JP2006520317A5 - - Google Patents

Download PDF

Info

Publication number
JP2006520317A5
JP2006520317A5 JP2004543323A JP2004543323A JP2006520317A5 JP 2006520317 A5 JP2006520317 A5 JP 2006520317A5 JP 2004543323 A JP2004543323 A JP 2004543323A JP 2004543323 A JP2004543323 A JP 2004543323A JP 2006520317 A5 JP2006520317 A5 JP 2006520317A5
Authority
JP
Japan
Prior art keywords
protein
peptide
magnetic material
synthetic peptide
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004543323A
Other languages
Japanese (ja)
Other versions
JP2006520317A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2003/029555 external-priority patent/WO2004033488A2/en
Publication of JP2006520317A publication Critical patent/JP2006520317A/en
Publication of JP2006520317A5 publication Critical patent/JP2006520317A5/ja
Pending legal-status Critical Current

Links

Claims (26)

以下の工程を含む、磁性材料を製造する方法:
磁性材料の表面に特異的に結合する部分を含む合成ペプチドまたは合成タンパク質を提供する工程;
1種以上の磁性材料前駆物質を、磁性材料が形成されるような条件で、合成ペプチドまたは合成タンパク質と接触させる工程。
A method for producing a magnetic material comprising the following steps:
Providing a synthetic peptide or protein comprising a moiety that specifically binds to the surface of the magnetic material;
Contacting one or more magnetic material precursors with a synthetic peptide or protein under conditions such that the magnetic material is formed.
合成ペプチドまたは合成タンパク質を基板に結合させる工程をさらに含む、請求項1記載の方法。 2. The method of claim 1 , further comprising attaching a synthetic peptide or synthetic protein to the substrate. 合成ペプチドまたは合成タンパク質がコンビナトリアル・ライブラリーのスクリーニングによって選択される、請求項1または2記載の方法。 The method according to claim 1 or 2 , wherein the synthetic peptide or protein is selected by screening a combinatorial library. 磁性材料を単離する工程をさらに含む、請求項1または2記載の方法。 The method according to claim 1 or 2 , further comprising the step of isolating the magnetic material. ペプチドまたはタンパク質が自己組立性分子の一部を含む、請求項1または2記載の方法。 The method according to claim 1 or 2 , wherein the peptide or protein comprises a part of a self-assembling molecule. 自己組立性分子がファージである、請求項5記載の方法。 6. The method of claim 5 , wherein the self-assembling molecule is a phage. 磁性材料がナノ粒子である、請求項1または2記載の方法。 The method according to claim 1 or 2 , wherein the magnetic material is nanoparticles. 合成ペプチドまたは合成タンパク質がキメラタンパク質の一部を含む、請求項1または2記載の方法。 The method according to claim 1 or 2 , wherein the synthetic peptide or protein comprises a part of a chimeric protein. 結合性のペプチドまたはタンパク質と、1種以上の磁性材料前駆物質を使用することによって形成される磁性材料。 A magnetic material formed by using a binding peptide or protein and one or more magnetic material precursors. ペプチドまたはタンパク質を、金属塩および還元剤の存在下で使用する、請求項9記載の磁性材料。 10. The magnetic material according to claim 9 , wherein the peptide or protein is used in the presence of a metal salt and a reducing agent. ナノ粒子を含む、請求項9または10の磁性材料。 11. A magnetic material according to claim 9 or 10 comprising nanoparticles. ε-Coに特異的に結合するペプチドを含む組成物。   A composition comprising a peptide that specifically binds to ε-Co. CoPtに特異的に結合するペプチドを含む組成物。   A composition comprising a peptide that specifically binds to CoPt. FePtに特異的に結合するペプチドを含む組成物。   A composition comprising a peptide that specifically binds to FePt. SmCo5に特異的に結合するペプチドを含む組成物。 Composition comprising a peptide that specifically binds to SmCo 5. 強磁性表面に特異的に結合するペプチドを含む組成物。   A composition comprising a peptide that specifically binds to a ferromagnetic surface. 以下の工程を含む、磁性材料に特異的に結合する合成ペプチドまたは合成タンパク質を単離する方法:
合成ペプチドまたは合成タンパク質のライブラリーを、磁性材料と接触させる工程;
非結合の合成ペプチドまたは合成タンパク質をライブラリーから除去する工程;および
結合した合成ペプチドまたは合成タンパク質を磁性材料から溶離させる工程。
A method of isolating a synthetic peptide or protein that specifically binds to a magnetic material, comprising the following steps:
Contacting a library of synthetic peptides or proteins with a magnetic material;
Removing unbound synthetic peptide or protein from the library; and eluting the bound synthetic peptide or protein from the magnetic material.
合成ペプチドまたは合成タンパク質のライブラリーが、ファージ・ディスプレー・ライブラリーを含むものであるとしてさらに定義される、請求項17記載の方法。 18. The method of claim 17 , wherein the synthetic peptide or protein library is further defined as comprising a phage display library. 合成ペプチドまたは合成タンパク質のライブラリーが、コンビナトリアル・ケミストリー・ライブラリーを含むものであるとしてさらに定義される、請求項17記載の方法。 18. The method of claim 17 , wherein the synthetic peptide or protein library is further defined as comprising a combinatorial chemistry library. 以下の工程を含む、粒子フィルムを調製する方法:
粒子の溶液を表面に加え、その際に、結合性の合成ペプチドまたは合成タンパク質を使用することによって粒子を合成する工程;
ナノ粒子の溶液を表面上で蒸発させる工程;および
粒子を表面にアニーリングして、粒子のフィルムを創出する工程。
A method of preparing a particle film comprising the following steps:
Adding a solution of particles to the surface, wherein the particles are synthesized by using binding synthetic peptides or proteins ;
Evaporating a solution of nanoparticles on the surface; and annealing the particles to the surface to create a film of particles.
粒子がナノ粒子である、請求項20記載の方法。 21. The method of claim 20 , wherein the particles are nanoparticles. 以下の工程を含む、金属材料の製造方法:
金属表面に特異的に結合する部分を含む合成ペプチドまたは合成タンパク質を提供する工程;
1種以上の金属材料前駆物質を、金属材料が形成されるような条件で、合成ペプチドと接触させる工程。
A method for producing a metal material including the following steps:
Providing a synthetic peptide or protein comprising a moiety that specifically binds to a metal surface;
Contacting one or more metal material precursors with a synthetic peptide under conditions such that a metal material is formed;
300℃以下の温度で接触が行われる、請求項1記載の方法。 The method of claim 1, wherein the contacting is performed at a temperature of 300 ° C. or less. 300℃以下の温度で接触が行われる、請求項22記載の方法。 23. The method of claim 22, wherein the contacting is performed at a temperature of 300 ° C or lower. 結合性の合成ペプチドによって合成したまたは合成タンパク質によって合成した金属粒子を含む金属材料。 A metal material comprising metal particles synthesized by a binding synthetic peptide or synthesized by a synthetic protein . 結合性の合成ペプチドによって合成したまたは合成タンパク質によって合成した金属ナノ粒子の集まりを含んでおり、金属ナノ粒子は、多結晶材料から単結晶材料へとアニーリングされている、金属材料。 A metal material comprising a collection of metal nanoparticles synthesized by a binding synthetic peptide or synthesized by a synthetic protein , wherein the metal nanoparticles are annealed from a polycrystalline material to a single crystal material.
JP2004543323A 2002-09-18 2003-09-22 Peptide-mediated synthesis of metal and magnetic materials Pending JP2006520317A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41180402P 2002-09-18 2002-09-18
PCT/US2003/029555 WO2004033488A2 (en) 2002-09-18 2003-09-22 Peptide mediated synthesis of metallic and magnetic materials

Publications (2)

Publication Number Publication Date
JP2006520317A JP2006520317A (en) 2006-09-07
JP2006520317A5 true JP2006520317A5 (en) 2006-11-16

Family

ID=32093766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004543323A Pending JP2006520317A (en) 2002-09-18 2003-09-22 Peptide-mediated synthesis of metal and magnetic materials

Country Status (7)

Country Link
EP (1) EP1539342A2 (en)
JP (1) JP2006520317A (en)
KR (1) KR20050043973A (en)
CN (1) CN1753724A (en)
AU (1) AU2003298587A1 (en)
CA (1) CA2499318A1 (en)
WO (1) WO2004033488A2 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304128B2 (en) * 2002-06-04 2007-12-04 E.I. Du Pont De Nemours And Company Carbon nanotube binding peptides
US7598344B2 (en) 2002-09-04 2009-10-06 Board Of Regents, The University Of Texas System Composition, method and use of bi-functional biomaterials
US20050064508A1 (en) 2003-09-22 2005-03-24 Semzyme Peptide mediated synthesis of metallic and magnetic materials
JP2006506059A (en) * 2002-09-24 2006-02-23 ボード オブ リージェンツ ユニバーシティ オブ テキサス システム Artificial biofilm storage device
AU2008202025B2 (en) * 2003-06-09 2011-03-31 Consejo Superior De Investigaciones Cientificas Magnetic nanoparticles
GB0313259D0 (en) 2003-06-09 2003-07-16 Consejo Superior Investigacion Magnetic nanoparticles
US7923109B2 (en) * 2004-01-05 2011-04-12 Board Of Regents, The University Of Texas System Inorganic nanowires
KR20070091608A (en) * 2004-10-19 2007-09-11 매사추세츠 인스티튜트 오브 테크놀로지 Biomolecular recognition of crystal defects
US7687115B2 (en) 2004-11-24 2010-03-30 3M Innovative Properties Company Method for making nanostructured surfaces
US7582330B2 (en) 2004-11-24 2009-09-01 3M Innovative Properties Counsel Method for making metallic nanostructures
JP4558471B2 (en) * 2004-12-14 2010-10-06 富士通株式会社 Nanoparticles and method for producing nanoparticles
US20070196305A1 (en) * 2005-03-01 2007-08-23 Hong Wang Method for identifying hair conditioner-resistant hair-binding peptides and hair benefit agents therefrom
JP4700374B2 (en) * 2005-03-03 2011-06-15 学校法人東京理科大学 Method for producing SmCo magnetic fine particles
US7718716B2 (en) 2005-10-14 2010-05-18 3M Innovative Properties Company Chromonic nanoparticles containing bioactive compounds
US7629027B2 (en) 2005-10-14 2009-12-08 3M Innovative Properties Company Method for making chromonic nanoparticles
US7807661B2 (en) 2005-12-08 2010-10-05 3M Innovative Properties Company Silver ion releasing articles and methods of manufacture
US8092710B2 (en) 2005-12-19 2012-01-10 3M Innovative Properties Company Hierarchical chromonic structures
US7601769B2 (en) 2005-12-19 2009-10-13 3M Innovative Peroperties Company Multilayered chromonic structures
US7824732B2 (en) 2005-12-28 2010-11-02 3M Innovative Properties Company Encapsulated chromonic particles
KR100945433B1 (en) * 2007-10-02 2010-03-05 광주과학기술원 A Method for Synthesis of Gold Nanostructures Using The Dodecamer Peptides Midas-1 to Midas-12
DE102007056818A1 (en) * 2007-11-23 2009-05-28 Bayer Technology Services Gmbh Bacteriophages and coating material for surfaces
KR101109124B1 (en) * 2009-02-12 2012-02-16 한국과학기술연구원 Bacteria/Transition metal oxides organic-inorganic composite and method for manufacturing the same
KR100945434B1 (en) * 2009-04-21 2010-03-05 광주과학기술원 A Method for Synthesis of Gold Nanostructures Using The Dodecamer Peptides Midas-1 to Midas-12
CN101817091A (en) * 2010-04-28 2010-09-01 燕山大学 Method for preparing iron nano-magnetic particles by taking T4 phage as template
EP2386355A1 (en) * 2010-05-11 2011-11-16 Biorem Engineering SARL Metallic alloys with microbiological component and catalytic properties.
BR112012030016B8 (en) * 2010-05-24 2021-05-18 Siluria Technologies Inc process for preparing ethylene from methane and method for preparing an ethylene downstream product
EA029867B1 (en) 2011-05-24 2018-05-31 Силурия Текнолоджиз, Инк. Catalysts for petrochemical catalysis
US20130158322A1 (en) 2011-11-29 2013-06-20 Siluria Technologies, Inc. Polymer templated nanowire catalysts
US9133079B2 (en) 2012-01-13 2015-09-15 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US9446397B2 (en) 2012-02-03 2016-09-20 Siluria Technologies, Inc. Method for isolation of nanomaterials
CA3125016C (en) 2012-05-24 2024-04-30 Lummus Technology Llc Catalytic forms and formulations
CA2874526C (en) 2012-05-24 2022-01-18 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
US9969660B2 (en) 2012-07-09 2018-05-15 Siluria Technologies, Inc. Natural gas processing and systems
WO2014089479A1 (en) 2012-12-07 2014-06-12 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
EP2969184A4 (en) 2013-03-15 2016-12-21 Siluria Technologies Inc Catalysts for petrochemical catalysis
WO2015081122A2 (en) 2013-11-27 2015-06-04 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CN106068323B (en) 2014-01-08 2019-09-06 希路瑞亚技术公司 Ethylene at liquid system and method
WO2015106023A1 (en) 2014-01-09 2015-07-16 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
WO2015168601A2 (en) 2014-05-02 2015-11-05 Siluria Technologies, Inc. Heterogeneous catalysts
CN105467126B (en) * 2014-09-09 2018-01-09 东北师范大学 A kind of bacteriophage composite nano-line for being used to detect Candida albicans
HUE054014T2 (en) 2014-09-17 2021-08-30 Lummus Technology Inc Catalysts for oxidative coupling of methane and oxidative dehydrogenation of ethane
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
EP3362425B1 (en) 2015-10-16 2020-10-28 Lummus Technology LLC Separation methods and systems for oxidative coupling of methane
CA3019396A1 (en) 2016-04-13 2017-10-19 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US20180169561A1 (en) 2016-12-19 2018-06-21 Siluria Technologies, Inc. Methods and systems for performing chemical separations
US11001542B2 (en) 2017-05-23 2021-05-11 Lummus Technology Llc Integration of oxidative coupling of methane processes
WO2019010498A1 (en) 2017-07-07 2019-01-10 Siluria Technologies, Inc. Systems and methods for the oxidative coupling of methane
CN110095464B (en) * 2019-04-12 2022-01-28 武汉科技大学 Fine quantitative analysis method for complex-composition sinter ore phases
CN115137824B (en) * 2022-07-01 2023-06-30 哈尔滨工程大学 Preparation method of silicon-supported bimetallic material with thermal effect

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073104A1 (en) * 2001-10-02 2003-04-17 Belcher Angela M. Nanoscaling ordering of hybrid materials using genetically engineered mesoscale virus

Similar Documents

Publication Publication Date Title
JP2006520317A5 (en)
WO2004033488B1 (en) Peptide mediated synthesis of metallic and magnetic materials
Wang et al. NH 2-Ni-MOF electrocatalysts with tunable size/morphology for ultrasensitive C-reactive protein detection via an aptamer binding induced DNA walker–antibody sandwich assay
Feng et al. Immobilized-metal affinity chromatography adsorbent with paramagnetism and its application in purification of histidine-tagged proteins
Zhang et al. Magnetic silica‐coated sub‐microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood
Gao et al. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk
Li et al. Selective in vitro effect of peptides on calcium carbonate crystallization
Arakaki et al. Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria
Zhao et al. An epitope imprinting method on the surface of magnetic nanoparticles for specific recognition of bovine serum album
JP2007529487A (en) Improvement of polymer particles
Zou et al. Ferroferric oxide/L-cysteine magnetic nanospheres for capturing histidine-tagged proteins
Zhang et al. Preparation of anti-human cardiac troponin I immunomagnetic nanoparticles and biological activity assays
KR101683059B1 (en) Fluorescent and magnetic core-shell nanochain structures and preparation method thereof
US20030166878A1 (en) Magnetic carrier capable of binding with protein and purification method of protein utilizing the magnetic carrier
WO2006064639A1 (en) Titanium-binding ferritin and method of arraying inorganic particle
US11577218B2 (en) High-loading and alkali-resistant protein a magnetic bead and method of use thereof
Hu et al. Bisphosphorylated fructose-modified magnetic Zr-Organic framework: a dual-hydrophilic sorbent for selective adsorption of immunoglobulin G
JP2009249739A5 (en)
Deng et al. Self-assembly of bis (phthalocyaninato) terbium on metal surfaces
JP2007515384A5 (en)
JP2006305485A (en) Method for producing magnetic carrier
JPWO2009031714A1 (en) Solvent dispersible particles
JP2007210966A (en) Method for producing magnetic material coated with biological substance
Yang et al. The solid-phase extraction of α-chymotrypsin based on a novel porous polymeric dianionic ionic liquid-coated magnetic material
Zhang et al. Step-by-step self-assembly of manganese phthalocyanine on Bi (1 1 1) surface: From single molecule to two-dimensional domains