JP2007000921A - System for producing molten metal for cast product - Google Patents

System for producing molten metal for cast product Download PDF

Info

Publication number
JP2007000921A
JP2007000921A JP2005186858A JP2005186858A JP2007000921A JP 2007000921 A JP2007000921 A JP 2007000921A JP 2005186858 A JP2005186858 A JP 2005186858A JP 2005186858 A JP2005186858 A JP 2005186858A JP 2007000921 A JP2007000921 A JP 2007000921A
Authority
JP
Japan
Prior art keywords
casting
molten metal
raw material
mass
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005186858A
Other languages
Japanese (ja)
Inventor
Masaru Fukuda
勝 福田
Kohei Taniguchi
浩平 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUDA HIROSHI SHOTEN KK
Original Assignee
FUKUDA HIROSHI SHOTEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUDA HIROSHI SHOTEN KK filed Critical FUKUDA HIROSHI SHOTEN KK
Priority to JP2005186858A priority Critical patent/JP2007000921A/en
Publication of JP2007000921A publication Critical patent/JP2007000921A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the productivity and the energy efficiency in a producing process of molten metal for casting. <P>SOLUTION: Total blending ratio to raw material A of pig iron for casting having near the level of the cast product C of C content and Si content and large bulk density, and casting scrap, is made to be ≥80 mass%, desirably ≥90 mass%. In this raw material A, the total of steel scrap and one or two kinds in carburizer and siliconizer is blended with <20 mass%, desirably <10 mass% blending ratio, and the blending of the raw material A into a high frequency induction furnace 1 is performed so as to obtain the molten metal B for casting, having target compositions and thus, the divided charge of the raw material A and component adjustment after melting down are unnecessary, and the productivity and the energy efficiency can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生産性とエネルギ効率に優れた鋳物用溶湯の製造システムに関する。   The present invention relates to a molten metal manufacturing system for casting that is excellent in productivity and energy efficiency.

鋳物製品は、原料をキュポラや誘導加熱式の誘導炉等の溶解炉で溶解し、溶解された鋳物用溶湯を砂型等の鋳型で鋳造することにより製造されている。鋳物用溶湯の原料には、高炉から得られる鋳物用銑鉄、鋳物屑、鋼屑等が用いられており、これらの原料に、低炭素量に調整するための鋼屑、加炭材としての黒鉛、加珪材としてのフェロシリコン等を配合して、鋳物用溶湯の成分組成が調整されている。   Cast products are manufactured by melting raw materials in a melting furnace such as a cupola or induction heating type induction furnace, and casting the molten molten metal for casting with a mold such as a sand mold. Cast iron for castings, pig iron, casting scraps, steel scraps, etc. obtained from a blast furnace are used. Steel scraps for adjusting the carbon content to these raw materials, graphite as a carburizing material The component composition of the molten metal for casting is adjusted by blending ferrosilicon or the like as a silica material.

近年、種々の鋼製品から発生する鋼屑は、粗鋼の原料としてのみでなく、鋳物用溶湯の原料としても多く使用されている。現状における鋳物用溶湯の原料への鋼屑の配合率は45質量%程度であり、鋼屑が最も配合率の多い主原料となっている。残りは、鋳物用銑鉄の配合率が15質量%程度、鋳物屑の配合率が40質量%程度である。   In recent years, steel scrap generated from various steel products has been used not only as a raw material for crude steel but also as a raw material for molten metal for castings. The mixing ratio of steel scrap to the raw material for molten metal for casting is about 45% by mass, and steel scrap is the main raw material with the highest mixing ratio. The remainder is about 15% by mass of the cast iron pig iron and about 40% by mass of the casting scrap.

上述したような鋼屑の配合率が多い原料から鋳物用溶湯を製造する従来のシステムでは、以下の問題がある。
・ ほとんどの鋼屑はC含有量が1質量%以下、最も多く発生する薄鋼板の鋼屑の大半はC含有量が0.1質量%以下と、C含有量が鋳物用溶湯に必要なレベルよりも大幅に少なく、Si含有量も少ないので、溶湯の成分調整に多量の加炭材や加珪材を必要とし、成分調整に時間と手間がかかる。
・ 鋼屑は嵩比重が小さいので、溶解炉に原料を装入したときの充填密度が低くなり、原料を数回から十数回に分けて分割装入する必要がある。
・ 近年の鋼屑は添加元素が多いものや、めっき等の表面処理を施したものが多いので、溶湯に不適切な元素が混入する。
The conventional system for producing a molten metal for casting from a raw material having a high steel scrap content as described above has the following problems.
・ Most steel scraps have a C content of 1% by mass or less, and most steel scraps of the thin steel plates that occur most often have a C content of 0.1% by mass or less. The amount of Si and the amount of Si are also small, so that a large amount of carburized material or silica material is required for adjusting the components of the molten metal, and it takes time and effort to adjust the components.
・ Since steel scrap has a small bulk specific gravity, the packing density when the raw material is charged into the melting furnace is lowered, and it is necessary to divide the raw material into several times to dozens of times.
・ Since many steel scraps in recent years have many additive elements and have been subjected to surface treatment such as plating, inappropriate elements are mixed into the molten metal.

また、バッチ式の溶解炉である誘導炉を使用する場合は、さらに以下の問題もある。
・ 上述した成分調整や原料の分割装入のために、1チャージの溶解時間が1時間以上と長くなる。
・ この溶解時間の延長に伴う生産性の低下を補うために大型の溶解炉を使用すると、1チャージを何回にも分けて分割出湯するのに時間がかかるので、その間の温度降下を考慮して溶湯温度を高くする必要があり、エネルギ効率が低下する。
・ 上述した分割装入や分割出湯の際には炉蓋を開けて操業する必要があり、エネルギロスが多くなって、さらにエネルギ効率が低下する。
Moreover, when using an induction furnace which is a batch type melting furnace, there are the following problems.
-Due to the above-described component adjustment and divided charging of raw materials, the melting time of one charge becomes as long as 1 hour or more.
・ If a large melting furnace is used to compensate for the decrease in productivity due to the extension of the melting time, it takes time to divide one charge into several times and take out divided hot water. Therefore, it is necessary to increase the molten metal temperature, and energy efficiency is lowered.
-It is necessary to open the furnace lid for operation in the above-described divided charging and divided hot water, so that energy loss increases and energy efficiency further decreases.

以上のように、従来の鋳物用溶湯の製造システムは、元来鋳物製品とC含有量のレベルが大幅に異なり、かつ、嵩比重が小さくて、成分元素も多様である鋼屑を大量に配合することに起因して、生産性とエネルギ効率が低くなっており、高生産性と省エネルギが追求される時代にあって、鋳物業界の死活に関わる大きな問題となっている。   As described above, conventional molten metal production systems for castings contain a large amount of steel scraps that have significantly different levels of C content from the original castings, have a low bulk specific gravity, and a variety of component elements. As a result, productivity and energy efficiency are low, and in the era of pursuing high productivity and energy saving, it is a big problem related to the life and death of the casting industry.

そこで、本発明の課題は、鋳物用溶湯の製造工程における生産性とエネルギ効率を高めることである。   Then, the subject of this invention is improving productivity and energy efficiency in the manufacturing process of the molten metal for castings.

上記の課題を解決するために、本発明は、原料を溶解炉で溶解して、鋳物用溶湯を製造する鋳物用溶湯の製造システムにおいて、前記原料への鋳物用銑鉄と鋳物屑との合計配合率を80質量%以上とし、この原料に鋼屑、加炭材および加珪材のうちの1種以上を合計20質量%未満の配合率で配合して、前記鋳物用溶湯の成分組成を調整するシステムを採用した。   In order to solve the above-mentioned problems, the present invention provides a total system for blending casting pig iron and casting scraps into the raw material in a casting molten metal manufacturing system in which the raw material is melted in a melting furnace to produce a molten metal for casting. The rate is set to 80% by mass or more, and one or more of steel scraps, carburized materials, and siliconized materials are added to the raw material at a total mixing rate of less than 20% by mass to adjust the component composition of the molten metal for casting. Adopted the system.

すなわち、C含有量やSi含有量が最終製品である鋳物のレベルに近く、かつ、嵩比重が大きい鋳物用銑鉄と鋳物屑との合計配合率を80質量%以上、好ましくは90質量%以上とし、この原料に鋼屑、加炭材および加珪材のうちの1種以上を合計20質量%未満、好ましくは10質量%未満の配合率で配合し、目標成分の鋳物用溶湯が得られるように溶解炉への装入原料の配合を行なうことにより、原料の分割装入と溶け落ち後の成分調整を不要にし、生産性とエネルギ効率を高めることができるようにした。また、鋼屑の配合率を著しく低減して、溶湯への不適切な元素の混入を抑制することもできる。   That is, the total blending ratio of cast iron and foundry scrap with a C content and Si content close to the level of the final product casting and a large bulk specific gravity is 80% by mass or more, preferably 90% by mass or more. In this raw material, one or more of steel scraps, carburized materials, and silica materials are blended at a blending rate of less than 20% by mass, preferably less than 10% by mass, so that a molten metal for casting as a target component can be obtained. In addition, by blending the raw materials charged into the melting furnace, it is possible to eliminate the need for divided charging of raw materials and adjustment of the components after melting, thereby improving productivity and energy efficiency. Moreover, the mixing rate of steel scraps can be remarkably reduced, and mixing of inappropriate elements into the molten metal can be suppressed.

前記鋳物用銑鉄と鋳物屑との合計配合率を80質量%以上としたのは、溶湯の成分調整用の鋼屑、加炭材、加珪材の合計配合率は20質量%未満で十分であるからであり、鋳物用銑鉄と鋳物屑との合計配合率は90質量%以上とするのが好ましく、溶湯の成分調整が不要な場合は、鋳物用銑鉄と鋳物屑との合計配合率を100質量%とすることもできる。   The total blending ratio of the pig iron for casting and the casting scrap was set to 80% by mass or more because the total blending ratio of the steel scrap for adjusting the components of the molten metal, the carburized material, and the siliconized material should be less than 20% by mass. This is because the total blending ratio of the pig iron for casting and the casting scrap is preferably 90% by mass or more. When adjustment of the components of the molten metal is not necessary, the total blending ratio of the casting pig iron and the casting scrap is 100. It can also be made into the mass%.

前記鋳物用銑鉄と鋳物屑の配合比を5対5以上、好ましくは7対3以上と鋳物用銑鉄の配合量を多くすることにより、成分組成が明らかな鋳物用銑鉄の配合量を多くして、溶湯の成分調整をより容易にすることができる。   By increasing the blending ratio of the pig iron for casting and casting scrap 5 to 5 or more, preferably 7 to 3 or more and the casting iron for casting, the compounding amount of the casting pig iron with a clear composition is increased. In addition, it is possible to easily adjust the components of the molten metal.

前記鋳物用銑鉄の共晶飽和度を0.9〜1.1とすることにより、溶湯の溶解温度を低くして、エネルギ効率をさらに高めることができる。よく知られているように、Fe−C系平衡状態図における共晶点は、炭素当量(CE=C+Si/3.2)が4.23質量%のときであり、溶解温度が最も低くなる共晶点との近さを表すパラメータである共晶飽和度は次式で表される。
共晶飽和度= C/(4.23−Si/3.2) (1)
ここに、C、Siはそれぞれの元素の質量%であり、共晶飽和度=1.0のときに共晶点となる。
By setting the eutectic saturation of the pig iron for casting to 0.9 to 1.1, the melting temperature of the molten metal can be lowered and the energy efficiency can be further increased. As is well known, the eutectic point in the Fe-C system equilibrium diagram is when the carbon equivalent (CE = C + Si / 3.2) is 4.23 mass%, and the eutectic point at which the melting temperature is the lowest. The eutectic saturation, which is a parameter representing the proximity to the crystal point, is expressed by the following equation.
Eutectic saturation = C / (4.23-Si / 3.2) (1)
Here, C and Si are mass% of each element, and become eutectic points when the eutectic saturation is 1.0.

前記鋳物用銑鉄の嵩比重を3.5以上とすることにより、原料を溶解炉に装入したときの充填密度を十分に高くして、原料の分割装入を不要とすることができる。   By setting the bulk specific gravity of the pig iron for casting to 3.5 or more, the packing density when the raw material is charged into the melting furnace can be sufficiently increased, and the divided charging of the raw material can be made unnecessary.

前記溶解炉を誘導加熱式の誘導炉とすることにより、1チャージの溶解時間を短縮し、かつ、炉蓋を開ける回数と時間も少なくして、生産性とエネルギ効率を高める効果をより大きく発揮することができる。   By making the melting furnace an induction heating type induction furnace, the melting time of one charge is shortened, and the number and times of opening the furnace lid are reduced, so that the effect of increasing productivity and energy efficiency is exhibited more greatly. can do.

前記誘導炉の電力密度を1.0kW/kg以上、好ましくは1.5kW/kg以上とすることにより、1チャージの溶解時間をさらに短縮することができる。なお、従来の誘導炉の電力密度は1.0kW/kg未満で、その半数以上は0.6kW/kg程度である。これは、従来の原料は嵩比重の低い鋼屑が多く配合されているので、炉内での原料の充填密度が十分に得られないからである。   By setting the power density of the induction furnace to 1.0 kW / kg or more, preferably 1.5 kW / kg or more, the melting time for one charge can be further shortened. In addition, the power density of the conventional induction furnace is less than 1.0 kW / kg, and more than half is about 0.6 kW / kg. This is because the conventional raw material contains a large amount of steel scrap having a low bulk specific gravity, so that a sufficient packing density of the raw material in the furnace cannot be obtained.

前記電力密度αは、溶解量をMkg、投入電力をWkWとして次式で定義される。
α = W/M (2)
溶湯温度を1450℃として溶湯の持つエネルギを312kcal/kg(=0.363kWh/kg)とすると、溶解時間t(分)は、次式で表される。
t =(0.363×60)/(α・η) (3)
ここに、ηは電力効率であり、(3)式の溶解時間tをグラフで表すと、図2のような電力密度αをパラメータとする双曲線となる。図2のグラフから分かるように、例えば、電力効率ηを60%とすると、電力密度αが従来レベルの0.6kW/kgのときの溶解時間tは、計算上60.5分となり、電力密度αを1.0kW/kgに上げると溶解時間tは36.3分に短縮され、さらに電力密度αを上げると、1.5kW/kgでは24.2分、3.0kW/kgでは12.1分と溶解時間tが著しく短縮される。すなわち、従来は1チャージの溶解に60分以上を要し、注湯待ち時間が長いバッチシステムとなっているのに対して、本発明に係る鋳物用溶湯の製造システムでは、溶解時間を著しく短縮し、注湯を行なっている間に次ロットの溶解を完了させて、注湯待ち時間をなくすことができ、その結果、ワンチャージ・ワンショットの実質的な連続溶解、注湯システムとすることもできる。
The power density α is defined by the following equation, where the dissolution amount is Mkg and the input power is WkW.
α = W / M (2)
When the molten metal temperature is 1450 ° C. and the energy of the molten metal is 312 kcal / kg (= 0.363 kWh / kg), the melting time t (minute) is expressed by the following equation.
t = (0.363 × 60) / (α · η) (3)
Here, η is power efficiency. If the dissolution time t in the equation (3) is represented by a graph, it becomes a hyperbola with the power density α as a parameter as shown in FIG. As can be seen from the graph of FIG. 2, for example, when the power efficiency η is 60%, the dissolution time t when the power density α is 0.6 kW / kg, which is the conventional level, is calculated to be 60.5 minutes, When α is increased to 1.0 kW / kg, the dissolution time t is shortened to 36.3 minutes, and when the power density α is further increased, it is 24.2 minutes at 1.5 kW / kg and 12.1 at 3.0 kW / kg. Minutes and dissolution time t are significantly reduced. In other words, in the past, it took 60 minutes or more to melt one charge and the batch system had a long waiting time for pouring, whereas the melting system for castings according to the present invention significantly shortened the melting time. In addition, the melting of the next lot can be completed while pouring, so the waiting time for pouring can be eliminated, resulting in a one-charge, one-shot, substantially continuous melting and pouring system. You can also.

前記誘導炉の炉内高さを誘導加熱コイルの有効高さの2倍以内とすることにより、誘導炉の下部外周に配設される誘導加熱コイルで炉内下部の原料が溶解している間に、その上部にある原料が予熱され、熱エネルギを原料の溶解に効率よく活用することができる。   By setting the inner height of the induction furnace within twice the effective height of the induction heating coil, while the raw material in the lower part of the furnace is melted by the induction heating coil disposed on the lower outer periphery of the induction furnace In addition, the raw material in the upper part is preheated, and the thermal energy can be efficiently utilized for melting the raw material.

本発明の鋳物用溶湯の製造システムは、C含有量やSi含有量が最終製品である鋳物のレベルに近く、かつ、嵩比重が高い鋳物用銑鉄と鋳物屑との合計配合率を80質量%以上、好ましくは90質量%以上とし、この原料に鋼屑、加炭材および加珪材のうちの1種以上を合計20質量%未満、好ましくは10質量%未満の配合率で配合して、鋳物用溶湯の成分組成を調整するようにしたので、溶湯の成分調整が容易になり、溶解炉への原料の分割装入の回数を減らすことができ、生産性とエネルギ効率を高めることができる。また、C含有量の少ない鋼屑の配合率を著しく低減することにより、吸熱反応で鉄中に溶解する加炭材の使用量を抑えることができるので、エネルギ効率の面でさらに有利になり、かつ、高張力鋼や表面処理鋼等の特性を高めるために添加されているTi、Al、Cr、Cu、Mn、Zn、P、S等、鋳鉄製品において一般的に好ましくないとされている元素の溶湯への混入を抑制することもできる。   The production system for molten metal for casting according to the present invention has a C content and Si content close to the level of the casting as the final product, and the total blending ratio of pig iron for casting and casting waste with a high bulk specific gravity is 80% by mass. Or more, preferably 90% by mass or more, and one or more of steel scraps, carburized materials and silica materials are added to this raw material at a total content of less than 20% by mass, preferably less than 10% by mass, Since the component composition of the molten metal for castings is adjusted, it is easy to adjust the component of the molten metal, the number of times of dividing and charging the raw material into the melting furnace can be reduced, and the productivity and energy efficiency can be improved. . In addition, by significantly reducing the mixing ratio of steel scrap with a low C content, the amount of carburized material that dissolves in iron by an endothermic reaction can be suppressed, which is further advantageous in terms of energy efficiency, And Ti, Al, Cr, Cu, Mn, Zn, P, S, etc., which are added to enhance the properties of high-strength steel and surface-treated steel, etc., elements that are generally considered undesirable in cast iron products It is also possible to suppress contamination of the molten metal.

前記鋳物用銑鉄と鋳物屑の配合比を5対5以上、好ましくは7対3以上と鋳物用銑鉄の配合量を多くすることにより、成分組成が明らかな鋳物用銑鉄の配合量を多くして、溶湯の成分調整をより容易にすることができ、溶湯の性状と成分の安定化、方案歩留りの向上、および不良率の低減につながる。さらに、鋳物用銑鉄の配合量を多くすることにより初期の原料装入段階で成分調整が正確にできるため、溶解中の成分調整が一切不要となる。   By increasing the blending ratio of the pig iron for casting and casting scrap 5 to 5 or more, preferably 7 to 3 or more and the casting iron for casting, the compounding amount of the casting pig iron with a clear composition is increased. Therefore, it is possible to adjust the composition of the molten metal more easily, leading to stabilization of the properties and components of the molten metal, improvement of the method yield, and reduction of the defective rate. Furthermore, since the component adjustment can be accurately performed at the initial raw material charging stage by increasing the blending amount of pig iron for casting, no component adjustment during melting is required.

前記鋳物用銑鉄の共晶飽和度を0.9〜1.1とすることにより、溶湯の溶解温度を低くして、エネルギ効率をさらに高めることができる。   By setting the eutectic saturation of the pig iron for casting to 0.9 to 1.1, the melting temperature of the molten metal can be lowered and the energy efficiency can be further increased.

前記鋳物用銑鉄の嵩比重を3.5以上とすることにより、原料を溶解炉に装入したときの充填密度を十分に高くして、原料の分割装入を不要とすることができる。   By setting the bulk specific gravity of the pig iron for casting to 3.5 or more, the packing density when the raw material is charged into the melting furnace can be sufficiently increased, and the divided charging of the raw material can be made unnecessary.

前記溶解炉を誘導加熱式の誘導炉とすることにより、1チャージの溶解時間を短縮し、かつ、炉蓋を開ける回数と時間も少なくして、生産性とエネルギ効率を高める効果をより大きく発揮することができる。また、チャージサイクルタイムの短縮によって、炉を小型化しても十分な生産量を確保でき、多品種小ロット生産に対応可能となるとともに、設備コストを低減することができ、工場建屋の建設コストの低減や土地の利用効率向上も可能になる。さらに、作業環境を良好に保つこともできる。   By making the melting furnace an induction heating type induction furnace, the melting time of one charge is shortened, and the number and times of opening the furnace lid are reduced, so that the effect of increasing productivity and energy efficiency is exhibited more greatly. can do. In addition, by shortening the charge cycle time, it is possible to secure a sufficient production volume even if the furnace is downsized, it is possible to cope with the production of various types of small lots, and the equipment cost can be reduced, so that the construction cost of the factory building can be reduced. Reduction and improvement in land use efficiency are also possible. Furthermore, the working environment can be kept good.

前記誘導炉の電力密度を1.0kW/kg以上、好ましくは1.5kW/kg以上とすることにより、1チャージの溶解時間をさらに短縮することができる。   By setting the power density of the induction furnace to 1.0 kW / kg or more, preferably 1.5 kW / kg or more, the melting time for one charge can be further shortened.

前記誘導炉の炉内高さを誘導加熱コイルの有効高さの2倍以内とすることにより、誘導炉の下部外周に配設される誘導加熱コイルで炉内下部の原料が溶解している間に、その上部にある原料が予熱され、熱エネルギを原料の溶解に効率よく活用することができる。   By setting the inner height of the induction furnace within twice the effective height of the induction heating coil, while the raw material in the lower part of the furnace is melted by the induction heating coil disposed on the lower outer periphery of the induction furnace In addition, the raw material in the upper part is preheated, and the thermal energy can be efficiently utilized for melting the raw material.

以下、図面に基づき、この発明の実施形態を説明する。図1は、本発明に係る鋳物用溶湯の製造システムを採用した鋳物製品の製造設備の概略を示す。この鋳物製品の製造設備は、装入される原料Aを溶解する溶解炉としての誘導加熱式の高周波誘導炉1と、溶解された鋳物用溶湯Bから鋳物製品を鋳造する鋳型2とを備えている。高周波誘導炉1は、頂部に原料装入用の蓋1aが設けられ、下部外周に誘導加熱コイル1bが配設されており、炉内高さHは誘導加熱コイル1bの有効高さhの2倍以内とされている。高周波誘導炉1で溶解された溶湯Bは取鍋3に出湯され、取鍋3から鋳型2の注湯口2aに注湯されて、凝固後に鋳物製品Cが鋳型2から取り出される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of a casting product manufacturing facility that employs a molten metal manufacturing system for castings according to the present invention. This casting product manufacturing equipment includes an induction heating type high frequency induction furnace 1 as a melting furnace for melting the raw material A to be charged, and a mold 2 for casting the casting product from the molten casting B. Yes. The high frequency induction furnace 1 is provided with a raw material charging lid 1a at the top and an induction heating coil 1b on the outer periphery of the lower part. The furnace height H is 2 which is the effective height h of the induction heating coil 1b. It is supposed to be within double. The molten metal B melted in the high frequency induction furnace 1 is poured out into the ladle 3 and poured from the ladle 3 into the pouring port 2a of the mold 2, and the cast product C is taken out from the mold 2 after solidification.

Figure 2007000921
Figure 2007000921

図1に示したような高周波誘導炉(炉容量500kg、電力375kW、周波数500Hz)を用いて、ダクタイル鋳鉄の鋳物用溶湯を製造した。表1に示すように、実施例1として、平均嵩比重が3.55で共晶飽和度を0.9〜1.1の範囲に調整した鋳物用銑鉄を97.5質量%配合した原料を用いた鋳物用溶湯の製造と、比較例として、高炉からそのまま得られた鋳物用銑鉄の配合率を15.0質量%、鋳物屑の配合率を40.0質量%、鋼屑の配合率を43.0質量%とした従来用いられている平均的な配合率の原料を用いた鋳物用溶湯の製造とを行なった。実施例1の原料の残部は、2.4質量%が成分調整用の鋼屑、0.1質量%が黒鉛とフェロシリコンであり、原料の平均嵩比重は3.55となっている。また、比較例の原料の残部は、2.0質量%が成分調整用の黒鉛とフェロシリコンであり、原料の平均嵩比重は0.98となっている。   Using a high frequency induction furnace (furnace capacity 500 kg, electric power 375 kW, frequency 500 Hz) as shown in FIG. 1, a ductile cast iron melt was manufactured. As shown in Table 1, as Example 1, a raw material containing 97.5% by mass of pig iron for casting with an average bulk specific gravity of 3.55 and an eutectic saturation adjusted to a range of 0.9 to 1.1 was used. Production of molten metal for castings used, and as a comparative example, the mixing ratio of pig iron for castings obtained as it is from a blast furnace is 15.0 mass%, the mixing ratio of casting scraps is 40.0 mass%, and the mixing ratio of steel scraps is Production of a molten metal for casting using a raw material having an average blending ratio that was conventionally used and 43.0% by mass was performed. The balance of the raw material of Example 1 is 2.4% by mass of steel scrap for component adjustment, 0.1% by mass of graphite and ferrosilicon, and the average bulk specific gravity of the raw material is 3.55. Further, the balance of the raw material of the comparative example is 2.0% by mass of component adjusting graphite and ferrosilicon, and the average bulk specific gravity of the raw material is 0.98.

Figure 2007000921
Figure 2007000921

表2は、上記実施例1と比較例の原料に用いた各鋳物用銑鉄の化学成分と、鋳物用溶湯の目標化学成分とを対比して示す。実施例1の原料に用いた鋳物用銑鉄は、C含有量が鋳物用溶湯の目標値に近く、共晶飽和度は1.027となっている。また、比較例の原料に用いた高炉からそのまま得られた鋳物用銑鉄は、C含有量が鋳物用溶湯の目標値よりもかなり高く、共晶飽和度は1.186となっている。   Table 2 shows a comparison between the chemical components of the cast iron for castings used as the raw materials of Example 1 and the comparative example and the target chemical components of the molten metal for castings. The pig iron for casting used as the raw material of Example 1 has a C content close to the target value of the molten metal for casting, and the eutectic saturation is 1.027. Further, the pig iron for casting obtained as it is from the blast furnace used as the raw material of the comparative example has a C content much higher than the target value of the molten metal for casting, and the eutectic saturation is 1.186.

Figure 2007000921
Figure 2007000921

表3は、上記実施例1と比較例の鋳物用溶湯の製造を5チャージずつ行なった結果を示す。原料投入量はいずれも517kg/チャージとし、表3に示した実施例1と比較例の各実績値は5チャージの平均値である。実施例1と比較例の各実績値を比較すると、まず、嵩比重の小さい鋼屑の配合率が多い比較例では、原料が5回に分けて分割装入されているのに対し、嵩比重が高く、かつ化学成分が明らかな鋳物用銑鉄の配合率を97.5質量%とした実施例1では、原料装入を最初の1回だけとし、中間の原料装入を行なっていない。また、実施例1も比較例も同一の高周波誘導炉を使用しており、見掛けの電力密度はいずれも0.73kW/kgであるが、実際の電力密度(操業中の変動を考慮した平均電力密度)は、実施例1では0.70kW/kgであったのに対し、比較例では0.51kW/kgであった。これは、比較例では、原料の嵩比重が低いことと、成分調整時に電気出力をカットしていることのためである。その結果、溶解までの時間は実施例1と比較例とでそれほど差はなかったが、生産性を左右する溶湯の出湯開始までの時間は、比較例では75.8分であったのに対し、実施例1では54.9分と30%近く短縮され、消費電力は、比較例で712.1kWh/tonであったのに対し、実施例1では642.0kWh/tonと約10%低減されている。これらの製造実績の比較から、本発明に係る鋳物用溶湯の製造システムでは生産性とエネルギ効率を著しく向上できることが分かる。出湯開始までの時間と消費電力に大きな差が生じたのは、比較例において最後の装入原料が溶け落ちた後、温度を保持しながら成分調整を行なうのに時間がかかったためである。   Table 3 shows the results of manufacturing the molten castings of Example 1 and the comparative example for each of 5 charges. The raw material input amounts are all 517 kg / charge, and the actual values of Example 1 and Comparative Example shown in Table 3 are average values of 5 charges. When comparing the actual values of Example 1 and the comparative example, first, in the comparative example where the mixing ratio of steel scrap having a small bulk specific gravity is large, the raw material is divided and charged in five portions, whereas the bulk specific gravity is In Example 1 in which the blending ratio of the cast iron for casting having a high chemical composition and a clear chemical composition was 97.5% by mass, the raw material was charged only once and no intermediate raw material was charged. In addition, the same high frequency induction furnace is used in both Example 1 and the comparative example, and the apparent power density is 0.73 kW / kg, but the actual power density (average power considering fluctuation during operation) The density was 0.70 kW / kg in Example 1, whereas it was 0.51 kW / kg in the comparative example. This is because in the comparative example, the bulk specific gravity of the raw material is low, and the electrical output is cut during component adjustment. As a result, although the time until dissolution was not so different between Example 1 and the comparative example, the time until the start of pouring of the molten metal affecting productivity was 75.8 minutes in the comparative example. In Example 1, it was shortened by nearly 30% to 54.9 minutes, and the power consumption was 712.1 kWh / ton in the comparative example, whereas in Example 1, it was reduced by about 10% to 642.0 kWh / ton. ing. From the comparison of these production results, it can be seen that productivity and energy efficiency can be remarkably improved in the cast metal manufacturing system according to the present invention. The reason for the large difference between the time until the start of pouring and the power consumption was that it took time to adjust the components while maintaining the temperature after the last charged raw material melted in the comparative example.

表1乃至表3には、実施例2として、炉容量10トンの実生産用高周波誘導炉を用い、1チャージ当りの溶解量を約2トンにして電力密度を通常の約2倍の1.22kW/kgに上げた溶解を1ヶ月間行なったときの平均実績データも併せて示す。実施例2の原料配合率は、鋳物用銑鉄70.0質量%、鋳物屑25.0質量%、鋼屑4.4質量%、黒鉛とフェロシリコン0.6質量%であり、平均嵩比重は3.00である。この場合も、実施例1の場合と同様に、中間の原料装入を行なっていない。この実施例2では、1チャージの出湯開始までの時間が29.1分と、比較例に比べて約60%、実施例1と比較しても約46%短縮され、消費電力も603.8kWh/tonに低減されており、エネルギ効率も向上していることが分かる。これらは、比較例および実施例1に対して電力密度を上げたことによる効果である。   Tables 1 to 3 show, as Example 2, a high-frequency induction furnace for actual production having a furnace capacity of 10 tons, a melting amount per charge of about 2 tons and a power density of about 1.times. The average performance data when melting up to 22 kW / kg for one month is also shown. The raw material compounding ratio of Example 2 is 70.0% by mass of cast iron for casting, 25.0% by mass of casting scrap, 4.4% by mass of steel scrap, 0.6% by mass of graphite and ferrosilicon, and the average bulk specific gravity is 3.00. Also in this case, as in the case of Example 1, the intermediate raw material charging is not performed. In this Example 2, the time until the start of one charge of hot water is 29.1 minutes, which is about 60% shorter than the comparative example, about 46% shorter than the first example, and the power consumption is 603.8 kWh. It can be seen that the energy efficiency is also improved. These are the effects of increasing the power density with respect to the comparative example and Example 1.

Figure 2007000921
Figure 2007000921

表4は、表3に示した実施例1および実施例2の実績データを基にして、それぞれの1チャージ当りの溶解量を少なくし、電力密度を3.0kW/kgに上げた場合の溶解時間を推定した結果を示す。この推定結果から、電力密度を3.0kW/kgまで上げることにより、出湯開始までの時間が注湯時間にほぼ等しい10分程度になることが分かる。したがって、前述したワンチャージ・ワンショットの溶解システムが可能であることが推測される。また、そのような短時間サイクルで操業することにより、電力使用量が1日のうちで平準化され、需要電力(デマンド)を下げることができるものと考えられる。通常、需要電力の30分毎の平均値(平均電力)の月間最大値(最大需要電力)が電力基本料金の算定基準として採用されているので、試算結果では、このようなワンチャージ・ワンショットの溶解システムで操業を行なうことにより、電力基本料金が20〜30%も下がることが期待される。   Table 4 is based on the actual data of Example 1 and Example 2 shown in Table 3 and the dissolution amount when the power density is increased to 3.0 kW / kg by decreasing the dissolution amount per charge. The result of estimating the time is shown. From this estimation result, it can be seen that by increasing the power density to 3.0 kW / kg, the time until the start of pouring becomes approximately 10 minutes which is substantially equal to the pouring time. Therefore, it is speculated that the above-described one-charge one-shot melting system is possible. Further, by operating in such a short cycle, it is considered that the amount of power used can be leveled in one day, and the demand power (demand) can be reduced. Usually, the monthly maximum value (maximum demand power) of the average value of demand power every 30 minutes (average power) is adopted as the standard for calculating the basic electricity charge. It is expected that the basic electricity charge will be reduced by 20-30% by operating with the melting system.

上述した本発明に係る鋳物用溶湯の製造システムは、結果としてCOの削減、すなわち地球温暖化防止にも役立つ。それは、鋳物用溶湯の製造における鋼屑の配合率を減らし、その分を鋼のリサイクルに回すことにより、鋼の製造において銑鉄を脱炭する量、すなわち、COの排出量を低減することができ、一方、鋳鉄の製造では、銑鉄に含まれる炭素をCOとして排出することなく利用できるからである。本発明者の一人が試算したところによれば、わが国の鉄の業態系全体で年間100万トンのCOの削減が可能となる。 As a result, the system for producing a molten metal for casting according to the present invention described above is useful for reducing CO 2 , that is, preventing global warming. It is possible to reduce the amount of decarburized pig iron in steel production, that is, the amount of CO 2 emission, by reducing the mixing ratio of steel scrap in the production of molten metal for castings, and turning that amount to steel recycling. On the other hand, in the production of cast iron, carbon contained in pig iron can be used without being discharged as CO 2 . According to a calculation by one of the inventors, it is possible to reduce 1 million tons of CO 2 annually in the entire iron industry in Japan.

上述した実施形態では、溶解炉に高周波誘導炉を用い、ダクタイル鋳鉄の鋳物用溶湯を製造したが、本発明に係る鋳物用溶湯の製造システムは、溶解炉に低周波誘導炉やキュポラを用いることもでき、ねずみ鋳鉄等の他の種類の鋳物用溶湯を製造することもできる。   In the above-described embodiment, a high-frequency induction furnace is used as the melting furnace, and the molten metal for casting of ductile cast iron is manufactured. However, the casting molten metal manufacturing system according to the present invention uses a low-frequency induction furnace or a cupola as the melting furnace. It is also possible to produce other types of castings such as gray cast iron.

また、上述した実施形態では、鋳物用溶湯を取鍋に出湯して、取鍋から鋳型に注湯するようにしたが、高周波誘導炉等の誘導炉を小型化してクレーンや軌道で移動可能とし、誘導炉から直接鋳型に注湯するようにすることもできる。   Further, in the embodiment described above, the molten metal for casting is poured into the ladle and poured from the ladle into the mold, but the induction furnace such as a high frequency induction furnace is miniaturized so that it can be moved by a crane or a track. It is also possible to pour the molten metal directly from the induction furnace.

本発明に係る鋳物用溶湯の製造システムを採用した鋳物製品の製造設備を示す概略図The schematic which shows the manufacturing equipment of the casting product which employ | adopted the manufacturing system of the molten metal for castings concerning this invention 誘導炉における電力密度、電力効率と溶解時間の関係を示すグラフGraph showing the relationship between power density, power efficiency and melting time in induction furnaces

符号の説明Explanation of symbols

A 原料
B 溶湯
C 鋳物製品
1 高周波誘導炉
1a 蓋
1b 誘導加熱コイル
2 鋳型
2a 注湯口
3 取鍋
A Raw material B Molten metal C Casting product 1 High frequency induction furnace 1a Lid 1b Induction heating coil 2 Mold 2a Pouring port 3 Ladle

Claims (7)

原料を溶解炉で溶解して、鋳物用溶湯を製造する鋳物用溶湯の製造システムにおいて、前記原料への鋳物用銑鉄と鋳物屑との合計配合率を80質量%以上とし、この原料に鋼屑、加炭材および加珪材のうちの1種以上を合計20質量%未満の配合率で配合して、前記鋳物用溶湯の成分組成を調整するようにしたことを特徴とする鋳物用溶湯の製造システム。   In a molten metal production system for casting, in which a raw material is melted in a melting furnace, the total blending ratio of cast iron and casting scrap to the raw material is set to 80% by mass or more. One of at least one of a carburized material and a siliconized material is blended at a blending ratio of less than 20% by mass to adjust the component composition of the cast metal melt. Manufacturing system. 前記鋳物用銑鉄と鋳物屑の配合比を5対5以上と鋳物用銑鉄の配合量を多くした請求項1に記載の鋳物用溶湯の製造システム。   The manufacturing system of the molten metal for casting according to claim 1, wherein the compounding ratio of the pig iron for casting and the casting scrap is 5 to 5 or more and the compounding amount of the pig iron for casting is increased. 前記鋳物用銑鉄の共晶飽和度を0.9〜1.1とした請求項1または2に記載の鋳物用溶湯の製造システム。   The molten metal manufacturing system for casting according to claim 1 or 2, wherein the eutectic saturation of the pig iron for casting is 0.9 to 1.1. 前記鋳物用銑鉄の嵩比重を3.5以上とした請求項1乃至3のいずれかに記載の鋳物用溶湯の製造システム。   The casting molten metal manufacturing system according to any one of claims 1 to 3, wherein a bulk specific gravity of the pig iron for casting is 3.5 or more. 前記溶解炉を誘導加熱式の誘導炉とした請求項1乃至4のいずれかに記載の鋳物用溶湯の製造システム。   The molten metal manufacturing system for casting according to any one of claims 1 to 4, wherein the melting furnace is an induction heating type induction furnace. 前記誘導炉の電力密度を1.0kW/kg以上とした請求項5に記載の鋳物用溶湯の製造システム。   The casting molten metal manufacturing system according to claim 5, wherein the induction furnace has a power density of 1.0 kW / kg or more. 前記誘導炉の炉内高さを誘導加熱コイルの有効高さの2倍以内とした請求項5または6に記載の鋳物用溶湯の製造システム。   The casting molten metal manufacturing system according to claim 5 or 6, wherein the height of the induction furnace is set to be within twice the effective height of the induction heating coil.
JP2005186858A 2005-06-27 2005-06-27 System for producing molten metal for cast product Pending JP2007000921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186858A JP2007000921A (en) 2005-06-27 2005-06-27 System for producing molten metal for cast product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186858A JP2007000921A (en) 2005-06-27 2005-06-27 System for producing molten metal for cast product

Publications (1)

Publication Number Publication Date
JP2007000921A true JP2007000921A (en) 2007-01-11

Family

ID=37686981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186858A Pending JP2007000921A (en) 2005-06-27 2005-06-27 System for producing molten metal for cast product

Country Status (1)

Country Link
JP (1) JP2007000921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801883B1 (en) * 2006-09-12 2008-02-14 (주)신의전기 Overcurrent breaker of underground low voltage cable connection device
CN104308125A (en) * 2014-10-16 2015-01-28 张福阳 Electric induction heating casting method capable of improving abrasion resistance of casting piece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801883B1 (en) * 2006-09-12 2008-02-14 (주)신의전기 Overcurrent breaker of underground low voltage cable connection device
CN104308125A (en) * 2014-10-16 2015-01-28 张福阳 Electric induction heating casting method capable of improving abrasion resistance of casting piece

Similar Documents

Publication Publication Date Title
CN102094097B (en) Production process for smelting vanadium ferro-alloy by electro-aluminothermic process
CN104141025B (en) The method of electro-aluminothermic process vanadium iron casting dealuminzation
CN106755724B (en) A kind of smelting technology being suitable for 3 tons of intermediate frequency furnace production nodulizers
CN103540701A (en) Smelting process suitable for ultra-high strength gray cast iron
CN105648344B (en) A kind of smelting process of bearing steel, production method and bearing steel
JP6230531B2 (en) Method for producing metallic chromium
CN109468539A (en) A kind of heat resisting cast steel and production method
CN106011360A (en) Smelting technology of high-strength low-stress gray pig iron
CN102337452A (en) Low-alloy heat-resisting cast iron and preparation method thereof
CN103695760A (en) Alloy grey cast iron material for medium and high-pressure pump bodies
KR101637639B1 (en) High elasticity aluminum alloy including titanium compound and method for producing the same
JP2007000921A (en) System for producing molten metal for cast product
CN104651704A (en) A low-silicon inoculant
CN104561409B (en) A kind of production method of hypoeutectic foundry iron
CN104178596B (en) The technique of electric arc furnace Returning blowing keto technique smelting stainless steel
CN105803339B (en) A kind of heat-resistance abrasion-resistance alloy steel and preparation method thereof
CN106811677A (en) A kind of piston ring carrier cast iron materials and its manufacture method
CN106435334A (en) Smelting technique of as-cast ductile iron
KR101646326B1 (en) High elasticity hyper eutectic aluminum alloy and method for producing the same
CN112481526A (en) Production method of aluminum-silicon alloy rod
CN105401063A (en) As-cast malleable cast iron cylinder sleeve produced through centrifugal casting and production process of as-cast malleable cast iron cylinder sleeve
WO2019019238A1 (en) Production process for white cast iron
CN103173677A (en) Hypoeutectic energy-saving vanadium and titanium containing cast pig iron with low silicon-carbon ratio
CN105441784A (en) Ultrahigh chromium alloy wear-resisting cast iron guide plate material and preparation method thereof
CN104611634A (en) Grate bar material of trolley of sinter machine and production method of grate bar material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Effective date: 20080204

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A02 Decision of refusal

Effective date: 20100112

Free format text: JAPANESE INTERMEDIATE CODE: A02