形態では、凹部付き基板6と、平板11との間に、スペーサー20を配した状態で、樹脂材料23を押圧する。これにより、形成されるマイクロレンズ基板1の厚さをより確実に制御することができ、最終的に得られるマイクロレンズ基板1での、マイクロレンズ21の焦点の位置をより確実に制御することができ、色ムラ等の不都合の発生をより効果的に防止することができる。
スペーサー20は、樹脂材料23(固化後の樹脂材料23)と同程度の屈折率を有する材料で構成されている。このような材料で構成されたスペーサー20を用いることにより、凹部付き基板6の凹部61が形成された部位にスペーサー20が配された場合であっても、スペーサー20が得られるマイクロレンズ基板1の光学特性に悪影響を及ぼすのを効果的に防止することができる。これにより、凹部付き基板6の主面(凹部が形成された面側)の有効領域のほぼ全体にわたって、比較的多くのスペーサー20を配することが可能となり、結果として、凹部付き基板6、平板11のたわみ等による影響を効果的に排除し、得られるマイクロレンズ基板1の厚さをより確実に制御することができる。
上述したように、スペーサー20は、樹脂材料23(固化後の樹脂材料23)と同程度の屈折率を有する材料で構成されているが、より具体的には、スペーサー20の構成材料の絶対屈折率と固化後の樹脂材料23の絶対屈折率との差の絶対値が、0.20以下であるのが好ましく、0.10以下であるのがより好ましく、0.02以下であるのがさらに好ましく、固化後の樹脂材料23とスペーサー20とが同一の材料で構成されたものであるのが最も好ましい。
スペーサー20の形状は、特に限定されないが、略球状、略円柱状であるのが好ましい。スペーサー20がこのような形状のものである場合、その直径は、10〜300μmであるのが好ましく、30〜200μmであるのがより好ましく、30〜170μmであるのがさらに好ましい。
なお、上記のようにスペーサー20を用いる場合、樹脂材料23を固化する際に、凹部付き基板6と平板11との間にスペーサー20が配されていればよく、スペーサー20を供給するタイミングは特に限定されない。例えば、凹部付き基板6の凹部61が形成された側の面に、付与する樹脂として予めスペーサー20が分散された樹脂材料23を用いてもよいし、凹部付き基板6上にスペーサー20を配した状態で樹脂材料23を付与してもよいし、樹脂材料23の供給後にスペーサー20を付与してもよい。
また、平板11は、樹脂材料23を押圧する側の面に、前述したような離型処理が施されたものであってもよい。これにより、後述する工程において、平板11を効率良く基板本体2の表面から取り除くことができる。
<B2>次に、樹脂材料23を固化(ただし、硬化(重合)を含む)させ、その後、平板11を取り除く(図6(b)参照)。これにより、凹部61に充填された樹脂で構成されたマイクロレンズ21(特に、上述したような形状、配列等の条件を満足するマイクロレンズ21)を備えた基板本体2が得られる。
樹脂材料23の固化を硬化(重合)により行う場合、その方法としては、例えば、紫外線等の光の照射、電子線の照射、加熱等の方法が挙げられる。
<B3>次に、図6(c)に示すように、基板本体2の出射側表面に、有色のブラックマトリックス形成用材料(遮光膜形成用材料)を付与し、ブラックマトリックス形成用材料で構成された膜32を形成する(遮光膜形成用材料付与工程)。
ブラックマトリックス形成用材料としては、外光(投影画像を形成する上で好ましくない外光)を吸収する機能を有するものであれば、いかなる材料を用いてもよいが、ブラックマトリックス形成用材料としては、例えば、各種無機材料、各種有機材料、無機材料と有機材料との複合材料等を用いることができ、より具体的には、酸化クロム、クロム、各種顔料、各種染料等を用いることができる。
膜32は、複数種の材料で構成されたものであってもよく、例えば、主としてクロムで構成された層と、主として酸化クロムで構成された層とを有する積層体であってもよい。膜32(ブラックマトリックス3)がこのような構成を有するものであると、後述するような方法により、容易かつ確実に開口部31を形成することができるとともに、ブラックマトリックス3の耐久性を特に優れたものとすることができる。
基板本体2表面へのブラックマトリックス形成用材料の付与方法は、特に限定されないが、例えば、ディップコート、ドクターブレード、スピンコート、刷毛塗り、スプレー塗装、静電塗装、電着塗装、ロールコーター等の各種塗布法、蒸着法、イオンプレーティング法、スパッタリング法等の気相成膜法、電解めっき、無電解めっき等の湿式めっき法等を適用することができる。特に、ブラックマトリックス3を、主としてクロムで構成された層と、主として酸化クロムで構成された層とを有する積層体として形成する場合、膜32は、気相成膜法により形成するのが好ましい。また、ブラックマトリックス3を、顔料または染料を含む材料で構成されたもの(特に、顔料、染料に加えて、樹脂材料を含む材料で構成されたもの)として形成する場合、塗布法により形成するのが好ましい。これにより、均一な厚さの膜32を、容易に形成することができる。
また、ブラックマトリックス3を、顔料または染料を含む材料で構成されたものとして形成する場合、ブラックマトリックス形成用材料は、顔料、染料に加えて、樹脂材料および液性媒体(例えば、溶媒、分散媒として機能する液体)を含むものであるのが好ましい。これにより、均一な厚さの膜32を、容易かつ確実に形成することができるとともに、形成される膜32(ブラックマトリックス3)の基板本体2に対する密着性を特に優れたものとすることができる。また、ブラックマトリックス形成用材料が、顔料、染料に加えて、樹脂材料および液性媒体を含む材料で構成されたものであると、後に詳述する開口部形成工程において、膜32の所定の部位を、容易かつ確実に除去することができ、所望の形状の開口部31を有するブラックマトリックス3をより確実に形成することができる。
なお、本工程では、後の工程に際して、ブラックマトリックス形成用材料を構成する成分の一部を除去するための処理を施してもよい。例えば、ブラックマトリックス形成用材料が、例えば、液性媒体を含む材料で構成される場合、ブラックマトリックス形成用材料で構成された膜32から、液性媒体を除去するための処理(例えば、加熱処理、減圧処理等)を施してもよい。
本工程で形成される膜32の厚さは、通常、また、ブラックマトリックス3の厚さと実質的に同一である。したがって、膜32の厚さ(平均厚さ)は、0.3〜8.0μmであるのが好ましく、0.8〜7.0μmであるのがより好ましく、1.4〜6.0μmであるのがさらに好ましい。
<B4>次に、図7(d)に示すように、基板本体2を、凹部付き基板6から取り外す。このように、凹部付き基板6を基板本体2から取り外すことにより、取り外された凹部付き基板6を、基板本体2(マイクロレンズ基板1)の製造に繰り返し使用することができ、製造コスト面や製造される基板本体2(マイクロレンズ基板1)の品質の安定性を高める上で有利である。
<B5>次に、図7(e)に示すように、基板本体2に、入射側表面に対して垂直方向のレーザ光Lbを照射する。照射されたレーザ光Lbはマイクロレンズ21に入射することにより屈折し、集光する。そして、集光されることにより高エネルギになったレーザ光が照射された部位の膜(遮光膜形成用材料で構成された膜)32が除去され、開口部31が形成される(図7(f)参照)。これにより、ブラックマトリックス(遮光膜)3を有するマイクロレンズ基板1が得られる。
このように、本実施形態では、遮光膜形成用材料で構成された膜の一部を、集光されたレーザ光のエネルギにより除去し、開口部31を形成する。このように、マイクロレンズで集光した光(特に、周波数、位相の揃ったレーザ光)を利用することにより、有色の遮光膜形成用材料で構成された膜の所定の部位のみを選択的に除去することができる。言い換えると、開口部の形成に、マイクロレンズにより集光されたレーザ光を用いることにより、エネルギ密度の高い光を特定の部位のみに選択的に与えることができ、遮光膜形成用材料で構成された膜の開口部を形成すべき部位に選択的に除去し、それ以外の部位に悪影響が及ぶのを効果的に防止することができる。また、本実施形態によれば、工程数が少なく、簡便な方法で、所望の部位に所望の形状の開口部を有する遮光膜を確実に形成することができる。その結果、マイクロレンズ基板を用いて得られる画像を、光の利用効率に優れたものとするとともに、コントラストに優れたものとすることができる。
また、レーザ光は、一般に、周波数、位相が揃った光であるため、遮光膜形成用材料で構成された膜、マイクロレンズ基板の構成材料に応じて、レーザ光の種類を選択することにより、容易に、基板本体や遮光膜形成用材料で構成された膜の残存させるべき部位に対する悪影響の発生を、より確実に防止することができる。
本工程で用いるレーザ光の種類は、特に限定されないが、例えば、ルビーレーザ、半導体レーザ、YAGレーザ、フェムト秒レーザ、ガラスレーザ、YVOレーザ、Ne−Heレーザ、Arレーザ、COレーザ、エキシマレーザ等が挙げられる。また、各レーザのSHG、THG、FHG等の波長を使っても良い。
なお、上記のような遮光膜形成用材料の付与、レーザ光の照射の一連の処理を、繰り返し行ってもよい。これにより、遮光膜(ブラックマトリックス)をより厚いものとして形成することができ、コントラストの更なる向上を図ることができる。
次に、上述したようなマイクロレンズ基板1を備えた透過型スクリーン10について説明する。
図8は、図7(f)に示すマイクロレンズ基板を備えた、本発明の透過型スクリーンを示す模式的な縦断面図である。
図8に示すように、透過型スクリーン10は、フレネルレンズ部5と、前述したマイクロレンズ基板1とを備えている。フレネルレンズ部5は、光(画像光)の入射側に設置されており、フレネルレンズ部5を透過した光が、マイクロレンズ基板1に入射する構成になっている。
フレネルレンズ部5は、出射側表面に、ほぼ同心円状に形成されたプリズム形状のフレネルレンズ51を有している。このフレネルレンズ部5は、投射レンズ(図示せず)からの画像光を屈折させ、マイクロレンズ基板1の主面の垂直方向に平行な平行光Laにするものである。
以上のように構成された透過型スクリーン10では、投射レンズからの映像光が、フレネルレンズ部5によって屈折し、平行光Laとなる。そして、この平行光Laは、マイクロレンズ基板1のブラックマトリックス3が設けられた面側とは反対の面側からに入射し、各マイクロレンズ21によって集光し、焦点を結んだ後に拡散する。このとき、マイクロレンズ基板1に入射した光は、十分な透過率でマイクロレンズ基板1を透過する。開口部31を通過した光は、拡散し、観察者に平面画像として観測される。
次に、前記透過型スクリーンを用いたリア型プロジェクタについて説明する。
図9は、本発明のリア型プロジェクタの構成を模式的に示す図である。
同図に示すように、リア型プロジェクタ300は、投写光学ユニット310と、導光ミラー320と、透過型スクリーン10とが筐体340に配置された構成を有している。
そして、このリア型プロジェクタ300は、その透過型スクリーン10として、上述した透過型スクリーン10を用いているので、表示品質の良い優れたリア型プロジェクタとなる。
以上、本発明の凹部付き基板の製造方法、凹部付き基板、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタについて、図示の実施形態に基づいて説明したが、本発明は、これらに限定されるものではない。
例えば、本発明の凹部付き基板の製造方法では、必要に応じて、任意の目的の工程を追加することもできる。
また、前述した実施形態では、レンズ基板がマイクロレンズを有するマイクロレンズ基板として説明したが、レンズ基板は、レンチキュラレンズ基板であってもよい。
また、前述した実施形態では、スペーサーとして、樹脂(固化後の樹脂)と同程度の屈折率を有するものを用いるものとして説明したが、スペーサーは、実質的に、凹部付き基板の凹部が形成されていない領域のみ(非有効領域)に配されるものである場合、樹脂(固化後の樹脂)と同程度の屈折率を有するものでなくてもよい。また、レンズ基板の製造に際して、上記のようなスペーサーは必ずしも用いなくてもよい。
また、前述した実施形態では、凹部付き基板の表面に樹脂を付与するものとして説明したが、例えば、平板の表面に樹脂を付与し、これを凹部付き基板で押圧することにより、レンズ基板を製造してもよい。
また、前述した実施形態では、凹部付き基板の製造方法の初期孔形成工程において、初期孔81とともに、基板7に初期凹部71を形成するものとして説明したが、このような初期凹部71は形成されなくてもよい。初期孔81の形成条件(例えば、レーザのエネルギ強度、ビーム径、照射時間等)を適宜調整することにより、所望の形状の初期凹部71を形成したり、初期凹部71が形成されないように初期孔81のみを選択的に形成することができる。
また、前述した実施形態では、マイクロレンズ基板の製造において、凹部付き基板を除去するものとして、凹部付き基板は必ずしも除去しなくてもよい。言い換えると、凹部付き基板は、レンズ基板の一部を構成するものであってもよい。
また、前述した実施形態では、開口部の形成を、基板本体から凹部付き基板を取り除いた後に行うものとして説明したが、開口部の形成(レーザ光の照射)は、凹部付き基板を取り除く前に行ってもよい。また、遮光膜形成用材料の付与は、凹部付き基板を除去した後に行ってもよい。
また、前述した実施形態では、透過型スクリーンが、マイクロレンズ基板とフレネルレンズとを備えるものとして説明したが、本発明の透過型スクリーンは、必ずしも、フレネルレンズを備えたものでなくてもよい。例えば、本発明の透過型スクリーンは、実質的に、本発明のレンズ基板のみで構成されたものであってもよい。
また、本発明のレンズ基板、透過型スクリーンは、基板本体を透過した光を拡散させる機能を有する拡散部、拡散板を有するものであってもよい。このような構成であると、例えば、透過型スクリーン、リア型プロジェクタの視野角特性を特に優れたものとすることができる。
また、前述した実施形態では、レンズ基板(マイクロレンズ基板)は、透過型スクリーン、リア型プロジェクタを構成する部材であるものとして説明したが、本発明のレンズ基板の用途は、前記のようなものに限定されず、いかなるものであってもよい。例えば、本発明のレンズ基板は、拡散板、ブラックマトリックススクリーン、投射型表示装置(フロントプロジェクタ)のスクリーン(フロントプロジェクションスクリーン)、投射型表示装置(フロントプロジェクタ)の液晶ライトバルブの構成部材等に適用されるものであってもよい。
[マイクロレンズ基板および透過型スクリーンの作製]
(実施例1)
以下のように、マイクロレンズ形成用の凹部を備えた凹部付き基板を製造した。
まず、基板として、横1.2m×縦0.7m角、厚さ4.8mmのソーダガラス基板(絶対屈折率n:1.50)を用意した。
このソーダガラス基板を、4wt%の一水素二フッ化アンモニウムと、7.36wt%の濃硫酸とを含む洗浄液に浸漬して6μmエッチングを行い、その表面を清浄化した。
その後、純水洗浄およびNガスを用いた乾燥(純水の除去)を行った。
次に、このソーダガラス基板上に、スパッタリング法にて、クロム/酸化クロムの積層体(クロムの外表面側に酸化クロムが積層された積層体)を形成した。すなわち、ソーダガラス基板の表面に、クロム/酸化クロムの積層体で構成されたのマスク形成用膜および裏面保護膜を形成した。クロム層の厚さは0.03μm、酸化クロム層の厚さは0.01μmであった。
次に、マスク形成用膜に対してレーザ加工を行い、マスク形成用膜の中央部113cm×65cmの範囲に多数の初期孔を形成し、マスクとした。
なお、レーザ加工は、YAGレーザを用いて、エネルギ強度1mW、ビーム径3μm、走査速度0.1m/秒という条件で行った。
これにより、マスク形成用膜の上記範囲全面に亘って、所定の長さを有する初期孔が、千鳥状に配されたパターンで形成された。初期孔の平均幅は2μmであり、平均長さは2μmであった。
また、この際、ソーダガラス基板の表面に深さ50Åの凹部(初期凹部)も形成した。
次に、ソーダガラス基板に、図5に示すようなエッチング装置を用いて、ウェットエッチングを施し、ソーダガラス基板上に多数の平面視したときの形状が扁平形状(略楕円形状)の凹部(マイクロレンズ形成用凹部)を形成した。形成された多数の凹部は、互いにほぼ同一の形状を有していた。形成された凹部の短軸方向の長さ(凹部の幅)は54μm、長軸方向の長さは82μm、曲率半径は38μm、深さは38μmであった。また、凹部が形成されている有効領域における凹部の占有率は100%であった。
なお、ウェットエッチングは、エッチング液として、4wt%の一水素二フッ化アンモニウムと、7.36wt%の濃硫酸とを含む水溶液を用い、エッチング液の循環速度を19cm/minとし、浸漬時間を2.0時間とした。なお、エッチング開始から1時間後に、マスクの一部(形成途中の凹部に対応する部位)が除去されるのが確認された。
次に、硝酸第二セリウムアンモニウムと過塩素酸との混合物を用いてエッチングすることにより、マスクおよび裏面保護膜を除去した。
次に、純水洗浄およびNガスを用いた乾燥(純水の除去)を行った。
その後、基板の凹部が形成されている面側に、ヘキサメチルジシラザンによる気相表面処理(シリル化処理)を行い、離型処理部を形成した。
これにより、図2に示すような、ソーダガラス基板上に、マイクロレンズ形成用の多数の凹部が千鳥状に配列された凹部付き基板を得た。得られた凹部付き基板を平面視したときに、凹部が形成されている有効領域において、凹部が占める面積の割合が97%であった。
次に、凹部付き基板の凹部が形成された側の面に、未重合(未硬化)のアクリル系樹脂(PMMA樹脂(メタクリル樹脂))を付与した。この際、アクリル系樹脂(PMMA樹脂(メタクリル樹脂))の硬化物で構成された略球形状のスペーサー(直径50μm)を、凹部付き基板のほぼ全面に配しておいた。また、スペーサーは、約3個/cmの割合で配した。
次に、ソーダガラスで構成された平板で、前記アクリル系樹脂を押圧した。この際、平板とアクリル系樹脂との間に、空気が侵入しないようにした。また、平板としては、アクリル系樹脂を押圧する側の面に、ヘキサメチルジシラザンによる気相表面処理(離型処理)が施されたものを用いた。
その後、120℃に加熱することにより、アクリル系樹脂を硬化させ、多数個のマイクロレンズ(平坦部を有さないマイクロレンズ)を備えた基板を得た。得られた基板(硬化後の樹脂)の屈折率nは、1.51であった。また、得られた基板の樹脂層(マイクロレンズを除く部分)の厚さは50μmであった。また、扁平形状(略楕円形状)のマイクロレンズは、その短軸方向の長さ(直径)が54μm、長軸方向の長さが82μm、曲率半径が38μm、高さが37μmであった。また、マイクロレンズが形成されている有効領域におけるマイクロレンズの占有率は100%であった。
次に、平板を取り除いた。
次に、基板の出射側(マイクロレンズが形成されている面とは反対側の面)表面に、黒色顔料を含む有色の遮光膜形成用材料を、ロールコーターにより付与した(遮光膜形成用材料付与工程)。遮光膜形成用材料としては、10wt%の黒色顔料と、20wt%のダンマル樹脂と、70wt%のキシレン(液性媒体)とを含む混合物を用いた。
その後、基板に付与された遮光膜形成用材料からキシレンを除去することにより、基板の出射側の全面を被覆する膜を形成した。形成された膜の平均厚さは、5μmであった。
次に、凹部付き基板を、遮光膜形成用材料が付与された基板から取り外した。
これにより、レーザ光は、マイクロレンズにより集光され、前記膜のうち、マイクロレンズの焦点付近の部位のみが選択的に除去され、基板本体上に、多数個の開口部を有するブラックマトリックスが被覆されたマイクロレンズ基板が得られた。開口部は、扁平形状(略楕円形状)であり、その短軸方向の長さ(直径)が24μm、長軸方向の長さが32μmであった。また、形成されたブラックマトリックスの厚さは、5μmであった。
以上のようにして製造されたマイクロレンズ基板と、押出成形により作製したフレネルレンズ部とを組み立てることにより、図8に示すような透過型スクリーンを得た。
(実施例2〜5)
凹部付き基板を形成する際のレーザ光の照射条件(形成される初期孔の形状、初期凹部の深さ)、エッチング液の循環速度、エッチング液への浸漬時間を調整することにより、凹部付き基板の凹部の形状、配列パターンを表1に示すようなものにした以外は、前記実施例1と同様にしてマイクロレンズ基板、透過型スクリーンを製造した。
(比較例1、2)
凹部付き基板を形成する際の、エッチング液の循環速度を表1に示すようにした以外は、前記実施例1と同様にしてマイクロレンズ基板、透過型スクリーンを製造した。
なお、エッチング液の循環速度の遅い比較例1では、エッチング工程において、マスクの一部(形成途中の凹部に対応する部位)の除去は、確認されなかった。
前記各実施例および各比較例について、凹部付き基板を製造する際に形成された初期孔の形状、初期凹部の深さ、エッチング工程におけるエッチング液の循環速度、製造された凹部付き基板が有する凹部の形状、配列パターン、ブラックマトリックスを形成する際のレーザ光の条件、製造されたマイクロレンズ基板が有するマイクロレンズの形状、配列パターン、ブラックマトリックスの構成等を表1、表2にまとめて示す。
Figure 2007001829
[リア型プロジェクタの作製]
前記各実施例および各比較例の透過型スクリーンを用いて、図11に示すようなリア型プロジェクタを、それぞれ作製した。
[エッチングの均一性の評価]
明室において、前記各実施例および各比較例のリア型プロジェクションTVの透過型スクリーンに白表示を行った。この状態で、透過型スクリーンの中央、右、右上の位置における、透過型スクリーンの面に垂直な方向、および、透過型スクリーンの面に垂直な方向から水平方向について斜め30°の方向からのスクリーンの明るさ(白輝度)を、輝度計を用いて測定した。垂直な方向の白輝度をa、斜め30°の方向の白輝度をbとし、透過型スクリーンの中央、右、右上のそれぞれの位置におけるa/bを求め、3つの位置の最大値をa/b(max)、最小値をa/b(min)、3つの位置の平均をa/b(ave)とし、以下の下記式(I)により、エッチングのばらつきの度合いBを求めた。なお、数値が低いほどばらつきが少ないと言える。評価の際、フレネルレンズによる照度差はあらかじめ測定しておき、それを除外し評価した。すなわち、スクリーンの輝度=フレネル+スクリーンの輝度÷フレネル単体の照度とした。
B=(a/b(max)−a/b(min))/a/b(ave)×100 …(I)
[回折光、色ムラの評価]
前記各実施例および各比較例のリア型プロジェタの透過型スクリーンにサンプル画像を表示させた。表示された画像について、回折光、色ムラの発生状況を以下の4段階の基準に従い評価した。
◎:回折光、色ムラが全く認められない。
○:回折光、色ムラがほとんど認められない。
△:回折光、色ムラのうち少なくとも一つがわずかに認められる。
×:回折光、色ムラのうち少なくとも一つが顕著に認められる。
これらの結果を表2にまとめて示す。
Figure 2007001829
表2から明らかなように、本発明では、マイクロレンズの形状のばらつきが小さかった。また、本発明では、回折光、色ムラのない優れた画像を表示することができた。これに対し、比較例では、満足な結果が得られなかった。
本発明の凹部付き基板を示す縦断面図である。 本発明の凹部付き基板の平面図である。 本発明の凹部付き基板の製造工程を示す模式的な縦断面図である。 本発明の凹部付き基板の製造工程を示す模式的な縦断面図である。 本発明の凹部付き基板の製造工程に用いられるエッチング装置を示す概略図である。 本発明のマイクロレンズ基板の製造方法の一例を示す模式的な縦断面図である。 本発明のマイクロレンズ基板の製造方法の一例を示す模式的な縦断面図である。 図7(f)マイクロレンズ基板を備えた、本発明の透過型スクリーンを示す模式的な縦断面図である。 本発明のリア型プロジェクタの構成を模式的に示す図である。
符号の説明
1…マイクロレンズ基板 2…基板本体 21…マイクロレンズ 23…樹脂材料 25…第1の行 26…第2の行 3…ブラックマトリックス(遮光膜) 31…開口部 32…膜(遮光膜形成用材料で構成された膜) 4…マスク形成用膜 5…フレネルレンズ部 51…フレネルレンズ 6…凹部付き基板(マイクロレンズ形成用凹部付き基板) 612…中心 61…凹部(マイクロレンズ形成用凹部) 61’…凹部(形成途中の凹部) 7…基板 71…初期凹部 8…マスク 81…初期孔(開口部) 82…第2の開口部 89…裏面保護膜 9…エッチング液 11…平板 10…透過型スクリーン 20…スペーサー 300…リア型プロジェクタ 310…投写光学ユニット 320…導光ミラー 340…筐体 E1…エッチング装置 E11…エッチング糟 E12…回収部 E13…搬送路 E14…ポンプ

Claims (12)

  1. 多数の凹部を有する凹部付き基板の製造方法であって、
    基板上に、多数の初期孔を有するマスクを形成するマスク形成工程と、
    オーバーフローによってエッチング液を循環させつつ、前記エッチング液により、前記マスクが形成された基板をエッチングするエッチング工程とを有し、
    前記凹部付き基板を平面視した際の凹部の幅が40μm以上であり、
    前記エッチング液の循環速度が、0.5〜28cm/minであることを特徴とする凹部付き基板の製造方法。
  2. 前記マスクの平均厚さは、5〜500nmである請求項1に記載の凹部付き基板の製造方法。
  3. 前記マスクは、主としてクロムで構成される層と、主として酸化クロムで構成される層とを有する積層体である請求項1または2に記載の凹部付き基板の製造方法。
  4. 前記初期孔は、レーザ加工により形成されたものである請求項1ないし3のいずれかに記載の凹部付き基板の製造方法。
  5. 前記初期孔の幅は、10μm以下である請求項1ないし4のいずれかに記載の凹部付き基板の製造方法。
  6. 前記エッチング工程において、フッ化アンモニウムと、酸とを含むエッチング液を用いて施される請求項1ないし5のいずれかに記載の凹部付き基板の製造方法。
  7. 前記フッ化アンモニウムは、主として一水素二フッ化アンモニウムで構成されたものである請求項6に記載の凹部付き基板の製造方法。
  8. 前記酸は、主として硫酸で構成されたものである請求項6または7に記載の凹部付き基板の製造方法。
  9. 請求項1ないし8のいずれかに記載の凹部付き基板の製造方法を用いて製造されたことを特徴とする凹部付き基板。
  10. 請求項9に記載の凹部付き基板を用いて製造されたことを特徴とするレンズ基板。
  11. 請求項10に記載のレンズ基板を備えたことを特徴とする透過型スクリーン。
  12. 請求項11に記載の透過型スクリーンを備えたことを特徴とするリア型プロジェクタ。
JP2005185806A 2005-06-24 2005-06-24 凹部付き基板の製造方法、凹部付き基板、レンズ基板、透過型スクリーンおよびリア型プロジェクタ Pending JP2007001829A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005185806A JP2007001829A (ja) 2005-06-24 2005-06-24 凹部付き基板の製造方法、凹部付き基板、レンズ基板、透過型スクリーンおよびリア型プロジェクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005185806A JP2007001829A (ja) 2005-06-24 2005-06-24 凹部付き基板の製造方法、凹部付き基板、レンズ基板、透過型スクリーンおよびリア型プロジェクタ

Publications (1)

Publication Number Publication Date
JP2007001829A true JP2007001829A (ja) 2007-01-11

Family

ID=37687765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005185806A Pending JP2007001829A (ja) 2005-06-24 2005-06-24 凹部付き基板の製造方法、凹部付き基板、レンズ基板、透過型スクリーンおよびリア型プロジェクタ

Country Status (1)

Country Link
JP (1) JP2007001829A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250037A (ja) * 2009-04-15 2010-11-04 Toppan Printing Co Ltd 光学部品、バックライトユニット及びディスプレイ装置
US10831099B2 (en) 2019-01-24 2020-11-10 Nichia Corporation Method for manufacturing optical member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250037A (ja) * 2009-04-15 2010-11-04 Toppan Printing Co Ltd 光学部品、バックライトユニット及びディスプレイ装置
US10831099B2 (en) 2019-01-24 2020-11-10 Nichia Corporation Method for manufacturing optical member

Similar Documents

Publication Publication Date Title
JP3731592B2 (ja) 透過型スクリーン用部材、透過型スクリーンおよびリア型プロジェクタ
JP4096810B2 (ja) 凹部付き基板の製造方法、凹部付き基板、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP3753326B2 (ja) 直進光制御部付きレンズ基板の製造方法、直進光制御部付きレンズ基板、透過型スクリーンおよびリア型プロジェクタ
KR100670988B1 (ko) 오목부를 갖는 부재, 볼록부를 갖는 부재의 제조 방법,투과형 스크린, 및 리어형 프로젝션
KR100730706B1 (ko) 오목부를 갖는 기판의 제조 방법, 오목부를 갖는 기판,마이크로렌즈 기판, 투과형 스크린, 및 리어형 프로젝션
JP2006154768A (ja) 凹部付き部材、凸部付き部材の製造方法、凸部付き部材、透過型スクリーンおよびリア型プロジェクタ
JP3731593B2 (ja) 透過型スクリーン用部材の製造方法、透過型スクリーン用部材、透過型スクリーンおよびリア型プロジェクタ
JP2006106359A (ja) レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2007001829A (ja) 凹部付き基板の製造方法、凹部付き基板、レンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2007008739A (ja) 凹部付き基板の製造方法、凹部付き基板、レンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2006126751A (ja) 凹部付き部材、凸部付き部材の製造方法、凸部付き部材、透過型スクリーンおよびリア型プロジェクタ
JP5464246B2 (ja) スクリーンの製造方法
JP5135739B2 (ja) 凹部付き基板の製造方法
JP2004340985A (ja) マイクロレンズ用凹部付き基板の製造方法、マイクロレンズ用凹部付き基板、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2005114873A (ja) 透過型スクリーン用部材、透過型スクリーンおよびリア型プロジェクタ
JP4259277B2 (ja) 拡散部付きレンズ基板の製造方法、拡散部付きレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2007144899A (ja) 凹部付き基板の製造方法、凹部付き基板、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2005128351A (ja) 遮光部付きレンズ基板の製造方法、遮光部付きレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2007188026A (ja) 凹部付き基板の製造方法、凹部付き基板、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2007010803A (ja) 透過型スクリーンおよびリア型プロジェクタ
JP2007136797A (ja) レンズ基板形成用型の製造方法、レンズ基板形成用型、レンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2007199212A (ja) マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2006142587A (ja) 凸部付き部材の製造方法、凸部付き部材、透過型スクリーンおよびリア型プロジェクタ
JP2007155944A (ja) レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2006031045A (ja) 透過型スクリーン用部材の製造方法、透過型スクリーン用部材、透過型スクリーンおよびリア型プロジェクタ