JP2007000821A - Treatment system of calcium mass-containing organic waste - Google Patents

Treatment system of calcium mass-containing organic waste Download PDF

Info

Publication number
JP2007000821A
JP2007000821A JP2005186029A JP2005186029A JP2007000821A JP 2007000821 A JP2007000821 A JP 2007000821A JP 2005186029 A JP2005186029 A JP 2005186029A JP 2005186029 A JP2005186029 A JP 2005186029A JP 2007000821 A JP2007000821 A JP 2007000821A
Authority
JP
Japan
Prior art keywords
calcium
organic waste
storage tank
biogas
lump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005186029A
Other languages
Japanese (ja)
Other versions
JP4666606B2 (en
Inventor
Yoji Kitajima
洋二 北島
Masafumi Goto
雅史 後藤
Masahiro Tatara
昌浩 多田羅
Yoshiyuki Ueno
嘉之 上野
Yoshiisa Koshikawa
義功 越川
Yoshiharu Shioyama
欣春 塩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2005186029A priority Critical patent/JP4666606B2/en
Publication of JP2007000821A publication Critical patent/JP2007000821A/en
Application granted granted Critical
Publication of JP4666606B2 publication Critical patent/JP4666606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for treating calcium mass together with organic wastes with a low load on environments. <P>SOLUTION: Calcium mass C is separated from calcium mass C-containing organic wastes A and after the separation, the organic wastes A are decomposed into biogas G and digested liquid D by methane fermentation and the separated calcium mass C is loaded to a storage tank 2 together with an aqueous high-pressure solution of carbon dioxide CO<SB>2</SB>in the biogas G and/or the digested liquid D. Alternatively, calcium mass C-containing organic wastes A are loaded to a storage tank 2 together with an aqueous high-pressure solution of carbon dioxide CO<SB>2</SB>to dissolved the calcium mass C and the organic wastes A remaining after the dissolution are decomposed into biogas G and digested liquid D by methane fermentation and the carbon dioxide CO<SB>2</SB>in the biogas G and/or the digested liquid D may be turned back to the storage tank 2 for reuse. As the storage tank 2, a deep layer type storage tank 2a in which pressure sufficient to dissolve carbon dioxide CO<SB>2</SB>in the bottom end is obtained can be used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はカルシウム塊を含む有機性廃棄物の処理システムに関し、とくに貝殻、卵殻、脊椎動物の骨、カニ殻等のカルシウム塊を含む有機性廃棄物を処理するシステムに関する。   The present invention relates to a system for treating organic waste containing calcium lumps, and more particularly to a system for treating organic waste containing calcium lumps such as shells, eggshells, vertebrate bones, and crab shells.

例えば火力/原子力発電所では、図3に示すように、海水の取水施設23内でムラサキイガイ、カキ、フジツボ類などの貝類が成長・死滅して堆積し、取水施設23を閉塞して発電支障の原因となるため、定期的に掻き落し廃棄物として処理している。このような貝類廃棄物は港湾施設・水産加工場等においても多量に発生するが、貝殻と貝肉との分離が面倒であるため、従来は貝肉が分解するまで野積で放置するかそのまま焼却処分されることが多い。しかし貝類廃棄物は含水率が高いため、腐敗臭が著しくまた焼却するには重油等のエネルギーを投入する必要があり、焼却時に地球温暖化の原因となる二酸化炭素(CO2)を多量に発生し、更に塩分由来のダイオキシン類や焼却灰等の環境汚染物質が発生する問題点があった。 For example, in a thermal / nuclear power plant, as shown in FIG. 3, shellfish such as mussels, oysters, barnacles, etc. grow and accumulate in the seawater intake facility 23 and block the intake facility 23. Because of this, it is scraped off periodically and treated as waste. Such shellfish waste is generated in large quantities in harbor facilities and fisheries processing plants, but the separation of shellfish and shellfish is cumbersome, so conventionally it was left undisturbed until the shellfish decomposed or incinerated as it is. Often disposed of. However, because of the high moisture content of shellfish waste, it is necessary to input energy such as heavy oil in order to incinerate significantly and generate a large amount of carbon dioxide (CO 2 ) that causes global warming during incineration. Furthermore, there is a problem that environmental pollutants such as dioxins derived from salt and incineration ash are generated.

これに対し特許文献1及び非特許文献1は、貝類廃棄物をメタン発酵により処理する方法を提案している。特許文献1の開示する貝類廃棄物のメタン発酵処理装置を、図8を参照して、本発明の理解に必要な限度において説明する。図示例の処理装置31は、貝類廃棄物を貝肉ペーストAと粉砕貝殻Cとに分別する高圧分別機32、高圧分別機32からの粉砕貝殻C上の残存貝肉を残存貝肉溶液A´として洗出す粉砕貝殻洗浄ユニット33、及び高圧分別機32からの貝肉ペーストAと洗浄ユニット33からの残存貝肉溶液A´とをメタン発酵処理するメタン発酵槽(バイオリアクター)34を有する(同図(A)参照)。   On the other hand, Patent Literature 1 and Non-Patent Literature 1 propose a method of treating shellfish waste by methane fermentation. The apparatus for treating methane fermentation of shellfish waste disclosed in Patent Document 1 will be described with reference to FIG. 8 to the extent necessary for understanding the present invention. The processing apparatus 31 in the illustrated example has a high-pressure separator 32 that separates shellfish waste into shellfish paste A and crushed shell C, and the remaining shellfish on the crushed shell C from the high-pressure separator 32 is removed from the remaining shellfish solution A ′. And a methane fermentation tank (bioreactor) 34 for performing methane fermentation treatment of the shellfish paste A from the high-pressure separator 32 and the remaining shellfish solution A ′ from the cleaning unit 33 (see FIG. (See Figure (A)).

高圧分別機32は、図8(B)に示すようにシリンダー32c内の一対のピストン32d、32eにより加圧室32aを画成し、その加圧室32aに連なるシリンダー32cの内周面とピストン32eの周縁の凹部32fとの間に貝肉ペースト化用の間隙32bを形成し、加圧手段(例えば油圧ユニット)32gでピストン32d、32eを駆動することにより貝類廃棄物を貝肉ペーストAと粉砕貝殻Cとに分別して流出口2hと払出し口2iとからそれぞれ排出する。分別した粉砕貝殻Cには貝肉ペーストAや海草等の残存有機物が付着しているので、洗浄ユニット33においてアルカリ水溶液等により粉砕貝殻Cを水洗し、粉砕貝殻C上の残存貝肉等の有機物を残存貝肉溶液A´として回収する。メタン発酵槽34はメタン発酵微生物の付着した固定床担体27を内部に有し、微生物が活性を示す温度(例えば37℃又は55℃)で貝肉ペーストA及び残存貝肉溶液A´を共にバイオガスGと消化液Dとに分解する。   As shown in FIG. 8B, the high-pressure separator 32 defines a pressurizing chamber 32a by a pair of pistons 32d and 32e in the cylinder 32c, and the inner peripheral surface of the cylinder 32c and the piston connected to the pressurizing chamber 32a. A gap 32b for forming a shellfish paste is formed between the peripheral recess 32f of 32e and the pistons 32d and 32e are driven by a pressurizing means (for example, a hydraulic unit) 32g to remove shellfish waste and shellfish paste A. The crushed shell C is separated and discharged from the outlet 2h and the outlet 2i. Since the remaining crushed shell C has residual organic matter such as shellfish paste A and seaweed, the crushed shell C is washed with an alkaline aqueous solution or the like in the washing unit 33, and the remaining shell meat C or other organic matter on the crushed shell C is washed. Is recovered as a residual shellfish solution A ′. The methane fermenter 34 has a fixed bed carrier 27 to which methane fermentation microorganisms are attached, and the shellfish paste A and the remaining shellfish solution A ′ are both bio-biologic at a temperature at which the microorganisms are active (eg, 37 ° C. or 55 ° C.). Decomposes into gas G and digestive fluid D.

図8の処理装置によれば、貝殻Cによる閉塞を防ぎつつ貝肉Aを安定的にメタン発酵処理することができ、貝肉ペーストA及び残存貝肉溶液A´の80%以上をバイオガスGに分解することができる。バイオガスGは60〜70%のメタン(CH4)と30〜40%のCO2を含み、例えばガス発電機や燃料電池に投入して電力及び温熱エネルギー(バイオエネルギー)を回収することができる。従って、図示例の処理装置により、従来の焼却処分等に比し低ランニングコストで貝類廃棄物を処理することができる。また、バイオガスG中のCO2は元来貝類に固定された大気中のCO2であって大気中に戻した場合も地球規模でのCO2を増加させないもの(カーボンニュートラルなCO2)であり、メタン発酵ではダイオキシン類等の環境汚染物質も発生しないので、環境負荷を小さく抑えつつ貝類廃棄物を処理することができる。 According to the processing apparatus of FIG. 8, shellfish A can be stably methane-fermented while preventing clogging with shell C, and 80% or more of shellfish paste A and residual shellfish solution A ′ are biogas G. Can be broken down into The biogas G contains 60 to 70% methane (CH 4 ) and 30 to 40% CO 2, and can be supplied to, for example, a gas generator or a fuel cell to recover electric power and thermal energy (bioenergy). . Therefore, shellfish waste can be treated at a lower running cost than the conventional incineration disposal or the like by the treatment apparatus of the illustrated example. Further, in those without increasing the CO 2 on a global scale even when returning a CO 2 atmospheric CO 2 is that originally secured the shellfish in the biogas G to the atmosphere (carbon neutral CO 2) In addition, environmental pollutants such as dioxins are not generated in methane fermentation, and shellfish waste can be treated while keeping the environmental load small.

特開2000−033358号公報JP 2000-033358 A 特許第3397546号公報Japanese Patent No. 3397546 特開平11−319765号公報JP-A-11-319765 今井澄雄他「発電所取水路付着貝の高温メタン発酵処理」電力土木技術協会誌、No.284、1999年11月Sumio Imai et al., “High-temperature methane fermentation treatment of shellfish adhering to power plant intakes”, Journal of Electric Power Engineering Association, No.284, November 1999 飯塚淳他「廃コンクリートを用いた新規な二酸化炭素固定プロセス」化学工学論文集、Vol.28、No.5、2002年9月Satoshi Iizuka et al. “New carbon dioxide fixation process using waste concrete” Chemical Engineering, Vol.28, No.5, September 2002 M. Kakizawa et al., "ANew CO2 Disposal Process via Artificial Weathering of Calcium SilicateAccelerated by Acetic Acid", Energy, VOL.26, pp.341-354, 2001年M. Kakizawa et al., "ANew CO2 Disposal Process via Artificial Weathering of Calcium SilicateAccelerated by Acetic Acid", Energy, VOL.26, pp.341-354, 2001

しかし、図8に示す貝類廃棄物のメタン発酵処理方法は、貝類廃棄物のうち有機物である貝肉Aを処理対象とするものであり、処理後に無機質である貝殻Cが大量に残る問題点がある。貝殻Cは主成分が炭酸カルシウム(CaCO3)であり、古くから飼料・肥料として有効利用されており、最近では地盤改良材、建築資材等としての活用も試みられている。ただし、廃棄物として発生する貝殻は品質が安定しておらず、飼料・肥料等として有効に利用・活用できない場合も多い。有効に利用・活用できない貝殻Cは廃棄物として処分せざるを得ないのが実情であり、環境負荷を増大させる原因となっている。貝類廃棄物を未活用バイオマスとして有効利用するため、有機物である貝肉Aだけでなく、貝殻のようなカルシウム塊Cも小さな環境負荷で処理する技術の開発が望まれている。 However, the methane fermentation treatment method for shellfish waste shown in FIG. 8 targets shellfish A which is an organic matter among shellfish wastes, and there is a problem that a large amount of shellfish C which is inorganic remains after the treatment. is there. The main component of the shell C is calcium carbonate (CaCO 3 ), and it has been used effectively as feed and fertilizer for a long time. Recently, it has been tried to use it as a ground improvement material, a building material, and the like. However, the quality of shells generated as waste is not stable and often cannot be used or utilized effectively as feed or fertilizer. The actual situation is that the shell C that cannot be effectively used / utilized must be disposed of as waste, which increases the environmental load. In order to effectively use shellfish waste as unutilized biomass, it is desired to develop a technique for treating not only shellfish A, which is an organic matter, but also calcium lump C such as shellfish with a small environmental load.

そこで本発明の目的は、カルシウム塊を有機性廃棄物と共に小さな環境負荷で処理するシステムを提供することにある。   Accordingly, an object of the present invention is to provide a system for treating calcium lumps together with organic waste with a small environmental load.

本発明者は、カルシウム系無機化合物である廃コンクリート塊(主成分はケイ酸カルシウムCaSiO3及び水酸化カルシウムCa(OH)2)が酸性水溶液中で溶解することに注目した。例えば特許文献3は、破砕したコンクリート塊をCO2ガスと接触させ、次いでCO2水溶液中に浸したのち固液分離してCaCO3として回収するコンクリート廃棄物の処理方法を開示している。また非特許文献2は、水中に分散させたコンクリート塊中にCO2ガスを高圧条件下(例えば3.0MPa≒30気圧程度)で吹き込むことによりカルシウム分を抽出して溶解させたのち、常圧(大気中のCO2分圧≒36Pa)に戻してCaCO3を析出させるCO2固定プロセスを報告している((1)式及び(2)式参照)。更に非特許文献3は、コンクリート塊からカルシウムイオン(Ca2+)を溶出させる際に、CO2ガスと共に酢酸等を加えることにより、コンクリート塊からのCa2+の溶出速度が促進されることを報告している((3)式及び(4)式参照)。本発明者の予備的実験によれば、貝殻等のカルシウム塊CもCO2水溶液を用いて溶解することが可能である。 The inventor has paid attention to the fact that waste concrete blocks (main components are calcium silicate CaSiO 3 and calcium hydroxide Ca (OH) 2 ), which are calcium-based inorganic compounds, dissolve in an acidic aqueous solution. For example, Patent Document 3 discloses a method for treating concrete waste in which a crushed concrete block is brought into contact with CO 2 gas, and then immersed in an aqueous CO 2 solution and then separated into solid and liquid and recovered as CaCO 3 . Non-Patent Document 2 discloses that after extracting and dissolving calcium by blowing CO 2 gas into a concrete block dispersed in water under high pressure conditions (for example, about 3.0 MPa≈30 atm), normal pressure ( The CO 2 fixation process in which CaCO 3 is precipitated by returning to atmospheric CO 2 partial pressure ≒ 36Pa) has been reported (see Equations (1) and (2)). Further, Non-Patent Document 3 shows that when calcium ions (Ca 2+ ) are eluted from a concrete block, the dissolution rate of Ca 2+ from the concrete block is promoted by adding acetic acid or the like together with CO 2 gas. (Refer to formulas (3) and (4)). According to the inventor's preliminary experiment, it is also possible to dissolve calcium blocks C such as shells using a CO 2 aqueous solution.

[化1]
CaSiO3+CO2→CaCO3+SiO2 ………………………………………………………(1)
Ca(OH)2+CO2→CaCO3+H2O ………………………………………………………(2)
CaSiO3+2CH3COOH→Ca2++2CH3COO-+H2O+SiO2 ……………………………(3)
Ca2++2CH3COO-+CO2+H2O→CaCO3+2CH3COOH ………………………………(4)
[Chemical 1]
CaSiO 3 + CO 2 → CaCO 3 + SiO 2 ……………………………………………………… (1)
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O ……………………………………………………… (2)
CaSiO 3 + 2CH 3 COOH → Ca 2+ + 2CH 3 COO - + H 2 O + SiO 2 ................................. (3)
Ca 2+ + 2CH 3 COO - + + CO 2 + H 2 O → CaCO 3 2CH 3 COOH .................................... (4)

また本発明者は、廃コンクリート塊の溶解に用いるCO2ガス及び酢酸は、貝肉等の有機性廃棄物Aのメタン発酵処理の排出物として得られることに注目した。上述したようにメタン発酵処理ではCO2を含むバイオガスGが発生しており、通常はCO2を大気中に戻しているので、このCO2を貝殻等のカルシウム塊Cの溶解に用いることができる。また、メタン発酵で発生する消化液Dには酢酸その他の有機酸が含まれており、通常は二次処理施設で浄化して放流しているが、この有機酸をカルシウム塊Cの溶解の促進に利用すれば、外部からの薬剤等の供給が不要となる。すなわち、メタン発酵から排出されるCO2及び有機酸を用いてカルシウム塊Cを溶解すれば、外部からの薬剤やエネルギーの投入量を最小限に抑え、バイオマスである有機性廃棄物Aの多段階利用によってカルシウム塊Cを処理することが期待できる。本発明は、この着想に基づく研究開発の結果、完成に至ったものである。 The present inventor also noted that the CO 2 gas and acetic acid used for dissolving the waste concrete lump are obtained as methane fermentation treatment effluent from organic waste A such as shellfish. As described above, biogas G containing CO 2 is generated in the methane fermentation treatment, and normally CO 2 is returned to the atmosphere. Therefore, this CO 2 can be used for dissolving calcium clot C such as shells. it can. In addition, digestive fluid D generated by methane fermentation contains acetic acid and other organic acids, which are usually purified and discharged in a secondary treatment facility, but this organic acid is promoted to dissolve calcium lump C. If used, the supply of medicine or the like from the outside becomes unnecessary. That is, if calcium lump C is dissolved using CO 2 and organic acid discharged from methane fermentation, the amount of chemicals and energy input from the outside is minimized, and the organic waste A, which is biomass, is multistage. It can be expected that the calcium lump C will be treated. The present invention has been completed as a result of research and development based on this idea.

図1の実施例を参照するに、本発明によるカルシウム塊を含む有機性廃棄物の処理システムの一態様は、カルシウム塊Cを含む有機性廃棄物Aからカルシウム塊Cを分別し、分別後の有機性廃棄物Aをメタン発酵によりバイオガスGと消化液Dとに分解し、分別したカルシウム塊CをバイオガスG中の二酸化炭素CO2の高圧水溶液及び/又は消化液Dと共に貯留槽2に投入して溶解してなるものである。 Referring to the embodiment of FIG. 1, one embodiment of a system for treating organic waste containing calcium lump according to the present invention separates calcium lump C from organic waste A containing calcium lump C. Organic waste A is decomposed into biogas G and digestive fluid D by methane fermentation, and the separated calcium lump C is stored in the storage tank 2 together with the high-pressure aqueous solution of carbon dioxide CO 2 in biogas G and / or the digestive fluid D. It is made by adding and dissolving.

また、図2の実施例を参照するに、本発明によるカルシウム塊を含む有機性廃棄物の処理システムの他の態様は、カルシウム塊Cを含む有機性廃棄物Aを二酸化炭素CO2の高圧水溶液と共に貯留槽2に投入してカルシウム塊Cを溶解し、溶解後に残る有機性廃棄物Aをメタン発酵によりバイオガスGと消化液Dとに分解し、バイオガスG中の二酸化炭素CO2及び/又は消化液Dを貯留槽2に戻してなるものである。 In addition, referring to the embodiment of FIG. 2, another embodiment of the organic waste treatment system containing calcium lumps according to the present invention is an organic waste A containing calcium lumps C converted into a high-pressure aqueous solution of carbon dioxide CO 2 . In addition, the calcium lump C is dissolved in the storage tank 2 and the organic waste A remaining after the dissolution is decomposed into biogas G and digestive fluid D by methane fermentation, and carbon dioxide CO 2 in the biogas G and / or Alternatively, the digestive juice D is returned to the storage tank 2.

好ましくは、図3に示すように、貯留槽2を、底端において二酸化炭素CO2が水に溶ける圧力が得られ且つ鉛直隔壁11により底端で連通した下降部12と上昇部13とに仕切られた深層式貯留槽2aとし、有機性廃棄物Aから分別したカルシウム塊C又はカルシウム塊Cを含む有機性廃棄物Aを下降部12の頂端に投入し、バイオガスG中の二酸化炭素CO2及び/又は消化液Dを底端近傍に供給する。この場合は、深層式貯留槽2aの上昇部13に環境中の水域20に連通する放流路14を設け、カルシウム塊Cの溶解液Kを環境中の水域20に放流することができる。また、図4に示すように、深層式貯留槽2aの上昇部13の頂端近傍にメタン発酵槽1を設け、溶解後に残る有機性廃棄物Aを上昇部13の頂端近傍においてバイオガスGと消化液Aとに分解することができる。 Preferably, as shown in FIG. 3, the storage tank 2 is divided into a descending portion 12 and a rising portion 13 that are connected to each other at the bottom end by a vertical partition wall 11 so that carbon dioxide CO 2 can be dissolved in water at the bottom end. And the organic waste A containing the calcium lump C or the calcium lump C separated from the organic waste A is introduced into the top of the descending section 12, and carbon dioxide CO 2 in the biogas G And / or the digestive juice D is supplied to the bottom end vicinity. In this case, the discharge channel 14 communicating with the water area 20 in the environment is provided in the ascending portion 13 of the deep reservoir 2a, and the dissolved solution K of the calcium block C can be discharged into the water area 20 in the environment. Further, as shown in FIG. 4, a methane fermentation tank 1 is provided in the vicinity of the top end of the rising portion 13 of the deep reservoir 2a, and the organic waste A remaining after dissolution is digested with the biogas G in the vicinity of the top end of the rising portion 13. It can be decomposed into liquid A.

本発明によるカルシウム塊Cを含む有機性廃棄物Aの処理システムは、有機性廃棄物Aのメタン発酵で排出されるバイオガスG中の二酸化炭素CO2及び消化液Dと共に有機性廃棄物A中のカルシウム塊Cを貯留槽2に投入して溶解するので、次の顕著な効果を奏する。 The processing system of the organic waste A containing the calcium lump C according to the present invention is the organic waste A in the organic waste A together with the carbon dioxide CO 2 in the biogas G discharged from the methane fermentation of the organic waste A and the digested liquid D. Since the calcium lump C is charged into the storage tank 2 and dissolved, the following remarkable effects are produced.

(イ)品質の安定しない廃棄物のカルシウム塊Cを溶解し、炭酸カルシウムCaCO3の溶解液又は粉末として回収できるので、カルシウム塊Cの廃棄物の有効利用を図ることができる。
(ロ)有機性廃棄物Aのメタン発酵で排出されるバイオガスG中の二酸化炭素CO2及び消化液Dを用いてカルシウム塊Cを溶解するので、外部からの新たなエネルギーや薬剤等を投入する必要がなく、省資源型・省エネルギー型の処理システムとすることができる。
(ハ)また、バイオマスである有機性廃棄物Aの多段階利用によってカルシウム塊Cを溶解するので、カルシウム塊Cを含む有機性廃棄物Aの全体を小さな環境負荷で処理することができ、地球環境に調和した処理・処分が可能となる。
(A) Since the calcium lump C of waste with unstable quality can be dissolved and recovered as a solution or powder of calcium carbonate CaCO 3 , the waste of the calcium lump C can be effectively used.
(B) Calcium lump C is dissolved using carbon dioxide CO 2 and digestive fluid D in biogas G discharged from methane fermentation of organic waste A, so new energy and drugs from outside are introduced. Therefore, it is possible to provide a resource-saving / energy-saving processing system.
(C) Since the calcium lump C is dissolved by the multi-stage utilization of the organic waste A, which is biomass, the entire organic waste A containing the calcium lump C can be treated with a small environmental load. Processing and disposal in harmony with the environment is possible.

(ニ)カルシウム塊Cを溶解する貯留槽2を深層式貯留槽2aとし、大深度地下の高圧を利用してカルシウム塊Cを溶解することにより、縦坑型となるので敷地面積を小さくすることができ、貯留槽の構造を地上設置型より簡素化できる。
(ホ)貝類廃棄物の処理に利用できると共に、卵殻、魚や鳥等の脊椎動物の骨や歯、かに殻等の甲殻類の外骨格を含む有機性廃棄物Aの処理に広く適用可能である。
(ヘ)また、二酸化炭素に溶解した有機性廃棄物A中のカルシウム塊Cを環境中に戻すことが可能となり、環境中に戻したカルシウム塊Cを生物が再び成長過程で取り込むことにより、環境におけるカルシウム及び二酸化炭素の新たな物質循環に寄与することが期待できる。
(D) The storage tank 2 that dissolves the calcium block C is a deep-layer storage tank 2a, and the calcium block C is dissolved by using the high pressure in the deep underground, so that the site area is reduced because it becomes a vertical shaft type. It is possible to simplify the structure of the storage tank from the ground-mounted type.
(E) It can be used for the treatment of shellfish waste, and it can be widely applied to the treatment of organic waste A including the skeleton of eggshells, bones and teeth of vertebrates such as fish and birds, and crustaceans such as crab shells. is there.
(F) Moreover, it becomes possible to return the calcium lump C in the organic waste A dissolved in carbon dioxide to the environment, and when the organism recaptures the calcium lump C returned to the environment during the growth process, It can be expected to contribute to a new material cycle of calcium and carbon dioxide in

図1は、カルシウム塊Cを含む有機性廃棄物Aの一例である貝類廃棄物に本発明の処理システムを適用した一実施例を示す。ただし、本発明の適用対象は貝類廃棄物に限定されるものではなく、卵殻、脊椎動物の骨、甲殻類の外骨格等のカルシウム塊Cを含む有機性廃棄物Aに広く適用可能である。図示例の処理システムは、貝類廃棄物(A+C)を有機性廃棄物(貝肉)Aとカルシウム塊(貝殻)Cとに分別する分別機6、分別した有機性廃棄物Aをメタン発酵処理によりバイオガスGと消化液Dとに分解するメタン発酵槽1、メタン発酵槽1で発生したバイオガスGからCO2を除去するメタン濃縮装置3、CO2が除去されたCH4をエネルギーに変換するエネルギー変換装置4、及びメタン発酵槽1で発生した消化液Gを浄化する二次処理施設8を有する。 FIG. 1 shows an embodiment in which the treatment system of the present invention is applied to shellfish waste, which is an example of organic waste A containing calcium lump C. However, the application target of the present invention is not limited to shellfish waste, and can be widely applied to organic waste A containing calcium blocks C such as eggshell, vertebrate bone, and crustacean exoskeleton. The treatment system of the illustrated example is a sorter 6 for separating shellfish waste (A + C) into organic waste (shellfish) A and calcium lump (shell) C, and the separated organic waste A by methane fermentation treatment. Methane fermenter 1 that decomposes into biogas G and digestive fluid D, methane concentrator 3 that removes CO 2 from biogas G generated in methane fermenter 1, CH 4 from which CO 2 has been removed is converted into energy It has the secondary processing facility 8 which purifies the digestive liquid G generated in the energy conversion device 4 and the methane fermentation tank 1.

分別機6は、図8を参照して上述した高圧分別機32と同様に、例えば貝類廃棄物(A+C)を加圧してミンチ状に粉砕される有機性廃棄物Aと硬いカルシウム塊Cとに分別するものとすることができる。図8の粉砕貝殻洗浄ユニット33を分別機6に含めてもよい。分別機6によりカルシウム塊Cから分別された有機性廃棄物Aは、メタン発酵装置1においてメタン発酵菌により約66%のCH4と約33%のCO2とを含むバイオガスGに分解され、一部分は蟻酸、酢酸、プロピオン酸、n-及びi-酪酸、n-及びi-吉草酸、乳酸等の有機酸(分子式モデルR-COOH)を含む消化液Dに分解される((11)式参照)。 As with the high-pressure separator 32 described above with reference to FIG. 8, the separator 6, for example, presses shellfish waste (A + C) into organic waste A and hard calcium lump C that are crushed into minced shapes. It can be separated. The crushed shell cleaning unit 33 of FIG. 8 may be included in the sorter 6. The organic waste A separated from the calcium block C by the sorter 6 is decomposed into biogas G containing about 66% CH 4 and about 33% CO 2 by the methane fermentation bacteria in the methane fermentation apparatus 1. A part is decomposed into digestive juice D containing organic acids (molecular formula model R-COOH) such as formic acid, acetic acid, propionic acid, n- and i-butyric acid, n- and i-valeric acid, and lactic acid (formula (11) reference).

[化2]
CxHyOz(有機物)→aCH4+bCO2+cH2O ………………………………………(11)
66%×CH4+33%×CO2+66%×2O2→CO2+66%×2H2O ………………………(12)
CO2+H2O→H2CO3→HCO3 -+H+ …………………………………………………(13)
CaCO3+HCO3 -+H+→Ca(HCO3)2→Ca2++2HCO3 - ………………………………(14)
CaCO3+2R-COOH→Ca2++2R-COO-+HCO3 -+H+ ………………………………(15)
[Chemical 2]
C x H y O z (Organic) → aCH 4 + bCO 2 + cH 2 O ……………………………………… (11)
66% × CH 4 + 33% × CO 2 + 66% × 2O 2 → CO 2 + 66% × 2H 2 O ……………………… (12)
CO 2 + H 2 O → H 2 CO 3 → HCO 3 + H + ………………………………………………… (13)
CaCO 3 + HCO 3 - + H + → Ca (HCO 3) 2 → Ca 2+ + 2HCO 3 - .................................... (14)
CaCO 3 + 2R-COOH → Ca 2+ + 2R-COO - + HCO 3 - + H + .................................... (15)

メタン発酵装置1で発生したバイオガスGは、メタン濃縮装置3においてCO2を除去してCH4を例えば98%程度に濃縮したのち、例えば燃料電池等のエネルギー変換装置4において電力及び温熱エネルギーに変換する。ただし、メタン濃縮装置3は本発明に必須のものではなく、例えばエネルギー変換装置4をガス発電機やガスボイラー等とした場合は、メタン発酵装置1で発生したバイオガスGをエネルギー変換装置4に直接導入し、CH4を燃焼させて電力及び温熱エネルギーに変換することができる((12) 式参照)。メタン発酵装置1で発生した消化液Dは二次処理施設8に送られ、有機酸に対する浄化処理を施したのち処理水Wとして下水道や河川、海、地下水等に放流することができる。 The biogas G generated in the methane fermentation apparatus 1 removes CO 2 in the methane concentrator 3 and concentrates CH 4 to about 98%, for example, and then converts it into electric power and thermal energy in the energy conversion apparatus 4 such as a fuel cell. Convert. However, the methane concentrator 3 is not essential for the present invention. For example, when the energy converter 4 is a gas generator or a gas boiler, the biogas G generated in the methane fermentation apparatus 1 is supplied to the energy converter 4. It can be directly introduced, and CH 4 can be burned and converted into electric power and thermal energy (see equation (12)). The digestive fluid D generated in the methane fermentation apparatus 1 is sent to the secondary treatment facility 8, and after being subjected to a purification process for organic acids, it can be discharged as treated water W into sewers, rivers, sea, groundwater, and the like.

また図示例の処理システムは、分別機6で分別したカルシウム塊Cを取り入れて溶解する貯留槽2を有する。貯留槽2の一例は、好ましくは撹拌装置5を有する耐圧容器である。例えば貯留槽2にカルシウム塊Cと共に二次処理施設8の処理水W等の淡水を仕込み、撹拌装置5で撹拌しながらメタン濃縮装置3及びエネルギー変換装置4においてバイオガスGから生じたCO2を高圧下で供給する。貯留槽2内の気相中のCO2の分圧を高めることにより、供給したCO2を水に溶かして重炭酸イオンとし((13)式参照)、この場合のカルシウム塊Cの主成分であるCaCO3を重炭酸イオンによりCa2+として溶解することができる((14)式参照)。 Moreover, the processing system of the example of illustration has the storage tank 2 which takes in and dissolves the calcium lump C sorted by the sorter 6. An example of the storage tank 2 is preferably a pressure vessel having a stirring device 5. For example, fresh water such as treated water W of the secondary treatment facility 8 is charged into the storage tank 2 together with the calcium block C, and CO 2 generated from the biogas G in the methane concentrator 3 and the energy converter 4 is stirred while being stirred by the stirrer 5. Supply under high pressure. By increasing the partial pressure of CO 2 in the gas phase in the storage tank 2 (see (13)) by dissolving CO 2 supplied to the water and bicarbonate ion, in the main component of the calcium mass C in this case Certain CaCO 3 can be dissolved as Ca 2+ by bicarbonate ions (see equation (14)).

更に図示例のシステムでは、メタン発酵装置1で発生した消化液Dの一部も二次処理施設8経由で貯留槽2に供給している。CaCO3の溶解反応((14)式)は反応速度が小さいため、限られた大きさの貯留槽2でカルシウム塊Cを処理するには貯留槽2内の気相中のCO2の分圧を高めて反応速度を大きくする必要があるが、貯留槽2内に酢酸等の有機酸を加えることでCaCO3の溶解反応を更に加速することができる((15)式及び非特許文献3参照)。また、消化液D中にはメタン発酵槽1において分解できない粉砕貝殻等のカルシウム塊Cが残渣として含まれることがあるが、図示例の処理システムによれば、このような残渣カルシウム塊Cを消化液Dと共に貯留槽2へ導入して溶解することができる。 Further, in the illustrated system, a part of the digestive fluid D generated in the methane fermentation apparatus 1 is also supplied to the storage tank 2 via the secondary treatment facility 8. Since the reaction rate of the dissolution reaction of CaCO 3 (equation (14)) is low, the partial pressure of CO 2 in the gas phase in the storage tank 2 is used to treat the calcium clot C in the storage tank 2 of a limited size. It is necessary to increase the reaction rate by increasing the reaction rate, but by adding an organic acid such as acetic acid in the storage tank 2, the dissolution reaction of CaCO 3 can be further accelerated (see equation (15) and Non-Patent Document 3). ). In addition, the digested liquid D may contain as a residue calcium lumps C such as crushed shells that cannot be decomposed in the methane fermentation tank 1, but according to the treatment system of the illustrated example, such residual calcium lumps C are digested. It can be introduced into the storage tank 2 together with the liquid D and dissolved.

貯留槽2において溶解したカルシウム塊Cは、カルシウム溶解液Kとして貯留槽2から取り出し、例えば常圧に戻してCaCO3を析出させて回収することができる。品質の安定しない貝殻等のカルシウム塊Cも、粉末状のCaCO3とすることにより、微細砂や再生コンクリートの原料として有効利用を図ることが期待できる。CaCO3回収後のカルシウム溶解液K中には二次処理施設8経由で供給した有機酸が含まれているが、必要に応じてCaCO3回収後のカルシウム溶解液Kをメタン発酵装置1に戻し、有機酸を再びバイオガスGに変換リサイクルすることができる。また、カルシウム溶解液Kをメタン発酵装置1に戻すことにより、メタン発酵微生物の生育に必要なカルシウムを供給することもできる。 The calcium clot C dissolved in the storage tank 2 can be taken out from the storage tank 2 as a calcium solution K and recovered by, for example, returning to normal pressure to precipitate CaCO 3 . Calcium lump C such as shells with unstable quality can be expected to be effectively used as a raw material for fine sand and recycled concrete by using powdered CaCO 3 . The calcium solution K after the recovery of CaCO 3 contains the organic acid supplied via the secondary treatment facility 8, and the calcium solution K after the recovery of CaCO 3 is returned to the methane fermentation apparatus 1 as necessary. The organic acid can be converted to biogas G and recycled again. In addition, by returning the calcium solution K to the methane fermentation apparatus 1, calcium necessary for the growth of the methane fermentation microorganisms can be supplied.

すなわち本発明では、メタン発酵装置1と貯留槽2との間でCO2及び消化液Dとカルシウム溶解液Kとを循環させることにより、カルシウム塊Cを含む有機性廃棄物Aの全体を効率的に多段階的に処理することも可能である。なお、後述するように、貯留槽2からのカルシウム溶解液Kを高圧のまま重炭酸イオン形態のCO2と共に海底、湖底又は地下水等の環境中の水域に放流し、海洋、湖沼又は地下水環境の保全に利用することも可能である。また、後述するように、貯留槽2に供給するCO2が不足する場合は、カルシウム溶解液K中のCO2を貯留槽2に戻して循環させることも可能である。 That is, in the present invention, the entire organic waste A including the calcium lump C is efficiently obtained by circulating the CO 2, digestive juice D, and calcium solution K between the methane fermentation apparatus 1 and the storage tank 2. It is also possible to process in multiple steps. In addition, as will be described later, the calcium solution K from the storage tank 2 is discharged into the water area in the environment such as the sea floor, the bottom of the lake, or the ground water together with the CO 2 in the form of bicarbonate ions while maintaining the high pressure. It can also be used for conservation. As will be described later, may be insufficient CO 2 is supplied to the reservoir 2, it is also possible to circulate back the CO 2 in the calcium solution K in the storage tank 2.

図5は、水産加工施設で発生した貝類廃棄物を本発明の処理システムで処理した場合の物質収支・エネルギー収支を試算したものである。例えば有機性廃棄物Aである貝肉1トンをメタン発酵処理すると53Nm3程度のバイオガスGを回収することができ、このバイオガスGを燃焼することにより約87kwh(53Nm3×1.65kwh)のエネルギーと約0.104トンのCO2ガスが得られる。これを全て重炭酸イオン化すると、カルシウム塊Cである貝殻の主成分であるCaCO3を0.23トン溶解することができる。また、(14)式のCaCO3の溶解反応に必要なエネルギーは、貝殻の粉砕条件等を考慮して1トンのCaCO3当たり約77.2〜24kwhと考えられる。 FIG. 5 is a trial calculation of the material balance and energy balance when shellfish waste generated in a fish processing facility is treated by the treatment system of the present invention. For example, if one ton of organic waste A shellfish is treated with methane, about 53 Nm 3 of biogas G can be recovered. By burning this biogas G, about 87 kwh (53 Nm 3 × 1.65 kwh) Energy and about 0.104 tons of CO 2 gas are obtained. When all of this is bicarbonate ionized, 0.23 tons of CaCO 3 , which is the main component of the shell of calcium lump C, can be dissolved. In addition, the energy required for the CaCO 3 dissolution reaction of the formula (14) is considered to be about 77.2 to 24 kwh per ton of CaCO 3 in consideration of shell crushing conditions and the like.

図5のように貝肉510トン/月が発生する水産加工施設では、約45000kwh/月(≒510×87)のエネルギーと約53トン/月(≒510×0.104)のCO2ガスが得られ、貝殻120トン/月(≒510×0.23)を溶解することができる。また、貝殻120トン/月の溶解反応に必要なエネルギーは9300〜3000kwh/月程度である。従って、カルシウム塊Cに対する有機性廃棄物Aの比率が4.3倍程度以上の水産加工施設であれば、バイオガスG中のカーボンニュートラルなCO2とバイオガスGの燃焼エネルギーとを用いてカルシウム塊Cの全量を溶解することが可能である。 As shown in Fig. 5, an aquatic processing facility that generates 510 tons / month of shellfish produces about 45000 kwh / month (≒ 510 × 87) energy and about 53 tons / month (≒ 510 × 0.104) of CO 2 gas. The shell can dissolve 120 tons / month (≒ 510 × 0.23). The energy required for the dissolution reaction of 120 tons / month of shells is about 9300 to 3000 kwh / month. Therefore, if the ratio of the organic waste A to the calcium lump C is about 4.3 times or more, the calcium lump C using the carbon neutral CO 2 in the biogas G and the combustion energy of the biogas G. It is possible to dissolve the entire amount.

図6は、500万kw級の大型発電所で発生した貝類廃棄物を本発明の処理システムで処理した場合の物質収支・エネルギー収支を試算したものである。発電所等で発生する貝類廃棄物は、カルシウム塊Cに対する有機性廃棄物Aの比率が比較的小さいので、バイオガスG中のCO2だけではカルシウム塊Cの溶解に不足する場合がある。図示例の大型発電所では、貝肉35トン/月から回収できるバイオガスG中のCO2ガスでは約8.1トン/月(≒35×0.23)の貝殻しか溶解できず、約25トン/月で発生する貝殻の4割弱しか溶解することができない。このようにバイオガスG中のCO2が不足する場合は、貯留槽2から排出するカルシウム溶解液K中の重炭酸イオンの一部(図示例では約6割)をCO2として回収し、貯留槽2に戻して循環させることでCO2の不足分を補うことができる。 FIG. 6 is a trial calculation of material balance and energy balance when shellfish waste generated in a large power plant of 5 million kw class is treated by the treatment system of the present invention. Shellfish waste generated at a power plant or the like has a relatively small ratio of organic waste A to calcium lump C, so that CO 2 alone in biogas G may be insufficient to dissolve calcium lump C. For large power plants in the illustrated example, can only dissolve shells of approximately 8.1 t / month in the CO 2 gas in the biogas G can be recovered from the shellfish flesh 35 tons / month (≒ 35 × 0.23), about 25 ton / month Only less than 40% of the generated shell can be dissolved. In this way, when CO 2 in the biogas G is insufficient, a part (about 60% in the illustrated example) of bicarbonate ions in the calcium solution K discharged from the storage tank 2 is recovered as CO 2 and stored. The shortage of CO 2 can be compensated by returning to tank 2 and circulating.

図7は、厨芥廃棄物等の生ゴミのメタン発酵処理において、メタン発酵装置1の底部に沈積する卵殻・貝殻等のカルシウム塊Cが含まれる残渣を本発明の処理システムで処理した場合の物質収支・エネルギー収支を試算したものである。メタン発酵装置1の底部から引き抜いたカルシウム塊Cを消化液Dと共に貯留槽2へ導入して溶解する。様々な有機成分を含む厨芥生ゴミのメタン発酵では、生ごみ1トン当たり160Nm3以上のバイオガスGを回収することができ、貝肉のメタン発酵に比し多くのエネルギー及びCO2ガスが得られる。また、厨芥生ゴミ中に含まれるカルシウム塊Cは5%程度であり、例えばメタン濃縮装置3からのCO2とエネルギー変換装置4からのバイオエネルギーとを用いて、厨芥生ゴミ中に含まれるカルシウム塊Cの全量を十分に溶解させることができる。また、貯留槽2から排出されるカルシウム溶解液Kを、下水道に希釈しながら放流処分することができる。 FIG. 7 shows substances in the case where a residue containing calcium clots C such as eggshells and shells deposited on the bottom of the methane fermentation apparatus 1 is treated with the treatment system of the present invention in the methane fermentation treatment of garbage such as straw waste. This is a trial calculation of the balance of payment and energy balance. The calcium block C extracted from the bottom of the methane fermentation apparatus 1 is introduced into the storage tank 2 together with the digestion liquid D and dissolved. In methane fermentation of raw garbage containing various organic components, biogas G of 160Nm 3 or more per ton of garbage can be recovered, and more energy and CO 2 gas can be obtained than methane fermentation of shellfish. It is done. Moreover, the calcium lump C contained in the raw garbage is about 5%. For example, the calcium contained in the raw garbage using CO 2 from the methane concentrator 3 and bioenergy from the energy converter 4 is used. The entire amount of the mass C can be sufficiently dissolved. Moreover, the calcium solution K discharged | emitted from the storage tank 2 can be discharged and discarded, diluting to a sewer.

こうして本発明の目的である「カルシウム塊を有機性廃棄物と共に小さな環境負荷で処理するシステム」の提供を達成できる。   Thus, it is possible to achieve the “system for treating calcium lumps together with organic waste with a small environmental load”, which is an object of the present invention.

図2は、本発明の処理システムを用いて貝類廃棄物を処理する他の実施例を示す。図示例の処理システムは、分別機6を省略し、貝類廃棄物(A+C)を貯留槽2に直接投入してカルシウム塊Cを溶解し、溶解後に残る有機性廃棄物Aをメタン発酵槽1に投入してバイオガスGと消化液Dとに分解し、メタン発酵槽1で発生したバイオガスG中のCO2をメタン濃縮装置3及びエネルギー変換装置4経由で貯留槽2に戻し、メタン発酵槽1で発生した消化液Dを二次処理施設8経由で貯留槽2に戻している。すなわち、カルシウム塊Cを溶解する貯留槽2を利用して、貝類廃棄物の貝肉と貝殻とを分離することができる。図1のような分別機6による貝肉と貝殻との分別処理では、粉砕貝殻等が貝肉と共にメタン発酵槽1に進入して固定床担体27を閉塞するおそれがある。貯留槽2において貝殻を溶解して貝肉と分離することにより、固定床担体27の閉塞を防止できると共に、分別機6の省略によるシステムの効率化を図ることができる。 FIG. 2 shows another embodiment of processing shellfish waste using the processing system of the present invention. The treatment system of the illustrated example omits the sorter 6, shellfish waste (A + C) is directly charged into the storage tank 2 to dissolve the calcium clot C, and the organic waste A remaining after dissolution is transferred to the methane fermentation tank 1. The CO 2 in the biogas G generated in the methane fermentation tank 1 is returned to the storage tank 2 via the methane concentrating device 3 and the energy conversion device 4, and then decomposed into the biogas G and the digestive fluid D. 1 is returned to the storage tank 2 via the secondary treatment facility 8. That is, by using the storage tank 2 that dissolves the calcium lump C, shellfish waste and shellfish can be separated. In the separation processing of shellfish and shells by the sorter 6 as shown in FIG. 1, there is a possibility that ground shells and the like enter the methane fermentation tank 1 together with shellfish and block the fixed bed carrier 27. By dissolving the shell in the storage tank 2 and separating it from the shellfish, the fixed bed carrier 27 can be prevented from being blocked and the efficiency of the system can be improved by omitting the sorter 6.

図3は、図1又は図2の実施例における貯留槽2を、大深度地下の高圧を利用した深層式貯留槽2aとした本発明の実施例を示す。図示例の深層式貯留槽2aは、底端においてCO2が水に溶ける圧力が得られ、鉛直隔壁11により底端で連通した下降部12と上昇部13とに仕切られている。例えば地下300m程度まで往復する下降部12と上昇部13とを設けることにより、底端において、CO2を水に溶かしてカルシウム塊Cを溶解するために必要な3.0MPa程度の圧力とすることができる。図示例の深層式貯留槽2aは、水域20である海洋に隣接する大型発電所の敷地内にメタン発酵槽1を含むバイオエネルギー回収施設9と併設して設けたものであり、深層式貯留槽2aの上昇部13にフィルター15を介して海洋に連通する放流路14が設けられている。フィルター15に代えて又は加えて、放流路14に適当な沈殿槽(図示せず)等を設けてもよい。 FIG. 3 shows an embodiment of the present invention in which the storage tank 2 in the embodiment of FIG. 1 or FIG. 2 is a deep-type storage tank 2a using high pressure in the deep underground. The deep storage tank 2a in the illustrated example has a pressure at which CO 2 dissolves in water at the bottom end, and is partitioned by a vertical partition 11 into a descending portion 12 and an ascending portion 13 communicated at the bottom end. For example, by providing the descending part 12 and the ascending part 13 that reciprocate to about 300 m below the ground, it is possible to obtain a pressure of about 3.0 MPa necessary to dissolve the calcium lump C by dissolving CO 2 in water at the bottom end. it can. The deep reservoir 2a in the illustrated example is provided alongside a bioenergy recovery facility 9 including the methane fermentation tank 1 on the site of a large power plant adjacent to the ocean, which is the water area 20, and is a deep reservoir. A discharge channel 14 communicating with the ocean via a filter 15 is provided in the ascending portion 13 of 2a. In place of or in addition to the filter 15, a suitable sedimentation tank (not shown) or the like may be provided in the discharge channel 14.

図示例では、バイオエネルギー回収施設9からの処理水W等の淡水を深層式貯留槽2a内に充填し、カルシウム塊Cを含む有機性廃棄物Aを深層式貯留槽2aの下降部12の頂端に投入している。また、バイオエネルギー回収施設9で発生したバイオガスG中のCO2をガス輸送路17及びガス分岐路18により深層式貯留槽2aのCO2可溶化域より深い下降部12の底部近傍に供給し、バイオエネルギー回収施設9で発生した消化液G又は処理水Wを液輸送路19により深層式貯留槽2aの底端に供給している。 In the illustrated example, fresh water such as treated water W from the bioenergy recovery facility 9 is filled into the deep reservoir 2a, and the organic waste A containing calcium lumps C is added to the top of the descending portion 12 of the deep reservoir 2a. It is thrown into. In addition, the CO 2 in the biogas G generated in the bioenergy recovery facility 9 is supplied to the vicinity of the bottom of the descending portion 12 deeper than the CO 2 solubilization zone of the deep reservoir 2a through the gas transport path 17 and the gas branch path 18. The digestive juice G or treated water W generated in the bioenergy recovery facility 9 is supplied to the bottom end of the deep reservoir 2a through the liquid transport path 19.

深層式貯留槽2aの上昇部13及び下降部12には、従来のディープシャフトプロセスと同様に例えば上昇路13の上部に曝気装置や循環ポンプ等を設け、上昇流及び下降流を形成することができる。深層式貯留槽2aの下降部12に供給されたCO2は、下降流によって貯留槽2aの底部に導かれ、水圧により水中に溶けてカルシウム塊Cを溶解させる。水中に溶解した重炭酸イオン及びCa2+を含むカルシウム溶解液Kの一部は、上昇部13に設けたフィルター15又は放流路14に設けた沈殿槽によって水中で溶けない有機性廃棄物Aと分離され、放流路14を介して海洋の深層に放流される。放流された重炭酸イオン及びCa2+は水圧によって重炭酸イオン形態を維持したまま拡散し、海洋の生物に成長過程で取り込ませることによりカルシウム及び二酸化炭素の新たな物質循環を作り出し、海洋環境の保全に寄与する。海洋に代えて、カルシウム溶解液Kを湖沼又は地下水等の環境中に水域20に放流し、湖沼又は地下水環境の保全に利用することも可能である。 As in the conventional deep shaft process, the ascending unit 13 and the descending unit 12 of the deep reservoir 2a may be provided with, for example, an aeration device or a circulation pump at the upper part of the ascending channel 13 to form an upflow and a downflow. it can. The CO 2 supplied to the descending portion 12 of the deep reservoir 2a is guided to the bottom of the reservoir 2a by the descending flow and melts in water by water pressure to dissolve the calcium block C. A part of the calcium solution K containing bicarbonate ions and Ca 2+ dissolved in water is combined with the organic waste A that is not dissolved in water by the filter 15 provided in the ascending part 13 or the precipitation tank provided in the discharge channel 14. It is separated and discharged into the deep ocean through the discharge channel 14. The released bicarbonate ions and Ca 2+ diffuse while maintaining the bicarbonate ion form due to water pressure, and are incorporated into marine organisms during the growth process, creating a new material cycle of calcium and carbon dioxide. Contribute to conservation. Instead of the ocean, the calcium solution K can be discharged into the water area 20 in an environment such as a lake or groundwater, and used for the conservation of the lake or groundwater environment.

深層式貯留槽2a内に残る有機性廃棄物Aは、上昇部13のCO2発泡化域におけるCO2の上昇力を利用して、上昇部13の頂端においてカルシウム溶解液Kと共に回収する。カルシウム溶解液Kは、地上大気圧に戻ることでCO2が分離してCaCO3が微結晶として析出するので、そのCaCO3を回収して利用することができる。CaCO3を回収した後のカルシウム溶解液Kを有機性廃棄物Aと共にバイオエネルギー回収施設9に送り、メタン発酵槽1におけるメタン発酵に供する。また必要に応じて、カルシウム溶解液K中の重炭酸イオンの一部をCO2として回収し、貯留槽2の下降部12の頂端に戻して循環させる。 The organic waste A remaining in the deep reservoir 2a is recovered together with the calcium solution K at the top end of the ascending portion 13 by using the ascending force of CO 2 in the CO 2 foaming zone of the ascending portion 13. Since the calcium solution K returns to the atmospheric pressure on the ground, CO 2 is separated and CaCO 3 is precipitated as microcrystals, so that the CaCO 3 can be recovered and used. The calcium solution K after the recovery of CaCO 3 is sent to the bioenergy recovery facility 9 together with the organic waste A, and used for methane fermentation in the methane fermentation tank 1. If necessary, a part of the bicarbonate ions in the calcium solution K is recovered as CO 2 and returned to the top end of the descending portion 12 of the storage tank 2 and circulated.

例えば、深層式貯留槽2aを大型発電所で発生する貝類廃棄物の1ヶ月〜1年分を貯留できる大きさとし、上昇部13の頂端からの回収量に応じて深層式貯留槽2aの底端に消化液G又は処理水Wを供給することにより、深層式貯留槽2a内で貝類廃棄物を1ヶ月〜1年間貯留して貝殻を溶解する。有機性廃棄物A等が深層式貯留槽2aの底部に沈降して堆積した場合は、逆洗用ノズル17aを介してCO2を貯留槽2aの底部に激しく噴出させることで、底部に沈降した有機性廃棄物A等を上昇流に戻して回収する。 For example, the deep storage tank 2a is sized to store one month to one year of shellfish waste generated at a large power plant, and the bottom end of the deep storage tank 2a according to the amount recovered from the top of the ascending section 13 The digestive juice G or treated water W is supplied to the deep-sea storage tank 2a to store the shellfish waste for 1 month to 1 year and dissolve the shell. When organic waste A or the like settles and accumulates at the bottom of the deep reservoir 2a, it sinks to the bottom by vigorously ejecting CO 2 to the bottom of the reservoir 2a via the backwash nozzle 17a. Return organic waste A etc. to the upward flow and collect it.

図4は、深層式貯留槽2aの上昇部13の頂端近傍にメタン発酵微生物の固定床担体27を設けてメタン発酵槽1とし、深層式貯留槽2aとメタン発酵槽1とを一体的に組み合わせ、上昇部13の頂端近傍において有機性廃棄物AをバイオガスGと消化液Aとに分解する実施例を示す。固定床担体27は、従来のメタン発酵槽1内に設置するものと同様のものとすることができる。   FIG. 4 shows a methane fermentation tank 1 provided with a fixed bed carrier 27 for methane fermentation microorganisms in the vicinity of the top of the ascending portion 13 of the deep reservoir 2a. The deep reservoir 2a and the methane fermentation tank 1 are combined together. An embodiment in which the organic waste A is decomposed into biogas G and digestive fluid A in the vicinity of the top end of the rising portion 13 will be described. The fixed bed carrier 27 can be the same as that installed in the conventional methane fermentation tank 1.

図示例では、メタン発酵微生物の固定床担体27の下方に上昇部13の中央部及び外周部で気泡化したCO2の回収装置26を設け、回収装置26で気泡を回収すると共に回収装置26を通り抜けたカルシウム溶解液K及び有機性廃棄物Aを固定床担体27に導入している。好ましくは、固定床担体27の下方に希釈用及びpH調整用の注入路19を設け、固定床担体27の上方の消化液D又は二次処理施設8からの処理水Wを注入路19経由で固定床担体27の下方に注入することにより、固定床担体27に導入するカルシウム溶解液K中の有機物濃度及びpHを調整する。 In the illustrated example, a CO 2 recovery device 26 which is bubbled at the central portion and the outer peripheral portion of the ascending portion 13 is provided below the fixed bed carrier 27 of the methane fermentation microorganisms, and the recovery device 26 collects the bubbles and the recovery device 26. The calcium solution K and the organic waste A that have passed through are introduced into the fixed bed carrier 27. Preferably, an injection path 19 for dilution and pH adjustment is provided below the fixed bed carrier 27, and the digested liquid D above the fixed bed carrier 27 or the treated water W from the secondary treatment facility 8 is passed through the injection path 19. By injecting below the fixed bed carrier 27, the organic substance concentration and pH in the calcium solution K introduced into the fixed bed carrier 27 are adjusted.

更に、メタン発酵微生物の固定床担体27の上方にバイオガス回収装置28を設け、固定床担体27において発生したバイオガスGを回収してエネルギー変換装置4に送る。同図のように深層式貯留槽2aの上昇部13の頂端に固定床担体27を設けることにより、貝殻の可溶化処理と貝肉のメタン発酵処理とを並行して行い、カルシウム塊Cを含む有機性廃棄物Aの一層効率的な処理が期待できる。   Further, a biogas recovery device 28 is provided above the fixed bed carrier 27 of methane fermentation microorganisms, and the biogas G generated in the fixed bed carrier 27 is recovered and sent to the energy conversion device 4. As shown in the figure, by providing a fixed bed carrier 27 at the top end of the ascending portion 13 of the deep reservoir 2a, shell solubilization treatment and shellfish methane fermentation treatment are performed in parallel, including calcium clot C. More efficient treatment of organic waste A can be expected.

以上、カルシウム塊Cを含む有機性廃棄物Aの処理方法について説明したが、本発明の処理システムを廃コンクリート等のカルシウム塊Cの処理に適用することも考えられる。すなわち、廃コンクリート塊を取り入れて溶解する貯留槽2とメタン発酵槽1とを併設し、メタン発酵槽1で発生したバイオガスG中のCO2及び消化液Gを貯留槽2に供給して廃コンクリートを溶解する。例えば、図3の深層式貯留槽2aにおける下降部12の頂端に廃コンクリート塊を投入し、深層式貯留槽2aの底端にメタン発酵槽1で発生したバイオガスG中のCO2及び消化液Gを供給する。メタン発酵槽1から排出されるCO2及び消化液Dを用いて廃コンクリート塊を溶解することにより、バイオマスである有機性廃棄物Aの多段階利用によって廃コンクリートを処理することができ、地球環境に調和した省資源型・省エネルギー型の廃コンクリートの処理システムとすることができる。 As mentioned above, although the processing method of the organic waste A containing the calcium lump C was demonstrated, it is also considered that the processing system of this invention is applied to the process of calcium lump C, such as waste concrete. That is, a storage tank 2 that takes in and dissolves waste concrete blocks and a methane fermentation tank 1 are provided side by side, and CO 2 and digestive fluid G in the biogas G generated in the methane fermentation tank 1 are supplied to the storage tank 2 and discarded. Melt concrete. For example, waste concrete lump is thrown into the top end of the descending part 12 in the deep reservoir 2a of FIG. 3, and CO 2 in the biogas G generated in the methane fermentation tank 1 and digestive fluid at the bottom of the deep reservoir 2a. G is supplied. By dissolving the waste concrete lump using CO 2 and digestive fluid D discharged from the methane fermentation tank 1, the waste concrete can be treated by multi-stage use of the organic waste A that is biomass, and the global environment It can be a resource-saving and energy-saving waste concrete treatment system in harmony with the environment.

本発明の一実施例の説明図である。It is explanatory drawing of one Example of this invention. 本発明の他の実施例の説明図である。It is explanatory drawing of the other Example of this invention. 深層式貯留槽を用いた本発明の実施例の説明図である。It is explanatory drawing of the Example of this invention using a deep type storage tank. 深層式貯留槽内にメタン発酵槽を組み込んだ本発明の実施例の説明図である。It is explanatory drawing of the Example of this invention which incorporated the methane fermentation tank in the deep-layer type storage tank. 水産加工施設の貝類廃棄物の処理に本発明を適用した実施例の説明図である。It is explanatory drawing of the Example which applied this invention to the processing of the shellfish waste of a fishery processing facility. 大型発電所の貝類廃棄物の処理に本発明を適用した実施例の説明図である。It is explanatory drawing of the Example which applied this invention to the processing of the shellfish waste of a large sized power station. 生ごみ処理施設におけるカルシウム塊を含む有機性廃棄物の処理に本発明を適用した実施例の説明図である。It is explanatory drawing of the Example which applied this invention to the process of the organic waste containing the calcium lump in a garbage disposal facility. 従来の貝類廃棄物の処理方法の説明図である。It is explanatory drawing of the processing method of the conventional shellfish waste.

符号の説明Explanation of symbols

1…メタン発酵槽(バイオリアクター)
2…貯留槽(貯留ピット) 2a…深層式貯留槽
3…メタン濃縮装置 4…エネルギー変換装置(発電装置)
5…撹拌装置 6…分別機
7…ガスホルダー 8…二次処理施設
9…バイオエネルギー回収施設
10…周壁 11…隔壁
12…下降部 13…上昇部
14…放流路 15…フィルター
17…ガス輸送路 18…ガス分岐路
19…液輸送路
20…海 21…地盤
22…発電所 23…取水施設
24…取水路 25…排水路
26…二酸化炭素回収装置 27…固定床担体
28…バイオガス回収装置 29…注入路
31…メタン発酵処理装置 32…高圧分別機
32a…加圧室 32b…間隙
32c…シリンダー 32d…上部ピストン
32e…下部ピストン 32f…凹部
32g…油圧ユニット 32h…流出口
32i…払出し口 32j…払出しピストン
32k…貝投入口 33…貝殻洗浄ユニット
33a…洗浄タンク 33b…固液分離装置
33c…粉砕貝殻循環ポンプ 33d…振動ふるい
33e…洗浄水ポンプ
34…メタン発酵槽 35…粉砕器
36…スラリータンク 37…スラリー供給ポンプ
38…スラリー循環ポンプ 39…二次処理槽
40…浸漬膜 41…曝気用ブロワー
42…処理水ポンプ 43…脱硫器
44…ガスホルダー 45…洗浄ホッパー
A…有機性廃棄物(貝肉ペースト)
A´…残存貝肉溶液
C…カルシウム塊(粉砕貝殻)
D…消化液 E…エネルギー
G…バイオガス K…カルシウム溶解液
S…海水 W…処理水
1 ... Methane fermentation tank (bioreactor)
2 ... Storage tank (storage pit) 2a ... Deep-layer storage tank 3 ... Methane concentrator 4 ... Energy converter (power generator)
5 ... Agitator 6 ... Separator 7 ... Gas holder 8 ... Secondary treatment facility 9 ... Bio-energy recovery facility
10 ... Peripheral wall 11 ... Bulkhead
12 ... Descent part 13 ... Rising part
14 ... Release channel 15 ... Filter
17 ... Gas transport path 18 ... Gas branch path
19 ... Liquid transport route
20 ... Sea 21 ... Ground
22… Power plant 23… Intake facility
24… Intake channel 25… Drain channel
26 ... CO2 recovery device 27 ... Fixed bed carrier
28… Biogas recovery device 29… Injection path
31… Methane fermentation treatment equipment 32… High pressure sorter
32a… Pressure chamber 32b… Gap
32c… Cylinder 32d… Upper piston
32e… Lower piston 32f… Recess
32g… Hydraulic unit 32h… Outlet
32i ... Payout port 32j ... Payout piston
32k ... Shell inlet 33 ... Shell cleaning unit
33a… Washing tank 33b… Solid-liquid separator
33c… Crushing shell circulation pump 33d… Vibrating sieve
33e… Washing water pump
34… Methane fermentation tank 35… Crusher
36… Slurry tank 37… Slurry supply pump
38 ... Slurry circulation pump 39 ... Secondary treatment tank
40… Immersion membrane 41… Aeration blower
42 ... treated water pump 43 ... desulfurizer
44 ... Gas holder 45 ... Cleaning hopper A ... Organic waste (shellfish paste)
A '... residual shellfish solution C ... calcium lump (crushed shell)
D ... Digestive fluid E ... Energy G ... Biogas K ... Calcium solution S ... Seawater W ... Treated water

Claims (6)

カルシウム塊を含む有機性廃棄物からカルシウム塊を分別し、分別後の有機性廃棄物をメタン発酵によりバイオガスと消化液とに分解し、分別したカルシウム塊をバイオガス中の二酸化炭素の高圧水溶液及び/又は消化液と共に貯留槽に投入して溶解してなるカルシウム塊を含む有機性廃棄物の処理システム。   Separating calcium lump from organic waste containing calcium lump, separating the organic waste after separation into biogas and digestive fluid by methane fermentation, and separating the separated calcium lump into high pressure aqueous solution of carbon dioxide in biogas And / or an organic waste treatment system containing calcium lumps that are dissolved in a storage tank together with a digestive fluid. カルシウム塊を含む有機性廃棄物を二酸化炭素の高圧水溶液と共に貯留槽に投入してカルシウム塊を溶解し、溶解後に残る有機性廃棄物をメタン発酵によりバイオガスと消化液とに分解し、前記バイオガス中の二酸化炭素及び/又は消化液を貯留槽に戻してなるカルシウム塊を含む有機性廃棄物の処理システム。   An organic waste containing calcium lump is put into a storage tank together with a high-pressure aqueous solution of carbon dioxide to dissolve the calcium lump, and the organic waste remaining after dissolution is decomposed into biogas and digestive juice by methane fermentation, An organic waste treatment system containing calcium lumps obtained by returning carbon dioxide and / or digestive fluid in gas to a storage tank. 請求項1又は2のシステムにおいて、前記貯留槽を底端において二酸化炭素が水に溶ける圧力が得られ且つ鉛直隔壁により底端で連通した下降部と上昇部とに仕切られた深層式貯留槽とし、前記有機性廃棄物から分別したカルシウム塊又はカルシウム塊を含む有機性廃棄物を下降部の頂端に投入し、前記バイオガス中の二酸化炭素及び/又は消化液を底端近傍に供給してなるカルシウム塊を含む有機性廃棄物の処理システム。   The system according to claim 1 or 2, wherein the storage tank is a deep-type storage tank in which a pressure at which carbon dioxide dissolves in water is obtained at the bottom end and is partitioned into a descending part and a rising part communicated at the bottom end by a vertical partition. The calcium lump separated from the organic waste or the organic waste containing the calcium lump is put into the top of the descending part, and carbon dioxide and / or digestive juice in the biogas is supplied near the bottom end. An organic waste treatment system containing calcium lumps. 請求項3のシステムにおいて、前記深層式貯留槽の上昇部に環境中の水域と連通する放流路を設け、前記カルシウム塊の溶解液を環境中の水域に放流してなるカルシウム塊を含む有機性廃棄物の処理システム。   The system according to claim 3, wherein a release channel communicating with a water area in the environment is provided at an ascending portion of the deep reservoir, and the organic substance contains a calcium mass formed by discharging the solution of the calcium mass to the water area in the environment. Waste treatment system. 請求項3又は4のシステムにおいて、前記深層式貯留槽の上昇部の頂端近傍にメタン発酵槽を設け、前記溶解後に残る有機性廃棄物を上昇部の頂端近傍においてバイオガスと消化液とに分解してなるカルシウム塊を含む有機性廃棄物の処理システム。   The system according to claim 3 or 4, wherein a methane fermentation tank is provided in the vicinity of the top end of the rising portion of the deep-layer storage tank, and the organic waste remaining after the dissolution is decomposed into biogas and digestive fluid in the vicinity of the top end of the rising portion. Organic waste processing system containing calcium lumps. 請求項1から5の何れかのシステムにおいて、前記カルシウム塊を含む有機性廃棄物を貝類廃棄物としてなるカルシウム塊を含む有機性廃棄物の処理システム。   6. The system for treating an organic waste containing a calcium lump according to claim 1, wherein the organic waste containing the calcium lump is shellfish waste.
JP2005186029A 2005-06-27 2005-06-27 Treatment system for organic waste containing calcium lumps Expired - Fee Related JP4666606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186029A JP4666606B2 (en) 2005-06-27 2005-06-27 Treatment system for organic waste containing calcium lumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186029A JP4666606B2 (en) 2005-06-27 2005-06-27 Treatment system for organic waste containing calcium lumps

Publications (2)

Publication Number Publication Date
JP2007000821A true JP2007000821A (en) 2007-01-11
JP4666606B2 JP4666606B2 (en) 2011-04-06

Family

ID=37686898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186029A Expired - Fee Related JP4666606B2 (en) 2005-06-27 2005-06-27 Treatment system for organic waste containing calcium lumps

Country Status (1)

Country Link
JP (1) JP4666606B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057525A (en) * 2014-09-11 2016-04-21 富士ゼロックス株式会社 Semiconductive film, intermediate transfer body, sheet conveying belt, and image forming apparatus
JP2017185453A (en) * 2016-04-06 2017-10-12 中越パルプ工業株式会社 Method for producing biomass resource having reduced calcium content from biomass resource and method for producing calcium carbonate from biomass resource
KR102598921B1 (en) * 2023-01-09 2023-11-06 주식회사 한국 종합엔지니어링 Production method and production system for high purity bio methane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136964A (en) * 1974-04-17 1975-10-30
JPH0857462A (en) * 1994-08-23 1996-03-05 Kankyo Project Kk Method and apparatus for separating and treating shell meat and sheet of organic solid such as shellfish or the like
JPH09234037A (en) * 1996-03-01 1997-09-09 Hideo Terajima Solution of shell and its production
JPH09253618A (en) * 1996-03-19 1997-09-30 Kankyo Project Kk Treatment of animal-and plant-derived organic solid matter and apparatus therefor
JP2000033358A (en) * 1998-07-17 2000-02-02 Kajima Corp Methane fermentation treatment apparatus for shellfish
JP2004313846A (en) * 2003-04-11 2004-11-11 Ishikawajima Harima Heavy Ind Co Ltd Solubilization treatment method for organic waste
JP2005111438A (en) * 2003-10-10 2005-04-28 National Institute Of Advanced Industrial & Technology Formation of clean gas from biomass waste containing gypsum

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136964A (en) * 1974-04-17 1975-10-30
JPH0857462A (en) * 1994-08-23 1996-03-05 Kankyo Project Kk Method and apparatus for separating and treating shell meat and sheet of organic solid such as shellfish or the like
JPH09234037A (en) * 1996-03-01 1997-09-09 Hideo Terajima Solution of shell and its production
JPH09253618A (en) * 1996-03-19 1997-09-30 Kankyo Project Kk Treatment of animal-and plant-derived organic solid matter and apparatus therefor
JP2000033358A (en) * 1998-07-17 2000-02-02 Kajima Corp Methane fermentation treatment apparatus for shellfish
JP2004313846A (en) * 2003-04-11 2004-11-11 Ishikawajima Harima Heavy Ind Co Ltd Solubilization treatment method for organic waste
JP2005111438A (en) * 2003-10-10 2005-04-28 National Institute Of Advanced Industrial & Technology Formation of clean gas from biomass waste containing gypsum

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057525A (en) * 2014-09-11 2016-04-21 富士ゼロックス株式会社 Semiconductive film, intermediate transfer body, sheet conveying belt, and image forming apparatus
JP2017185453A (en) * 2016-04-06 2017-10-12 中越パルプ工業株式会社 Method for producing biomass resource having reduced calcium content from biomass resource and method for producing calcium carbonate from biomass resource
KR102598921B1 (en) * 2023-01-09 2023-11-06 주식회사 한국 종합엔지니어링 Production method and production system for high purity bio methane

Also Published As

Publication number Publication date
JP4666606B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP4186523B2 (en) Waste water purification device and waste water purification system
US11104617B2 (en) Phosphorus extraction and recovery system (PEARS)
CN102180575B (en) Processing method for centralized treatment and reclamation of oil-containing sludge
CN104801528B (en) Domestic waste organic treatment method
CN101830585A (en) Acid mine water treatment system
CN205473190U (en) Pig slaughtering and meat processing waste water reduce discharging regeneration system
CN206153274U (en) Flying dust innocent treatment resource regeneration device
KR101417277B1 (en) Device to cohere and to dispose of wastes water
WO2007053110A1 (en) Treatment of wastewater
JP2002086111A (en) Method of disposing of organic waste
JP4666606B2 (en) Treatment system for organic waste containing calcium lumps
KR101143897B1 (en) Methane fermenter using seawater
KR100644758B1 (en) Destruction process of excess activated sludge comes from sewage, waste water treatment and equipment thereof
JP3797296B2 (en) Purification method of bottom sludge
CN102173534A (en) Method for treating polytetrahydrofuran (PEMEG) production wastewater
JP2016221458A (en) Fertilization volume reduction system of agricultural-forestry resources
KR101309422B1 (en) Pre-treatment apparatus for anaerobic digestion of livestock excretions
JP3973294B2 (en) Shell Methane Fermentation Processing Equipment
GB1587205A (en) Process for the treatment disinfection neutralisation and/or detoxification of heavily polluted waste waters
KR102531247B1 (en) Seashell resource recycling method and equipment
JP2005205293A (en) Shellfish treating method and shellfish treatment apparatus
JP5519066B2 (en) Sludge treatment apparatus and sludge treatment system
JP3797297B2 (en) Purification method of bottom sludge
JPH11169884A (en) Hydrogen sulfide using chemical synthesis-dependent organism and treatment dissolved methane
JP2007160130A (en) Treatment method and apparatus of fouling such as shellfish

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4666606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees