JP2006519189A - Use of the sgk gene family to diagnose and treat cataracts and glaucoma - Google Patents

Use of the sgk gene family to diagnose and treat cataracts and glaucoma Download PDF

Info

Publication number
JP2006519189A
JP2006519189A JP2006501737A JP2006501737A JP2006519189A JP 2006519189 A JP2006519189 A JP 2006519189A JP 2006501737 A JP2006501737 A JP 2006501737A JP 2006501737 A JP2006501737 A JP 2006501737A JP 2006519189 A JP2006519189 A JP 2006519189A
Authority
JP
Japan
Prior art keywords
hsgk1
hsgk3
gene
glaucoma
cataract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006501737A
Other languages
Japanese (ja)
Other versions
JP2006519189A5 (en
Inventor
フローリアン・ラング
アンドレーアス・ブスヤーン
Original Assignee
フローリアーン・ラング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フローリアーン・ラング filed Critical フローリアーン・ラング
Publication of JP2006519189A publication Critical patent/JP2006519189A/en
Publication of JP2006519189A5 publication Critical patent/JP2006519189A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4355Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/16Ophthalmology
    • G01N2800/166Cataract
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/16Ophthalmology
    • G01N2800/168Glaucoma

Abstract

本発明は、白内障、緑内障または糖尿病性神経障害の治療および/または予防のための医薬品製造における、hsgk1もしくはhsgk3タンパク質の機能的な阻害剤、または、hsgk1もしくはhsgk3遺伝子負の転写調節因子の使用に関する。本発明のその他の形態は、白内障、緑内障および/または糖尿病性神経障害の形成に対する素因の診断における、登録番号NM005627に記載のhsgk1配列もしくはそのフラグメントの1つを含む、または、登録番号AF169035に記載のhsgk3配列もしくはそのフラグメントの1つを含む一本鎖または二本鎖核酸の使用に関し、それに加えて、白内障、緑内障および/または糖尿病性神経障害の形成に対する素因を診断するための、上述の核酸を含むキットに関する。本発明はさらに、複数の試験物質の中から、白内障、緑内障または糖尿病性神経障害から選択される病気の少なくとも1つを治療および/または予防するための治療上有効な物質を同定し、特徴付けるための様々なスクリーニング方法に関する。The present invention relates to the use of a functional inhibitor of hsgk1 or hsgk3 protein or a negative transcriptional regulator of hsgk1 or hsgk3 gene in the manufacture of a medicament for the treatment and / or prevention of cataract, glaucoma or diabetic neuropathy. . Other aspects of the invention include the hsgk1 sequence set forth in Registry No. NM005627 or one of its fragments in the diagnosis of a predisposition to the formation of cataract, glaucoma and / or diabetic neuropathy, or described in Accession No. AF16935. A nucleic acid as described above for diagnosing a predisposition to the formation of cataract, glaucoma and / or diabetic neuropathy, in addition to the use of a single-stranded or double-stranded nucleic acid comprising one of the hsgk3 sequences or a fragment thereof Relates to a kit comprising The invention further identifies and characterizes a therapeutically effective substance for treating and / or preventing at least one disease selected from cataract, glaucoma or diabetic neuropathy from among a plurality of test substances. To various screening methods.

Description

本発明は、白内障、緑内障または糖尿病性神経障害の治療および/または予防のための医薬を生産するための、hsgk1タンパク質もしくはhsgk3タンパク質の機能的な阻害剤、または、hsgk1遺伝子もしくはhsgk3遺伝子の転写の負の調節因子の使用に関する。   The present invention relates to a functional inhibitor of hsgk1 protein or hsgk3 protein, or transcription of hsgk1 gene or hsgk3 gene for producing a medicament for the treatment and / or prevention of cataract, glaucoma or diabetic neuropathy. Relates to the use of negative regulators.

その他の形態において、本発明は、白内障、緑内障、および/または、糖尿病性神経障害を発症させる素因を診断するための、受託番号NM005627に記載のhsgk1配列を包含する一本鎖または二本鎖核酸、またはそのフラグメントの1つ、または、受託番号AF169035に記載のhsgk3配列を包含する一本鎖または二本鎖核酸、もしくはそのフラグメントの1つの使用に関し、同様に、白内障、緑内障、および/または、糖尿病性神経障害を発症させる素因を診断するためのキット(本キットは、上述の核酸を含む)に関する。   In another aspect, the present invention provides a single-stranded or double-stranded nucleic acid comprising the hsgk1 sequence set forth in Accession No. NM005627 for diagnosing a predisposition to develop cataract, glaucoma, and / or diabetic neuropathy. Or one of its fragments, or one use of a single-stranded or double-stranded nucleic acid comprising the hsgk3 sequence set forth in accession number AF16935, or a fragment thereof, as well as cataract, glaucoma, and / or The present invention relates to a kit for diagnosing a predisposition to develop diabetic neuropathy (this kit contains the above-described nucleic acid).

その上、本発明は、多数の試験物質のなかから、治療活性を有する物質を同定し、特徴付けるための様々なスクリーニング方法に関し、前記治療活性を有する物質は、白内障、緑内障および糖尿病性神経障害から選択される病気の少なくとも1つを治療および/または予防するのに用いられる。   Moreover, the present invention relates to various screening methods for identifying and characterizing a substance having therapeutic activity from among a large number of test substances, wherein the substance having therapeutic activity is from cataract, glaucoma and diabetic neuropathy. Used to treat and / or prevent at least one selected disease.

血清および糖質コルチコイド誘導性キナーゼhsgk1は、もともと、糖質コルチコイド感受性遺伝子としてクローニングされた[Webster等.Characterization of sgk,a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum.Mol Cell Biol 1993年;13:2031−2040]。   Serum and glucocorticoid-inducible kinase hsgk1 was originally cloned as a glucocorticoid sensitive gene [Webster et al. Charactorization of sgk, a novel member of the serine / threonine proteinkinase family which is transcribed inco- duced and circulated. Mol Cell Biol 1993; 13: 2031-2040].

それに続く観察により、hsgk1は、多数の刺激の影響下にあることが明らかになっており[Lang F,Cohen P.Regulation and physiological roles of serum− and glucocorticoid−induced protein kinase isoforms.Science STKE.2001年11月13日;2001年(108):RE17]、このような刺激としては、特に、鉱質コルチコイドの刺激が挙げられる[Chen等.Epithelial sodium channel regulated by aldosterone−induced protein sgk.Proc Natl Acad Sci USA 1999年;96:2514〜2519,Naray−Fejes−Toth等.sgk is an aldosterone−induced kinase in the renal collecting duct.Effects on epithelial Na+ channels.J Biol Chem 1999年;274;16973〜16978;Shigaev等.Regulation of sgk by aldosterone and its effects on the epithelial Na(+)channel.Am J Physiol 2000年;278:F613〜F619;Brenan FE,Fuller PJ.Rapid upregulation of serum and glucocorticoid−regulated kinase(sgk)gene expression by corticosteroids in vivo.Mol Cell Endocrinol.2000年;30;166:129〜36;Cowling RT,Birnboim HC.Expression of serum− and glucocorticoid−regulated kinase(sgk)mRNA is up−regulated by GM−CSF and other proinflammatory mediators in human granulocytes.J Leukoc Biol.2000年:67:240〜248]。 Subsequent observations reveal that hsgk1 is under the influence of numerous stimuli [Lang F, Cohen P. et al. Regulation and physical roles of serum- and glucocorticoid-induced protein kinase isoforms. Science STKE. 2001 Nov. 13; 2001 (108): RE17], such stimuli include, inter alia, mineralocorticoid stimuli [Chen et al. Episodic sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci USA 1999; 96: 2514-2519, Naray-Fejes-Toth et al. sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na + channels. J Biol Chem 1999; 274; 16973-1978; Shigaev et al. Regulation of sgk by aldosterone and its effects on the epithelial Na (+) channel. Am J Physiol 2000; 278: F613-F619; Brenan FE, Fuller PJ. Rapid upgrade of serum and glucocorticoid-regulated kinase (sgk) gene expression by corticosteroids in vivo. Mol Cell Endocrinol. 2000; 30; 166: 129-36; Cowling RT, Birnboim HC. Expression of serum- and glucocorticoid-regulated kinase (sgk) mRNA is up-regulated by GM-CSF and other pro-inflammatory mediators in human granulation. J Leukoc Biol. 2000: 67: 240-248].

hsgk1は、インスリン様成長因子IGF1によって、インスリンによって、ならびに、シグナルカスケードを経た、ホスホイノシトール−3−キナーゼ(PI3キナーゼ)、および、ホスホイノシトール依存性キナーゼPDK1による酸化的ストレスによってによって刺激される[Park等.Serum and glucocorticoid−inducible kinase(SGK)is a target of the PI3−kinase−stimulatd signaling pathway,EMBO J 1999年;18:3024〜3033;Kobayashi等.Characterization of the structure and regulation of two novel isoforms of serum− and glucocorticoid−induced protein kinase.Biochem.J.1999年;344:189〜197]。PDK1によるhsgk1活性化は、422位のセリンのリン酸化を伴う。このセリンからアスパラギン酸への突然変異(S422DSGK1)により、構成的に活性なキナーゼが生じる[Kobayashi T,Cohen P:Activation of serum− and glucocorticoid−regulated protein kinase by agonists that activate phosphatidylinositide 3−kinase is mediated by 3−phosphoinositide−dependent protein kinase−1(PDKl)and PDK2.Biochem J.1999年;339:319〜328]。 hsgk1 is stimulated by insulin-like growth factor IGF1, by insulin and by oxidative stress by the phosphoinositol-3-kinase (PI3 kinase) and phosphoinositol-dependent kinase PDK1 via the signal cascade [Park etc. Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI3-kinase-stimulated signaling pathway, EMBO J 1999; 18: 3024-3033; Characteristic of the structure and regulation of two novel forms of serum- and glucocorticoid-induced protein kinase. Biochem. J. et al. 1999; 344: 189-197]. Activation of hsgk1 by PDK1 is accompanied by phosphorylation of serine at position 422. This mutation from serine to aspartic acid ( S422D SGK1) results in a constitutively active kinase [Kobaashishi T, Cohen P: Activation of serum- and glucocorticoid-regulated protein kinase acidity by 3-phosphoinoside-dependent protein kinase-1 (PDKl) and PDK2. Biochem J. et al. 1999; 339: 319-328].

初期の研究が示すように、hsgk1は、腎臓上皮性Na+チャネルの協力な刺激物質である[De la Rosa等.The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes.J Biol Chem 1999年;274:37834〜37839;Boehmer等.The Shrinkage−activated Na+Conductance of Rat
Hepatocytes and its Possible Correlation to rENaC.Cell Phys Biochem.2000年;10:187〜194;Lang等.Deranged transcriptional regulation of cell volume sensitive kinase hsgk in diabetic nephropathy.Proc Natl Acad Sci USA 2000年;97:8157〜8162]。hsgk1は、上皮性Na+チャネルENaCを発現しない多数の組織で見出されているため、hsgk1の機能を、Na+チャネルを調節する機能に限定すべきではない[Klingel等.Expression of the cell volume regulated kinase h−sgk in pancreatic tissue.Am J Physiol(Gastroint.Liver−Physiol.)2000年;279:G998〜G1002;Waldegger等.Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume.Proc Natl Acad Sci USA 1997年:94:4440〜4445;Waldegger等.h−sgk Serine−Threonine protein kinase gene as early transcriptional target of TGF−β in human intestine.Gastroenterology 1999年;116:1081〜1088]。
As early studies have shown, hsgk1 is a synergistic stimulator of the renal epithelial Na + channel [De la Rosa et al. The serum and glucocorticoid kinase sgk increases the thebundance of epithelial sodium channels in the plasma membrane of Xenopus. J Biol Chem 1999; 274: 37834-37839; Boehmer et al. The Shrinkage-activated Na + Conductance of Rat
Hepatocytes and it's Possible Correlation to rENaC. Cell Phys Biochem. 2000; 10: 187-194; Lang et al. Derated transactional regulation of cell volume sensitive kinase hsgk in diabetic nephropathy. Proc Natl Acad Sci USA 2000; 97: 8157-8162]. Since hsgk1 is found in many tissues that do not express the epithelial Na + channel ENaC, the function of hsgk1 should not be limited to the function of modulating the Na + channel [Klingel et al. Expression of the cell volume regulated kinase h-sgk in pancreatic tissue. Am J Physiol (Gastroint. Liver-Physiol.) 2000; 279: G998-G1002; Waldegger et al. Cloning and charactarization of a putative human serine / threonine protein kinase transducedly modified anisotropy and isotonic alternations. Proc Natl Acad Sci USA 1997: 94: 4440-4445; Waldegger et al. h-sgk Serine-Threonine protein kinase gene as early transcription target of TGF-β in human intestine. Gastroenterology 1999; 116: 1081-1088].

hsgk1は、まだ解明されていない様式で、その他の多数のシグナル伝達経路またはこれら経路の構成要素を調節する可能性があるということから、hsgk1およびそのヒト相同体は、多数の病気を診断するかなりの可能性を有すると予測される。特にDE19708173(A1)により、hsgk1は、多くの病気(例えば高ナトリウム血症、低ナトリウム血症、糖尿病、腎機能不全、過剰代謝、肝性脳症、および、細菌またはウイルス感染、この場合、細胞容量の変化が、重要な病態生理学的な役割を果たす)に関する診断に用いることができることは明らかである。   Because hsgk1 may regulate many other signaling pathways or components of these pathways in a way that has not yet been elucidated, hsgk1 and its human homologues are quite capable of diagnosing many diseases. It is predicted that In particular according to DE 1970173 (A1), hsgk1 is associated with many diseases (eg hypernatremia, hyponatremia, diabetes, renal dysfunction, hypermetabolism, hepatic encephalopathy and bacterial or viral infections, in this case cell volume It is clear that these changes can be used in diagnosis for important pathophysiological roles).

WO00/62781では、hsgk1は、内皮性Na+チャネルを活性化し、それにより、腎臓のNa+再吸収の増加が起こることが報告されている。この腎臓のNa+再吸収の増加は高血圧を伴うため、この文献において、hsgk1の発現の増加が高血圧をもたらし、一方、hsgk1の発現の減少が最終的には低血圧をもたらすと予想されていた。 In WO 00/62781, hsgk1 is reported to activate endothelial Na + channels, thereby causing an increase in renal Na + reabsorption. Since this increase in renal Na + reabsorption is associated with hypertension, in this document it was expected that increased expression of hsgk1 would result in hypertension, whereas decreased expression of hsgk1 would ultimately result in hypotension. .

DE10042137はまた、ヒト相同体hsgk2およびhsgk3の過剰発現または過剰活性、ENaCの過活性化、それにより生じる腎臓のNa+再吸収の増加、および、それにより発症する高血圧に、同様の関連性があることを報告している。その上、この文献では、hsgk2およびhsgk3キナーゼが、動脈性高血圧に関して診断上の可能性があることをすでに論じている。 DE10042137 is also similarly associated with overexpression or overactivity of the human homologs hsgk2 and hsgk3, overactivation of ENaC, resulting in increased renal Na + reabsorption, and the resulting hypertension It is reported that. Moreover, this document already discusses that hsgk2 and hsgk3 kinases have diagnostic potential for arterial hypertension.

WO02/074987A2は、hsgk1遺伝子における個々のヌクレオチドの2つの異なる多型(単一ヌクレオチド多型(SNP))の存在と、遺伝学的に決定された高血圧に関する素因との関連を開示している。これら多型は、hsgk1遺伝子において、イントロン6における多型(T→C)と、エキソン8における多型(C→T)である。   WO 02 / 074987A2 discloses the association of the presence of two different polymorphisms of individual nucleotides (single nucleotide polymorphism (SNP)) in the hsgk1 gene with a genetically determined predisposition to hypertension. These polymorphisms are the polymorphism in intron 6 (T → C) and the polymorphism in exon 8 (C → T) in the hsgk1 gene.

sgk1は多数の組織で発現され、sgk1は多数の未知の基質を有すると推測されるため、sgkファミリーのヒト相同体、特にhsgk1遺伝子(NM005627)、hsgk2遺伝子およびhsgk3遺伝子(AF169035)の機能と、その他の病気の発症との間には、さらなる相関性があると予測することができる。これらsgk1が関与するその他の特定の病気の相関を発見することにより、sgkファミリーのヒト相同体の遺伝子の多型領域を含む核酸が得られる可能性があり、このような領域は、対応するsgkタンパク質の機能または発現に影響を与え、これらその他の病気に関する素因を診断するのに用いられる。   Since sgk1 is expressed in a number of tissues and sgk1 is presumed to have a number of unknown substrates, the functions of the human homologues of the sgk family, in particular the hsgk1 gene (NM005627), the hsgk2 gene and the hsgk3 gene (AF169903), It can be predicted that there is a further correlation with the onset of other diseases. By discovering the correlation of these other specific diseases in which these sgk1s are involved, it is possible to obtain nucleic acids containing polymorphic regions of the sgk family of human homologues, such regions containing the corresponding sgk It affects protein function or expression and is used to diagnose predisposition to these other diseases.

それゆえに、本発明の目的は、sgkファミリーのヒト相同体の機能と、新しい病気との間のさらなる相関性を発見することであり、これにより、sgkファミリーのヒト相同体の遺伝子の多型領域を含む核酸の診断的な使用に関する新規な可能性を提供することができる。   Therefore, an object of the present invention is to discover a further correlation between the function of the human homologue of the sgk family and a new disease, whereby the polymorphic region of the gene of the human homologue of the sgk family Can provide new possibilities for the diagnostic use of nucleic acids comprising:

この目的は、hsgk1およびhsgk3が、グルコース輸送体Glut1を強力に刺激するという驚くべき発見によってによって達成された(図1を参照)。特に、グルコース輸送体Glut1は、特に眼の様々な細胞へのグルコースの取り込みを介在する[Busik等.Glucose−induced activation of glucose uptake in cells from the inner and outer blood−retinal barrier.Invest Ophthalmol Vis Sci.2002年;43:2356〜63;Takata K,Kasahara T,Kasahara M,Ezaki O,Hirano H.Ultracytochemical localization of the erythrocyte/HepG2−type glucose transporter(GLUT1)in the ciliary body and iris of the rat eye.Invest Ophthalmol Vis Sc.1991年;32:1659〜66]。浸透圧により水分がグルコースと一緒に取り込まれるが、これは、Glut1活性の増加が、細胞の膨張に至ることを意味する。その結果として、Glut1活性の増加は、白内障の発症に至る可能性がある[Gong等.Development of cataractous macrophthalmia in mice expressing an active MEK1 in the lens.Invest Ophthalmol Vis Sci.2001年:42:539〜48]。これに加えて、Glut1の過剰発現は、結合組織のタンパク質の形成と沈着を促進することが示されている[Ayo等.Increased extracellular matrix synthesis and mRNA in mesangial cells grown in high−glucose medium.Am J Physiol.1991年;260:F185〜191;Heilig等.Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype.J Clin Invest.1995年;96:1802〜1814]。このような結合組織のタンパク質の沈着は、眼の流体の流通を妨害し、眼内の圧力の増加に至り、その結果として網膜にダメージを与える[Fingert等.Evaluation of the myocilin(MYOC)glaucoma gene in monkey and human steroid−induced ocular hypertension.Invest Ophthalmol Vis Sci.2001年:42(1):145〜52,Ueda等.Distribution of myocilin and extracellular matrix components in the juxtacanalicular tissue of human eyes.Invest Ophthalmol Vis Sci.2002年:43:1068〜76]。実際に、糖質コルチコイドは、SGK1の発現を刺激し(上記を参照)、同時に緑内障の発症を引き起こす[Fingert等.2001年]。しかしながら、これまで、hsgk1が原因となる役割を有すると考えられることは決してなかった。   This goal was achieved by the surprising discovery that hsgk1 and hsgk3 potently stimulate the glucose transporter Glut1 (see FIG. 1). In particular, the glucose transporter Glut1 mediates the uptake of glucose, particularly into various cells of the eye [Busik et al. Glucose-induced activation of glucose uptake in cells from the inner and outer blood-retinal barrier. Invest Ophthalmol Vis Sci. 2002; 43: 2356-63; Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H. et al. Ultratochemical localization of the erythrocyte / HepG2-type glucose transporter (GLUT1) in the serial body of the iris of the raty. Invest Ophthalmol Vis Sc. 1991; 32: 1659-66]. Osmotic pressure causes water to be taken up with glucose, which means that an increase in Glut1 activity leads to cell swelling. As a result, increased Glut1 activity may lead to the development of cataract [Gong et al. Development of cataractous macrophthalemia in mice expressing an active MEK1 in the lens. Invest Ophthalmol Vis Sci. 2001: 42: 539-48]. In addition, overexpression of Glut1 has been shown to promote connective tissue protein formation and deposition [Ayo et al. Incremental extracellular matrix synthesis and mRNA in mesangial cells grown in high-glucose medium. Am J Physiol. 1991; 260: F185-191; Heilig et al. Overexpression of glucose transporters in rat mesangial cells cut in normal glucose milieu mimics the diabetic phenotype. J Clin Invest. 1995; 96: 1802-1814]. Such connective tissue protein deposition interferes with the flow of the fluid in the eye, leading to an increase in intraocular pressure, resulting in damage to the retina [Fingert et al. Evaluation of the myocilin (MYOC) glaucoma gene in monkey and human steroid-induced oral hypertension. Invest Ophthalmol Vis Sci. 2001: 42 (1): 145-52, Ueda et al. Distribution of myocilin and extracellular matrix components in the juxtaanalytic tissue of human eyes. Invest Ophthalmol Vis Sci. 2002: 43: 1068-76]. Indeed, glucocorticoids stimulate the expression of SGK1 (see above) and at the same time cause the development of glaucoma [Fingert et al. 2001]. However, until now, hsgk1 has never been considered to have a causative role.

上述の妨害は、hsgk1活性が増加したあらゆる状況において、すなわち上述のホルモンのいずれかが過剰に存在する場合に生じると予想される。血圧の増加と相互関係を示すhsgk1遺伝子の特定の多型[Busjahn等.Serum− and glucocorticoid−regulated kinase(SGK1)gene and blood pressure.Hypertension 40(3):256〜260,2002年]は、同時に、白内障および緑内障の発症の増加をもたらす可能性がある。また、同じ遺伝子改変が、早期に出現する白内障および/または緑内障と関連性を示すはずである。   The above mentioned interference is expected to occur in any situation where hsgk1 activity is increased, ie when any of the above mentioned hormones is present in excess. A specific polymorphism of the hsgk1 gene that correlates with increased blood pressure [Busjahn et al. Serum- and glucocorticoid-regulated kinase (SGK1) gene and blood pressure. Hypertension 40 (3): 256-260, 2002] may simultaneously lead to an increased incidence of cataracts and glaucoma. The same genetic modification should also be associated with early appearing cataracts and / or glaucoma.

本発明の発見により、グルコース輸送体Glut1の調節における全く新規なメカニズムが明らかになる。それゆえに、hsgk1活性の増加は、細胞へのグルコースの取り込みの増加をもたらすと予測される。hsgk1の転写は、以下のものによって刺激される:血清[Webster等.1993年]、糖質コルチコイド[BrenanおよびFuller 2000年,Webster等.1993年]、鉱質コルチコイド[Chen等.1999年,Naray−Fejes−Toth等.1999年,Shigaev等.2000年,BrennanおよびFuller 2000年,CowlingおよびBirnboim 2000年]、ゴナドトロピン[Alliston等.Follicle stimulating hormone−regulated expression of serum/glucocorticoid−inducible kinase in rat ovarian granulosa cells:a functional role for the Sp1 family in promoter activity.Mol Endocrinol.1997年;11:1934〜1949;Alliston等.Expression and localization of serum/glucocorticoid−induced kinase in the rat ovary:relation to follicular growth and differentiation.Endocrinology.2000年:141:385〜395;Gonzalez−Robayna等.Follicle−Stimulating hormone(FSH)stimulates phosphorylation and activation of protein kinase B(PKB/Akt)and serum and glucocorticoid−Induced kinase(Sgk):evidence for A kinase−independent signaling by FSH in granulosa cells.Mol Endocrinol.2000年;14:1283〜1300,Richards等.Ovarian cell differentiation:a cascade of multiple hormones,cellular signals,and regulated genes.Recent Prog Horm Res.1995年:50:223〜254]、および、多数のサイトカイン[LangおよびCohen 2001年]、特にTGF−β[Fillon S.等.Expression of the Serine/Threonine kinase hsgk1 in chronic viral hepatitis.Cell Physiol Biochem 2002年:12:47〜54:Lang等.2000年,Waldegger等.1999年,Waerntges S等.Excessive transcription of the human serum and glucocorticoid dependent kinase hsgk1 in lung fibrosis.Cell Physiol Biochem 2002年,12:135〜142]。これに加えて、Waldegger等.1997年の論文(上記ですでに引用した)によって示されるように、hsgk1の転写は、細胞の収縮によって増加する。糖尿病で生じるように、グルコース濃度が増加すると、細胞の収縮、および/または、TGF−βの産生の増加によってhsgk1の発現が刺激される[Lang等.2000年]。発現されたhsgk1は、インスリン様成長因子IGF1、インスリンまたは酸化的ストレスによって活性化される[KobayashiおよびCohen 1999年,Park等.1999年,Kobayashi等.1999年]。   The discovery of the present invention reveals a completely new mechanism in the regulation of the glucose transporter Glut1. Therefore, increased hsgk1 activity is expected to result in increased glucose uptake into cells. The transcription of hsgk1 is stimulated by: serum [Webster et al. 1993], glucocorticoids [Brenan and Fuller 2000, Webster et al. 1993], mineral corticoids [Chen et al. 1999, Naray-Fejes-Toth et al. 1999, Shigaev et al. 2000, Brennan and Fuller 2000, Cowling and Birnboim 2000], gonadotropins [Alliston et al. Fully stimulating home-regulated expression of serum / glucocorticoid-inducible kinase in rat ovarian fluro cer fo ro s: Mol Endocrinol. 1997; 11: 1934-1949; Alliston et al. Expression and localization of serum / glucocorticoid-induced kinase in the rat over: relation to full growth and differentiation. Endocrinology. 2000: 141: 385-395; Gonzalez-Robayna et al. Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB / Akt) and serum and glucocorticoid-Induced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol. 2000; 14: 1283-1300, Richards et al. Ovarian cell differentiation: a cascade of multiple homones, cellular signals, and regulated genes. Recent Prog Home Res. 1995: 50: 223-254] and a number of cytokines [Lang and Cohen 2001], especially TGF-β [Fillon S. et al. etc. Expression of the Serine / Threoneine kinase hsgk1 in chronic viral hepatitis. Cell Physiol Biochem 2002: 12: 47-54: Lang et al. 2000, Waldegger et al. 1999, Waerntges S et al. Executive transcription of the human serum and glucocorticoid dependent kinase hsgk1 in lug fibrosis. Cell Physiol Biochem 2002, 12: 135-142]. In addition to this, Waldeger et al. As shown by a 1997 paper (already cited above), transcription of hsgk1 is increased by contraction of cells. As occurs in diabetes, increasing glucose concentration stimulates hsgk1 expression by cell contraction and / or increased production of TGF-β [Lang et al. 2000]. Expressed hsgk1 is activated by insulin-like growth factor IGF1, insulin or oxidative stress [Kobayashi and Cohen 1999, Park et al. 1999, Kobayashi et al. 1999].

本発明に係る発見によれば、増加したhsgk1の発現は、グルコース輸送体Glut1の活性を増加させる。結果として、より多くのグルコースが細胞へ取り込まれ、それに続いて浸透性によって取り込まれた水が、細胞の膨潤の原因となる。これは、水が高いレベルで角膜とレンズに取り込まれる様式であり、それにより、透明度が減少し、白内障が起こる[Gong等.2001年]。   According to the discovery according to the invention, increased hsgk1 expression increases the activity of the glucose transporter Glut1. As a result, more glucose is taken up by the cells and subsequently water taken up by osmosis causes the cells to swell. This is the manner in which water is taken up by the cornea and lens at high levels, thereby reducing transparency and causing cataract [Gong et al. 2001].

緑内障はまた、同様の様式で発症する可能性があり、それに加えて、結合組織の取り込みによって発症する可能性がある[Fingert等.2001年]。 Glaucoma can also develop in a similar manner, in addition to it can be caused by connective tissue uptake [Fingert et al. 2001].

また、細胞の膨張は、糖尿病性神経障害における原因であるとも疑われている[Burg等,Sorbitol,osmoregulation,and the complications of diabetes.J Clin Invest 1988;81:635〜40]。しかしながら、Glut1活性の増加は、糖尿病においてだけでなく、糖質コルチコイドの影響下でも、または、遺伝学的に決定されたhsgk1の過剰活性を示す患者においても起こると予測される[Busjahn等,Serum− and glucocorticoid−regulated kinase(SGK1)gene and blood pressure.Hypertension 40(3):256〜260,2002年]。実際に、糖質コルチコイドは、緑内障を発生させる[Fingert等.2001年]。糖質コルチコイド投与に関連する緑内障の発症に関与するメカニズムは、これまでわかっていない。特に、hsgk1がこのメカニズムにおいて役割を果たし、それゆえに、緑内障を診断および治療するための標的タンパク質として使用するのに適していることは、これまでわかっていない。 Cell swelling is also suspected to be the cause of diabetic neuropathy [Burg et al., Sorbitol, osmorelegation, and the complications of diabetics. J Clin Invest 1988; 81: 635-40]. However, an increase in Glut1 activity is expected to occur not only in diabetes, but also under the influence of glucocorticoids or in patients exhibiting genetically determined hsgk1 overactivity [Busjahn et al., Serum. And and glucocorticoid-regulated kinase (SGK1) gene and blood pressure. Hypertension 40 (3): 256-260, 2002]. In fact, glucocorticoids cause glaucoma [Fingert et al. 2001]. The mechanisms involved in the development of glaucoma associated with glucocorticoid administration are unknown. In particular, it has not been found so far that hsgk1 plays a role in this mechanism and is therefore suitable for use as a target protein for diagnosing and treating glaucoma.

その結果として、驚くべきことに、本発明に係る観察は、hsgk1およびhsgk3は、非上皮性のグルコース輸送を増加させ、同様に、上皮性Na+チャネルを増加させることを実証する。結果として、hsgk1およびhsgk3は、重要な診断および治療/予防の結果を伴うはずの、全く新規な病態生理学的な意義を有することが明らかになった。 Consequently, surprisingly, the observations according to the present invention demonstrate that hsgk1 and hsgk3 increase non-epithelial glucose transport as well as epithelial Na + channels. As a result, it became clear that hsgk1 and hsgk3 have entirely novel pathophysiological significance that should be accompanied by significant diagnostic and therapeutic / preventive results.

従って、本発明は、細胞の膨張を減少させるための、hsgk1タンパク質もしくはhsgk3タンパク質の機能的な阻害剤、または、hsgk1遺伝子もしくはhsgk3遺伝子の転写の負の調節因子の使用に関する。   Thus, the present invention relates to the use of a functional inhibitor of hsgk1 protein or hsgk3 protein or a negative regulator of transcription of the hsgk1 gene or hsgk3 gene to reduce cell swelling.

その上、本発明は、白内障、緑内障または糖尿病性神経障害を治療および/または予防するための医薬を製造するための、hsgk1タンパク質もしくはhsgk3タンパク質の機能的な阻害剤、または、hsgk1遺伝子もしくはhsgk3遺伝子の転写の負の調節因子の使用に関する。   Moreover, the present invention relates to a functional inhibitor of hsgk1 protein or hsgk3 protein, or hsgk1 gene or hsgk3 gene for the manufacture of a medicament for treating and / or preventing cataract, glaucoma or diabetic neuropathy. Relates to the use of negative regulators of transcription.

この、hsgk1タンパク質またはhsgk3タンパク質の機能的な阻害剤は、hsgk1タンパク質またはhsgk3タンパク質の正常な生理活性を阻害する性質のいずれかを有する化学物質であり得る。hsgk1タンパク質またはhsgk3タンパク質の機能的な阻害剤は、好ましくは、低分子量の化学物質(「小分子」)、または、タンパク質もしくはペプチドである。特に、hsgk1タンパク質またはhsgk3タンパク質の機能的な阻害剤は、これら酵素のアンタゴニストであることが可能であり、このようなアンタゴニストは、hsgk1タンパク質またはhsgk3タンパク質の基質結合部位をブロックするが、同時に、hsgk1またはhsgk3によるいかなる触媒的な変換も受けない。このような場合に適切なアンタゴニストは、好ましくは、hsgk1タンパク質またはhsgk3タンパク質の天然基質に構造的に類似している分子、すなわち、特に、リン酸化可能なアミノ酸のセリンおよびスレオニンに構造的に類似している分子である。   The functional inhibitor of the hsgk1 protein or hsgk3 protein can be a chemical substance having either the property of inhibiting the normal physiological activity of the hsgk1 protein or hsgk3 protein. A functional inhibitor of the hsgk1 protein or hsgk3 protein is preferably a low molecular weight chemical ("small molecule"), or a protein or peptide. In particular, functional inhibitors of hsgk1 protein or hsgk3 protein can be antagonists of these enzymes, such antagonists block the substrate binding site of hsgk1 protein or hsgk3 protein, but at the same time hsgk1 Or does not undergo any catalytic conversion by hsgk3. Suitable antagonists in such cases are preferably molecules that are structurally similar to the natural substrate of the hsgk1 protein or hsgk3 protein, i.e., in particular structurally similar to the phosphorylable amino acids serine and threonine. Molecule.

スタウロスポリンおよびケレリトリンは、hsgk1の2種の既知の機能的な阻害剤である。それゆえに、特に好ましい実施形態において、スタウロスポリンまたはケレリトリンのいずれかが、病気(白内障、緑内障および糖尿病性神経障害)の少なくとも1つの治療および/または予防のためのhsgk1またはhsgk3の機能的な阻害剤として用いられる。     Staurosporine and chelerythrine are two known functional inhibitors of hsgk1. Therefore, in a particularly preferred embodiment, either staurosporine or chelerythrine is a functional inhibition of hsgk1 or hsgk3 for the treatment and / or prevention of at least one disease (cataract, glaucoma and diabetic neuropathy) Used as an agent.

hsgk1遺伝子またはhsgk3遺伝子の転写の負の調節因子は、転写レベルでhsgk1遺伝子またはhsgk3遺伝子の発現を活性化する物質と定義される。   A negative regulator of transcription of the hsgk1 gene or hsgk3 gene is defined as a substance that activates the expression of the hsgk1 gene or hsgk3 gene at the transcriptional level.

実際の活性化合物、すなわちhsgk1もしくはhsgk3の機能的な阻害剤、または、hsgk1もしくはhsgk3の転写の負の調節因子に加えて、白内障、緑内障または糖尿病性神経障害の治療および/または予防のための本発明に係る医薬はまた、安定剤および/またはキャリアー物質を含んでもよく、これらとして、例えば、スターチ、ラクトース、ステアリン酸、脂肪、ワックス、アルコール またはその他の添加剤、例えば保存剤、色素または矯味矯臭剤が挙げられる。   In addition to the actual active compounds, ie functional inhibitors of hsgk1 or hsgk3, or negative regulators of transcription of hsgk1 or hsgk3, this book for the treatment and / or prevention of cataract, glaucoma or diabetic neuropathy The medicament according to the invention may also contain stabilizers and / or carrier substances, such as starch, lactose, stearic acid, fats, waxes, alcohols or other additives such as preservatives, pigments or flavoring. Agents.

本医薬は、あらゆる様式で投与することができ、特に、錠剤、顆粒またはカプセルの形態で、または、溶液として経口投与することができる。その他の特に適切な投与形態は、軟膏、チンキまたはスプレーの形態での直接投与(例えば皮膚または眼への)、または、あらゆるタイプの注射(例えば皮下または静脈内)、または、点滴に関する。   The medicament can be administered in any manner, in particular in the form of tablets, granules or capsules or orally as a solution. Other particularly suitable administration forms relate to direct administration in the form of ointments, tinctures or sprays (for example to the skin or eyes) or any type of injection (for example subcutaneously or intravenously) or infusion.

その上、本発明は、白内障、緑内障および/または糖尿病性神経障害を発症させる素因を診断するための、受託番号NM005627に記載のhsgk1配列、またはそのフラグメントの一つを包含する一本鎖または二本鎖核酸の使用に関する。これに関連して、一本鎖または二本鎖核酸が包含し得るhsgk1フラグメントの長さは、少なくとも10個のヌクレオチド/塩基対、好ましくは少なくとも15個のヌクレオチド/塩基対、特に、少なくとも20個のヌクレオチド/塩基対である。   Moreover, the present invention relates to a single strand or double chain comprising the hsgk1 sequence according to accession number NM005627, or one of its fragments, for diagnosing a predisposition to develop cataract, glaucoma and / or diabetic neuropathy. It relates to the use of double-stranded nucleic acids. In this context, the length of the hsgk1 fragment that a single-stranded or double-stranded nucleic acid can include is at least 10 nucleotides / base pairs, preferably at least 15 nucleotides / base pairs, in particular at least 20 Of nucleotides / base pairs.

これに関連して、一本鎖または二本鎖核酸は、好ましくは、hsgk1遺伝子の少なくとも1つの多型ヌクレオチド、特に、hsgk1遺伝子の単一ヌクレオチド多型(SNP)を包含する。   In this context, the single-stranded or double-stranded nucleic acid preferably comprises at least one polymorphic nucleotide of the hsgk1 gene, in particular a single nucleotide polymorphism (SNP) of the hsgk1 gene.

特に好ましい実施形態において、一本鎖または二本鎖核酸は、これに関連して、少なくとも1つの以下のhsgk1遺伝子のSNPを包含する:
−hsgk1遺伝子のイントロン2における732/733位でのGの挿入、
−hsgk1遺伝子のイントロン6における2071位でのT/C置換(WO02/074987A2)、
−hsgk1遺伝子のエキソン8における2617位でのT/C置換(WO02/074987A2)。
In a particularly preferred embodiment, the single-stranded or double-stranded nucleic acid in this regard comprises at least one of the following hsgkl gene SNPs:
The insertion of G at positions 732/733 in intron 2 of the hsgk1 gene,
A T / C substitution at position 2071 in intron 6 of the hsgk1 gene (WO 02 / 074987A2),
-A T / C substitution at position 2617 in exon 8 of the hsgk1 gene (WO 02 / 074987A2).

上述の一本鎖または二本鎖核酸は、好ましくは、以下の方法によって、患者のゲノムDNAまたはcDNAにおける上記hsgk1遺伝子のSNPを検出するのに用いることができる:
−上記核酸を用いてゲノムDNAまたはcDNAを直接配列解析すること、
−ゲノムDNAまたはcDNAと上記核酸とを特異的にハイブリダイズさせること、
−PCRオリゴヌクレオチド伸長分析、または、ライゲーション分析。
The single-stranded or double-stranded nucleic acid described above can be preferably used to detect the SNP of the hsgk1 gene in a patient's genomic DNA or cDNA by the following method:
-Direct sequencing of genomic DNA or cDNA using the nucleic acid,
-Specifically hybridizing genomic DNA or cDNA with the nucleic acid,
-PCR oligonucleotide extension analysis or ligation analysis.

これに関連して、患者のゲノムDNAまたはcDNAは、好ましくは、患者から、特に唾液、血液、組織または細胞から採取された生体サンプルから単離される。   In this connection, the patient's genomic DNA or cDNA is preferably isolated from a biological sample taken from the patient, in particular from saliva, blood, tissue or cells.

発現されたhsgk1遺伝子の活性は、患者のhsgk1遺伝子におけるこの多型のバージョンに依存すること、および、その結果として、これら多型の少なくとも1つを含む核酸は、特に、白内障、緑内障および/または糖尿病性神経障害を発症させる素因を診断するのによく適していること、が考えられる。   The activity of the expressed hsgk1 gene depends on the version of this polymorphism in the patient's hsgk1 gene, and as a result, nucleic acids comprising at least one of these polymorphisms are particularly cataract, glaucoma and / or It may be well suited for diagnosing a predisposition to developing diabetic neuropathy.

その上、本発明は、白内障、緑内障および/または糖尿病性神経障害を発症させる素因を診断するための、受託番号AF169035に記載のhsgk3配列、またはそのフラグメントの一つを包含する一本鎖または二本鎖核酸の使用に関する。これに関連して、一本鎖または二本鎖核酸が包含し得るhsgk3フラグメントの長さは、少なくとも10個のヌクレオチド/塩基対、好ましくは少なくとも15個のヌクレオチド/塩基対、特に、少なくとも20個のヌクレオチド/塩基対である。   Moreover, the present invention relates to a single-stranded or double-stranded product comprising one of the hsgk3 sequences set forth in Accession No. AF169035 or a fragment thereof for diagnosing a predisposition to developing cataract, glaucoma and / or diabetic neuropathy. It relates to the use of double-stranded nucleic acids. In this context, the length of the hsgk3 fragment that a single-stranded or double-stranded nucleic acid can include is at least 10 nucleotides / base pairs, preferably at least 15 nucleotides / base pairs, in particular at least 20 Of nucleotides / base pairs.

これに関連して、一本鎖または二本鎖核酸は、好ましくは、hsgk3遺伝子の少なくとも1つの多型ヌクレオチド、特に、hsgk3遺伝子の単一ヌクレオチド多型(SNP)を包含する。   In this connection, the single-stranded or double-stranded nucleic acid preferably comprises at least one polymorphic nucleotide of the hsgk3 gene, in particular a single nucleotide polymorphism (SNP) of the hsgk3 gene.

上述の一本鎖または二本鎖核酸に加えて、sgkファミリーのヒト相同体の基質、特にhsgk1およびhsgk3の基質に対する特定の抗体も、白内障、緑内障および糖尿病性神経障害の病気の少なくとも1つを発症させる素因を診断するのに適している。これら診断用の抗体は、好ましくは、基質のリン酸化部位(リン酸化型または非リン酸化型のいずれか)を含む、sgkファミリーの(特に、hsgk1およびhsgk3の)ヒト相同体のエピトープに対するものである。   In addition to the single-stranded or double-stranded nucleic acids described above, specific antibodies against the sgk family of human homologues, particularly the hsgk1 and hsgk3 substrates, also have at least one of the diseases of cataract, glaucoma and diabetic neuropathy. Suitable for diagnosing predisposition to onset. These diagnostic antibodies are preferably directed against epitopes of the human homologue of the sgk family (particularly of hsgk1 and hsgk3) that contain the phosphorylation site of the substrate (either phosphorylated or non-phosphorylated). is there.

例えば、hsgk1遺伝子の個々の遺伝学的な構成によって起こるhsgk1タンパク質の過剰発現により、hsgkの基質の変換の増加、すなわちhsgk1による基質の酵素的リン酸化の増加が起こる可能性がある。同時に、hsgk1タンパク質の過剰発現により、グルコース輸送体Glut1の刺激が起こると予想され、それにより、最終的に、眼の細胞への高レベルのグルコース取り込み、それに続く浸透性による高レベルの水の取り込みが引き起こされ、結果として、最終的に、白内障、緑内障および糖尿病性神経障害を発症させる素因が生じる。hsgk1のリン酸化部位(リン酸化型または非リン酸化型)を含む対象の基質の領域に対する抗体によって、hsgk1基質のより高頻度のリン酸化を検出することは、結果として、白内障、緑内障および糖尿病性神経障害を発症させる素因を診断する代表的な方法ともいえる。   For example, overexpression of hsgk1 protein caused by the individual genetic makeup of the hsgk1 gene may result in increased hsgk substrate conversion, ie, increased enzymatic phosphorylation of the substrate by hsgk1. At the same time, overexpression of the hsgk1 protein is expected to result in stimulation of the glucose transporter Glut1, which ultimately results in high levels of glucose uptake into ocular cells, followed by high levels of water uptake due to permeability Eventually result in a predisposition to develop cataracts, glaucoma and diabetic neuropathy. Detecting more frequent phosphorylation of the hsgk1 substrate by antibodies against regions of the substrate of interest that contain the phosphorylation site of hsgk1 (phosphorylated or non-phosphorylated) results in cataracts, glaucoma and diabetics It can also be said to be a typical method for diagnosing a predisposition for developing neuropathy.

好ましい実施形態において、ユビキチンタンパク質リガーゼNedd4−2(受託番号BAA23711)が、sgkファミリーのヒト相同体の基質として用いられる。このユビキチンタンパク質リガーゼは、sgkファミリーのヒト相同体によって特異的にリン酸化されたタンパク質である[Debonneville等,Phosphorylation of Nedd4−2 by Sgk1 regulates epithelial Na(+)channel cell surface expression.EMBO J.,2001年;20:7052〜7059;Snyder等,Serum and glucocorticoid−regulated kinase modulates Nedd4−2−mediated inhibition of the epithelial Na(+)channel.J.Biol.Chem.,2002年,277:5〜8]。hsgk1のリン酸化部位は、コンセンサス配列(RXRXXS/T)を有し、式中、Rはアルギニン、Sはセリン、Tはスレオニン、Xはいずれかの任意のアミノ酸である。Nedd4−22(受託番号BAA23711)において、上述のコンセンサス配列とマッチする2つの可能性のあるhsgk1のリン酸化部位、すなわちアミノ酸位置382におけるセリン、および、アミノ酸位置468におけるセリンが存在する。   In a preferred embodiment, the ubiquitin protein ligase Nedd4-2 (accession number BAA23711) is used as a substrate for the human homologue of the sgk family. This ubiquitin protein ligase is a protein that is specifically phosphorylated by the human homologue of the sgk family [Debonville et al., Phosphorylation of Needed4-2 by Sgk1 regulatory cells (+) channel cell surface. EMBO J.M. , 2001; 20: 7052-7059; Snyder et al., Serum and glucocorticoid-regulated kinase modulates Ned4-2-mediated inhibition of the epithelial Na (+) channel. J. et al. Biol. Chem. , 2002, 277: 5-8]. The phosphorylation site of hsgk1 has a consensus sequence (RXRXXS / T), where R is arginine, S is serine, T is threonine, and X is any arbitrary amino acid. In Nedd4-22 (accession number BAA23711), there are two possible hsgk1 phosphorylation sites that match the consensus sequence described above, namely serine at amino acid position 382 and serine at amino acid position 468.

それゆえに、上述の、白内障、緑内障および糖尿病性神経障害の病気の少なくとも1つを発症させる素因を診断するための抗体は、好ましくは、基質Nedd4−2、特に好ましくは、hsgk1の可能性のあるリン酸化部位の配列、すなわちコンセンサス配列(RXRXXS/T)を有するNedd4−2タンパク質の領域に対するものである。特に、これらの抗体は、2つの可能性のあるリン酸化部位の少なくとも1つ、すなわちアミノ酸位置382におけるセリン、および/または、アミノ酸位置468におけるセリンを包含するNedd4−2タンパク質領域に対するものである。   Therefore, an antibody for diagnosing a predisposition to develop at least one of the above-mentioned diseases of cataract, glaucoma and diabetic neuropathy is preferably the substrate Nedd4-2, particularly preferably hsgk1 It is directed to a region of the Nedd4-2 protein having a phosphorylation site sequence, ie, a consensus sequence (RXRXXS / T). In particular, these antibodies are directed to a Nedd4-2 protein region that includes at least one of two possible phosphorylation sites, serine at amino acid position 382 and / or serine at amino acid position 468.

その上、本発明は、白内障、緑内障および糖尿病性神経障害の病気の一つを診断するためのキットに関し、本キットは、少なくとも1つの以下の構成要素を含む:
−hsgk1またはhsgk3に対して向けられた抗体、
−一本鎖または二本鎖核酸(ストリンジェントな条件下で、受託番号NM005627に記載のhsgk1遺伝子、または、受託番号AF169035に記載のhsgk3遺伝子とハイブリダイズできる);特に、hsgk1遺伝子またはhsgk3遺伝子の多型ヌクレオチド、特に「SNP」を包含する一本鎖または二本鎖核酸、
−sgkファミリーのヒト相同体の基質に対する抗体;好ましくは、この基質のリン酸化部位(リン酸化型または非リン酸化型)に対する抗体;特に、Nedd4またはNedd4−2のリン酸化部位(リン酸化型または非リン酸化型)に対する抗体。
Moreover, the present invention relates to a kit for diagnosing one of the diseases of cataract, glaucoma and diabetic neuropathy, the kit comprising at least one of the following components:
An antibody directed against hsgk1 or hsgk3,
A single-stranded or double-stranded nucleic acid (which can hybridize under stringent conditions to the hsgk1 gene described in accession number NM005627 or the hsgk3 gene described in accession number AF16935); in particular, of the hsgk1 gene or the hsgk3 gene Single-stranded or double-stranded nucleic acid comprising a polymorphic nucleotide, in particular "SNP",
An antibody against a substrate of the human homologue of the sgk family; preferably an antibody against the phosphorylation site (phosphorylated or non-phosphorylated) of this substrate; in particular the phosphorylation site of Nedd4 or Nedd4-2 (phosphorylated or Non-phosphorylated) antibody.

本発明はまた、多数の試験物質のなかから、治療活性を有する物質を同定し、特徴付けるためのスクリーニング方法に関し、前記治療活性を有する物質は、白内障、緑内障および糖尿病性神経障害からなる群より選択される病気の少なくとも1つを治療および/または予防するのに用いられ、本方法は、以下の工程を含む:
a)以下を細胞中で異種的に共発現させる工程、
i)グルコース輸送体Glut1、および、
ii)hsgk1および/またはhsgk3、
b)それぞれの場合において、少なくとも1種の試験物質の存在下で、細胞のアリコートA1〜Axの少なくとも1つを培養する工程(前記少なくとも1種の試験物質は、それぞれの場合において、細胞のアリコートのインデックス1〜Xに対応して異なっている)、および、試験物質の非存在下で、コントロール細胞のアリコートBを培養すること、
c)細胞のアリコートA1〜Axにおけるグルコース輸送体Glut1の活性を、コントロール細胞のアリコートBにおけるグルコース輸送体Glut1の活性と比較して測定すること。
The present invention also relates to a screening method for identifying and characterizing a substance having therapeutic activity from among a large number of test substances, wherein the substance having therapeutic activity is selected from the group consisting of cataract, glaucoma and diabetic neuropathy Used to treat and / or prevent at least one of the diseases to be treated, the method comprises the following steps:
a) heterogeneously co-expressing the following in the cell:
i) the glucose transporter Glut1, and
ii) hsgk1 and / or hsgk3,
b) culturing at least one of the aliquots A 1 to A x of the cells in each case in the presence of at least one test substance (the at least one test substance is in each case a cell Culturing a control cell aliquot B in the absence of the test substance,
c) Measuring the activity of the glucose transporter Glut1 in the aliquots A 1 -A x of the cells compared to the activity of the glucose transporter Glut1 in the aliquot B of the control cells.

「多様な試験物質」として、物質ライブラリー、好ましくは小分子ライブラリー、またはタンパク質ライブラリーなどを用いることができる。   As “various test substances”, substance libraries, preferably small molecule libraries, protein libraries, and the like can be used.

工程a)において、適切な細胞、好ましくは哺乳動物細胞または細胞系、特にヒト細胞または細胞系は、標準的な方法(例えばエレクトロポレーション、CaPO4沈殿、リポフェクションなど)を用いて、Glut1ならびにhsgk1および/またはhsgk3を発現させるのに適した発現カセットを含む適切な発現ベクターでトランスフェクトされる。このような発現カセットは、対象の細胞型において活性であり、標的遺伝子を適切な量で発現することができる適切なプロモーターの制御下で、関連のある標的遺伝子(Glut1、hsgk1またはhsgk3)のゲノムDNAまたはcDNAを含む。発現ベクターは、選択マーカーをさらに含んでもよい。 In step a), suitable cells, preferably mammalian cells or cell lines, in particular human cells or cell lines, are prepared using standard methods (eg electroporation, CaPO 4 precipitation, lipofection etc.) using Glut1 and hsgk1. And / or transfected with an appropriate expression vector containing an expression cassette suitable for expressing hsgk3. Such an expression cassette is active in the cell type of interest and under the control of an appropriate promoter capable of expressing the target gene in an appropriate amount, the genome of the relevant target gene (Glut1, hsgk1 or hsgk3) Includes DNA or cDNA. The expression vector may further comprise a selection marker.

次に、トランスフェクトされた細胞は、標的遺伝子i)およびii)が発現可能な条件下で培養される。   The transfected cells are then cultured under conditions that allow expression of the target genes i) and ii).

工程b)において、a)のトランスフェクトされた細胞は、異なる細胞のアリコートA1〜Ax、および、コントロール細胞のアリコートBに分配される。細胞のアリコートA1〜Axは、それぞれの場合において、少なくとも1種の試験物質の存在下で培養される。それぞれの場合において細胞のアリコートA1〜Axに加えられる試験物質は、互いに異なる(それぞれの細胞のアリコートA1〜Axのインデックス1〜Xに対応して)。その一方で、コントロール細胞のアリコートBは、試験物質の非存在下で培養される。 In step b), the transfected cells of a) are distributed into different cell aliquots A 1 -A x and control cell aliquot B. Cell aliquots A 1 -A x are in each case cultured in the presence of at least one test substance. The test substances added to the aliquots A 1 to A x of the cells in each case are different from each other (corresponding to the indices 1 to X of the aliquots A 1 to A x of the respective cells). Meanwhile, an aliquot B of control cells is cultured in the absence of the test substance.

工程c)において、細胞のアリコートA1〜Axにおけるグルコース輸送体Glut1の活性は、コントロール細胞のアリコートBにおけるグルコース輸送体Glut1の活性と比較して定量的に測定される。Glut1活性に関して、コントロール細胞のアリコートBで測定される値より顕著に低い値が測定される細胞のアリコートA1〜Axには、hsgk1またはhsgk3を機能的に阻害することができる試験物質、または、それらの発現を減少させることができる試験物質が加えられていることとなる。このような物質は、白内障、緑内障および糖尿病性神経障害の病気の少なくとも1つを治療するのに適する可能性がある。 In step c), the activity of the glucose transporter Glut1 in the aliquots A 1 to A x of the cells is measured quantitatively compared to the activity of the glucose transporter Glut1 in the aliquot B of the control cells. Cell aliquots A 1 -A x that are significantly lower in terms of Glut1 activity than those measured in control cell aliquot B include test substances capable of functionally inhibiting hsgk1 or hsgk3, or Test substances that can reduce their expression will be added. Such substances may be suitable for treating at least one of the diseases of cataract, glaucoma and diabetic neuropathy.

その代わりの実施形態は、多数の試験物質のなかから、治療活性を有する物質を同定し、特徴付けるための、本発明に係るスクリーニング方法であり、前記治療活性を有する物質は、白内障、緑内障および糖尿病性神経障害からなる群より選択される病気の少なくとも1つの治療および/または予防するのに用いられ、本方法は、以下の工程を含む:
d)細胞のアリコートA1〜Axの少なくとも1つにおいて、以下を異種的に共発現させる工程、
i)グルコース輸送体Glut1、および、
ii)hsgk1および/またはhsgk3、
および、
細胞のアリコートB1〜Bxの少なくとも1つにおいて、以下を異種発現させる工程、
i)グルコース輸送体Glut1、
e)それぞれの場合において、少なくとも1種の試験物質の存在下で、細胞のアリコートA1〜AxおよびB1〜Bxを培養する工程(前記少なくとも1種の試験物質は、それぞれの場合において、細胞のアリコートのインデックス1〜Xに対応して異なっている)、
f)細胞のアリコートA1〜Axと細胞のアリコートB1〜Bxにおけるグルコース輸送体Glut1の活性を比較して測定する工程。
An alternative embodiment is a screening method according to the present invention for identifying and characterizing a substance having therapeutic activity from among a large number of test substances, wherein the substance having therapeutic activity is cataract, glaucoma and diabetes Used to treat and / or prevent at least one disease selected from the group consisting of sexual neuropathy, the method comprises the following steps:
d) heterogeneously co-expressing in at least one of the aliquots A 1 -A x of the cells:
i) the glucose transporter Glut1, and
ii) hsgk1 and / or hsgk3,
and,
Heterologously expressing in at least one of aliquots B 1 -B x of cells:
i) Glucose transporter Glut1,
In the case of e), respectively, in the presence of at least one test substance, culturing aliquots A 1 to A x and B 1 .about.B x cell (the at least one test substance, in each case , Corresponding to the index 1 to X of the aliquot of cells),
f) A step of comparing and measuring the activity of the glucose transporter Glut1 in the cell aliquots A 1 to A x and the cell aliquots B 1 to B x .

個々の工程a)〜c)に関して記載された説明は、本発明に係るその代わりのスクリーニング方法の対応する工程d)〜f)の様式にも適応する。   The explanations given for the individual steps a) to c) also apply to the corresponding steps d) to f) of the alternative screening method according to the invention.

以下の図1によって、本発明をより詳細に説明する。   The present invention is described in more detail with reference to FIG. 1 below.

2−デオキシグルコースの取り込み(ピコモル/l/10分/卵母細胞)(相加平均±SEM)を、図1の縦座標Aにプロットする。アフリカツメガエル(Xenopus laevis)卵母細胞に、SGK1、SGK2、SGK3またはタンパク質キナーゼB(PKB)cRNAと共に、または、それらを含まないで、Glut1のcRNAを注入した(実施例1を参照)。   The uptake of 2-deoxyglucose (picomoles / l / 10 min / oocyte) (arithmetic mean ± SEM) is plotted on the ordinate A of FIG. Xenopus laevis oocytes were injected with cRNA of Glut1 with or without SGK1, SGK2, SGK3 or protein kinase B (PKB) cRNA (see Example 1).

図1は、Glut1だけを発現する卵母細胞と比較して、Glut1に加えてhsgk1またはhsgk3を発現する卵母細胞で生じる2−デオキシ−グルコースの取り込みの増加を示す。これにより、hsgk1およびhsgk3の機能は、グルコース輸送体Glut1の活性を効率的に刺激することが実証される。類似の効果は、hsgk1またはhsgk3の代わりにhsgk2またはPKBmutを発現する卵母細胞では観察されない。   FIG. 1 shows the increased 2-deoxy-glucose uptake that occurs in oocytes that express hsgk1 or hsgk3 in addition to Glut1, compared to oocytes that express only Glut1. This demonstrates that the functions of hsgk1 and hsgk3 efficiently stimulate the activity of the glucose transporter Glut1. Similar effects are not observed in oocytes expressing hsgk2 or PKBmut instead of hsgk1 or hsgk3.

以下の実施例によって、本発明をより詳細に説明する。   The following examples illustrate the invention in more detail.

〔実施例〕
実施例1:アフリカツメガエルの卵母細胞における発現、および、二電極式ボルテージクランプ
正常なSGK1 cRNA[Waldegger S,Barth P,Raber G,Lang F:Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume.Proc Natl Acad Sci USA 1997年;94:4440〜4445]、および、構成的に活性なSGK1(S422DSGK1)cRNA[KobayashiおよびCohen 1999年]、同様に、正常なGlut1 cRNA[Iserovich P,Wang D,Ma L,Yang H,Zuniga FA,Pascual JM,Kuang K,De Vivo DC,Fischbarg J.Changes in glucose transport and water permeability resulting from the T310I pathogenic mutation in Glut1 are consistent with two transport channels per monomer.J Biol Chem.2002年;277:30991−7]をインビトロで合成した。アフリカツメガエルの卵巣の切開、ならびに、卵母細胞の回収および処理は、すでに詳細に説明されている[Wagner CA,Friedrich B,Setiawan I,Lang F,Broeer S:The use of Xenopus laevis oocytes for the functional characterization of heterologously expressed membrane proteins.Cell Physiol Biochem 2000年;10:1〜12]。卵母細胞に、ヒトGlut1(5ng)、ヒトS422DSGK1(7.5ng)、および/または、アフリカツメガエルのNedd4−2(5ng)を注入した。コントロール卵母細胞に、水を注入した。それぞれのcRNAを注射した後、室温で2日間、放射標識したグルコースの取り込みを測定した。コントロールバスの溶液は、96mMのNaCl、2mMのKCl、1.8mMのCaCl2、1mMのMgCl2、および、5mMのHEPESを含む、pH7.4。全ての物質は、所定の濃度で用いた。最終溶液をHClまたはNaOHでpH7.4に滴定した。
〔Example〕
Example 1: Expression in Xenopus oocytes, and two-electrode voltage clamp normal SGK1 cRNA [Waldegger S, Barth P, Laber G, Lang F: Cloning and charactarization of a human serotype modified during anisotonic and isotonic alternations of cell volume. Proc Natl Acad Sci USA 1997; 94: 4440-4445], and constitutively active SGK1 ( S422D SGK1) cRNA [Kobayashi and Cohen 1999], as well as normal Glut1 cRNA [Iserovic P, Wang D Ma L, Yang H, Zuniga FA, Pasqual JM, Kuang K, De Vivo DC, Fischburg J. et al. Changes in glucose transport and water permeability resetting form the T310I pathogenetic mutation in Glut1 are consistent with two transporters. J Biol Chem. 2002; 277: 30991-7] was synthesized in vitro. Xenopus ovarian incision and oocyte collection and processing have already been described in detail [Wagner CA, Friedrich B, Setiawan I, Lang F, Breeer S: The use of Xenopus laevis oocites characterisation of heterologously expressed membrane proteins. Cell Physiol Biochem 2000; 10: 1-12]. Oocytes were injected with human Glut1 (5 ng), human S422D SGK1 (7.5 ng), and / or Xenopus Nedd4-2 (5 ng). Water was injected into control oocytes. The uptake of radiolabeled glucose was measured for 2 days at room temperature after each cRNA injection. The control bath solution contains 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl 2 , 1 mM MgCl 2 , and 5 mM HEPES, pH 7.4. All substances were used at the prescribed concentrations. The final solution was titrated to pH 7.4 with HCl or NaOH.

計算
データは、相加平均±SEMとして示される;nは、試験された卵母細胞の数である。全ての実験は、少なくとも3つの異なる卵母細胞群で行われた。その結果は、スチューデントのt検定を用いて有意差に関して試験された。P<0.05の結果だけを、統計学的に有意とみなした。
Calculated data is shown as arithmetic mean ± SEM; n is the number of oocytes tested. All experiments were performed with at least three different oocyte groups. The results were tested for significant differences using Student's t test. Only results with P <0.05 were considered statistically significant.

Glut1だけを発現する卵母細胞と比較して、Glut1に加えてhsgk1またはhsgk3を発現する卵母細胞で生じる2−デオキシ−グルコースの取り込みの増加を示す。2 shows increased 2-deoxy-glucose uptake occurring in oocytes expressing hsgk1 or hsgk3 in addition to Glut1 compared to oocytes expressing only Glut1.

Claims (15)

細胞の膨張を減少させるための、hsgk1タンパク質もしくはhsgk3タンパク質の機能的な阻害剤、または、hsgk1遺伝子もしくはhsgk3遺伝子の転写の負の調節因子の使用。   Use of a functional inhibitor of hsgk1 protein or hsgk3 protein or a negative regulator of transcription of the hsgk1 gene or hsgk3 gene to reduce cell swelling. 白内障、緑内障または糖尿病性神経障害の治療および/または予防用医薬を生産するための、hsgk1タンパク質もしくはhsgk3タンパク質の機能的な阻害剤、または、hsgk1遺伝子もしくはhsgk3遺伝子の転写の負の調節因子の使用。   Use of a functional inhibitor of hsgk1 protein or hsgk3 protein or a negative regulator of transcription of hsgk1 gene or hsgk3 gene to produce a medicament for the treatment and / or prevention of cataract, glaucoma or diabetic neuropathy . hsgk1タンパク質またはhsgk3タンパク質の機能的な阻害剤は、スタウロスポリンまたはケレリトリンであることを特徴とする、請求項1または2に記載の使用。   Use according to claim 1 or 2, characterized in that the functional inhibitor of hsgk1 protein or hsgk3 protein is staurosporine or chelerythrine. 白内障、緑内障または糖尿病性神経障害の治療および/または予防のための、hsgk1タンパク質もしくはhsgk3タンパク質の機能的な阻害剤、または、hsgk1遺伝子もしくはhsgk3遺伝子の転写の負の調節因子を含む医薬。   A medicament comprising a functional inhibitor of hsgk1 protein or hsgk3 protein or a negative regulator of transcription of hsgk1 gene or hsgk3 gene for the treatment and / or prevention of cataract, glaucoma or diabetic neuropathy. 白内障、緑内障および/または糖尿病性神経障害を発症させる素因を診断するための、受託番号NM005627に記載のhsgk1配列、もしくはそのフラグメントの一つを包含する一本鎖または二本鎖核酸の使用。   Use of a single-stranded or double-stranded nucleic acid comprising the hsgk1 sequence according to accession number NM005627, or one of its fragments, for diagnosing a predisposition to develop cataract, glaucoma and / or diabetic neuropathy. 一本鎖または二本鎖核酸は、少なくとも1つのhsgk1遺伝子の多型ヌクレオチド、特にhsgk1遺伝子の「SNP」を包含することを特徴とする、請求項5に記載の使用。   Use according to claim 5, characterized in that the single-stranded or double-stranded nucleic acid comprises at least one polymorphic nucleotide of the hsgk1 gene, in particular a "SNP" of the hsgk1 gene. hsgk1遺伝子のSNPは、hsgk1遺伝子のイントロン2における732/733位でのGの挿入、hsgk1遺伝子のイントロン6における2071位でのT/C置換、および、hsgk1遺伝子のエキソン8における2617位でのT/C置換からなるSNPの群より選択されることを特徴とする、請求項6に記載の使用。   The SNP of the hsgk1 gene is a G insertion at position 732/733 in intron 2 of the hsgk1 gene, a T / C substitution at position 2071 in intron 6 of the hsgk1 gene, and a T at position 2617 in exon 8 of the hsgk1 gene. Use according to claim 6, characterized in that it is selected from the group of SNPs consisting of / C substitutions. 白内障、緑内障および/または糖尿病性神経障害を発症させる素因を診断するための、受託番号AF169035に記載のhsgk3配列を包含する一本鎖または二本鎖核酸、もしくはそのフラグメントの一つの使用。   Use of a single-stranded or double-stranded nucleic acid comprising a hsgk3 sequence according to accession number AF169035, or one of its fragments, for diagnosing a predisposition to develop cataract, glaucoma and / or diabetic neuropathy. 一本鎖または二本鎖核酸は、hsgk3遺伝子、特にhsgk1遺伝子の「SNP」の少なくとも1つの多型ヌクレオチドを包含することを特徴とする、請求項8に記載の使用。   Use according to claim 8, characterized in that the single-stranded or double-stranded nucleic acid comprises at least one polymorphic nucleotide of the "SNP" of the hsgk3 gene, in particular the hsgk1 gene. 疾病(白内障、緑内障および糖尿病性神経障害)の少なくとも1つを発症させる素因を診断するための、sgkファミリーのヒト相同体の基質に対する抗体の使用(該抗体は、リン酸化部位(リン酸化型または非リン酸化型のいずれか)を含むヒト相同体のエピトープに対するものである)。   Use of an antibody against a substrate of a human homologue of the sgk family for diagnosing a predisposition to developing at least one of the diseases (cataract, glaucoma and diabetic neuropathy), said antibody being a phosphorylated site (phosphorylated or To human homologous epitopes, including any of the non-phosphorylated forms). sgkファミリーのヒト相同体の基質は、Nedd4−2(受託番号BAA23711)であることを特徴とする、請求項10に記載の使用。   Use according to claim 10, characterized in that the substrate of the human homologue of the sgk family is Nedd4-2 (accession number BAA23711). 疾病(白内障、緑内障および糖尿病性神経障害)の一つを診断するためのキットであって、hsgk1もしくはhsgk3に対する抗体を含む、または、ストリンジェントな条件下で、受託番号NM005627に記載のhsgk1遺伝子、もしくは、受託番号AF169035に記載のhsgk3遺伝子とハイブリダイズできる核酸を含む、または、これら抗体と核酸とを共に含む、上記キット。   A kit for diagnosing one of diseases (cataract, glaucoma and diabetic neuropathy), comprising an antibody against hsgk1 or hsgk3, or under stringent conditions, the hsgk1 gene described in Accession No. NM005627, Alternatively, the above kit comprising a nucleic acid capable of hybridizing with the hsgk3 gene described in Accession No. AF169035, or a combination of these antibodies and nucleic acid. 核酸は、ストリンジェントな条件下で、hsgk1遺伝子またはhsgk3遺伝子の多型ヌクレオチド、特に「SNP」を包含する、受託番号NM005627に記載のhsgk1遺伝子、または、受託番号AF169035に記載のhsgk3遺伝子のDNA領域とハイブリダイズできることを特徴とする、請求項12に記載のキット。   The nucleic acid, under stringent conditions, includes a polymorphic nucleotide of the hsgk1 gene or the hsgk3 gene, particularly the “sNP”, the hsgk1 gene described in Accession No. NM005627, or the DNA region of the hsgk3 gene described in Accession No. AF16935 The kit according to claim 12, which can hybridize with the kit. 多数の試験物質のなかから、治療活性を有する物質を同定し、特徴付けるためのスクリーニング方法であって、該治療活性を有する物質は、白内障、緑内障および糖尿病性神経障害からなる群より選択される病気の少なくとも1つを治療および/または予防するのに用いられ、以下の工程:
a)以下を細胞中で異種的に共発現させる工程、
i)グルコース輸送体Glut1、および、
ii)hsgk1および/またはhsgk3、
b)それぞれの場合において、少なくとも1種の試験物質の存在下で、細胞のアリコートA1〜Axの少なくとも1つを培養する工程(該少なくとも1種の試験物質は、それぞれの場合において、細胞のアリコートのインデックス1〜Xに対応して異なっている)、および、いずれの試験物質の非存在下で、コントロール細胞のアリコートBを培養すること、
c)細胞のアリコートA1〜Axにおけるグルコース輸送体Glut1の活性を、コントロール細胞のアリコートBにおけるグルコース輸送体Glut1の活性と比較して測定する工程、
を含む、上記方法。
A screening method for identifying and characterizing a substance having a therapeutic activity from among a large number of test substances, wherein the substance having a therapeutic activity is selected from the group consisting of cataract, glaucoma and diabetic neuropathy Is used to treat and / or prevent at least one of the following steps:
a) heterogeneously co-expressing the following in the cell:
i) the glucose transporter Glut1, and
ii) hsgk1 and / or hsgk3,
b) culturing at least one of the aliquots A 1 to A x of the cells in the presence of at least one test substance in each case (the at least one test substance is in each case a cell Culturing a aliquot B of control cells in the absence of any test substance,
c) measuring the activity of the glucose transporter Glut1 in the aliquots A 1 to A x of the cells compared to the activity of the glucose transporter Glut1 in the aliquot B of the control cells;
Including the above method.
多数の試験物質のなかから、治療活性を有する物質を同定し、特徴付けるためのスクリーニング方法であって、該治療活性を有する物質は、白内障、緑内障および糖尿病性神経障害からなる群より選択される病気の少なくとも1つを治療および/または予防するのに用いられ、以下の工程:
d)細胞のアリコートA1〜Axの少なくとも1つにおいて、以下を異種的に共発現させる工程、
i)グルコース輸送体Glut1、および、
ii)hsgk1および/またはhsgk3、
および、
細胞のアリコートB1〜Bxの少なくとも1つにおいて、以下を異種発現させる工程、
i)グルコース輸送体Glut1、
e)それぞれの場合において、少なくとも1種の試験物質の存在下で、細胞のアリコートA1〜AxおよびB1〜Bxを培養する工程(該少なくとも1種の試験物質は、それぞれの場合において、細胞のアリコートのインデックス1〜Xに対応して異なっている)、
f)細胞のアリコートA1〜Axと細胞のアリコートB1〜Bxにおけるグルコース輸送体Glut1の活性を比較して測定する工程、
を含む、上記方法。
A screening method for identifying and characterizing a substance having a therapeutic activity from among a large number of test substances, wherein the substance having a therapeutic activity is selected from the group consisting of cataract, glaucoma and diabetic neuropathy Is used to treat and / or prevent at least one of the following steps:
d) heterogeneously co-expressing in at least one of the aliquots A 1 -A x of the cells:
i) the glucose transporter Glut1, and
ii) hsgk1 and / or hsgk3,
and,
Heterologously expressing in at least one of aliquots B 1 -B x of cells:
i) Glucose transporter Glut1,
In the case of e), respectively, in the presence of at least one test substance, one of the test substance the at step (said at culturing aliquots A 1 to A x and B 1 .about.B x cells, in each case , Corresponding to the index 1 to X of the aliquot of cells),
f) comparing and measuring the activity of the glucose transporter Glut1 in cell aliquots A 1 -A x and cell aliquots B 1 -B x ,
Including the above method.
JP2006501737A 2003-02-07 2004-02-05 Use of the sgk gene family to diagnose and treat cataracts and glaucoma Pending JP2006519189A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10305212A DE10305212A1 (en) 2003-02-07 2003-02-07 Use of the sgk gene family for the diagnosis and therapy of cataracts and glaucoma
PCT/EP2004/001048 WO2004069258A2 (en) 2003-02-07 2004-02-05 Use of the sgk gene family for diagnosis and therapy of cataracts and glaucoma

Publications (2)

Publication Number Publication Date
JP2006519189A true JP2006519189A (en) 2006-08-24
JP2006519189A5 JP2006519189A5 (en) 2007-03-08

Family

ID=32730900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006501737A Pending JP2006519189A (en) 2003-02-07 2004-02-05 Use of the sgk gene family to diagnose and treat cataracts and glaucoma

Country Status (13)

Country Link
EP (1) EP1663246A2 (en)
JP (1) JP2006519189A (en)
KR (1) KR20050114214A (en)
CN (1) CN1771039A (en)
AU (1) AU2004210416A1 (en)
BR (1) BRPI0407300A (en)
CA (1) CA2514703A1 (en)
DE (1) DE10305212A1 (en)
MX (1) MXPA05008394A (en)
PL (1) PL378399A1 (en)
RU (1) RU2005127808A (en)
WO (1) WO2004069258A2 (en)
ZA (1) ZA200506280B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527875A (en) * 2004-03-11 2007-10-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Methods for inhibiting fibrosis
JP2007529423A (en) * 2004-03-11 2007-10-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Methods for modulating glutamate receptors for the treatment of neuropsychiatric disorders, including the use of modulators of serum and glucocorticoid-inducible kinases
JP2014506460A (en) * 2011-01-25 2014-03-17 モネル ケミカル センシズ センター Composition and method for providing or adjusting sweetness and screening method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004059781A1 (en) * 2004-12-10 2006-06-22 Sanofi-Aventis Deutschland Gmbh Use of serum / glucocorticoid-regulated kinase
WO2007002670A2 (en) * 2005-06-28 2007-01-04 Bausch & Lomb Incorporated Method of lowering intraocular pressure
JPWO2007037560A1 (en) * 2005-09-30 2009-04-16 リンク・ジェノミクス株式会社 Therapeutic or diagnostic use of SGK2 gene
AU2006318550A1 (en) * 2005-11-22 2007-05-31 Mcgill University Intraocular pressure-regulated early genes and uses thereof
WO2008079980A1 (en) * 2006-12-22 2008-07-03 Alcon Research, Ltd. Inhibitors of protein kinase c-delta for the treatment of glaucoma
DE102008029072A1 (en) * 2008-06-10 2009-12-17 Lang, Florian, Prof. Dr.med. Substance, which inhibits serum and glucocorticoid dependent kinase 3, useful for the prophylaxis and/or treatment or diagnosis of age-related diseases e.g. arteriosclerosis, skin atrophy, myasthenia, infertility, stroke and kyphosis
KR102357260B1 (en) * 2020-12-10 2022-02-08 주식회사 레피겐엠디 Method for diagnosis and predict of diabetic neuropathy using micro-rna and kit therefor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69535673D1 (en) * 1994-08-30 2008-02-07 Univ Dundee MEANS FOR THE INDUCTION OF APOPTOSIS AND THERAPY APPLICATION
CA2222562A1 (en) * 1995-06-07 1996-12-19 Jeffrey N. Miner Method for screening for receptor agonists and antagonists
US5925523A (en) * 1996-08-23 1999-07-20 President & Fellows Of Harvard College Intraction trap assay, reagents and uses thereof
DE19708173A1 (en) * 1997-02-28 1998-09-03 Dade Behring Marburg Gmbh Cell volume regulated human kinase h-sgk
WO1999059559A1 (en) * 1998-05-15 1999-11-25 Joslin Diabetes Center Independent regulation of basal and insulin-stimulated glucose transport
EP1141003B9 (en) * 1998-12-14 2008-07-02 The University of Dundee Methods of activation of SGK by phosphorylation.
US6399655B1 (en) * 1998-12-22 2002-06-04 Johns Hopkins University, School Of Medicine Method for the prophylactic treatment of cataracts
DE19917990A1 (en) * 1999-04-20 2000-11-02 Florian Lang Medicament containing inhibitors of cell volume regulated human kinase h-sgk
WO2001004145A2 (en) * 1999-07-14 2001-01-18 University Of Lausanne Glutx polypeptide family and nucleic acids encoding same
US6416759B1 (en) * 1999-09-30 2002-07-09 The Regents Of The University Of California Antiproliferative Sgk reagents and methods
US20030236246A1 (en) * 2002-04-30 2003-12-25 Brazzell Romulus Kimbro Method for decreasing capillary permeability in the retina
DE10225844A1 (en) * 2002-06-04 2003-12-18 Lang Florian sgk and nedd as diagnostic and therapeutic targets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527875A (en) * 2004-03-11 2007-10-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Methods for inhibiting fibrosis
JP2007529423A (en) * 2004-03-11 2007-10-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Methods for modulating glutamate receptors for the treatment of neuropsychiatric disorders, including the use of modulators of serum and glucocorticoid-inducible kinases
JP2014506460A (en) * 2011-01-25 2014-03-17 モネル ケミカル センシズ センター Composition and method for providing or adjusting sweetness and screening method thereof
JP2016136974A (en) * 2011-01-25 2016-08-04 モネル ケミカル センシズ センターMonell Chemical Senses Center Compositions and methods for providing or modulating sweet taste and methods of screening therefor

Also Published As

Publication number Publication date
CA2514703A1 (en) 2004-08-19
ZA200506280B (en) 2006-05-31
MXPA05008394A (en) 2005-10-05
WO2004069258A2 (en) 2004-08-19
DE10305212A1 (en) 2004-08-19
PL378399A1 (en) 2006-04-03
KR20050114214A (en) 2005-12-05
CN1771039A (en) 2006-05-10
AU2004210416A1 (en) 2004-08-19
RU2005127808A (en) 2006-05-27
EP1663246A2 (en) 2006-06-07
WO2004069258A3 (en) 2005-02-24
BRPI0407300A (en) 2006-02-07

Similar Documents

Publication Publication Date Title
Mathis et al. Genetics of amyotrophic lateral sclerosis: A review
Masyuk et al. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′, 5′-cyclic monophosphate
Wang et al. Essential roles of the PI3 kinase/Akt pathway in regulating Nrf2-dependent antioxidant functions in the RPE
Paranjpe et al. RNA interference against hepatic epidermal growth factor receptor has suppressive effects on liver regeneration in rats
US20080146540A1 (en) Methods of diagnosis and treatment for asthma, allergic rhinitis and other respiratory diseases based on haplotype association
ZA200506280B (en) Use of the sgk gene family for diagnosis and therapy of cataracts and glaucoma
JP4585611B2 (en) Sugar chain-related genes and their use
US20070231828A1 (en) Methods of predicting behavior of cancers
JP2006514021A (en) Method for selectively inhibiting Janus tyrosine kinase 3 (Jak3)
WO2005032343A2 (en) Hedgehog signaling in prostate regeneration neoplasia and metastasis
US20090042906A1 (en) Methods for treating cancers associated with constitutive egfr signaling
JP7025034B2 (en) Compositions and Methods for Treating and Preventing Pancreatitis, Kidney Injury and Kidney Cancer
Han et al. Peroxisome proliferator–activated receptor-γ ligands inhibit α5 integrin gene transcription in non–small cell lung carcinoma cells
US20090029904A1 (en) Compositions and methods for treatment of insulin-resistance diseases
Yokota et al. Activation of the unfolded protein response in canine degenerative myelopathy
Chen et al. Osmotic regulation of angiotensin AT1 receptor subtypes in mouse brain
Yi et al. Tyrosyl phosphorylation of PZR promotes hypertrophic cardiomyopathy in PTPN11-associated Noonan syndrome with multiple lentigines
US20060121465A1 (en) Sgk and nedd used as diagnostic and therapeutic targets
US20140378388A1 (en) Treatment of uterine leiomyomata
Gattone II Emerging therapies for polycystic kidney disease
Nchienzia et al. Hedgehog interacting protein (Hhip) regulates insulin secretion in mice fed high fat diets
CN110812470A (en) Methods and compositions for metabolic regulation
US20230056994A1 (en) Necroptosis modulators, screening methods and pharmaceutical compositions
WO2006051951A1 (en) REMEDY FOR DIABETES CONTAINING Cdk5 INHIBITOR
KR20050016494A (en) Sgk and nedd used as diagnostic and therapeutic targets

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125