JP2007001299A - Rod-shaped preform for filling gap, its manufacturing method, and manufacturing device - Google Patents

Rod-shaped preform for filling gap, its manufacturing method, and manufacturing device Download PDF

Info

Publication number
JP2007001299A
JP2007001299A JP2006142378A JP2006142378A JP2007001299A JP 2007001299 A JP2007001299 A JP 2007001299A JP 2006142378 A JP2006142378 A JP 2006142378A JP 2006142378 A JP2006142378 A JP 2006142378A JP 2007001299 A JP2007001299 A JP 2007001299A
Authority
JP
Japan
Prior art keywords
rod
shaped
preshaped object
preform
shaped preshaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006142378A
Other languages
Japanese (ja)
Inventor
Konosuke Yamamoto
晃之助 山本
Koji Kotani
浩司 小谷
Yasuo Suga
康雄 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006142378A priority Critical patent/JP2007001299A/en
Publication of JP2007001299A publication Critical patent/JP2007001299A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rod-shaped preform capable of being applied to gaps having various cross sections and forms, and its manufacturing method and manufacturing device. <P>SOLUTION: The rod-shaped preform to be filled in a gap of the preform as a reinforcing material is constituted of a unidirectional fabric base material composed of a reinforced fiber. The end parts of the base material are folded to be the interior of the rod-shaped preform, and has a cross section having the end parts to be folded three times or more in a weft direction. Furthermore, the rod-shaped preform changes in the bending rigidity in the longitudinal direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はプリフォームのジョイント部に補強材として挿入される繊維構造体からなる長手方向に断面変化、もしくは剛性変化を有する空隙部充填用棒状予備賦形物ならびにその製造方法および製造装置に関する。   The present invention relates to a void-shaped rod-shaped preshaped object for filling a void portion having a longitudinal cross-sectional change or a rigidity change composed of a fibrous structure inserted as a reinforcing material in a joint portion of a preform, and a manufacturing method and a manufacturing apparatus therefor.

RTM(Resin Transfer Molding)成形で用いられる3次元立体構造プリフォームの空隙部を充填するために棒状予備賦形物を挿入する方法が知られている。例えば、連続強化繊維束をアセトン、水で希釈したスタビライザー槽内を通過させ、その後、型締め、加熱、冷却することで得る棒状予備賦形物及びその製造方法が提案されている(例えば、特許文献1参照)。   A method of inserting a rod-shaped preshaped object in order to fill a void of a three-dimensional three-dimensional structure preform used in RTM (Resin Transfer Molding) molding is known. For example, a rod-shaped preshaped object obtained by passing a continuous reinforcing fiber bundle through a stabilizer tank diluted with acetone and water, and then clamping, heating, and cooling, and a manufacturing method thereof have been proposed (for example, patents). Reference 1).

また、集束された2本以上の連続した糸条の集束体からなる心材と、横断面楔形形状の心材の外周面に密着するように外周面側から覆い、かつ前記心材の長手方向に沿い、前記心材の周りに筒状をなして織成された連続糸条からなる外被部材からなり、この外被部材と前記心材が一体化されてなる棒状予備賦形物およびその製造方法が提案されている(例えば、特許文献2参照)。   Further, a core material composed of a bundle of two or more continuous yarns that are focused, and a core material having a cross-sectional wedge shape covering from the outer peripheral surface side so as to be in close contact, and along the longitudinal direction of the core material, A rod-shaped preshaped object comprising a jacket member made of continuous yarn woven in a cylindrical shape around the core material, and a manufacturing method for the rod-shaped preshaped object in which the jacket member and the core material are integrated are proposed. (For example, refer to Patent Document 2).

しかしながら、これらの方法では長手方向に全ての一方向炭素繊維が連続的に炭素繊維束が入っているため、任意の断面変化や屈曲部がある空隙部に対して追従できないとか、一方向炭素繊維を芯材またはボビンからそのまま用いているため該炭素繊維束や束間は隙間が小さく樹脂含浸不良を引き起こすなどの課題を抱えていた。   However, in these methods, all the unidirectional carbon fibers are continuously contained in the longitudinal direction in the longitudinal direction, so that the carbon fiber bundle cannot follow any voids with arbitrary cross-section changes or bends. Is used as it is from the core or bobbin, the carbon fiber bundles and the bundles have problems such as a small gap between them and poor resin impregnation.

また、上記課題を解決するために、三次元組みひも組織で断面変化がある棒状予備賦形物が提案されている(例えば、特許文献3参照)。しかしながら、前記三次元組みひも組織を構成する繊維束は炭素、ガラス、アラミド、アルミナ等の弾性率の高い繊維で構成されていることが多く、前記繊維束が長手方向に対してある角度をもって配列されている構造のため、小さな曲率半径や頂点を有する断面の充填は苦手である。また、繊維束部周辺の空隙面積が大きいために、繊維束と周辺の含浸係数が大きく異なり、樹脂の回り込みが発生しやすく、樹脂注入成形で使用する場合はボイドができる懸念がある。つまり、曲率が小さい断面(三、四角形、楔形、星形等)で長手方向に断面変化を有する成型品の充填は困難となる。また、全長方向に繊維が連続しているため組みひも自体を急峻な角度に折り曲げることも困難である。
アメリカ特許明細書第5650229号 特許第3549271号公報 特許第3591347号公報
Moreover, in order to solve the said subject, the rod-shaped preshaped object which has a cross-sectional change in a three-dimensional braid structure | tissue is proposed (for example, refer patent document 3). However, the fiber bundle constituting the three-dimensional braided structure is often composed of fibers with high elastic modulus such as carbon, glass, aramid, alumina, etc., and the fiber bundle is arranged at an angle with respect to the longitudinal direction. Because of its structure, it is not good at filling a cross section having a small radius of curvature or apex. Further, since the void area around the fiber bundle portion is large, the impregnation coefficient between the fiber bundle and the periphery is greatly different, and the resin is likely to wrap around, and there is a concern that voids may occur when used in resin injection molding. That is, it is difficult to fill a molded product having a cross-section change in the longitudinal direction with a cross section having a small curvature (three, square, wedge shape, star shape, etc.). Also, since the fibers are continuous in the full length direction, it is difficult to bend the braid itself at a steep angle.
US Pat. No. 5,650,229 Japanese Patent No. 3549271 Japanese Patent No. 3591347

本発明の課題は、様々な断面や形状の空隙部に適用可能な棒状予備賦形物、ならびにその製造方法および製造装置を提供することにある。   The subject of this invention is providing the rod-shaped preshaped object applicable to the space | gap part of various cross sections and shapes, its manufacturing method, and a manufacturing apparatus.

上記の課題を解決するため、本発明は、以下の構成を採用する。すなわち、
(1)プリフォームの空隙部に補強材として充填される棒状予備賦形物であって、該棒状予備賦形物は、強化繊維からなる一方向織物の基材で構成され、該基材の端部が該棒状予備賦形物の内部になるように折り込まれているとともに横糸方向に3回以上折り畳まれた断面形状を有し、さらに該棒状予備賦形物は、長手方向に曲げ剛性が変化していることを特徴とする空隙部充填用棒状予備賦形物。
(2)前記棒状予備賦形物が、長手方向に断面変化を有している前記(1)に記載の空隙部充填用棒状予備賦形物。
(3)前記棒状予備賦形物は、長手方向に曲げ剛性が変化する部分を有している前記(1)に記載の空隙部充填用棒状予備賦形物。
(4)前記一方向織物基材は粒子状、繊維状、またはフィルム状の樹脂が少なくとも片面に部分的に配置されていることを特徴とする前記(1)〜(3)のいずれかに記載の空隙部充填用棒状予備賦形物。
(5)前記樹脂が熱可塑性樹脂であることを特徴とする前記(1)〜(4)のいずれかに記載の空隙部充填用棒状予備賦形物。
(6)前記(1)〜(5)のいずれかに記載の空隙部充填用棒状予備賦形物を空隙部に充填したプリフォーム。
(7)断面がI、T、J、L、またはC型の桁材製造用である前記(6)に記載のプリフォーム。
(8)前記(6)または(7)のいずれかに記載のプリフォームに樹脂を含浸、硬化した成形品。
(9)一方向織物基材に次の(A)〜(C)の3工程を適用し、所定断面形状を得ることを特徴とする空隙部充填用棒状予備賦形物の製造方法。
(A)一方向織物基材の端部が内側になるように3回以上折り畳む折り畳み工程、
(B)前記折り畳み工程に用いられた基材を熱と圧力により所定断面形状に賦形する加熱、加圧賦形工程、
(C)前記棒状予備賦形物を冷却し形状を固定する冷却形状固定工程。
(10)前記一方向織物基材として、予め所定のパターンに切断したものを用いる前記(9)に記載の空隙部充填用棒状予備賦形物の製造方法。
(11)少なくとも次の(a)〜(c)の3手段を有することを特徴とする空隙部充填用棒状予備賦形物の製造装置。
(a)一方向織物基材の端部が内側になるように3回以上折り畳む折り畳み手段、
(b)前記折り畳み手段に用いられた基材を熱と圧力により所定断面形状に賦形する加熱、加圧賦形手段、
(c)前記棒状予備賦形物を冷却し形状を固定する冷却形状固定手段。
In order to solve the above problems, the present invention adopts the following configuration. That is,
(1) A rod-shaped preshaped object that is filled as a reinforcing material in a void portion of a preform, and the rod-shaped preshaped object is composed of a unidirectional woven fabric substrate composed of reinforcing fibers, It has a cross-sectional shape that is folded so that the end is inside the rod-shaped preshaped object and is folded three times or more in the weft direction, and the rod-shaped preshaped material has a bending rigidity in the longitudinal direction. A rod-shaped preshaped object for filling a void, characterized by being changed.
(2) The rod-shaped preshaped object for filling a void according to (1), wherein the rod-shaped preshaped material has a cross-sectional change in the longitudinal direction.
(3) The rod-shaped preshaped object for filling voids according to (1), wherein the rod-shaped preshaped material has a portion whose bending rigidity changes in the longitudinal direction.
(4) The unidirectional textile base material is characterized in that a particulate, fibrous, or film-like resin is partially disposed on at least one side. A rod-shaped preshaped object for filling the voids.
(5) The void-shaped rod-shaped preshaped object according to any one of (1) to (4), wherein the resin is a thermoplastic resin.
(6) A preform in which the void portion is filled with the rod-shaped preshaped object for filling the void portion according to any one of (1) to (5).
(7) The preform according to (6), wherein the cross section is for manufacturing I, T, J, L, or C type girders.
(8) A molded product obtained by impregnating and curing the preform according to any one of (6) and (7) above.
(9) A method for producing a rod-shaped preshaped object for filling voids, wherein the following three steps (A) to (C) are applied to a unidirectional fabric base material to obtain a predetermined cross-sectional shape.
(A) a folding step of folding three or more times so that the end portion of the unidirectional fabric base material is inside,
(B) Heating and pressurizing step for shaping the base material used in the folding step into a predetermined cross-sectional shape by heat and pressure,
(C) A cooling shape fixing step for cooling the rod-shaped preshaped object and fixing the shape.
(10) The method for producing a rod-shaped preshaped object for filling a void according to (9), wherein the unidirectional fabric base material is cut into a predetermined pattern in advance.
(11) An apparatus for producing a rod-shaped preshaped object for filling voids, comprising at least the following three means (a) to (c).
(A) folding means for folding three or more times so that the end of the unidirectional textile substrate is inside,
(B) heating and pressure shaping means for shaping the base material used for the folding means into a predetermined cross-sectional shape by heat and pressure;
(C) Cooling shape fixing means for cooling the rod-shaped preshaped object and fixing the shape.

本発明により、プリフォームの様々な形状の隙間を充填し、含浸不良や樹脂リッチなく成形することを容易にし、さらには、該プリフォームで製造されたコンポジット部材の物性向上に寄与する棒状予備賦形物を得ることができる。   According to the present invention, it is possible to easily fill the gaps of various shapes of the preform and easily form without impregnation failure or resin richness, and to further improve the physical properties of the composite member manufactured by the preform. A shape can be obtained.

本発明の空隙部充填用棒状予備賦形物はプリフォームの空隙部に補強材として充填される棒状予備賦形物である。プリフォームは通常、シート状の強化繊維基材を組み合わせて、積層して形成されるが、断面が枝分かれした形状のプリフォームを作成するとき枝分かれ部分では強化繊維基材が角に密着するようには曲がりきれないことから、多くの場合隙間ができる。このような隙間に対し、これを充填し、含浸不良や樹脂リッチなく成形することによりコンポジット部材の物性向上に寄与するものである。   The void-shaped rod-shaped preshaped object for filling the void portion of the present invention is a rod-shaped preshaped material that is filled in the void space of the preform as a reinforcing material. The preform is usually formed by combining and laminating sheet-like reinforcing fiber base materials, but when creating a preform with a cross-sectionally branched shape, the reinforcing fiber base material is in close contact with the corners at the branched portions. In most cases, there is a gap because it cannot bend completely. Filling such gaps and molding without impregnation failure or resin richness contributes to improving the physical properties of the composite member.

本発明の空隙部充填用棒状予備賦形物は、強化繊維からなる一方向織物の基材で構成され、該基材の端部が該棒状予備賦形物の内部になるように折り畳まれているとともに横糸方向に3回以上折り畳まれた断面形状を有している。一方向織物の基材で構成することにより、最も必要とされる長手方向の剛性に寄与すると共に、一方向織物の横糸方向に折り畳むことにより高充填にできることから、剛性向上に有利となる。さらに3回以上折り畳まれた断面を有することで後述するように、基材端部が外に出ず、含浸性が向上するという効果が得られる。   The rod-shaped preshaped object for filling voids of the present invention is composed of a unidirectional woven fabric substrate made of reinforcing fibers, and is folded so that the end of the substrate is inside the rod-shaped preshaped material. And has a cross-sectional shape folded three or more times in the weft direction. By comprising the base material of the unidirectional woven fabric, it contributes to the most required longitudinal rigidity and can be highly filled by folding in the weft direction of the unidirectional woven fabric, which is advantageous for improving the rigidity. Furthermore, by having the cross section folded three times or more, as will be described later, the effect that the base material end does not come out and the impregnation property is improved is obtained.

また本発明の空隙部充填用棒状予備賦形物は、長手方向に曲げ剛性が変化している。長手方向に曲げ剛性を変化させることで、様々な形状を有する隙間に容易に沿わせて充填することができる。例えば、曲げ剛性を連続的に変化させることで、緩やかな曲がりを有する形状の隙間に沿わせ易くでき、また、部分的に低剛性な部分を設けるとその部分で折れ曲げることができ、折れ曲がり部を有するような隙間にも容易に沿わせることができる。   Moreover, the bending rigidity of the rod-shaped pre-shaped object for filling voids of the present invention changes in the longitudinal direction. By changing the bending rigidity in the longitudinal direction, it is possible to easily fill the gaps having various shapes. For example, by continuously changing the bending rigidity, it is easy to fit along the gap of the shape having a gentle bend, and if a part with a low rigidity is provided, it can be bent at that part, and the bent part It is possible to easily follow a gap having a gap.

また曲げ剛性を連続的に変化させる場合に強化繊維量を連続的に減らし断面積を徐々に小さくすれば、長手方向に断面積が変化する隙間にも適用が可能となる。   Further, when the bending stiffness is continuously changed, if the amount of reinforcing fibers is continuously reduced and the cross-sectional area is gradually reduced, the present invention can be applied to a gap in which the cross-sectional area changes in the longitudinal direction.

以下図面に沿って説明する。   This will be described below with reference to the drawings.

図2Aは、本発明の空隙部充填用棒状予備賦形物を製造する方法の一例を示す模式図である。本模式図では、部分的に低剛性な部分を設けた空隙部充填用棒状予備賦形物を製造する例を挙げている。本発明の棒状予備賦形物18はあらかじめパターン裁断された一方向織物基材11を用いて、端部が内側に入るように3回以上折り畳む折り畳み工程13、加熱賦形工程14、冷却固定工程15と順次経ることで得られる。   FIG. 2A is a schematic view showing an example of a method for producing a void-shaped filling rod-shaped preshaped object of the present invention. In this schematic diagram, an example is given in which a void-shaped rod-shaped preshaped object for filling voids provided with a partially low-rigidity part is given. The rod-shaped preshaped object 18 of the present invention uses a unidirectional woven base material 11 that has been pre-patterned, and is folded at least three times so that the end enters the inside, a heating shaping process 14, and a cooling and fixing process. It is obtained by going through 15 and so on.

前記一方向織物基材11は主強度や剛性を発現する繊維配向方向(経糸方向)に対して概ね平行方向に折り目線がくるように緯糸方向に3回以上折り曲げ、折り畳まれた断面形状を有している。   The unidirectional fabric base 11 has a cross-sectional shape that is folded and folded three or more times in the weft direction so that the crease line is almost parallel to the fiber orientation direction (warp direction) that exhibits main strength and rigidity. is doing.

前記基材を折り曲げ、折り畳みを行う1つ目の目的は基材端部が外層に出ないように内部に折り込むことである。というのも前記一方向織物基材端部は繊維乱れや単糸切れを生じやすく、生じた場合に元の状態に戻すことも困難であり、糸切れを起こしたまま賦形、成形すると成形品の機械的性質を低下させる懸念がある。また、前記基材端部の繊維乱れや単糸切れを防止するために樹脂材料を塗布する方法や縫製する方法を適用しても構わない。樹脂材料を塗布する方法を適用する場合の塗布する樹脂としては、成形で用いる樹脂と同一の樹脂、例えば、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂などが挙げられるし、縫製をする繊維としてはナイロン、アラミド繊維、ボロン繊維、ガラス繊維などが挙げられるがこれに限るものではなく、縫製方法も特に限定はしないし、両者を同時に施しても良い。しかし、これらは工程を長くする原因となるので物性やコストを満たすように選定することが好ましい。   The first purpose of folding and folding the substrate is to fold the substrate inward so that the end of the substrate does not come out of the outer layer. This is because the unidirectional fabric base end tends to cause fiber disturbance or single yarn breakage, and if it occurs, it is difficult to return to the original state. There is a concern of reducing the mechanical properties. In addition, a method of applying a resin material or a method of sewing may be applied in order to prevent fiber disturbance and single yarn breakage at the base end. As a resin to be applied in the case of applying a method of applying a resin material, the same resin as that used for molding, for example, an epoxy resin, a vinyl ester resin, an unsaturated polyester resin, etc., and as a fiber to be sewn Nylon, aramid fiber, boron fiber, glass fiber, etc. are mentioned, but it is not limited thereto, and the sewing method is not particularly limited, and both may be performed simultaneously. However, since these cause a long process, it is preferable to select them so as to satisfy physical properties and costs.

2つ目の目的としては、前記棒状予備賦形物の含浸性を向上させることにある。一般的に強化繊維織物機材を数枚積層した場合、面方向より厚み方向の含浸性が優れているため、一方向織物基材を丸めた螺旋状断面形状のものより前記のように折り畳まれた方が中心部に到達する際に含浸すべき枚数が少なくなるからある。   The second purpose is to improve the impregnation property of the rod-shaped preshaped object. In general, when several sheets of reinforcing fiber woven materials are laminated, since the impregnation in the thickness direction is superior to the surface direction, the unidirectional woven fabric base material is folded as described above from a round spiral cross-sectional shape. This is because the number of sheets to be impregnated when reaching the center is smaller.

次に、3回で基材端部を内部に折り込む方法の1例を本発明の棒状予備賦形物の断面模式図である図5を用いて説明する。まず、基材の両端41を中心線とほぼ一致するように折り畳み(折り畳み回数2回)、次に前記のように基材を折り畳んだ後に新しく形成された一方の新端部42をもって前記基材の両端が内部になるように折り畳む(折り畳み回数1回)方法があるが、端部が内部になるように折り畳めればこれに限らない。   Next, an example of a method of folding the substrate end portion into the interior three times will be described with reference to FIG. 5 which is a schematic cross-sectional view of the rod-shaped preshaped object of the present invention. First, the both ends 41 of the base material are folded so as to substantially coincide with the center line (the number of times of folding is twice), and then the base material is newly formed after the base material is folded as described above. Although there is a method of folding so that both ends are inside (folding frequency is 1), it is not limited to this as long as the ends are folded inside.

棒状予備賦形物に用いる一方向織物基材は、例えば、応力が集中するような屈曲を有さない強化繊維を一方向にお互いに並行にシート上に配列し、このシート面の両側に強化繊維を一方向に互いに並行にシート状に配列し、このシート面の両側に強化繊維と交差する、細い横糸が位置し、これら横糸と、強化繊維と並行する縦糸方向補助糸とが織組織をなして強化繊維を一体に保持してなる、いわゆる一方向ノンクリンプ織物であり、この一方向ノンクリンプ織物の表面には粒子が付着している。   The unidirectional textile base material used for the rod-shaped preshaped object is, for example, arranged on the sheet in parallel to each other in parallel to each other in the unidirectional woven fabric, which is stress-concentrated, and reinforced on both sides of this sheet surface The fibers are arranged in a sheet in parallel in one direction, and thin wefts that cross the reinforcing fibers are located on both sides of the sheet surface, and these wefts and the auxiliary yarns in the warp direction parallel to the reinforcing fibers form the woven structure. This is a so-called unidirectional non-crimp fabric in which reinforcing fibers are integrally held, and particles adhere to the surface of the unidirectional non-crimp fabric.

一方向織物基材を形成する一方向織物として、たて糸の強化繊維と横糸がノンクリンプ組織で一体化されたケースについて説明したが、平組織、綾組織、朱子組織であってもよい。一方向織物の好ましい形態として、前記一方向織物基材は縦糸が炭素繊維であり、横糸方向補助糸の繊度が6〜70デシテックスの炭素繊維であり、横糸方向補助糸の密度が0.3本/cm〜6.0本/cm未満であり、かつ炭素繊維の目付は100g/m以上であることが好ましい。目付はJIS K 7602に基づいて測定されたものである。 The case where warp reinforcing fibers and wefts are integrated with a non-crimp structure has been described as a unidirectional woven fabric forming a unidirectional woven base material. However, a plain structure, a twill structure, and a satin structure may be used. As a preferred form of the unidirectional woven fabric, the unidirectional woven fabric base material is carbon fiber in which the warp yarn is carbon fiber, the weft direction auxiliary yarn has a fineness of 6 to 70 dtex, and the density of the weft direction auxiliary yarn is 0.3. / Cm to less than 6.0 fibers / cm, and the basis weight of the carbon fiber is preferably 100 g / m 2 or more. The basis weight is measured based on JIS K 7602.

本発明において使用する強化繊維はマルチフィラメントであり、特にその種類に制限はないが、例えば、ガラス繊維、アルミナ繊維、炭化ケイ素繊維、金属繊維、有機(ポリアラミド、ポリフェニレンベンズビスオキサゾール、液晶ポリマー繊維、ポリビニルアルコール、ポリエチレン、ポリフェニレンサルファイド繊維など)繊維または炭素繊維などが挙げられる。特に炭素繊維は比強度および比弾性率に優れ、耐吸水性に優れるので、航空機構造材や自動車の強化繊維として好ましく用いられる。   The reinforcing fiber used in the present invention is a multifilament, and the type thereof is not particularly limited. For example, glass fiber, alumina fiber, silicon carbide fiber, metal fiber, organic (polyaramid, polyphenylenebenzbisoxazole, liquid crystal polymer fiber, Polyvinyl alcohol, polyethylene, polyphenylene sulfide fiber, etc.) fiber or carbon fiber. In particular, carbon fibers are excellent in specific strength and specific elastic modulus and excellent in water absorption resistance, and are therefore preferably used as aircraft structural materials and automobile reinforcing fibers.

本発明においては、空隙部充填用棒状予備賦形物を製造するための一方向織物基材として、少なくとも片面に予め粒子状や繊維状やフィルム状の樹脂を付着させた基材を用いることが好ましい。さらに、このような樹脂を付着させた基材を折り曲げ、折り畳むことで基材端部を棒状予備賦形物の内部に折り込んで賦形された棒状予備賦形物であることが好ましい。また、前記棒状予備賦形物は全繊維の50%〜90%が長手方向に配向されているものであることが好ましい。   In the present invention, as a unidirectional textile base material for producing a void-shaped filling rod-shaped preshaped article, a base material in which a particulate, fibrous or film-like resin is previously attached to at least one surface is used. preferable. Furthermore, it is preferable to be a rod-shaped preshaped object that is formed by folding and folding the substrate to which such a resin is attached and folding the end of the substrate into the rod-shaped preshaped object. Moreover, it is preferable that 50 to 90% of all the fibers of the rod-shaped preshaped object are oriented in the longitudinal direction.

本発明で用いる前記樹脂は、織物繊維への樹脂の接着や、作業性の点から50〜150℃の範囲の融点またはガラス転移温度を有しているものが好ましい。前記樹脂の成分としては、織物基材の取扱性を向上させるものが好ましく、さらに好ましくはそれを用いて得られる繊維強化プラスチックの機械的特性を向上させるものである。前記樹脂としては、各種の熱硬化性樹脂および/または熱可塑性樹脂を使用できる。   The resin used in the present invention preferably has a melting point or glass transition temperature in the range of 50 to 150 ° C. from the viewpoint of adhesion of the resin to the woven fiber and workability. As the component of the resin, those that improve the handleability of the textile substrate are preferable, and more preferably, the mechanical properties of the fiber-reinforced plastic obtained by using the same are improved. As the resin, various thermosetting resins and / or thermoplastic resins can be used.

熱可塑性樹脂を粒子の主成分として用いる場合には、例えば、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルイミド、ポリフェニレンエーテル、ポリイミド、ポリアミドイミド、フェノキシから選ばれる少なくとも1種のであることが好ましく、その中でもポリアミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルスルフォンがとりわけ好ましい。   When the thermoplastic resin is used as the main component of the particles, for example, it is preferably at least one selected from polyamide, polysulfone, polyethersulfone, polyetherimide, polyphenylene ether, polyimide, polyamideimide, phenoxy, Of these, polyamide, polyetherimide, polyphenylene ether, and polyether sulfone are particularly preferable.

熱可塑性樹脂は、粒子状や繊維状やフィルム状の主成分となり、その配合量が60〜100重量%であることが好ましい。より好ましくは75〜97重量%であり、さらに好ましくは80〜95重量%である。配合量が60重量%未満であると、耐衝撃性に優れた繊維強化プラスチックを得難い場合がある。また、熱可塑性樹脂を主成分とした場合、粒子状や繊維状やフィルム状樹脂の織物への接着性や接着加工性が劣る場合がある。この場合には、前記樹脂に少量の粘着付与剤、可塑剤などを配合すると良い。熱可塑性樹脂を主成分とする樹脂成分を固着剤として用いると加熱を繰り返しても樹脂が劣化しないため、多段階に分けた加熱賦形や再賦形ができることも好ましい理由の一つである。   The thermoplastic resin is the main component in the form of particles, fibers or films, and the blending amount is preferably 60 to 100% by weight. More preferably, it is 75-97 weight%, More preferably, it is 80-95 weight%. If the blending amount is less than 60% by weight, it may be difficult to obtain a fiber reinforced plastic excellent in impact resistance. Moreover, when a thermoplastic resin is a main component, the adhesiveness or bondability of particulate, fibrous, or film-like resin to a fabric may be inferior. In this case, it is preferable to add a small amount of a tackifier or a plasticizer to the resin. If a resin component containing a thermoplastic resin as a main component is used as a fixing agent, the resin does not deteriorate even if heating is repeated. Therefore, one of the preferable reasons is that heating shaping and re-shaping can be performed in multiple stages.

次に、前記棒状予備賦形物を製造するために必要な工程を説明するが、品質や収率などを向上させるためにその他の工程を含んでいてもかまわない。   Next, the steps necessary to produce the rod-shaped preshaped object will be described, but other steps may be included to improve the quality and yield.

1.折り畳み工程(または手段)
基材の変形させたい部分、および断面変化させたい部分を考慮したカットパターンの基材を準備し、前記カットパターンの基材を折り曲げ、折り畳みまたは部分的に丸めて基材端部が棒状予備賦形物の内部になるようにする。前記カットパターン(繊維投入量となる)は断面変化や折り曲げたい部分を考慮して切断することが好ましく、さらに、図4Bの一方向織物基材11のように段付き形状にカットする場合は、折り畳んだ際に三つ折りが可能となるように、最大切り込み幅27と最大基材幅28の比が1/3より小さいと折り畳んだ際に最外層が連続繊維となり、耐擦過性が向上するため好ましい。また、図4Aの台形形状一方向織物基材23のような形状の場合は図2Aに示す金型長さ34をL、及び、図4Aに示す広幅長さ31をB、狭幅長さ32をCとしたとき、これらが以下の式を満たすことが好ましい。
(B−C)/L>1/3
B:長辺
C:短辺
L:金型長さ
折り畳み回数や折り畳んだ後の幅33は次の加熱賦形工程(または手段)で用いるダイの最大幅の二倍以下になるように折り畳むと、ダイ通過時の摩擦を低減でき、局部的な糸切れが発生しにくくなることから好ましい。本製造方法のポイントは、次に挙げるような特性(樹脂の種類、形状、粒径、粒子量、粒子Tg、基材幅、もしくは基材に他部材の芯材を入れるなど)を制御することで様々な物性、含浸性の棒状予備賦形物を製造できることにある。(如何に3例(i)〜(iii)を示す)
(i) 他部材と剛性を一致させるために剛性を低くする場合の一例を挙げると、棒状予備賦形物を炭素繊維の一方向織物基材と少量の樹脂材料を用いて製造し、前記棒状予備賦形物を用いたプリフォームをRTM成形した場合において、棒状予備賦形物部分が周囲より剛性が高くなりすぎてしまったときには、周囲の剛性と一致させるために、棒状予備賦形物の製造時の繊維投入量を減少させ、かつ、樹脂材料を増加させることにより、断面形状を変えずに剛性を最適化させることができる。
1. Folding process (or means)
Prepare a base material with a cut pattern that takes into account the part of the base material that you want to deform and the part that you want to change the cross-section of. Try to be inside the shape. It is preferable to cut the cut pattern (being a fiber input amount) in consideration of the cross-sectional change and the portion to be bent, and when cutting into a stepped shape like the unidirectional fabric base 11 in FIG. 4B, When the ratio of the maximum cut width 27 and the maximum base material width 28 is smaller than 1/3, the outermost layer becomes a continuous fiber when folded so that the abrasion resistance is improved. preferable. In the case of a shape like the trapezoidal unidirectional woven fabric base 23 in FIG. 4A, the mold length 34 shown in FIG. 2A is L, the wide length 31 shown in FIG. 4A is B, and the narrow length 32 is. When C is C, it is preferable that these satisfy the following formula.
(BC) / L> 1/3
B: Long side C: Short side L: Mold length When folded so that the number of times of folding and the width 33 after folding are less than twice the maximum width of the die used in the next heating shaping step (or means) It is preferable because friction at the time of passing through the die can be reduced and local thread breakage is less likely to occur. The point of this manufacturing method is to control the following characteristics (such as resin type, shape, particle size, particle amount, particle Tg, substrate width, or core material of another member in the substrate). It is possible to produce rod-shaped preshaped products having various physical properties and impregnation properties. (How 3 examples (i) to (iii) are shown)
(I) As an example of reducing the rigidity in order to match the rigidity with other members, a rod-shaped preshaped article is manufactured using a unidirectional woven fabric base material and a small amount of resin material, and the rod-shaped When the preform using the preshaped object is RTM molded, if the rigidity of the rod-shaped preshaped object becomes too high from the surrounding area, in order to match the rigidity of the surrounding area, By reducing the amount of fiber input during production and increasing the resin material, the rigidity can be optimized without changing the cross-sectional shape.

(ii) 別の例として、棒状予備賦形物に心材としてコア材を導入し、折り畳み工程でコア材を覆うことにより、樹脂リッチ部の面積を減少させ、かつ全体の剛性を変化させないことができる。   (ii) As another example, by introducing the core material as a core material into the rod-shaped preshaped object and covering the core material in the folding process, the area of the resin rich portion may be reduced and the overall rigidity may not be changed. it can.

(iii) 前記樹脂材料による含浸性悪化(樹脂量を増やしすぎて棒状予備賦形物の樹脂流路を閉塞させた場合)を改善したときの例を示す。2種類以上の樹脂(一方はガラス転移温度(Tg)が加熱温度より高い、他方はTgが加熱温度より低い、粒径も多少異なる)を用いて一方に樹脂流路形成、他方に形状固定と役割を分担させることにより、剛性(繊維律則である)を変化させずに含浸性を改善させることができる。   (iii) An example in which deterioration of impregnation due to the resin material (in the case where the resin flow path of the rod-shaped preshaped object is blocked by excessively increasing the resin amount) is improved is shown. Using two or more kinds of resins (one has a glass transition temperature (Tg) higher than the heating temperature, the other has a Tg lower than the heating temperature and a slightly different particle size), the resin flow path is formed on one side, and the shape is fixed on the other. By assigning the roles, the impregnation property can be improved without changing the rigidity (which is the fiber rule).

以上(i)〜(iii)のように一部の特性を変化させることで容易に含浸性、樹脂リッチ面積、剛性をコントロールすることができるが、前記特性は本発明の製造方法で用いうる一部でありこれらになんら限定するものではない。   As described above (i) to (iii), it is possible to easily control the impregnation property, the resin-rich area, and the rigidity by changing some of the properties, but these properties can be used in the production method of the present invention. Is not limited to these.

2.加熱賦形工程(または手段)
この工程(または手段)は、前記折り畳み工程(または手段)13で折り畳まれた基材が圧力を受け、楔形形状19のダイ(丸形、多角形、曲線と直線を組み合わせた断面形状等でも良い)を加熱されながら所定断面形状の棒状予備賦形物に賦形される加熱賦形工程(または手段)である。前記楔形形状19のダイの一例として、図2Bに示すように円筒の断面35の周囲に四角断面36の囲いを設ける方法がある。この方法によれば、は前記円筒の断面35の中空部37に熱媒を通して、容易に加熱することも可能である。
2. Heat shaping process (or means)
In this step (or means), the base material folded in the folding step (or means) 13 receives pressure, and a wedge-shaped die 19 (round shape, polygonal shape, cross-sectional shape combining curves and straight lines, or the like may be used. ) Is shaped into a rod-shaped preshaped object having a predetermined cross-sectional shape while being heated. As an example of the wedge-shaped die 19, there is a method of providing an enclosure of a square cross section 36 around a cross section 35 of a cylinder as shown in FIG. 2B. According to this method, it is possible to easily heat the hollow section 37 of the cylindrical section 35 through the heat medium.

長手方向に対して曲げ剛性が異なる棒状予備賦形物を賦形する方法について説明する。例えば、一方向織物基材を予め所定のパターンにカットしその後、一定断面形状のダイを通過させる方法がある。また、長手方向に断面変化を有する棒状予備賦形物を製造する方法としては、例えば、長手方向に数ピースに分かれたテーパ形状のダイを用いて、繊維を通過始めからの時間や繊維が通過した距離に応じて前記テーパ形状のダイを狭幅側からピースを取り除いていくと長手方向に断面形状が異なる棒状予備賦形物を得ることができる。   A method for forming a rod-shaped preshaped object having a different bending rigidity with respect to the longitudinal direction will be described. For example, there is a method in which a unidirectional woven fabric substrate is cut in a predetermined pattern in advance and then passed through a die having a constant cross-sectional shape. In addition, as a method of manufacturing a rod-shaped preshaped object having a cross-sectional change in the longitudinal direction, for example, using a taper-shaped die divided into several pieces in the longitudinal direction, the time from the start of passing the fiber and the fiber pass When the piece of the taper-shaped die is removed from the narrow side according to the distance, a rod-shaped preshaped object having a different cross-sectional shape in the longitudinal direction can be obtained.

3.冷却工程(または手段)
この工程(または手段)は、前記加熱賦形工程(または手段)で所定断面形状、所定強化繊維体積率に賦形された棒状予備賦形物を冷却し、粒子状や繊維状の樹脂などの形状固定機能も有する材料をもって形状固定をする冷却工程(または手段)である。
3. Cooling process (or means)
In this step (or means), the rod-shaped preshaped object shaped into a predetermined cross-sectional shape and a predetermined reinforcing fiber volume ratio in the heating shaping step (or means) is cooled, and a particulate or fibrous resin or the like is cooled. This is a cooling step (or means) for fixing the shape with a material having a shape fixing function.

本発明は、以上の折り畳み工程(または手段)13、加熱賦形工程(または手段)14、および冷却工程(または手段)15の3つの工程(または手段)を少なくとも含んでいれば良い。   The present invention only needs to include at least the three steps (or means) of the folding step (or means) 13, the heating shaping step (or means) 14, and the cooling step (or means) 15.

また、本製造方法は繊維の目付や一方向強化繊維基材の幅から強化繊維体積含有率をコントロールすることが可能で、かかる棒状予備賦形物を構成する強化繊維体積率Vpfを算出する方法としては、以下の式を用いる。
Vpf=F×L/ρ/S×100(%)
F:強化繊維目付(g/cm
L:一方向基材の幅(cm)ただし、強化繊維配向方向と直行する方向を幅方向とする。
ρ:一方向織物基材1cm当たりの強化繊維重量(g/cm
S:一方向織物基材が通過可能な最終断面形状となるダイ内の空間断面積(cm
かかる強化繊維目付Fおよび一方向基材の幅LはJIS R 7602に基づき、一方向織物基材1cm当たりの強化繊維重量は炭素繊維の場合はJIS R 7603に基づいき、それ以外の繊維の密度はJIS R 7603に準拠し、繊維との濡れ性(悪い場合は気泡を噛み込み易い)や繊維の溶解性を考慮して溶媒を選択し測定すると良い。
Further, the present production method can control the reinforcing fiber volume content from the basis weight of the fiber and the width of the unidirectional reinforcing fiber base material, and calculates the reinforcing fiber volume fraction Vpf constituting the rod-shaped preshaped object. As follows, the following equation is used.
Vpf = F × L / ρ / S × 100 (%)
F: Reinforcement fiber basis weight (g / cm 2 )
L: Width of unidirectional substrate (cm) However, the direction orthogonal to the reinforcing fiber orientation direction is the width direction.
ρ: Reinforcing fiber weight (cm / cm 3 ) per 1 cm 3 of unidirectional fabric base material
S: Spatial cross-sectional area (cm 2 ) in the die having a final cross-sectional shape through which the unidirectional textile substrate can pass
The reinforcing fiber basis weight F and the width L of the unidirectional base material are based on JIS R 7602, and the weight of the reinforcing fiber per 1 cm 3 of the unidirectional woven base material is based on JIS R 7603 in the case of carbon fiber. The density is based on JIS R 7603, and it is preferable to select and measure a solvent in consideration of wettability with fibers (when it is bad, it is easy to bite bubbles) and solubility of fibers.

前記棒状予備賦形物を空隙部に充填したプリフォーム及び成形品の例を本発明の断面模式図である図6を用いて説明する。本発明の空隙部充填用棒状予備賦形物は頂点部分を有する空隙充填に用いられることが好ましく、前記空隙を有するプリフォームの一例としてT形断面プリフォーム43、I形断面プリフォーム44、J形断面プリフォーム45、十字形断面プリフォーム46、C形断面プリフォーム50を挙げる。一般的にL形断面プリフォーム47やC形断面プリフォーム50等のように屈曲断面形状を持つプリフォームは構成する繊維の剛性が高いために直角に曲げられないことが多く、また、頂点部での応力集中を避けるために屈曲部にはRが設けられていることが多い。本発明の一例である前記T形断面プリフォーム43、I形断面プリフォーム44、J形断面プリフォーム45はL形断面プリフォーム47またはC形断面プリフォーム50、Z形断面プリフォーム51と直方体断面プリフォーム48と楔形断面棒状予備賦形物49を、十字形断面プリフォーム46はL形断面プリフォーム47と星形断面棒状予備賦形物52を構成部材として一体化させると得られる。C形断面プリフォーム50のように個で独立している場合の充填は他と少し様相が異なり、ベースプリフォーム53とC形断面プリフォーム50を一体化させる際にできる隙間を埋めるために用いられ、前記楔形断面棒状予備賦形物49は最外表面にあったり、或いは上から連続繊維のカバープライ54を被せることもある。以上のように本発明のプリフォームとしては様々な形状が考えられ、ポイントとしては充填すべき空隙を持ち前記空隙に棒状予備賦形物を充填していることにあり、プリフォームと成形品、成形品同士、または接着剤を介しての充填など様々な一体化用途にも適用可能である。   An example of a preform and a molded product in which the rod-shaped preshaped object is filled in the gap will be described with reference to FIG. 6 which is a schematic sectional view of the present invention. The rod-shaped preshaped object for filling a void portion of the present invention is preferably used for filling a void having a vertex portion. As an example of a preform having the void, the T-shaped preform 43, the I-shaped preform 44, J A cross section preform 45, a cross section preform 46, and a C section preform 50 are listed. In general, a preform having a bent cross-sectional shape such as an L-shaped cross-sectional preform 47 or a C-shaped cross-sectional preform 50 is often not bent at a right angle due to the high rigidity of the constituent fibers. In order to avoid stress concentration at the bent portion, the bent portion is often provided with R. The T-shaped preform 43, I-shaped preform 44, and J-shaped preform 45, which are examples of the present invention, are an L-shaped preform 47 or a C-shaped preform 50, a Z-shaped preform 51, and a rectangular parallelepiped. The cross-sectional preform 48 and the wedge-shaped cross-section preshaped object 49 are obtained by integrating the L-shaped cross-section preform 46 and the L-shaped cross-section preform 47 and the star-shaped cross-section preshaped object 52 as constituent members. The filling in the case of being independent as an individual like the C-shaped cross-section preform 50 is slightly different from the other, and is used to fill a gap formed when the base preform 53 and the C-shaped cross-sectional preform 50 are integrated. The wedge-shaped cross-section preshaped object 49 may be on the outermost surface or may be covered with a cover ply 54 of continuous fibers from above. As described above, various shapes can be considered as the preform of the present invention, and the point is that the gap has a gap to be filled and the gap is filled with a rod-shaped preshaped object. It can also be applied to various integrated uses such as filling between molded products or filling via an adhesive.

前記プリフォームに樹脂を含浸、硬化させた成形品は、その隙間が充填され、含浸不良や樹脂リッチなく成形されるので、高い物性となることから好ましい。かかる、成形品を得るための好ましい条件としては、プリフォームに樹脂を十分に行き渡らせるために、注入温度における樹脂の樹脂注入時初期粘度が1000cP以下である樹脂を用いることが挙げられ、さらに好ましくは、注入時に脱泡効果が期待できる減圧成形、つまり、前記樹脂を大気圧以下の圧力で注入成形することが挙げられる。また、最後に棒状予備賦形物を直接用いる例として、ワイヤーなども挙げることができる。   A molded product obtained by impregnating and curing the preform with a resin is preferable because it fills the gap and is molded without impregnation failure or resin richness, and thus has high physical properties. As a preferable condition for obtaining such a molded article, it is preferable to use a resin having an initial viscosity of 1000 cP or less when the resin is injected at the injection temperature in order to sufficiently spread the resin to the preform. May be reduced pressure molding that can be expected to have a defoaming effect at the time of injection, that is, injection molding of the resin at a pressure below atmospheric pressure. Moreover, a wire etc. can also be mentioned as an example which uses a rod-shaped preshaped object directly at the end.

以下、本発明を図面に示す実施例に基づいてより具体的に説明する。   Hereinafter, the present invention will be described more specifically based on embodiments shown in the drawings.

実施例1
図1に示すような箱形形状のコア材1(内寸: 高さ:100mm×長さ:200mm×幅:200mm)の表面に炭素繊維クロス2を積層したときにコーナー部3に生じる前記箱形形状のコア材1と炭素繊維クロス2の隙間4を埋めるための棒状予備賦形物を製造する。
Example 1
The box produced in the corner portion 3 when the carbon fiber cloth 2 is laminated on the surface of the box-shaped core material 1 (inner dimensions: height: 100 mm × length: 200 mm × width: 200 mm) as shown in FIG. A rod-shaped preshaped object for filling the gap 4 between the shaped core material 1 and the carbon fiber cloth 2 is manufactured.

従来方法で製造した棒状予備賦形物では全ての一方向繊維が長手方向に連続であり所定の位置で変形させることが困難であった。また、変形させることは容易な組みひも組織では長手方向に対してある角度で繊維が配向なされているため、隙間部が頂点を有している場合、どうしても頂点に追従しきれずに樹脂リッチになってしまう。また、物性面では一方向繊維を用いた場合と比較して長手方向の繊維が少ないため弾性率や強度が低下してしまう。   In the rod-shaped preshaped article manufactured by the conventional method, all the unidirectional fibers are continuous in the longitudinal direction and it is difficult to deform at a predetermined position. In addition, since the fibers are oriented at a certain angle with respect to the longitudinal direction in a braided tissue that can be easily deformed, if the gap portion has a vertex, it will not be able to follow the vertex inevitably and become resin-rich. End up. Further, in terms of physical properties, the elastic modulus and strength are lowered because there are fewer fibers in the longitudinal direction than when unidirectional fibers are used.

本発明では変形能と物性を両立させるために以下の方法で上記コア材と炭素繊維クロスの隙間に挿入する棒状予備賦形物を製造する。まず、図2Aに示すように、片面に樹脂材料を塗布した一方向織物基材3mを80mm幅にスリットし、長手方向に100mmの位置、300mmの位置、500mmの位置、700mmの位置を両端より10mm×2mmずつ切り落とし、部分的に60mm幅の部分をもつ部分狭幅一方向織物基材11を得た。その後、前記部分狭幅一方向織物基材を外径500mmのロールに巻き取りロール基材12とし、引抜試験装置にセットした。前記引抜試験装置は折り畳み工程(または手段)13、加熱賦形工程(または手段)14、冷却固定工程(または手段)15を有している。   In the present invention, a rod-shaped preshaped object to be inserted into the gap between the core material and the carbon fiber cloth is manufactured by the following method in order to achieve both deformability and physical properties. First, as shown in FIG. 2A, a unidirectional woven fabric base material 3m coated with a resin material on one side is slit into a width of 80 mm, and a 100 mm position, a 300 mm position, a 500 mm position, and a 700 mm position in the longitudinal direction from both ends. A 10 mm × 2 mm piece was cut off to obtain a partially narrow unidirectional woven fabric base 11 having a part 60 mm wide. Then, the said partial narrow width unidirectional textile base material was made into the winding roll base material 12 in the roll of outer diameter 500mm, and was set to the drawing test apparatus. The pull-out test apparatus has a folding step (or means) 13, a heating shaping step (or means) 14, and a cooling and fixing step (or means) 15.

前記引抜試験装置では、まず、前記部分狭幅一方向織物基材11を緯糸に沿って3回折り畳んで両端部が内側になり、さらに半分に畳まれ、折り畳まれた一方向織物基材が加熱ダイ内で圧縮力を受け賦形された後、前記樹脂材料が冷却用ダイを通過しながら冷却固定され一定断面で剛性の低い部分16と剛性の高い部分17を有する棒状予備賦形物18となった。前記ダイの断面形状は一辺が12mmの正方形から半径6mmの扇形断面を切り取った楔形形状19であり、前記棒状予備賦形物18もほぼ同様形状の断面に仕上がった。次に前記箱形コア材に前記棒状予備賦形物を挿入するために、前記棒状予備賦形物18の長手方向800mmの位置をはさみでコア材の内側周長と同じ長さに切断し、その後、折れ曲がりやすい部分で折り曲げた屈曲棒状予備賦形物5を用いて前記箱形形状コア材コーナー部に沿わせたところコーナー部3に隙間なく配置され、箱形形状コア材プリフォームを得た。その後、前記コア材プリフォーム表面を覆うようにしわ無く炭素繊維織物基材を配置、VaRTM成形し、コア材を炭素繊維織物基材で覆った成形品であるサンドイッチパネルAを得た。   In the pull-out test apparatus, first, the partially narrow unidirectional woven fabric base material 11 is folded three times along the wefts, both ends are inward, folded in half, and the folded unidirectional woven fabric base material is heated. A rod-shaped preshaped object 18 having a low-rigidity portion 16 and a high-rigidity portion 17 having a constant cross section after the resin material is cooled and fixed while passing through the cooling die after being compressed and shaped in the die. became. The cross-sectional shape of the die was a wedge-shaped shape 19 obtained by cutting out a fan-shaped cross section having a radius of 6 mm from a square having a side of 12 mm, and the rod-shaped preshaped object 18 was finished to have a substantially similar cross-section. Next, in order to insert the rod-shaped preshaped object into the box-shaped core material, the position in the longitudinal direction of the rod-shaped preshaped material 18 is cut to the same length as the inner peripheral length of the core material with scissors, Then, when the bent rod-shaped preshaped object 5 bent at an easily bent portion was used, the box-shaped core material was placed along the corner portion of the box-shaped core material without any gaps, and a box-shaped core material preform was obtained. . Thereafter, a carbon fiber woven base material was placed without covering the surface of the core material preform, and VaRTM molding was performed to obtain a sandwich panel A which was a molded product in which the core material was covered with the carbon fiber woven base material.

また、同様の製造方法で棒状予備賦形物を挿入せずに製作したサンドイッチパネルB、前記棒状予備賦形物18と繊維投入量が等しい組みひもを挿入したサンドイッチパネルCを比較用に準備し、コーナー部の断面観察および引張試験(棒状予備賦形物が長手方向になるように切り出した引張試験片を用いて)を行った。   In addition, a sandwich panel B manufactured without inserting a rod-shaped preshaped object by the same manufacturing method and a sandwich panel C inserted with a braid having the same fiber input amount as the rod-shaped preshaped material 18 are prepared for comparison. Then, cross-sectional observation and a tensile test (using a tensile test piece cut so that the rod-shaped preshaped object is in the longitudinal direction) were performed.

断面を観察した結果、パネルAでは樹脂リッチが全体的に均一に分布していることが観察された。パネルBでは前記扇形断面の頂点部に樹脂リッチ部が観察され、樹脂リッチ周辺の繊維に全体の繊維うねりと比較して大きいうねりが観察された。パネルCでは前記扇形断面部にボイドや大きな樹脂リッチが観察された。前記試験片の引張試験結果は次のとおりであり、引張弾性率、強度ともに、パネルA>パネルB>パネルCの結果となった。   As a result of observing the cross section, it was observed that in panel A, the resin rich was uniformly distributed as a whole. In panel B, a resin rich portion was observed at the apex portion of the sector cross section, and a large swell was observed in the fibers around the resin rich compared to the entire fiber swell. In panel C, voids and large resin richness were observed in the sector cross section. The tensile test results of the test pieces are as follows, and the results of panel A> panel B> panel C were obtained for both tensile modulus and strength.

実施例2
次に、長手方向に断面変化を有する場合の実施例を図3を参照しながら説明する。
Example 2
Next, an embodiment in the case of having a cross-sectional change in the longitudinal direction will be described with reference to FIG.

この実施例2は、長手方向に断面変化のある隙間部を有する桁材21の構成要素(例えば、I、J、T型断面)、つまり長手方向に断面テーパ形状を持つ隙間部22を有する桁材の前記隙間部に挿入する棒状予備賦形物およびその製造方法と比較評価結果に関する。本実施例3での桁材は図3に示すような略直角二等辺三角形断面26を有し、全長1000mm、片端の短辺長さが6mm、もう一方が5mmつまり、1/1000のテーパ比を有している。製造方法はほぼ前述した実施例1のとおりであるため異なる部分のみ説明する。前述の実施例1と同様の一方向織物基材を用いて80mm幅の一方向織物基材を1000m準備した後、はさみを使ってテーパ比が1/50の台形形状にカットし、台形形状一方向織物基材23を得た。次に前記台形形状一方向織物基材23をロール基材として前記引抜試験装置内にセットし、ダイより引抜き、断面変化を有する棒状予備賦形物24を得た。略直角二等辺三角形断面を有するダイは長手方向に割型構造、かつ、テーパ形状を有しており100mm引抜毎に割型を端から1個ずつ取り外すと(ダイの全長は短くなる)0.1mmずつ断面を変化させることができる構造であった。次に、前記桁材の隙間部22に前記棒状予備賦形物を挿入した後、上から炭素繊維積層体4枚のカバー25を被せた隙間部充填桁材を得た。また、前記隙間部充填桁材はカバー25の上から指の腹で隙間部をなぞったが触診でわかるような凹凸を見つけることはできなかった。また、上記と同様に成形した後に前記棒状予備賦形物を挿入した部分の断面観察を行ったが樹脂リッチやボイドなどを観察することはできなかった。   In the second embodiment, the structural elements (for example, I, J, and T type cross sections) of the girder 21 having a gap portion having a cross-sectional change in the longitudinal direction, that is, the girder having the gap portion 22 having a tapered cross section in the longitudinal direction. The present invention relates to a rod-shaped preshaped object to be inserted into the gap portion of the material, a manufacturing method thereof, and a comparative evaluation result. The girders in Example 3 have a substantially right-angled isosceles triangular cross-section 26 as shown in FIG. 3 and have a total length of 1000 mm, a short side length of 6 mm on one end, and 5 mm on the other end, that is, a taper ratio of 1/1000. have. Since the manufacturing method is almost the same as that of the first embodiment, only different portions will be described. After preparing 1000 m of a unidirectional woven fabric substrate having an 80 mm width using the unidirectional woven fabric substrate similar to that in Example 1 described above, it was cut into a trapezoidal shape having a taper ratio of 1/50 using scissors. A directional fabric substrate 23 was obtained. Next, the trapezoidal unidirectional fabric base material 23 was set as a roll base material in the pull-out test apparatus and pulled out from a die to obtain a rod-shaped preshaped object 24 having a cross-sectional change. The die having a substantially right-angled isosceles triangle section has a split structure in the longitudinal direction and a taper shape. When one die is removed from the end for every 100 mm drawing (the total length of the die is shortened). The cross section could be changed by 1 mm. Next, after inserting the rod-shaped preshaped object into the gap portion 22 of the girder, a gap-filling girder covered with a cover 25 of four carbon fiber laminates from above was obtained. In addition, the gap filling girder traced the gap with the belly of the finger from the top of the cover 25, but it was not possible to find the irregularities that can be detected by palpation. Further, after molding in the same manner as described above, the cross-section of the portion where the rod-shaped preshaped object was inserted was observed, but resin-rich and voids could not be observed.

本発明の長手方向に剛性変化のある棒状予備賦形物を用いたプリフォームの一例を示す概略図である。It is the schematic which shows an example of the preform using the rod-shaped preshaped object with a rigidity change in the longitudinal direction of this invention. 本発明の棒状予備賦形物を製造する方法の一例である。It is an example of the method of manufacturing the rod-shaped preshaped object of this invention. 図2Aにおける一方向織物基材の送り方向に直交する方向の加熱賦形手段の断面の一例を示した拡大図である。It is the enlarged view which showed an example of the cross section of the heating shaping means of the direction orthogonal to the feed direction of the unidirectional textile base material in FIG. 2A. 本発明の長手方向に断面変化のある棒状予備賦形物を用いたプリフォームの一例を示す概略図である。It is the schematic which shows an example of the preform using the rod-shaped preshaped object with a cross-sectional change in the longitudinal direction of this invention. 本発明の一方向織物基材のカットパターンの一例を示す概略図である。It is the schematic which shows an example of the cut pattern of the unidirectional textile base material of this invention. 本発明の一方向織物基材のカットパターンの別の例を示す概略図である。It is the schematic which shows another example of the cut pattern of the unidirectional textile base material of this invention. 本発明の一方向織物基材を3回で折り畳む際の一例を示す断面図である。It is sectional drawing which shows an example at the time of folding the unidirectional textile base material of this invention by 3 times. 本発明のプリフォーム及び成形品の例を示す断面図である。It is sectional drawing which shows the example of the preform of this invention, and a molded article.

符号の説明Explanation of symbols

1:箱形形状のコア材
2:炭素繊維クロス
3:コーナー部
4:隙間
5:屈曲棒状予備賦形物
11:一方向織物基材
12:ロール基材
13:折り畳み工程(または手段)
14:加熱賦形工程(または手段)
15:冷却固定工程(または手段)
16:剛性の低い部分
17:剛性の高い部分
18:棒状予備賦形物
19:楔形形状
21:隙間部を有する桁材
22:隙間部
23:台形形状一方向織物基材
24:断面変化を有する棒状予備賦形物
25:カバー
26:略直角二等辺三角形断面
27:最大切り込み幅
28:最大基材幅
31:広幅長さ
32:狭幅長さ
33:折り畳んだ後の幅
34:金型長さ
35:円筒の断面
36:四角断面
37:中空部
41:基材の両端
42:新端部
43:T形断面プリフォーム
44:I形断面プリフォーム
45:J形断面プリフォーム
46:十字形断面プリフォーム
47:L形断面プリフォーム
48:直方体断面プリフォーム
49:楔形断面棒状予備賦形物
50:C形断面プリフォーム
51:Z形断面プリフォーム
52:星形断面棒状予備賦形物
53:ベースプリフォーム
54:カバープライ
1: box-shaped core material 2: carbon fiber cloth 3: corner portion 4: gap 5: bent rod-shaped preshaped object 11: unidirectional fabric base material 12: roll base material 13: folding step (or means)
14: Heat shaping process (or means)
15: Cooling and fixing step (or means)
16: Low rigidity portion 17: High rigidity portion 18: Rod-shaped preshaped object 19: Wedge shape 21: Girder having a gap portion 22: Gap portion 23: Trapezoidal unidirectional fabric base material 24: Cross section change Rod-shaped preshaped object 25: Cover 26: Cross section of substantially right angle isosceles triangle 27: Maximum cut width 28: Maximum base material width 31: Wide width length 32: Narrow width length 33: Width after folding
34: Mold length 35: Cylindrical cross section 36: Square cross section 37: Hollow section 41: Both ends of base material 42: New end section 43: T-shaped cross section preform 44: I-shaped cross section preform 45: J-shaped cross section preform Reform 46: Cross section preform 47: L section preform 48: Rectangular section preform 49: Wedge section rod preform 50: C section preform 51: Z section preform 52: Star section preform 52 Preshaped object 53: Base preform 54: Cover ply

Claims (11)

プリフォームの空隙部に補強材として充填される棒状予備賦形物であって、該棒状予備賦形物は、強化繊維からなる一方向織物の基材で構成され、該基材の端部が該棒状予備賦形物の内部になるように折り込まれているとともに横糸方向に3回以上折り畳まれた断面形状を有し、さらに該棒状予備賦形物は、長手方向に曲げ剛性が変化していることを特徴とする空隙部充填用棒状予備賦形物。 It is a rod-shaped preshaped object that is filled as a reinforcing material in a void portion of a preform, and the rod-shaped preshaped object is composed of a unidirectional woven fabric substrate made of reinforcing fibers, and the end portion of the substrate is The rod-shaped preshaped object has a cross-sectional shape that is folded so as to be inside the rod-shaped preshaped object and is folded three times or more in the weft direction, and the bending rigidity of the rod-shaped preshaped object changes in the longitudinal direction. A rod-shaped preshaped object for filling voids. 前記棒状予備賦形物が、長手方向に断面変化を有している請求項1に記載の空隙部充填用棒状予備賦形物。 The rod-shaped preshaped object for filling voids according to claim 1, wherein the rod-shaped preshaped object has a cross-sectional change in the longitudinal direction. 前記棒状予備賦形物は、長手方向に曲げ剛性が変化する部分を有している請求項1に記載の空隙部充填用棒状予備賦形物。 The said rod-shaped preshaped object is a rod-shaped preshaped object for void | hole filling of Claim 1 which has a part from which bending rigidity changes to a longitudinal direction. 前記一方向織物基材は粒子状、繊維状、またはフィルム状の樹脂が少なくとも片面に部分的に配置されていることを特徴とする請求項1〜3のいずれかに記載の空隙部充填用棒状予備賦形物。 The said unidirectional textile base material is a bar-shaped rod filling rod according to any one of claims 1 to 3, wherein a particulate, fibrous, or film-like resin is partially disposed on at least one side. Preshaped object. 前記樹脂が熱可塑性樹脂であることを特徴とする請求項1〜4のいずれかに記載の空隙部充填用棒状予備賦形物。 The rod-shaped preshaped object for filling a void according to any one of claims 1 to 4, wherein the resin is a thermoplastic resin. 請求項1〜5のいずれかに記載の空隙部充填用棒状予備賦形物を空隙部に充填したプリフォーム。 The preform which filled the space | gap part with the rod-shaped preshaped object for space | gap filling in any one of Claims 1-5. 断面がI、T、J、L、またはC型の桁材製造用である請求項6に記載のプリフォーム。 The preform according to claim 6, wherein the preform is used for manufacturing I, T, J, L, or C type girders. 請求項6または7のいずれかに記載のプリフォームに樹脂を含浸、硬化した成形品。 A molded article obtained by impregnating and curing a resin in the preform according to claim 6. 一方向織物基材に次の(A)〜(C)の3工程を適用し、所定断面形状を得ることを特徴とする空隙部充填用棒状予備賦形物の製造方法。
(A)一方向織物基材の端部が内側になるように3回以上折り畳む折り畳み工程、
(B)前記折り畳み工程に用いられた基材を熱と圧力により所定断面形状に賦形する加熱、加圧賦形工程、
(C)前記棒状予備賦形物を冷却し形状を固定する冷却形状固定工程。
A method for producing a rod-shaped preshaped object for filling voids, wherein the following three steps (A) to (C) are applied to a unidirectional woven fabric substrate to obtain a predetermined cross-sectional shape.
(A) a folding step of folding three or more times so that the end portion of the unidirectional fabric base material is inside,
(B) Heating and pressurizing step for shaping the base material used in the folding step into a predetermined cross-sectional shape by heat and pressure,
(C) A cooling shape fixing step for cooling the rod-shaped preshaped object and fixing the shape.
前記一方向織物基材として、予め所定のパターンに切断したものを用いる請求項9に記載の空隙部充填用棒状予備賦形物の製造方法。 The manufacturing method of the rod-shaped preshaped object for gap | interval filling of Claim 9 using what was previously cut | disconnected by the predetermined pattern as said unidirectional textile base material. 少なくとも次の(a)〜(c)の3手段を有することを特徴とする空隙部充填用棒状予備賦形物の製造装置。
(a)一方向織物基材の端部が内側になるように3回以上折り畳む折り畳み手段、
(b)前記折り畳み手段に用いられた基材を熱と圧力により所定断面形状に賦形する加熱、加圧賦形手段、
(c)前記棒状予備賦形物を冷却し形状を固定する冷却形状固定手段。
An apparatus for producing a rod-shaped preshaped object for filling a void, comprising at least the following three means (a) to (c).
(A) folding means for folding three or more times so that the end of the unidirectional textile substrate is inside,
(B) heating and pressure shaping means for shaping the base material used for the folding means into a predetermined cross-sectional shape by heat and pressure;
(C) Cooling shape fixing means for cooling the rod-shaped preshaped object and fixing the shape.
JP2006142378A 2005-05-23 2006-05-23 Rod-shaped preform for filling gap, its manufacturing method, and manufacturing device Pending JP2007001299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006142378A JP2007001299A (en) 2005-05-23 2006-05-23 Rod-shaped preform for filling gap, its manufacturing method, and manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005149135 2005-05-23
JP2006142378A JP2007001299A (en) 2005-05-23 2006-05-23 Rod-shaped preform for filling gap, its manufacturing method, and manufacturing device

Publications (1)

Publication Number Publication Date
JP2007001299A true JP2007001299A (en) 2007-01-11

Family

ID=37687304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142378A Pending JP2007001299A (en) 2005-05-23 2006-05-23 Rod-shaped preform for filling gap, its manufacturing method, and manufacturing device

Country Status (1)

Country Link
JP (1) JP2007001299A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046137A1 (en) 2009-10-16 2011-04-21 東レ株式会社 Method and device for manufacturing beam member
WO2014135798A1 (en) * 2013-03-07 2014-09-12 Snecma Fibrous insert intended to fill an empty space in a fibrous preform for the production of a turbomachine part made from composite material
KR20160019040A (en) * 2014-05-27 2016-02-18 더 보잉 컴파니 Folded composite filler
WO2022075265A1 (en) 2020-10-06 2022-04-14 倉敷紡績株式会社 Fiber-reinforced resin pultruded article and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165363A (en) * 1994-12-16 1996-06-25 Mitsubishi Heavy Ind Ltd Gap-filling fibrous structure
JPH09176933A (en) * 1995-12-25 1997-07-08 Toyota Autom Loom Works Ltd Three-dimensional fiber structure
JP2000178855A (en) * 1998-12-15 2000-06-27 Toyota Autom Loom Works Ltd Fiber structure for filling gap
JP2002028944A (en) * 2000-07-17 2002-01-29 Honda Motor Co Ltd Method for molding composite material beam
JP2003082117A (en) * 2001-07-04 2003-03-19 Toray Ind Inc Carbon fiber reinforcement, and preform and composite material prepared therefrom
JP2003136550A (en) * 2001-08-20 2003-05-14 Toray Ind Inc Method for manufacturing carbon fiber base material, method for manufacturing preform, and method for manufacturing composite material
JP2004160927A (en) * 2002-11-15 2004-06-10 Toray Ind Inc Preform substrate, preform, fiber-reinforced plastic molding and molding method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165363A (en) * 1994-12-16 1996-06-25 Mitsubishi Heavy Ind Ltd Gap-filling fibrous structure
JPH09176933A (en) * 1995-12-25 1997-07-08 Toyota Autom Loom Works Ltd Three-dimensional fiber structure
JP2000178855A (en) * 1998-12-15 2000-06-27 Toyota Autom Loom Works Ltd Fiber structure for filling gap
JP2002028944A (en) * 2000-07-17 2002-01-29 Honda Motor Co Ltd Method for molding composite material beam
JP2003082117A (en) * 2001-07-04 2003-03-19 Toray Ind Inc Carbon fiber reinforcement, and preform and composite material prepared therefrom
JP2003136550A (en) * 2001-08-20 2003-05-14 Toray Ind Inc Method for manufacturing carbon fiber base material, method for manufacturing preform, and method for manufacturing composite material
JP2004160927A (en) * 2002-11-15 2004-06-10 Toray Ind Inc Preform substrate, preform, fiber-reinforced plastic molding and molding method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046137A1 (en) 2009-10-16 2011-04-21 東レ株式会社 Method and device for manufacturing beam member
CN102574334A (en) * 2009-10-16 2012-07-11 东丽株式会社 Method and device for manufacturing beam member
US8940119B2 (en) 2009-10-16 2015-01-27 Toray Industries, Inc. Process and apparatus for producing beam member
JP5742223B2 (en) * 2009-10-16 2015-07-01 東レ株式会社 Beam material manufacturing method and manufacturing apparatus
EP2489498A4 (en) * 2009-10-16 2017-01-11 Toray Industries, Inc. Method and device for manufacturing beam member
WO2014135798A1 (en) * 2013-03-07 2014-09-12 Snecma Fibrous insert intended to fill an empty space in a fibrous preform for the production of a turbomachine part made from composite material
KR20160019040A (en) * 2014-05-27 2016-02-18 더 보잉 컴파니 Folded composite filler
JP2016040116A (en) * 2014-05-27 2016-03-24 ザ・ボーイング・カンパニーTheBoeing Company Folded composite filler
US10065366B2 (en) 2014-05-27 2018-09-04 The Boeing Company Folded composite filler
KR102307891B1 (en) * 2014-05-27 2021-10-01 더 보잉 컴파니 Folded composite filler
WO2022075265A1 (en) 2020-10-06 2022-04-14 倉敷紡績株式会社 Fiber-reinforced resin pultruded article and method for producing same

Similar Documents

Publication Publication Date Title
CA2635855C (en) Reinforcing fiber base material for preforms, process for the production of laminates thereof, and so on
US8440276B2 (en) Multidirectionally reinforced shape woven preforms for composite structures
AU2009201820B2 (en) Reinforcing fiber substrate, composite material and method for producing the same
CN103210129B (en) Structural warp knit sheet and laminate thereof
KR101771287B1 (en) Continuous fiber reinforced composite material and molded product thereof
JP2003165851A (en) Fiber-reinforced thermoplastic resin sheet, structural material using the same and method for producing fiber- reinforced thermoplastic resin sheet
JP6138045B2 (en) Method for producing high-weight carbon fiber sheet for RTM method and RTM method
JP2007291582A (en) Three dimensional fiber structure, composite material and method for producing three dimensional fiber structure
JP2004160927A (en) Preform substrate, preform, fiber-reinforced plastic molding and molding method
KR20180066868A (en) Fiber-modified interlayer for a composite structure and method of manufacture
JP2007001299A (en) Rod-shaped preform for filling gap, its manufacturing method, and manufacturing device
JP2005219228A (en) Reinforcing fiber base material manufacturing method, preform manufacturing method and composite material manufacturing method
JP5055728B2 (en) Rod-shaped preshaped object and method for producing the same
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
KR20200019676A (en) Woven 3D fiber reinforced structure and manufacturing method thereof
CN115279565A (en) Reinforcing material comprising twisted carbon threads for manufacturing composite parts, and corresponding method and use
JPH0143620B2 (en)
US20210008816A1 (en) Multiple layer article with interactive reinforcements linear ribbon fiber reinforcement for composite forms
JP2004256961A (en) Method for producing reinforcing fiber substrate and method for producing composite material by using the substrate
CN111566064B (en) Fiber reinforced material with improved fatigue properties
JP2009173026A (en) Method for manufacturing bar-shaped hybrid member
CN104943198A (en) Fiber shaping cloth and manufacturing method thereof
BR112021017379B1 (en) A SEW-IN MULTIAXIAL REINFORCEMENT
BR112020016880B1 (en) A SEW-IN MULTIAXIAL REINFORCEMENT AND A METHOD OF PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828