JP2007000758A - Method for treating organic substance - Google Patents

Method for treating organic substance Download PDF

Info

Publication number
JP2007000758A
JP2007000758A JP2005183014A JP2005183014A JP2007000758A JP 2007000758 A JP2007000758 A JP 2007000758A JP 2005183014 A JP2005183014 A JP 2005183014A JP 2005183014 A JP2005183014 A JP 2005183014A JP 2007000758 A JP2007000758 A JP 2007000758A
Authority
JP
Japan
Prior art keywords
aeration
tank
aeration tank
treatment
bod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005183014A
Other languages
Japanese (ja)
Inventor
Shinji Hiroe
愼治 廣江
Shigeki Minami
茂樹 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO KANKYO GIJUTSU KENKYUSHO
TOYO KANKYO GIJUTSU KENKYUSHO KK
Original Assignee
TOYO KANKYO GIJUTSU KENKYUSHO
TOYO KANKYO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO KANKYO GIJUTSU KENKYUSHO, TOYO KANKYO GIJUTSU KENKYUSHO KK filed Critical TOYO KANKYO GIJUTSU KENKYUSHO
Priority to JP2005183014A priority Critical patent/JP2007000758A/en
Publication of JP2007000758A publication Critical patent/JP2007000758A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating an organic substance enabling an aeration not intermittent but continuous in treatment facilities which makes an aeration tank serve as a role of a denitrification tank and requires no separate denitrification tank. <P>SOLUTION: BOD of the organic substance and nitrogen in the aeration tank 12 are treated by aerating from an air diffuser pipe 14 mounted on an area having 30 to 70% of the bottom area and/or the volume of the aeration tank 12, preferably making the solution of this area aerobic having a dissolved oxygen concentration (DO) of 2 mg/L or more and preferably making the remaining area of the aeration tank 12 anaerobic having a dissolved oxygen concentration (DO) of 0.1 mg/L or less without aeration. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機物の処理方法に関し、更に詳述すれば、食品工場廃液、生ごみ、焼酎廃液、家畜糞尿等の有機性廃棄物の処理方法に関する。   More specifically, the present invention relates to a method for treating organic waste such as food factory waste liquid, garbage, shochu waste liquid, and livestock manure.

近年、産業が急速に発展し、都市へ人口が集中すると共に、生活様式や農業形態が変化してきた。それに伴って、廃棄物は多量に、且つ、集中的に発生するようになった。   In recent years, the industry has developed rapidly, the population has been concentrated in the city, and lifestyles and agricultural forms have changed. Accordingly, a large amount of waste is generated intensively.

産業や生活から発生する排水や廃棄物の発生量が自然の浄化力を超えたとき、人間の健康及び環境保全上の種々の問題が生じ、そのために排水処理や廃棄物処理を行うようになった。例えば、食品工場廃液、焼酎廃液、家畜糞尿等の有機性廃棄物を含む排水処理は、微生物による生分解処理が一般的に行われている。   When the amount of wastewater and waste generated from industry and daily life exceeds the natural purifying power, various problems in human health and environmental conservation occur, and so wastewater treatment and waste disposal are started. It was. For example, wastewater treatment including organic waste such as food factory waste liquor, shochu waste liquor, and livestock manure is generally biodegraded by microorganisms.

上記の有機性廃棄物を含む排水処理を微生物によって行う代表的処理方法として、活性汚泥法がある(例えば、特許文献1参照)。   There is an activated sludge method as a typical treatment method for performing wastewater treatment including the organic waste by using microorganisms (see, for example, Patent Document 1).

排水中に含まれる汚濁負荷のうち、窒素の処理は次に示す(a)及び(b)等の処理方式がある。
(a) 曝気槽において好気状態でアンモニアを硝化し、硝化液を脱窒槽に返送し、BODを含む溶液(原水でもよい)と混合して嫌気状態にすることで脱窒させる。
(b) 曝気槽を時間的に間歇曝気することで硝化脱窒を行う。
これらの処理方式(a)及び(b)の典型的な処理フロー例は、図3の通りである。
Among the pollutant loads contained in the waste water, nitrogen treatment includes the following treatment methods (a) and (b).
(a) Ammonia is nitrified in an aerobic state in an aeration tank, the nitrification solution is returned to the denitrification tank, and mixed with a solution containing BOD (or raw water) to be anaerobically denitrified.
(b) Nitrification and denitrification are performed by intermittently aeration of the aeration tank over time.
A typical processing flow example of these processing methods (a) and (b) is as shown in FIG.

当然の事ながら、脱窒槽、曝気槽は、BODのみならず窒素を処理できる槽容量、曝気量(酸素供給量)を備えている必要がある。   As a matter of course, the denitrification tank and the aeration tank need to have a tank capacity and an aeration amount (oxygen supply amount) capable of treating not only BOD but also nitrogen.

この窒素処理では、有機物中に含まれる窒素成分を微生物によりアンモニアに変換し(そもそもアンモニアとして存在しているものはそのままで)、更に好気条件下で微生物により亜硝酸、硝酸に変換(硝化)したうえ、通性嫌気或は嫌気状態のBOD存在下で微生物により脱窒させる。   In this nitrogen treatment, the nitrogen component contained in organic matter is converted to ammonia by microorganisms (what is present as ammonia in the first place), and further converted to nitrous acid and nitric acid by microorganisms under aerobic conditions (nitrification) In addition, it is denitrified by microorganisms in the presence of facultative anaerobic or anaerobic BOD.

図3の処理フロー例(a)では、原水槽22に汚濁原水が受入れられ貯留される。この原水は調整槽24を経由して脱窒槽26に送られる。調整槽24は流量の変動を調整するために設けられている。脱窒槽26では調整槽24から移送された溶液と曝気槽28でアンモニアを硝化した溶液(曝気槽28から直接返送される溶液でもよく、曝気槽28から沈澱槽30に移送され、この沈澱槽30から返送される溶液でもよい)が移送・混合され、主として調整槽24から移送されるBOD存在下で硝化された窒素成分の脱窒が行われる。   In the processing flow example (a) of FIG. 3, the raw contaminated water is received and stored in the raw water tank 22. This raw water is sent to the denitrification tank 26 via the adjustment tank 24. The adjustment tank 24 is provided to adjust the flow rate fluctuation. In the denitrification tank 26, a solution transferred from the adjustment tank 24 and a solution obtained by nitrifying ammonia in the aeration tank 28 (may be a solution returned directly from the aeration tank 28, transferred from the aeration tank 28 to the precipitation tank 30, and this precipitation tank 30. In this case, the nitrified nitrogen component is denitrified mainly in the presence of BOD transferred from the adjustment tank 24.

脱窒槽26で脱窒処理された溶液は曝気槽28に送られる。曝気槽28では連続して曝気処理(硝化処理)が行われる。曝気処理された溶液は沈澱槽30に送られ、汚泥溶液と放流可能な上澄液とに分離される。沈澱槽30中の汚泥溶液の一部と、曝気槽28の溶液の一部は、脱窒槽26に返送される。   The solution denitrified in the denitrification tank 26 is sent to the aeration tank 28. In the aeration tank 28, aeration processing (nitrification processing) is continuously performed. The aerated solution is sent to the precipitation tank 30 and separated into a sludge solution and a dischargeable supernatant. Part of the sludge solution in the precipitation tank 30 and part of the solution in the aeration tank 28 are returned to the denitrification tank 26.

図3の処理フロー例(b)は、原水槽32、調整槽34までは処理フロー例(a)と同様である。調整槽34の溶液は、処理フロー例(a)とは異なり脱窒槽を経ずに曝気槽36に送られる。   The processing flow example (b) in FIG. 3 is the same as the processing flow example (a) up to the raw water tank 32 and the adjustment tank 34. Unlike the processing flow example (a), the solution in the adjustment tank 34 is sent to the aeration tank 36 without passing through the denitrification tank.

曝気槽36では間歇曝気処理(曝気運転時はBODを生分解処理すると共に窒素成分を硝化処理する曝気工程、曝気停止時は窒素成分を通性嫌気或は嫌気状態のBOD存在下で微生物により脱窒処理する脱窒工程)が行われる。   In the aeration tank 36, an intermittent aeration process (an aeration process in which BOD is biodegraded and a nitrification process is performed during aeration operation, and a nitrogen component is desorbed by microorganisms in the presence of BOD in an anaerobic or anaerobic state when aeration is stopped). A denitrification step of nitriding).

間歇曝気処理された溶液は沈澱槽38に送られ、汚泥溶液と放流可能な上澄液とに分離される。沈澱槽38中の汚泥溶液の一部が曝気槽36に返送されることはあるが、これは、窒素成分の硝化脱窒処理を目的とするものではなく、曝気槽36内の活性汚泥量を調節し、活性汚泥処理がつつがなく行われることを目的とするものである。   The solution subjected to the intermittent aeration treatment is sent to the precipitation tank 38 and separated into a sludge solution and a supernatant that can be discharged. A part of the sludge solution in the sedimentation tank 38 may be returned to the aeration tank 36, but this is not intended for the nitrification / denitrification treatment of the nitrogen component, and the amount of activated sludge in the aeration tank 36 is reduced. The purpose is to adjust and activate sludge treatment without hesitation.

窒素処理に関して、処理フロー方式が処理フロー例(a)か処理フロー例(b)かの如何にかかわらず必要条件は、曝気工程においてBOD酸化及び窒素硝化に必要な酸素量を供給すること、及び脱窒工程においてBOD存在下で嫌気又は通性嫌気状態を確保することである。   Regarding the nitrogen treatment, regardless of whether the treatment flow method is the treatment flow example (a) or the treatment flow example (b), the necessary conditions are to supply the oxygen amount necessary for BOD oxidation and nitrogen nitrification in the aeration process, and In the denitrification step, an anaerobic or facultative anaerobic state is ensured in the presence of BOD.

この必要条件から、間歇曝気を利用する場合即ち処理フロー例(b)の場合の通性嫌気又は嫌気状態に置く時間(曝気停止時間)は、曝気後の曝気槽内溶液のアンモニア、亜硝酸或は硝酸の濃度、同時に存在するBOD濃度に依存する。又、処理フロー例(a)の場合も、脱窒槽での有効滞留時間も原則的には処理フロー例(b)と同じ考えで設計できる。   From this requirement, when using intermittent aeration, that is, in the case of the processing flow example (b), the time for placing in the facultative anaerobic state or anaerobic state (aeration stop time) is the ammonia, nitrous acid or the solution in the aeration tank after aeration. Depends on the concentration of nitric acid and the concentration of BOD present at the same time. Also in the case of the processing flow example (a), the effective residence time in the denitrification tank can be designed in principle with the same idea as the processing flow example (b).

しかし、この設計に際しては以下のような問題がある。   However, this design has the following problems.

処理フロー例(a)では、脱窒槽が必須であり、全体の設備が大掛りになる。   In the processing flow example (a), a denitrification tank is essential, and the entire equipment becomes large.

他方、処理フロー例(b)は間歇曝気をするためBOD酸化・硝化に必要な曝気時間が少なくなる。その少なくなった分、曝気量を処理フロー例(a)に比べて大きくする必要がある(亜硝酸から脱窒させるか、硝酸から脱窒させるか等の細部は違うが硝化に必要な酸素量に大差はない)。その結果、処理フロー例(b)においてはブロアーの電気容量が高くなるため、契約電力を高い電力値(高い契約料金)に設定せざるを得なくなるので、電力使用の面から効率が悪い。但し、電力使用料金は変らない。
特開2002−224696号公報(段落番号[0002]〜[0011])
On the other hand, in the process flow example (b), since aeration is performed intermittently, the aeration time required for BOD oxidation / nitrification is reduced. It is necessary to increase the amount of aeration in comparison with the processing flow example (a) (the amount of oxygen required for nitrification is different although details such as denitrification from nitrous acid or denitrification from nitric acid are different) There is no big difference). As a result, in the processing flow example (b), since the electric capacity of the blower becomes high, the contract power has to be set to a high power value (high contract fee), so the efficiency is poor from the viewpoint of power use. However, the electricity usage fee does not change.
JP 2002-224696A (paragraph numbers [0002] to [0011])

更に重要な事は、畜産排水処理に於ては窒素処理が必須課題になっていないため[例えば、畜産環境アドバイザー養成研修会資料(畜産環境整備機構、平成12年)第87頁参照]、窒素処理に必要な酸素量を含ませていない。しかし、数年後には環境省の排水基準[TN(全窒素濃度)<100mg/L]を満たすことが義務づけられている。畜産環境整備機構はBOD容積負荷を0.5kgBOD/m3以下にするように指導している[例えば、畜産環境アドバイザー養成研修会資料(畜産環境整備機構、平成12年)第86頁参照]。 More importantly, nitrogen treatment is not an essential issue in livestock wastewater treatment [see, for example, materials for training livestock environment advisor training (stock raising environment management organization, 2000), page 87], nitrogen The amount of oxygen required for processing is not included. However, after several years, it is obliged to meet the wastewater standard [TN (total nitrogen concentration) <100 mg / L] of the Ministry of the Environment. The Livestock Environment Management Organization is instructing to reduce the BOD volumetric load to 0.5 kg BOD / m 3 or less [see, for example, the material of the Livestock Environment Advisor Training Workshop (Livestock Environment Management Organization, 2000), page 86].

上記課題を解決するため本発明者等は種々検討しているうち、有機物の窒素成分を処理するに際し、曝気槽の一部を連続曝気し好気状態にして窒素の硝化を行い、残部を曝気せず嫌気又は通性嫌気にすることで脱窒を行うことにより、以下の利点を有することを知得し、本発明を完成するに到った。   In order to solve the above-mentioned problems, the present inventors have made various studies, and when treating the nitrogen component of the organic matter, a part of the aeration tank is continuously aerated to make it aerobic to nitrify nitrogen, and the remainder is aerated. By performing denitrification by making it anaerobic or facultative anaerobic, it was found that the following advantages were obtained, and the present invention was completed.

即ち、処理フロー例(a)と比較すると曝気槽が脱窒槽の役割も兼ね備えているので、別個に脱窒槽が不必要であること(設備費の削減)、処理フロー例(b)と比較すると使用電気料金は変わらないもののブロアーの電気容量を約半分に出来るため契約料金を減らす事が出来ること(契約電気料金の削減)、並びに、処理フロー例(b)での酸素供給に必要なブロアー・散気管システムと比較するとブロアー・散気管システムを半分に削減することが出来ること(設備費の削減)が本発明の利点となる。   That is, as compared with the processing flow example (a), the aeration tank also has the role of a denitrification tank, so that a separate denitrification tank is unnecessary (reduction of equipment costs), and compared with the processing flow example (b). Although the electricity charge does not change, the electric charge of the blower can be reduced to about half, so the contract charge can be reduced (reduction of the contract electric charge), and the blower required for oxygen supply in the processing flow example (b) The advantage of the present invention is that the blower / diffuser system can be reduced by half compared to the diffuser system (reduction of equipment costs).

なお、窒素処理に必要な硝化・脱窒槽の容量は、一般的に畜産環境整備機構指針のBOD容積負荷から求められる曝気槽容量より少ない。このことから、将来の窒素処理に対応するに際し、本発明の方法を採用することにより曝気槽の容量を変えることなく対応できることを見出した。   The capacity of the nitrification / denitrification tank required for nitrogen treatment is generally smaller than the aeration tank capacity required from the BOD volumetric load of the guidelines for livestock environment maintenance. From this, it has been found that it is possible to cope with future nitrogen treatment without changing the capacity of the aeration tank by adopting the method of the present invention.

畜産環境整備機構の指針では、曝気量を求める際の散気効率(空気中の酸素の溶解率)を6%としている。そこで、散気効率のよい散気管を使用すれば、曝気容量を変えることなく窒素処理に必要な酸素を供給することも可能であることを見出した。   According to the guidelines of the Livestock Environment Management Organization, the efficiency of aeration (the dissolution rate of oxygen in the air) when determining the amount of aeration is 6%. Therefore, it has been found that if a diffuser tube with good aeration efficiency is used, oxygen necessary for nitrogen treatment can be supplied without changing the aeration capacity.

これらの事から、本発明の方法は、将来の窒素処理規制に対応できる極めて簡単な改造方式であることを本発明者等は知得した。   From these facts, the present inventors have learned that the method of the present invention is a very simple modification method that can cope with future nitrogen treatment regulations.

よって、本発明の目的とするところは、上記課題を解決した有機物の処理方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for treating an organic substance that solves the above-described problems.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 曝気槽内を好気状態領域と嫌気状態領域とに分割し、好気状態領域において有機物のBOD処理及び硝化処理を行い、嫌気状態領域において脱窒処理を行い、且つ、好気状態領域の曝気槽内底面積割合及び/又は容量割合が30〜70%である有機物の処理方法。   [1] The inside of the aeration tank is divided into an aerobic state region and an anaerobic state region, BOD treatment and nitrification treatment of organic matter are performed in the aerobic state region, denitrification treatment is performed in the anaerobic state region, and an aerobic state The processing method of the organic substance whose aeration tank inner bottom area ratio and / or capacity | capacitance ratio of an area | region are 30 to 70%.

〔2〕 分割領域数が2以上である〔1〕に記載の有機物の処理方法。   [2] The organic material processing method according to [1], wherein the number of divided regions is 2 or more.

〔3〕 好気状態領域の溶存酸素濃度(DO)が2mg/L以上であり、嫌気状態領域の溶存酸素濃度(DO)が0.1mg/L以下である〔1〕に記載の有機物の処理方法。   [3] The treatment of organic matter according to [1], wherein the dissolved oxygen concentration (DO) in the aerobic state region is 2 mg / L or more and the dissolved oxygen concentration (DO) in the anaerobic region is 0.1 mg / L or less. Method.

本発明の方法によれば、曝気槽内を好気状態領域と嫌気状態領域とに分け、それぞれ曝気工程、脱窒工程を行っているので、別個に脱窒槽を必要とせず処理設備を簡素化できる。しかも、好気状態領域での曝気は間歇曝気でなく、連続した曝気が行えるので、ブロアーの電気容量を削減出来るため契約料金を減らす事ができる。また、ブロアー・散気管システムを削減することもでき、その結果、処理設備を安価で簡素にできる。   According to the method of the present invention, the inside of the aeration tank is divided into an aerobic state region and an anaerobic state region, and the aeration step and the denitrification step are performed respectively, so that the processing equipment is simplified without the need for a separate denitrification tank. it can. Moreover, since aeration in the aerobic state region is not intermittent aeration, continuous aeration can be performed, so that the electric capacity of the blower can be reduced, and the contract fee can be reduced. In addition, the blower / air diffuser system can be reduced, and as a result, the processing equipment can be made inexpensive and simple.

以下、本発明を詳細に説明する。本発明の有機物の処理方法では、曝気槽の底面積及び/又は容量の30〜70%の領域を曝気して好気状態にし、曝気槽の残りの領域を曝気しないで嫌気状態にする事により、曝気槽内の有機物のBOD・窒素を処理する。   Hereinafter, the present invention will be described in detail. In the organic matter treatment method of the present invention, the region of 30 to 70% of the bottom area and / or capacity of the aeration tank is aerated to make it anaerobic, and the remaining area of the aeration tank is made anaerobic without aeration. , Treat organic BOD and nitrogen in the aeration tank.

好気状態領域の曝気槽内底面積及び/又は容量が30〜70%の割合であることは、原水中の炭素濃度と窒素濃度との割合で決まる。当然の事ながら、好気状態領域ではBOD・窒素処理に必要な量の酸素を供給する。この必要酸素供給量の設定については公知の通常の設計条件により決めることについては論を待たない。   The ratio of the aerobic tank bottom area and / or capacity of the aerobic region in the range of 30 to 70% is determined by the ratio of the carbon concentration and the nitrogen concentration in the raw water. As a matter of course, in the aerobic region, oxygen is supplied in an amount necessary for BOD / nitrogen treatment. Regarding the setting of the necessary oxygen supply amount, it is not a matter of course that it is determined by known normal design conditions.

分割領域において好気状態と嫌気状態とが達成されることが必要で、分割領域数は2以上とすることが好ましく、2〜5とすることがより好ましく、2又は3とすることが更に好ましい。   It is necessary to achieve an aerobic state and an anaerobic state in the divided areas, and the number of divided areas is preferably 2 or more, more preferably 2 to 5, and even more preferably 2 or 3. .

本発明に用いる曝気槽としては、図1の平面断面概略図に示す既存の装置を改良した装置であって、図2の平面断面概略図に示すブロアー・散気管システムを削減した改良装置を使用することができる。この場合には処理設備を簡素化できる。   As the aeration tank used in the present invention, an apparatus that is an improvement of the existing apparatus shown in the schematic cross-sectional view of FIG. 1 and that is an improvement of the blower / aeration tube system shown in the schematic cross-sectional view of FIG. can do. In this case, the processing facility can be simplified.

以下、図1及び図2の例に沿って本発明を説明する。   Hereinafter, the present invention will be described with reference to FIGS. 1 and 2.

曝気槽2(図1)、曝気槽12(図2)は、生物処理において、汚濁負荷を好気処理する為に、空気(酸素曝気或は混合曝気)曝気を行う処理槽である。曝気槽2(図1)では、通常の曝気槽と同様に、散気管4a、4bは2系統で曝気槽2全面に配置している。前述の処理フロー例(a)、(b)で曝気を行う場合には万遍なく曝気槽を好気状態にすることができる。   The aeration tank 2 (FIG. 1) and the aeration tank 12 (FIG. 2) are treatment tanks that perform air (oxygen aeration or mixed aeration) aeration in order to aerobically treat the pollutant load in biological treatment. In the aeration tank 2 (FIG. 1), the diffuser tubes 4a and 4b are arranged on the entire surface of the aeration tank 2 in two systems, as in a normal aeration tank. When aeration is performed in the above processing flow examples (a) and (b), the aeration tank can be uniformly aerobic.

これに対し、曝気槽12(図2)では散気管14は1系統で片側(左側)に寄せていることに特徴を持つ。   In contrast, the aeration tank 12 (FIG. 2) is characterized in that the air diffuser 14 is moved to one side (left side) in one system.

図1において曝気槽2中間に点線αで示しているのは、曝気槽2における左側領域と右側領域との違いを示すための印である。しかし、従来の運転では、左側領域、右側領域とも同時に好気状態にするか、同時に嫌気又は通性嫌気状態にするかのどちらかである。   In FIG. 1, what is indicated by a dotted line α in the middle of the aeration tank 2 is a mark for showing the difference between the left side area and the right side area in the aeration tank 2. However, in the conventional driving, either the left region or the right region is simultaneously aerobic, or simultaneously anaerobic or facultative anaerobic.

図2においても同様に曝気槽12中間を点線βで示す。しかし、図1の曝気槽2と違って、図2の曝気槽12は、点線βの左側を好気状態にし、点線βの右側を嫌気又は通性嫌気状態に維持する。   In FIG. 2 as well, the middle of the aeration tank 12 is indicated by a dotted line β. However, unlike the aeration tank 2 of FIG. 1, the aeration tank 12 of FIG. 2 maintains the left side of the dotted line β in an aerobic state and maintains the right side of the dotted line β in an anaerobic or facultative anaerobic state.

散気管は空気曝気を行うにあたり、空気中の酸素を曝気槽内に充填している溶液に溶け込ませる仕掛である。散気管には種々の種類があるが、汚濁負荷を処理するに必要な酸素を供給できれば、形式等を問わない。但し、酸素溶解効率が高い方が望ましい。   The air diffuser is a mechanism for dissolving oxygen in the air into the solution filled in the aeration tank when performing air aeration. There are various types of air diffusers, but any type can be used as long as oxygen necessary for treating the pollutant load can be supplied. However, higher oxygen dissolution efficiency is desirable.

図1において曝気ブロアー6a、6bは曝気槽2内溶液に空気中の酸素を溶け込ますために、加圧した空気を作る機械である。ブロアー6a、6bから散気管4a、4bに配管で空気を送る。左右を独立に運転できるようにブロアー6a、6b、散気管4a、4bは2系統設置している。しかし、従来の運転では、左側ブロアー6a、右側ブロアー6bとも同時に運転か、同時に停止かのどちらかである。   In FIG. 1, aeration blowers 6a and 6b are machines for producing pressurized air in order to dissolve oxygen in the air into the solution in the aeration tank 2. Air is sent from the blowers 6a and 6b to the diffuser tubes 4a and 4b by piping. Two systems of blowers 6a and 6b and air diffusers 4a and 4b are installed so that the left and right can be operated independently. However, in the conventional operation, both the left blower 6a and the right blower 6b are operated simultaneously or stopped simultaneously.

図1の曝気ブロアー6a、6bに対し、図2における曝気ブロアー16は1系統なので、当然好気領域(左側)だけの運転である。   Since the aeration blower 16 in FIG. 2 is one system with respect to the aeration blowers 6a and 6b in FIG. 1, the operation is naturally performed only in the aerobic region (left side).

前述したように、本発明に用いる最良の形態の曝気槽は、図2の平面断面概略図に示す装置で、ブロアー・散気管システムを片側にだけ有する改良装置である。但し、処理設備の簡素化にはならないが、図1の平面断面概略図に示す既存の装置を使用することもできる。この場合には、曝気ブロアー6a、6bについて、交互にブロアー運転側とブロアー停止側とを切替えて片側のブロアーだけを運転するので、曝気ブロアー6a、6bの何れかが偏って長時間連続運転になることを回避できる特徴を有する。   As described above, the aeration tank of the best mode used in the present invention is an apparatus shown in the schematic plan view of FIG. 2, and is an improved apparatus having a blower / aeration tube system only on one side. However, although the processing equipment is not simplified, the existing apparatus shown in the schematic plan view of FIG. 1 can also be used. In this case, since the aeration blowers 6a and 6b are alternately switched between the blower operation side and the blower stop side to operate only one of the blowers, either one of the aeration blowers 6a and 6b is biased and the continuous operation is continued for a long time. It has the feature which can avoid becoming.

通常曝気ブロアー運転時には、消泡を目的としたシャワーシステムが設置されている。   During normal aeration blower operation, a shower system for defoaming is installed.

曝気処理槽を片側だけで運転しても、投入された原水(汚濁負荷)は、当然のことながら処理槽全体に分布する。左右の溶液の少なくとも一部が入れ替わらないと、嫌気状態にあるBODは酸化されないか酸化されるのに時間がかかる。この様な排水を処理水として外部に排出するとBOD酸化処理が十分になされていないため環境破壊の原因になる。   Even if the aeration treatment tank is operated only on one side, the input raw water (contamination load) is naturally distributed throughout the treatment tank. If at least part of the left and right solutions are not interchanged, the anaerobic BOD is not oxidized or takes time to be oxidized. If such wastewater is discharged to the outside as treated water, the BOD oxidation treatment is not sufficiently performed, causing environmental destruction.

これを防ぐために、図1において左側の移送ポンプ8aは処理槽左側の溶液を吸引し、処理槽右側に設置された吐出口(不図示)から処理槽右側溶液に左側溶液を吐出するように設計されている。左側の移送ポンプ8aを消泡ポンプとして用いる場合、その消泡場所は処理槽右側の部分である。   In order to prevent this, the transfer pump 8a on the left side in FIG. 1 is designed to suck the solution on the left side of the processing tank and discharge the left side solution to the solution on the right side of the processing tank from a discharge port (not shown) installed on the right side of the processing tank. Has been. When the left transfer pump 8a is used as a defoaming pump, the defoaming place is a portion on the right side of the processing tank.

右側の消泡ポンプ(移送ポンプ)8bは左側溶液を消泡するように設計されている。図2における消泡ポンプ(移送ポンプ)18は右側に設置されているので、当然片側(左側)の溶液だけを消泡するように設計されている。   The right defoaming pump (transfer pump) 8b is designed to defoam the left side solution. Since the defoaming pump (transfer pump) 18 in FIG. 2 is installed on the right side, it is naturally designed to defoam only the solution on one side (left side).

図1において本例の曝気槽2は、構造上強度を増させるために障壁が中央に即ち前述の点線αの箇所に設置されている。この障壁は水面から水面下1mの区間は自由に液が移動できる。障壁の平板面には、ほぼ中央に高さ1m、幅2mの窓が穿かれており、ここを通して液が自由に入れ替えられるように設計されている。図2の例においても同様に曝気槽12中間の点線βの箇所に障壁が設置されている。   In FIG. 1, the aeration tank 2 of this example is provided with a barrier at the center, that is, at the position indicated by the dotted line α in order to increase the structural strength. This barrier allows the liquid to move freely in the section 1 m below the surface of the water. On the flat plate surface of the barrier, a window having a height of 1 m and a width of 2 m is bored at substantially the center, and the liquid is designed to be freely exchanged therethrough. In the example of FIG. 2 as well, a barrier is similarly provided at the dotted line β in the middle of the aeration tank 12.

障壁がない場合は、移送ポンプの代わりに攪拌機を設置し、左右の液を適度に交換する必要がある。左右の処理槽の溶存酸素値(DO)は、処理状態が安定した段階で図1では曝気されている側で(図2では散気管の設置されている側で)2mg/L以上、図1では散気管から曝気されていない側で(図2では散気管の設置されていない側で)0.1mg/L以下に維持できるように攪拌機の能力を選定する。攪拌機の能力は、曝気槽の形状によって異なるので一概に定式化することは出来ない。   If there is no barrier, it is necessary to install a stirrer instead of the transfer pump and exchange the left and right liquids appropriately. The dissolved oxygen values (DO) of the left and right treatment tanks are 2 mg / L or more on the side where the aeration is performed in FIG. 1 (on the side where the diffuser is installed in FIG. 2) when the treatment state is stabilized, FIG. Then, the capacity of the stirrer is selected so that it can be maintained at 0.1 mg / L or less on the side not aerated from the diffuser (on the side where the diffuser is not installed in FIG. 2). Since the capacity of the agitator varies depending on the shape of the aeration tank, it cannot be generally formulated.

曝気した時、溶液が発泡する場合は、シャワーにより消泡することが必要になる。この場合、図1では散気管から曝気されていない側(図2では散気管の設置されていない側)の溶液をポンプで吸い上げ、曝気されている側(図2では散気管の設置されている側)の溶液にシャワーを行い、消泡すると同時に左右の溶液の入替えを行う。この場合、左右のDOが上記値に近づく様にポンプの能力を決める必要がある。   If the solution foams when aerated, it must be defoamed with a shower. In this case, in FIG. 1, the solution on the side not aerated from the diffuser (in FIG. 2, the side where the diffuser is not installed) is pumped up and the aerated side (in FIG. 2 where the diffuser is installed). The solution on the side) is showered and defoamed, and at the same time, the left and right solutions are replaced. In this case, it is necessary to determine the capacity of the pump so that the left and right DOs approach the above values.

なお、図2の例においてポンプ能力が高すぎ、左右のDOに所定の差が生じない場合で消泡が必要な場合は、散気管を設置している側に必要な消泡ポンプを設置すれば左右の液の入替えを制御できる。   In addition, in the example of FIG. 2, if the pumping capacity is too high and there is no difference between the left and right DOs, and defoaming is required, install the necessary defoaming pump on the side where the air diffuser is installed. It is possible to control the replacement of the left and right liquids.

左右の液を入替えるにあたり、左右のDO値が上記の差より少ない場合、左右の槽の間に障壁を設けDO値の差を維持する。この場合は、液の入替えは移送ポンプで行うことで容易に達成できる。曝気槽が複数に分割されている場合、返送ポンプによってDO値の差を維持すればよい。本発明においては、障壁は必須条件ではなくDO値の所定の差があることが必須条件である。   When changing the left and right liquids, if the left and right DO values are less than the above difference, a barrier is provided between the left and right tanks to maintain the difference in DO values. In this case, the replacement of the liquid can be easily achieved by using a transfer pump. When the aeration tank is divided into a plurality of parts, the difference in the DO values may be maintained by the return pump. In the present invention, the barrier is not an indispensable condition but an indispensable condition is that there is a predetermined difference in DO value.

原水の曝気槽への投入は、回分式処理法の場合は曝気槽の左側右側のどちらであってもかまわないが、出来れば図1では曝気されている側(図2では散気管の設置されている側)に投入する方が望ましい。連続式の場合は、沈澱槽等外部に排水を排出する側でない方が望ましい。   The raw water can be fed into the aeration tank in the case of batch processing, either on the left side or the right side of the aeration tank. However, if possible, the side of the aerated tank in FIG. 1 (the diffuser pipe is installed in FIG. 2). It is better to put it on the other side. In the case of a continuous type, it is preferable that the drainage is not discharged to the outside such as a precipitation tank.

図1において曝気槽の処理状況を把握するために、曝気槽内にDO計、酸化還元電位(ORP)計、pH計、液温計等の測定器10a、10bを設置し、常時コンピューターで監視している。図2においても同様に測定器20a、20bを設置している。   In FIG. 1, measuring devices 10a and 10b such as a DO meter, an oxidation-reduction potential (ORP) meter, a pH meter, and a liquid temperature meter are installed in the aeration tank in order to grasp the processing status of the aeration tank, and are constantly monitored by a computer. is doing. Similarly in FIG. 2, measuring instruments 20a and 20b are installed.

以下、本発明を実施例により、具体的且つ詳細に説明するが、本発明は実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely and in detail, this invention is not limited by an Example.

比較例1
曝気槽として、図1にその機器配置を示す曝気槽2を用いて、以下の条件で有機物処理を行った。曝気槽2の設計諸量は次の通りである。
Comparative Example 1
As an aeration tank, an aeration tank 2 whose equipment arrangement is shown in FIG. 1 was used, and organic matter treatment was performed under the following conditions. The design quantities of the aeration tank 2 are as follows.

曝気槽2は、形状が直方体、寸法が縦8m×横5m×深さ5m、有効水深が4.5mである。本例に示す装置の諸量は必要条件ではない。曝気槽等の浄化槽の設計諸量は、標準活性汚泥法を採用する限り、基本的に万国共通である。   The aeration tank 2 has a rectangular parallelepiped shape, dimensions of 8 m in length, 5 m in width, 5 m in depth, and an effective water depth of 4.5 m. The quantities of the device shown in this example are not a requirement. As long as the standard activated sludge method is adopted, the design quantities of septic tanks such as aeration tanks are basically common to all countries.

原排水の汚濁負荷は、排水量=11.2m3/日、BOD=75kg/日、SS=80kg/日、TN=25kg/日である。曝気槽の設計は、BOD容積負荷=0.4kgBOD/m3としているので、曝気槽中の微生物を含む溶液量は187.5m3、従って、曝気槽の容量は200m3に設計している。通常操業時のMLVSS=8000mg/Lであるので、BOD汚泥負荷は0.05kgBOD/kgMLVSSとなっている。 The pollution load of the raw effluent is effluent = 11.2 m 3 / day, BOD = 75 kg / day, SS = 80 kg / day, TN = 25 kg / day. Since the design of the aeration tank is BOD volume load = 0.4 kg BOD / m 3 , the amount of the solution containing microorganisms in the aeration tank is 187.5 m 3 , and therefore the capacity of the aeration tank is designed to be 200 m 3 . Since MLVSS during normal operation is 8000 mg / L, the BOD sludge load is 0.05 kgBOD / kgMLVSS.

この様に設計した結果、窒素処理に必要な窒素汚泥負荷は0.017kgN/kgMLVSSとなっており、一般的に要求される窒素汚泥負荷0.04kgN/kgMLVSSより小さいので窒素処理も行える設計になっている。汚濁負荷BOD、窒素の処理及び内生呼吸に必要な総酸素量は170kgO2/日である。 As a result of this design, the nitrogen sludge load necessary for nitrogen treatment is 0.017 kgN / kgMLVSS, which is smaller than the generally required nitrogen sludge load of 0.04 kgN / kgMLVSS, so that the nitrogen treatment can be performed. ing. The total amount of oxygen required for the pollutant load BOD, nitrogen treatment and endogenous respiration is 170 kg O 2 / day.

この酸素を空気から供給するために4.4m3/分/ブロアーの割合でブロアー2台から散気管に空気を送っている。当曝気槽2では、12時間曝気し、BODの処理と硝化を行った。次いで12時間嫌気にして上記硝化した亜硝酸・硝酸を脱窒させた。ブロアー及び散気管は同一システムを2系統設置している。 In order to supply this oxygen from the air, air is sent from the two blowers to the diffuser at a rate of 4.4 m 3 / min / blower. In this aeration tank 2, aeration was carried out for 12 hours to perform BOD treatment and nitrification. Subsequently, the nitrified nitrous acid and nitric acid were denitrified by anaerobic for 12 hours. The blower and the diffuser have two identical systems.

以上のように、回分式で12時間曝気、12時間嫌気にして硝化、脱窒させた窒素処理について、その結果を表1に示す。   As described above, Table 1 shows the results of nitrogen treatment in which nitrification and denitrification were performed by batch-type aeration for 12 hours and anaerobic for 12 hours.

Figure 2007000758
Figure 2007000758

この結果から分かるように、回分式曝気法により全窒素濃度は2500mg/Lから59mg/Lに減少している。この時の処理水BODは70mg/Lであった。この窒素処理実験を通し、原水投入直後ORPは−300mV程度、DOはほぼ0mg/L、pHは8程度になる。これらの値は、負荷の大小で変わる。曝気を開始するとBOD・窒素の酸化が始まり、ORP、DOは上昇し、pHは減少する。   As can be seen from this result, the total nitrogen concentration is reduced from 2500 mg / L to 59 mg / L by the batch aeration method. The treated water BOD at this time was 70 mg / L. Through this nitrogen treatment experiment, the ORP is about -300 mV, the DO is about 0 mg / L, and the pH is about 8 immediately after the raw water is charged. These values vary depending on the magnitude of the load. When aeration is started, oxidation of BOD / nitrogen begins, ORP and DO rise, and pH decreases.

曝気開始から8〜12時間後にBOD処理・窒素硝化処理が終了した。曝気開始から窒素処理終了までにORPは+100mV、DOは2mg/L以上に、pHは6.5程度になった。この段階でBOD処理及び窒素の硝化がほぼ完成する。ここで曝気を停止すると、ORP、DO共に急速に下がり曝気槽は嫌気状態になる。   BOD treatment and nitrogen nitrification treatment were completed 8 to 12 hours after the start of aeration. From the start of aeration to the end of nitrogen treatment, ORP was +100 mV, DO was 2 mg / L or more, and pH was about 6.5. At this stage, BOD treatment and nitrification of nitrogen are almost completed. When the aeration is stopped here, both the ORP and DO are rapidly lowered and the aeration tank becomes anaerobic.

この状態で汚泥に付着しているBOD或は曝気槽内溶液中の残留BODを使用して、亜硝酸・硝酸の脱窒が行われる。その結果として、曝気槽内に窒素ガスと思われる発泡が観測される。曝気終了時に亜硝酸・硝酸の濃度が高い場合、脱窒した窒素ガスが汚泥に吸着するため汚泥の浮上が観測される場合がある。その場合、消泡ポンプで汚泥を叩けば汚泥は沈澱する。なお、脱窒が完了した時点で、ORPは−300mV以下、DOはほぼ0mg/L、pHは7〜7.5に回復している。   In this state, denitrification of nitrous acid and nitric acid is performed using BOD adhering to sludge or residual BOD in the solution in the aeration tank. As a result, foaming that seems to be nitrogen gas is observed in the aeration tank. When the concentration of nitrous acid and nitric acid is high at the end of aeration, the denitrified nitrogen gas is adsorbed on the sludge, and sludge levitation may be observed. In that case, if sludge is beaten with a defoaming pump, sludge will settle. When the denitrification is completed, the ORP is -300 mV or less, the DO is almost 0 mg / L, and the pH is restored to 7 to 7.5.

以上により、脱窒槽を設けなくても間歇曝気によりBOD・窒素を処理することが出来ることが確かめられた。   From the above, it was confirmed that BOD / nitrogen could be treated by intermittent aeration without providing a denitrification tank.

実施例1
曝気槽として、図2にその機器配置を示す曝気槽12を用いて、以下の有機物処理を行った。曝気槽12の設計諸量は図1の曝気槽2の設計諸量と基本的に同じである。図2の曝気槽12の機器配置と図1の曝気槽2の機器配置との違いは、右側のブロアー・散気管システムを使用しないことである。BOD酸化・窒素の硝化に必要な酸素量は同じであるから、曝気時間は2倍の24時間になる。
Example 1
The following organic substance treatment was performed using the aeration tank 12 whose arrangement is shown in FIG. 2 as an aeration tank. The design quantities of the aeration tank 12 are basically the same as the design quantities of the aeration tank 2 of FIG. The difference between the equipment arrangement of the aeration tank 12 in FIG. 2 and the equipment arrangement of the aeration tank 2 in FIG. 1 is that the right blower / aeration tube system is not used. Since the amount of oxygen required for BOD oxidation and nitrification of nitrogen is the same, the aeration time is doubled to 24 hours.

この様な機器配置の曝気槽12で行ったBOD・窒素処理の結果を、変形前の曝気槽2で行ったBOD・窒素処理の比較例1の結果と共に表2に示す。ここでデータとして示されているのは、外部に排出する処理水の品質である。   Table 2 shows the results of the BOD / nitrogen treatment performed in the aeration tank 12 having such a device arrangement together with the results of Comparative Example 1 of the BOD / nitrogen treatment performed in the aeration tank 2 before deformation. The data shown here is the quality of the treated water discharged to the outside.

Figure 2007000758
Figure 2007000758

全有機炭素濃度(TOC)に関して図2の改良変形曝気槽12は、変動はあるが平均値は図1の変形前曝気槽2と大差はない。全窒素濃度(T−N)に関しては、どちらかといえば減少している。なかでも亜硝酸・硝酸濃度が低い場合が多い。この現象は、左側でアンモニアが硝化した後、右側に移動すれば、そこで直ちに脱窒できるからだと考えている。DO値は、処理中常に好気側で2mg/L以上、嫌気側で0.1mg/L以下であった。   The modified modified aeration tank 12 in FIG. 2 has a variation in the total organic carbon concentration (TOC), but the average value is not much different from that of the pre-deformation aeration tank 2 in FIG. The total nitrogen concentration (T-N) is rather reduced. In particular, nitrous acid and nitric acid concentrations are often low. This phenomenon is thought to be because, if ammonia moves to the right side after nitrification on the left side, it can be immediately denitrified there. The DO value was always 2 mg / L or more on the aerobic side and 0.1 mg / L or less on the anaerobic side during the treatment.

なお、曝気処理槽の改良変形によって、設備費・ランニングコストがどう変わるかを評価する必要がある。   In addition, it is necessary to evaluate how equipment costs and running costs change due to improved deformation of the aeration tank.

曝気処理槽を改良変形させることによって、設計の基本条件である、BOD容積負荷、BOD汚泥負荷、窒素汚泥負荷は変わらない。言い換えると、槽建設費は同じである。強いて言えば、障壁の建設費が賦課される可能性があるが、強度上不必要な場合は変わらないとみなしてよい。又、脱窒槽が不必要な点は曝気処理槽改良変形する前と同じである。   By improving and deforming the aeration treatment tank, the BOD volume load, BOD sludge load, and nitrogen sludge load, which are basic design conditions, do not change. In other words, the tank construction costs are the same. In other words, the construction cost of the barrier may be imposed, but if it is not necessary for strength, it can be regarded as unchanged. Further, the point that the denitrification tank is unnecessary is the same as before the aeration treatment tank is modified.

好気処理の基本である酸素供給量も変わらない。根本的に変わるのは曝気時間である。上に示した実験の場合の曝気に関する設備費と電気料金を表3で比較する。   The oxygen supply, which is the basis for aerobic treatment, does not change. It is aeration time that changes fundamentally. Table 3 compares the facility costs and electricity charges for aeration in the case of the experiment shown above.

Figure 2007000758
Figure 2007000758

曝気装置(ブロアーと散気管)の設備費は約半分になる。設備規模が大きくなるとかなりの費用軽減になる。例えば、比較例1で用いた曝気槽設備でのブロアー・散気管・配管工事費・設備設置費は約340万円であるから、実施例1で用いた曝気槽の変形を行うと約170万円に及ぶ設備の削減になる。一般的に、上記設備費は原水のBOD・窒素負荷に比例すると考えられる。その事を考えると、この削減費は決して無視できる額ではない。   The equipment cost of the aeration equipment (blower and diffuser) is halved. If the scale of the facility is increased, the cost will be considerably reduced. For example, since the blower / aeration pipe / pipe construction cost / equipment installation cost in the aeration tank equipment used in Comparative Example 1 is about 3.4 million yen, the deformation of the aeration tank used in Example 1 is about 1.7 million. It will be a reduction of the equipment that covers the circle. Generally, the equipment cost is considered to be proportional to the BOD / nitrogen load of raw water. Given that, this reduction is not negligible.

電力料金に関しては、使用料金は変わらないが、契約料金が半額になる。この場合も、規模が大きくなるとかなりのランニングコスト軽減になる。   Regarding the electricity charge, the usage fee remains the same, but the contract fee is halved. In this case as well, the running cost is considerably reduced as the scale increases.

比較例1で用いた曝気槽を示す平面概略断面図である。It is a plane schematic sectional drawing which shows the aeration tank used in the comparative example 1. 実施例1で用いた曝気槽を示す平面概略断面図である。It is a plane schematic sectional drawing which shows the aeration tank used in Example 1. FIG. 排水処理における窒素成分の処理方式(a)及び(b)の典型的な処理フロー例を示す概略フロー図である。It is a schematic flowchart which shows the typical processing flow example of the processing method (a) and (b) of the nitrogen component in wastewater treatment.

符号の説明Explanation of symbols

2、12、28、36 曝気槽
4a、4b、14 散気管
6a、6b、16 曝気ブロアー
8a、8b、18 移送ポンプ
10a、10b、20a、20b 測定器
22、32 原水槽
24、34 調整槽
26 脱窒槽
30、38 沈澱槽
α、β 曝気槽の中間を示す点線
2, 12, 28, 36 Aeration tank 4a, 4b, 14 Aeration tube 6a, 6b, 16 Aeration blower 8a, 8b, 18 Transfer pump 10a, 10b, 20a, 20b Measuring instrument 22, 32 Raw water tank 24, 34 Adjustment tank 26 Denitrification tank 30, 38 Precipitation tank α, β Dotted line indicating the middle of the aeration tank

Claims (3)

曝気槽内を好気状態領域と嫌気状態領域とに分割し、好気状態領域において有機物のBOD処理及び硝化処理を行い、嫌気状態領域において脱窒処理を行い、且つ、好気状態領域の曝気槽内底面積割合及び/又は容量割合が30〜70%である有機物の処理方法。 The inside of the aeration tank is divided into an aerobic state region and an anaerobic state region, BOD treatment and nitrification treatment of organic matter are performed in the aerobic state region, denitrification treatment is performed in the anaerobic state region, and aeration in the aerobic state region The processing method of the organic substance whose tank bottom area ratio and / or capacity | capacitance ratio are 30 to 70%. 分割領域数が2以上である請求項1に記載の有機物の処理方法。 The organic matter processing method according to claim 1, wherein the number of divided regions is 2 or more. 好気状態領域の溶存酸素濃度(DO)が2mg/L以上であり、嫌気状態領域の溶存酸素濃度(DO)が0.1mg/L以下である請求項1に記載の有機物の処理方法。 The method for treating an organic substance according to claim 1, wherein the dissolved oxygen concentration (DO) in the aerobic state region is 2 mg / L or more, and the dissolved oxygen concentration (DO) in the anaerobic region is 0.1 mg / L or less.
JP2005183014A 2005-06-23 2005-06-23 Method for treating organic substance Pending JP2007000758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183014A JP2007000758A (en) 2005-06-23 2005-06-23 Method for treating organic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183014A JP2007000758A (en) 2005-06-23 2005-06-23 Method for treating organic substance

Publications (1)

Publication Number Publication Date
JP2007000758A true JP2007000758A (en) 2007-01-11

Family

ID=37686838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183014A Pending JP2007000758A (en) 2005-06-23 2005-06-23 Method for treating organic substance

Country Status (1)

Country Link
JP (1) JP2007000758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019042609A (en) * 2017-08-29 2019-03-22 水ing株式会社 Method of renovating wastewater treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019042609A (en) * 2017-08-29 2019-03-22 水ing株式会社 Method of renovating wastewater treatment device

Similar Documents

Publication Publication Date Title
KR101665636B1 (en) Wastewater pretreatment method and sewage treatment method using the pretreatment method
JP5344508B2 (en) Sewage wastewater treatment apparatus including a rectangular upward-flow anaerobic / anoxic reaction tank and a method for treating wastewater using the same
CN206069622U (en) Biological sewage treatment device
CN102701524B (en) Advanced treatment device for vitamin C production waste water and application method thereof
CN104556562A (en) Advanced treatment method for industrial park wastewater
US11827550B2 (en) Simultaneous nitrification/denitrification (SNDN) in sequencing batch reactor applications
CN105836966A (en) High-concentration organic wastewater treatment process technology
JP6939724B2 (en) Sewage treatment method and equipment
CN104710077B (en) The processing system of synthetic rubber waste water and its processing method
CN111960538A (en) System and method for realizing stable operation of shortcut nitrification-anaerobic ammonia oxidation denitrification of low-ammonia nitrogen wastewater
CN102010100B (en) Technology and device for advanced treatment flow of industrially comprehensive wastewater
CN105984991B (en) A kind of sewerage advanced treatment process
KR100839035B1 (en) Biological wastewater treatment apparatus using diffuser-mediated sludge flotation and treatment method using the same
KR20040006926A (en) Wastewater treatment utilizing the equencing batch reactor supplemented with inner circulation systems
CN213357071U (en) System for realizing short-cut nitrification-anaerobic ammonia oxidation denitrification stable operation of low-ammonia-nitrogen wastewater
JP2007000758A (en) Method for treating organic substance
CN212222744U (en) Sewage recycling device for expressway service area
JP6384168B2 (en) Sludge treatment method
KR100935914B1 (en) Advanced wastewater treatment apparatus with two stage reactor
CN110759584A (en) Emulsion wastewater treatment process
JP4490848B2 (en) Waste water treatment apparatus and waste water treatment method
Acharya et al. A novel two-stage MBR denitrification process for the treatment of high strength pet food wastewater
CN220812131U (en) Production sewage treatment system
KR100721682B1 (en) A treatment method of wastewater for removing organics and nitrogen compounds simultaneously in a single reactor)
Tate et al. Application of the Batch Activated Sludge Process