JP2006515910A - Exhaust gas purification equipment for internal combustion engines - Google Patents

Exhaust gas purification equipment for internal combustion engines Download PDF

Info

Publication number
JP2006515910A
JP2006515910A JP2004538920A JP2004538920A JP2006515910A JP 2006515910 A JP2006515910 A JP 2006515910A JP 2004538920 A JP2004538920 A JP 2004538920A JP 2004538920 A JP2004538920 A JP 2004538920A JP 2006515910 A JP2006515910 A JP 2006515910A
Authority
JP
Japan
Prior art keywords
exhaust
combustion chamber
exhaust pipe
proportion
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004538920A
Other languages
Japanese (ja)
Other versions
JP4505330B2 (en
Inventor
ペーター ミュラー
シュテファン デッテルベック
シュテファン ラマッチ
フローリアン プロイス
マシュー キーナン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of JP2006515910A publication Critical patent/JP2006515910A/en
Application granted granted Critical
Publication of JP4505330B2 publication Critical patent/JP4505330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

第1の触媒式浄化装置(4)を有する第1の排気管(3)と、第2の触媒式浄化装置(4′)を有する第2の排気管(3′)とを備え、第1と第2の排気管が第1と第2の触媒式浄化装置(4,4′)の下流で共通の1本の排気管(6)に案内され、各触媒式浄化装置(4,4′)にそれぞれ1つの第1のセンサ(7,7′)が付設され、この第1のセンサが各触媒式浄化装置の上流においてそれぞれの排気管(3,3′)内に設けられている、NOx吸収装置を備えた内燃機関(2)用排気浄化設備(1)において、触媒式浄化装置(4,4′)がNOx吸収器であり、少なくとも触媒式浄化装置(4,4′)の再生のための共通の第3のセンサ(8)が共通の排気管(6)内に設けられている。提案した排気浄化設備では、NOx吸収器を再生するための提案した方法と関連してNOx吸収装置を再生するために、センサを3個しか必要としない。A first exhaust pipe (3) having a first catalytic purification device (4) and a second exhaust pipe (3 ') having a second catalytic purification device (4'); And the second exhaust pipe are guided to one common exhaust pipe (6) downstream of the first and second catalytic purification devices (4, 4 '), and each catalytic purification device (4, 4' ), One first sensor (7, 7 ') is provided, and this first sensor is provided in each exhaust pipe (3, 3') upstream of each catalytic purifier. In the exhaust gas purification equipment (1) for an internal combustion engine (2) equipped with the NOx absorber, the catalytic purification device (4, 4 ') is a NOx absorber, and at least the regeneration of the catalytic purification device (4, 4'). A common third sensor (8) is provided in the common exhaust pipe (6). The proposed exhaust purification facility requires only three sensors to regenerate the NOx absorber in conjunction with the proposed method for regenerating the NOx absorber.

Description

本発明は、請求項1の前提部分の特徴による内燃機関用排気浄化設備と、請求項6,8の前提部分の特徴による、排気浄化設備の第1と第2の触媒を再生するための方法に関する。   The invention relates to an exhaust gas purification facility for an internal combustion engine according to the features of the premise part of claim 1 and a method for regenerating the first and second catalysts of the exhaust gas purification equipment according to the feature of the premise part of claims 6 and 8. About.

本発明は特許文献1から出発している。この特許文献には、2つの排気ラインを有する自動車用多気筒内燃機関の複流式排気設備が記載されている。この排気ラインにはそれぞれ1個または複数のシリンダが接続している。各排気ラインには、上流および下流に各々1個のセンサを備えた触媒が設けられている。センサの下流ににおいて、2つの排気ラインは1つの共通の排気管に案内されている。この共通の排気管内にはNOx吸収器が組み込まれている。NOx吸収器の背後において、他のセンサが共通の排気管に組み込まれている。更に、再生燃料を制御するための方法が記載されている。この再生燃料は希薄燃料−空気−混合気で作動する内燃機関に供給される。この方法の目的は最小の燃料消費で最適なエミッションコントロールを行うことである。内燃機関用燃料−空気−混合気がいつ過剰に希薄または濃い範囲内にあるかを検出するために、方法は、再生中NOx吸収器から流出する排気を監視する。検出された排気が過剰に希薄な燃料−空気−混合気を含んでいると、内燃機関用の燃料の量が増大させられる。検出された排気が過剰に濃い燃料−空気−混合気を含んでいると、燃料の量が低減される。再生の時間または燃料−空気−比を調節することにより、燃料の量が増大または低減させられる。   The present invention starts from Patent Document 1. This patent document describes a double-flow exhaust system for a multi-cylinder internal combustion engine for automobiles having two exhaust lines. Each exhaust line is connected to one or more cylinders. Each exhaust line is provided with a catalyst provided with one sensor upstream and downstream. Downstream of the sensor, the two exhaust lines are guided by a common exhaust pipe. A NOx absorber is incorporated in the common exhaust pipe. Behind the NOx absorber, other sensors are integrated into a common exhaust pipe. Furthermore, a method for controlling the regenerated fuel is described. This regenerated fuel is supplied to an internal combustion engine operating with a lean fuel-air-air mixture. The purpose of this method is to achieve optimal emission control with minimal fuel consumption. In order to detect when the fuel-air-air mixture for an internal combustion engine is in an excessively lean or rich range, the method monitors the exhaust gas exiting from the NOx absorber during regeneration. If the detected exhaust contains an excessively lean fuel-air-air mixture, the amount of fuel for the internal combustion engine is increased. If the detected exhaust contains an excessively rich fuel-air-air mixture, the amount of fuel is reduced. By adjusting the regeneration time or the fuel-air ratio, the amount of fuel is increased or decreased.

排気浄化設備の上記構造の場合、NOx吸収器の再生の際、内燃機関のすべてのシリンダを濃い混合気で運転しなければならないという欠点がある。   In the case of the above-described structure of the exhaust purification equipment, there is a drawback that all the cylinders of the internal combustion engine must be operated with a rich air-fuel mixture when the NOx absorber is regenerated.

独国特許出願公開第10012839号公報German Patent Application Publication No. 10012839

本発明の課題は、シリンダグループ毎に選択してNOx吸収器を再生することができ、同時に必要なセンサの数を最小限に抑えることができる排気浄化設備を提供することである。   It is an object of the present invention to provide an exhaust purification facility that can be selected for each cylinder group to regenerate a NOx absorber and at the same time minimize the number of required sensors.

この課題は請求項1記載の特徴によって解決される。
排気浄化設備の本発明による構造によって、シリンダグループ毎に選択してNOx吸収器を再生することができる。更に、NOx吸収器の再生のために必要なセンサの必要数が最小である。更に、NOx吸収器をエンジン近くに配置すると、迅速に始動し、ひいては内燃機関のコールドスタート後に有害物質を早く貯蔵することになる。
This problem is solved by the features of claim 1.
With the structure of the exhaust purification system according to the present invention, it is possible to regenerate the NOx absorber selectively for each cylinder group. Furthermore, the required number of sensors required for regeneration of the NOx absorber is minimal. Furthermore, placing the NOx absorber close to the engine will start up quickly and thus store toxic substances quickly after a cold start of the internal combustion engine.

請求項2,3では、センサのための低コストの同一部品原理が用いられる。この場合、センサ、すなわちNOxセンサまたはO2 センサの形成に応じて、つまり線形の形成であるかまたはステップ応答形成であるかによって、最適な脱硫酸化方式、すなわちNOx吸収器の再生が可能である。   In claims 2 and 3, a low-cost identical component principle for the sensor is used. In this case, depending on the formation of the sensor, i.e. NOx sensor or O2 sensor, i.e. linear or step response formation, an optimal desulfation scheme, i.e. regeneration of the NOx absorber, is possible.

最新の内燃機関にとって制御機器による制御が普通であるので、請求項4に従って、NOx吸収器の脱硫酸化を制御機器の制御戦略に一緒に含めると有利である。この統合は別個の制御機器または部品を節約し、従って製作コストを低減する。   According to claim 4, it is advantageous to include desulfation of the NOx absorber together with the control strategy of the control equipment, since control by the control equipment is common for modern internal combustion engines. This integration saves separate control equipment or components, thus reducing manufacturing costs.

NOx吸収器が排気からすべての有害物質を除去することができないので、請求項5に従って、他の触媒式浄化装置を排気浄化装置に組み込むと有利である。この場合、他の触媒式浄化装置は三元触媒である。   According to claim 5, it is advantageous to incorporate another catalytic purification device into the exhaust purification device, since the NOx absorber cannot remove all harmful substances from the exhaust. In this case, the other catalytic purification device is a three-way catalyst.

請求項6によるNOx吸収器の再生方法は特に、制御方式が簡単であるという利点がある。特許文献1の場合のように、内燃機関全体が同じ燃料−空気−混合気で統一して運転されるがしかし、再生を制御するためにセンサを3個しか必要としない。すべてのシリンダグループのために同じ再生スタートが当てはまる。この場合、再生時間の検出は線形センサによってセンサ信号を介して行われる。例えばO2 またはNOxのような測定された排気成分が限界値に近づいたときにあるいは排気成分が許容限界内で3個のすべてのセンサについて一致するときに、再生サイクルを終了させる。   The regeneration method of the NOx absorber according to claim 6 is particularly advantageous in that the control method is simple. As in the case of Patent Document 1, the entire internal combustion engine is operated uniformly with the same fuel-air-air mixture, but only three sensors are required to control regeneration. The same regeneration start applies for all cylinder groups. In this case, the reproduction time is detected by a linear sensor via a sensor signal. The regeneration cycle is terminated when the measured exhaust component, e.g. O2 or NOx, approaches the limit value or when the exhaust component matches for all three sensors within acceptable limits.

請求項8,9記載のNOx吸収器の再生方法の場合、シリンダグループ毎に選択して制御が行なわれ、それによって個々のNOx吸収器の負荷状態を検出し、触媒毎に選択して制御を行うことができる。この方法の使用の際、残留有害物質量は請求項6,7の方法に比べて更に低減される。というのは、燃料−空気−混合気制御が再生サイクルの終了時に一層正確であるからである。この方法の場合にも、2個のNOx吸収器の再生スタートが同時に行われる。この場合、再生時間はセンサ信号を介して決定され、センサは線形センサである。NOx吸収器の実際の再生時間よりも短い推定再生時間は、内燃機関の未処理エミッションから計算されるかあるいは制御機器内の特性マップから読み出される。従って、推定再生時間は実際の再生時間を少なくとも2つの個々の相に分割する。それによって、個々のNOx吸収器の負荷を別々に確認し、シリンダグループ毎に選択して再生サイクルの時間を決めることができる。   In the case of the regeneration method of the NOx absorber according to claims 8 and 9, control is performed by selecting for each cylinder group, thereby detecting the load state of each NOx absorber and selecting and controlling for each catalyst. It can be carried out. When this method is used, the amount of residual harmful substances is further reduced compared to the methods of claims 6 and 7. This is because fuel-air-air mixture control is more accurate at the end of the regeneration cycle. Also in this method, regeneration start of two NOx absorbers is performed simultaneously. In this case, the regeneration time is determined via a sensor signal, and the sensor is a linear sensor. An estimated regeneration time shorter than the actual regeneration time of the NOx absorber is calculated from the raw emissions of the internal combustion engine or read from a characteristic map in the control device. Thus, the estimated playback time divides the actual playback time into at least two individual phases. Thereby, the load of each NOx absorber can be confirmed separately and can be selected for each cylinder group to determine the regeneration cycle time.

請求項10,11記載のNOx吸収器の再生方法は、制御戦略がきわめて簡単であるという利点がある。この方法のためにステップ応答センサが使用される。このステップ応答センサはデジタル信号を制御機器に供給する。この方法の場合、再生のスタートは各々のシリンダグループについて異なる時点で開始される。第1のシリンダグループのための再生サイクルのスタートは、第2のシリンダグループの再生サイクルのためのスタート信号よりも時間的に遅れる。基本的には、請求項6,7記載の方法と同じ方法ステップであるがしかし、各々のシリンダグループについて別々である。従って、請求項6,7の簡単な制御戦略が維持される。この場合しかし、各シリンダグループは順々にその再生サイクルを実行する。第2のシリンダグループのための再生サイクルのスタートは、第1のシリンダグループのための再生サイクルの終了前に開始される。しかし、遅くとも第1の再生サイクルの終了時点で開始される。   The regeneration method of the NOx absorber according to claims 10 and 11 has an advantage that the control strategy is very simple. A step response sensor is used for this method. The step response sensor supplies a digital signal to the control device. In this method, regeneration starts at different times for each cylinder group. The start of the regeneration cycle for the first cylinder group is delayed in time from the start signal for the regeneration cycle of the second cylinder group. Basically the same method steps as in the methods of claims 6 and 7, but different for each cylinder group. Therefore, the simple control strategy of claims 6 and 7 is maintained. In this case, however, each cylinder group performs its regeneration cycle in turn. The start of the regeneration cycle for the second cylinder group is started before the end of the regeneration cycle for the first cylinder group. However, it starts at the end of the first regeneration cycle at the latest.

請求項12記載のNOx吸収器の再生方法は、その利点が請求項10,11記載の方法に充分に一致している。請求項10,11記載の方法と異なり、線形のセンサが使用される。このセンサによって許容範囲を良好に定めることができ、かつ維持することができる。   The method of regenerating the NOx absorber according to claim 12 is sufficiently consistent with the method according to claims 10 and 11. Unlike the method according to claims 10 and 11, a linear sensor is used. The tolerance can be well defined and maintained by this sensor.

請求項13記載の推定再生時間は、再生サイクルを適当な方法で実施可能である時間範囲内にある。その際、内燃機関の運転に影響を及ぼしたり、運転者が内燃機関を介してフィードバックを受け取る必要がない。   The estimated regeneration time according to claim 13 is within a time range in which the regeneration cycle can be carried out in a suitable manner. At that time, there is no need to influence the operation of the internal combustion engine or the driver need to receive feedback via the internal combustion engine.

第1と第2の再生時間t1 ,t2 を請求項14記載の値にセットすることは同様に、内燃機関の運転特性に影響を与えずに再生サイクルを可能にする、実際の走行運転にとって有効な時間である。
請求項15,16記載の推定された再生時間tの決定により、内燃機関の寿命にわたって、エミッション形成に関する内燃機関の運転の際の内燃機関の変更を決定し、補正することができる。
First and second playback time t1 , T2 is set to the value of claim 14 as well, and is an effective time for an actual driving operation that enables a regeneration cycle without affecting the operating characteristics of the internal combustion engine.
By determining the estimated regeneration time t according to claims 15 and 16, changes in the internal combustion engine during operation of the internal combustion engine with respect to emission formation can be determined and corrected over the life of the internal combustion engine.

請求項15,17記載の推定再生時間tno決定は、内燃機関の寿命全体の間、排気エミッションに関して狭い許容限界内に保たれる簡単な排気浄化を行うために、簡単かつ低コストの方法である。   The determination of the estimated regeneration time tno according to claims 15 and 17 is a simple and low-cost method for performing a simple exhaust purification that is kept within narrow tolerance limits for exhaust emissions during the entire life of the internal combustion engine. .

次に、1つの図を参照して本発明による排気浄化設備の好ましい実施の形態を詳しく説明する。   Next, a preferred embodiment of the exhaust purification equipment according to the present invention will be described in detail with reference to one drawing.

内燃機関2には、第1の吸気管グループ10′と第2の吸気管グループ10″からなる吸気マニホルド10が固定されている。各吸気管グループ10′,10″を代表して1本の吸気管が示してある。第1の吸気管グループ10′は第1の燃焼室グループ5に接続され、第2の吸気管グループ10″は第2の燃焼室グループ5′に接続されている。同様に、各燃焼室グループは1つの燃焼室によって示してある。第1の燃焼室グループ5はガスを案内するように第1の排気管3に接続され、第2の燃焼室グループ5′は排気を案内するように第2の排気管3′に接続されている。第1の排気管3には第1の触媒式浄化装置4、すなわちNOx吸収器が組み込まれ、第2の排気管3′には第2の触媒式浄化装置4′、すなわち同様にNOx吸収器が組み込まれている。このNOx吸収器は好ましくはNOx貯蔵触媒である。2個の触媒式浄化装置4,4′の下流において2本の排気管3,3′が共通の1本の排気管6に接続している。この排気管6には、第3の触媒式浄化装置9、ここでは三元触媒が組み込まれている。第1の触媒式浄化装置4の上流において第1のセンサ7が排気管3内に配置され、第2の触媒式浄化装置4′の上流において第2のセンサ7′が排気管3′内に配置されている。第3の触媒式浄化装置9の上流において第3のセンサ8が共通の排気管6内に配置されている。センサ7,7′,8の作用要素は排気に接触している。3個のすべてのセンサ7,7′,8は酸素センサであるがしかし、NOxセンサでもよい。本例では、線形センサであるがしかし、NOx吸収器の他の再生法のためにステップ応答センサであってもよい。3個のすべてのセンサ7,7′,8は制御機器2′に電気的に接続されている。この制御機器は同時に内燃機関用制御機器でもある。排気浄化設備1と内燃機関2のために別個の制御機器を設けてもよい。他の実施の形態では、第1と第2のセンサ7,7′の下流および/または第3のセンサ8の下流に、少なくとも1個の触媒式浄化装置を設けることができる。   An intake manifold 10 composed of a first intake pipe group 10 'and a second intake pipe group 10 "is fixed to the internal combustion engine 2. One intake pipe group 10', 10" is representative of one intake manifold group 10 '. The intake pipe is shown. The first intake pipe group 10 ′ is connected to the first combustion chamber group 5, and the second intake pipe group 10 ″ is connected to the second combustion chamber group 5 ′. Similarly, each combustion chamber group The first combustion chamber group 5 is connected to the first exhaust pipe 3 to guide the gas, and the second combustion chamber group 5 'is connected to the first exhaust chamber 3 to guide the exhaust gas. The first exhaust pipe 3 incorporates a first catalytic purification device 4, that is, a NOx absorber, and the second exhaust pipe 3 'has a second catalyst. A NOx absorber is also incorporated, which is likewise a NOx absorber, which is preferably a NOx storage catalyst, two exhaust pipes downstream of the two catalytic cleaners 4, 4 '. 3 and 3 'are connected to a common exhaust pipe 6. In this exhaust pipe 6, Is incorporated with a third catalytic purification device 9, here a three-way catalyst, upstream of the first catalytic purification device 4, a first sensor 7 is arranged in the exhaust pipe 3, and the second A second sensor 7 'is disposed in the exhaust pipe 3' upstream of the catalytic purification device 4'.A third sensor 8 is disposed in the common exhaust pipe 6 upstream of the third catalytic purification device 9. The working elements of the sensors 7, 7 ', 8 are in contact with the exhaust gas, all three sensors 7, 7', 8 are oxygen sensors, but they can also be NOx sensors. In the example, it is a linear sensor, but it may be a step response sensor for other regeneration methods of the NOx absorber, all three sensors 7, 7 ', 8 being electrically connected to the control device 2'. This control device is also an internal combustion engine control device. Separate control devices may be provided for the control equipment 1 and the internal combustion engine 2. In other embodiments, downstream of the first and second sensors 7, 7 'and / or downstream of the third sensor 8. In addition, at least one catalytic purification device can be provided.

次に、排気浄化設備1内の第1と第2の触媒式浄化装置4,4′を再生するための有利な4つの方法を詳しく説明する。   Next, four advantageous methods for regenerating the first and second catalytic purification devices 4 and 4 'in the exhaust purification equipment 1 will be described in detail.

4つのすべての方法にとって、内燃機関1が少なくとも2つの燃焼室グループ5,5′を備え、各燃焼室グループ5,5′が排気を案内するように排気管3,3′に接続されている点が共通している。更に、別々の混合比制御、すなわち各燃焼室グループ5,5′のための異なる空気過剰率λが可能である。第1の燃焼室グループ5の混合気のための空気過剰率λはλZ1で示され、第2の燃焼室グループ5′の混合気のための空気過剰率λはλZ2で示されている。λNKとは共通の排気管内の空気過剰率であると理解される。理論混合気はλ=1を意味し、濃い混合気(燃料過剰)は0.5<λ<1であり、希薄混合気(空気過剰)は30>λ>1である。使用されるセンサ7,7′,8、すなわちNOxセンサまたはO2 センサに依存して、排気から、NOxまたはO2またはHCのような異なる排気成分が測定される。再生サイクルのスタートは少なくとも1つの燃焼室グループ5,5′の濃厚混合気運転の開始である。触媒式浄化装置4,4′、すなわちNOx吸収器のNOx吸収能力が許容しうる限界値よりも低下するときに、再生サイクルが必要である。再生サイクルとは、すべてのNOx吸収器を再生する時間であると理解される。再生時間はNOx吸収器に関連している。   For all four methods, the internal combustion engine 1 comprises at least two combustion chamber groups 5, 5 ', each combustion chamber group 5, 5' being connected to the exhaust pipes 3, 3 'so as to guide the exhaust. The point is common. Furthermore, separate mixing ratio control is possible, i.e. a different excess air ratio [lambda] for each combustion chamber group 5, 5 '. The excess air ratio λ for the mixture in the first combustion chamber group 5 is denoted by λZ1, and the excess air ratio λ for the mixture in the second combustion chamber group 5 ′ is denoted by λZ2. It is understood that λNK is a common excess air ratio in the exhaust pipe. A theoretical mixture means λ = 1, a rich mixture (excess fuel) is 0.5 <λ <1, and a lean mixture (excess air) is 30> λ> 1. Depending on the sensor 7, 7 ', 8, ie the NOx sensor or O2 sensor used, different exhaust components such as NOx or O2 or HC are measured from the exhaust. The start of the regeneration cycle is the start of the rich mixture operation of at least one combustion chamber group 5, 5 '. A regeneration cycle is necessary when the NOx absorption capacity of the catalytic purification device 4, 4 ', i.e. the NOx absorber, falls below an acceptable limit. A regeneration cycle is understood to be the time to regenerate all NOx absorbers. The regeneration time is related to the NOx absorber.

第1の方法の場合、各センサ7,7′,8は線形センサである。この方法では同じ混合気が両燃焼室グループ5,5′に供給される。次の方法ステップは再生サイクルのスタートの後に行われる。
− 同じ濃い混合気λ=(λZ1=λZ2)、好ましくは0.7<λ<95による、内燃機関 の運転、すなわち第1と第2のシリンダグループ5,5′の一緒の運転並びに第1のセ ンサ7によるλZ1、第2のセンサ7′によるλZ2および第3のセンサ8によるλNKの連 続的な検出。
− λNKの所定の許容誤差内で限界値に達する際の再生サイクルの終了。
In the case of the first method, each sensor 7, 7 ', 8 is a linear sensor. In this method, the same mixture is supplied to both combustion chamber groups 5, 5 '. The next method step takes place after the start of the regeneration cycle.
The operation of the internal combustion engine with the same rich mixture λ = (λZ1 = λZ2), preferably 0.7 <λ <95, ie the operation of the first and second cylinder groups 5, 5 ′ together and the first Continuous detection of λZ1 by the sensor 7, λZ2 by the second sensor 7 ′ and λNK by the third sensor 8.
-The end of the regeneration cycle when the limit value is reached within the predetermined tolerance of λNK.

その代わりに、λZ1=λZ2=λNKになるまで、検出された空気過剰率λZ1,λZ2,λNKが制御機器2′によって比較可能である。3つの測定個所が同じ値を有するや否や、再生サイクルが終了させられる。すなわち、内燃機関が希薄混合気によって新たに運転される。   Instead, the detected excess air ratios λZ1, λZ2, and λNK can be compared by the control device 2 ′ until λZ1 = λZ2 = λNK. As soon as the three measurement points have the same value, the regeneration cycle is terminated. That is, the internal combustion engine is newly operated with a lean air-fuel mixture.

第2の方法の場合、各センサ7,7′,8は線形センサであり、各燃焼室グループ5,5′の再生サイクルの開始は時間的に同じである。次の方法ステップは再生サイクルのスタート後行われる。
− 濃い混合気λZ1=λF1,λZ2=λF1による第1と第2のシリンダグループ5,5′の 運転(この場合再生サイクルのスタート後、λF1=λF2 は好ましくは0.5<λ<0 .95である)と、第1のセンサ7によるλZ1、第2のセンサ7′によるλZ2および第 3のセンサ8によるλNKの連続的な検出と、計算または特性マップからの読み取りによ る、制御機器2′を用いた推定再生時間tの決定。
− 推定再生時間tの終了前に、第1のシリンダグループ5が空気過剰率λZ1=(λF1+ x)<1で運転され、第2のシリンダグループ5′が空気過剰率λZ2=(λF2−x)< λZ1で運転される。
− 第1の条件λNK=((λF1+x)×m1 +λreg×m2 ))/(m1+m2 )または第 2の条件λNK=((λF2−x)×m2 +λz1×m1 ))/(m1+m2 )を満足するか どうかが、制御機器2′によって連続して検査される。
− 第1の条件を満足すると、第1の燃焼室グループ5が理論混合気λz1=1で運転され 、第2の燃焼室グループ5′の混合気λF2が次の再生サイクルのために制御機器2′に よってλF2neu<λF2となる。
− 第2の条件を満足すると、第2の燃焼室グループ5′が理論混合気λz2=1で運転さ れ、第1の燃焼室グループ5の混合気λF1が次の再生サイクルのために制御機器2′に よってλF1neu<λF1となる。続いて
− (λz1+λZ2)/2=λNKであるかどうかが、制御機器2′によって連続して検査さ れる。
− 条件λNK=(λz1+λZ2)/2を満足すると、再生サイクルを終了する。
  In the case of the second method, each sensor 7, 7 ', 8 is a linear sensor, and the start of the regeneration cycle of each combustion chamber group 5, 5' is the same in time. The next method step takes place after the start of the regeneration cycle.
-Operation of the first and second cylinder groups 5, 5 'with a rich mixture λZ1 = λF1 and λZ2 = λF1 (in this case after the start of the regeneration cycle, λF1 = λF2 is preferably 0.5 <λ <0.95. The control device 2 by continuous detection of λZ1 by the first sensor 7, λZ2 by the second sensor 7 ′ and λNK by the third sensor 8 and calculation or reading from the characteristic map. Determination of the estimated playback time t using ′.
-Before the end of the estimated regeneration time t, the first cylinder group 5 is operated with an excess air ratio λZ1 = (λF1 + x) <1, and the second cylinder group 5 ′ is operated with an excess air ratio λZ2 = (λF2-x). <Operated at λZ1.
-First condition λNK = ((λF1 + x) × m1 + Λreg × m2)) / (m1 + m2) or the second condition λNK = ((λF2−x) × m2 + Λz1 × m1)) / (m1 + m2) is continuously checked by the control device 2 '.
If the first condition is satisfied, the first combustion chamber group 5 is operated with the theoretical mixture λz1 = 1, and the mixture λF2 of the second combustion chamber group 5 ′ is controlled by the control device 2 for the next regeneration cycle. Therefore, λF2neu <λF2.
-If the second condition is satisfied, the second combustion chamber group 5 'is operated with the theoretical mixture λz2 = 1 and the mixture λF1 of the first combustion chamber group 5 is controlled for the next regeneration cycle. 2 'results in λF1neu <λF1. continue
-It is continuously checked by the control device 2 'whether (λz1 + λZ2) / 2 = λNK.
When the condition λNK = (λz1 + λZ2) / 2 is satisfied, the regeneration cycle is terminated.

第3の方法の場合、各センサ(7,7′,8)はステップ応答センサであり、燃焼室グループ5,5′の再生サイクルの開始は時間的にずらされる。再生サイクルのスタートの後で、次の方法ステップが行われる。
− 濃い混合気(λZ1=λF1)<1、好ましくは0.7<λ<0.95での第1のシリン ダグループ5の運転と、理論混合気の空気過剰率または希薄混合気の空気過剰率λZ2 ≧1での第2のシリンダグループ5′の運転と、経過した第1の再生時間t1 を決定す るための時間測定のスタートと、制御機器2′による全体の再生時間tの決定。
− 求められた全体の再生時間tが経過する前の、濃い混合気(λZ2=λF2)<1、好ま しくは0.7<λ<0.95での第2のシリンダグループ5′の運転。
− そして、λNKが閾値を上回るまでのλNKの連続測定、第1の再生時間t1 の時間測定 停止。そして
− 理論混合気λZ1=1での第1のシリンダグループ5の運転および濃い混合気λZ2=λ F2での第2のシリンダグループ5′の更なる運転および第2の再生時間t2 のための第 2の時間測定のスタート。
− 閾値を上回るまでのλNKの連続測定。
− 閾値を上回ると、再生サイクルが終了させられ、第2の再生時間t2 が検出される。 次の再生サイクルのために、測定された第1および第2の再生時間t1 ,t2 に依存して、濃い混合気λF1,λF2を適合させることができる。この場合、t2 >t1 が当てはまるときに、次の再生サイクのために、λF2は制御機器2′によってλF2neu<λF2に変更され、λF1は制御機器2′によってλF1neu<λF1に変更される。
In the case of the third method, each sensor (7, 7 ', 8) is a step response sensor, and the start of the regeneration cycle of the combustion chamber groups 5, 5' is shifted in time. After the start of the regeneration cycle, the following method steps are performed.
-Operation of the first cylinder group 5 with a rich mixture (λZ1 = λF1) <1, preferably 0.7 <λ <0.95, and the excess air ratio of the stoichiometric mixture or the excess air of the lean mixture Operation of the second cylinder group 5 'at the rate λZ2 ≧ 1 and the elapsed first regeneration time t1 Start of time measurement to determine the total playback time t by the control device 2 '.
The operation of the second cylinder group 5 'with a rich mixture (λZ2 = λF2) <1, preferably 0.7 <λ <0.95, before the determined total regeneration time t has elapsed.
-Then, continuous measurement of λNK until λNK exceeds the threshold, first reproduction time t1 Stop measuring time. And-the operation of the first cylinder group 5 with the theoretical mixture λZ1 = 1 and the further operation of the second cylinder group 5 'with the rich mixture λZ2 = λF2 and the second regeneration time t2. 2. Time measurement start.
-Continuous measurement of λNK until the threshold is exceeded.
If the threshold is exceeded, the regeneration cycle is terminated and the second regeneration time t2 is detected. Measured first and second regeneration times t1 for the next regeneration cycle , T2, the rich mixture λF1, λF2 can be adapted. In this case, t2> t1 Is true, λF2 is changed by the control device 2 ′ to λF2neu <λF2 and λF1 is changed by the control device 2 ′ to λF1neu <λF1 for the next regeneration cycle.

第4の方法の場合、各センサ7,7′,8は線形のセンサであり、燃焼室グループ5,5′の再生サイクルの開始は時間的にずらしてある。再生のスタートの後で、次の方法ステップが行われる。
− 濃い混合気λZ1<1、好ましくは0.7<λ<0.95での第1のシリンダグループ 5の運転と、第2の混合気λZ2≧1での第2のシリンダグループ5′の運転。
− λNK=(λZ2×m2 +λz1×m1 )/(m1+m2 )までのλNKの連続測定。
− 希薄混合気λZ1≧1での第1のシリンダグループの運転および濃い混合気λZ2<1、 好ましくは0.7<λ<0.95でのでの第2のシリンダグループ5′の運転。
− λNK=(λZ1×m1 +λz2×m2 )/(m1+m2 )までのλNKの連続測定。
− λNK=(λZ1×m1 +λz2×m2 )/(m1+m2 )であるときに、再生サイクルの 終了。
In the case of the fourth method, each sensor 7, 7 ', 8 is a linear sensor, and the start of the regeneration cycle of the combustion chamber groups 5, 5' is staggered in time. After the start of playback, the following method steps are performed.
The operation of the first cylinder group 5 with a rich mixture λZ1 <1, preferably 0.7 <λ <0.95, and the operation of the second cylinder group 5 ′ with a second mixture λZ2 ≧ 1. .
-ΛNK = (λZ2 × m2 Continuous measurement of λNK up to + λz1 × m1) / (m1 + m2).
The operation of the first cylinder group with a lean mixture λZ1 ≧ 1 and the operation of the second cylinder group 5 ′ with a rich mixture λZ2 <1, preferably 0.7 <λ <0.95.
-ΛNK = (λZ1 × m1 Continuous measurement of λNK up to + λz2 × m2) / (m1 + m2).
-ΛNK = (λZ1 × m1 The playback cycle ends when + λz2 × m2) / (m1 + m2).

すべての方法にとって、全体の再生時間tは少なくとも0.2秒である。全体の再生時間の検出は、制御機器によって、内燃機関のNOx未処理排出物質の計算によってあるいは制御機器2′に格納された特性マップの読み出しによって行われる。第1と第2の再生時間t1 ,t2 は全体の再生時間tの0.5〜0.99倍である。 For all methods, the total playback time t is at least 0.2 seconds. The entire regeneration time is detected by the control device, by calculating the NOx untreated emission of the internal combustion engine, or by reading the characteristic map stored in the control device 2 '. First and second playback time t1 , T2 is 0.5 to 0.99 times the total reproduction time t.

略示した内燃機関2の排気浄化設備1を概略的に示す図である。1 is a diagram schematically showing an exhaust purification equipment 1 of an internal combustion engine 2 schematically shown.

符号の説明Explanation of symbols

1 排気浄化設備
2 内燃機関
2′ 制御機器
3 第1の排気管
3′ 第2の排気管
4 第1の触媒式浄化装置
4′ 第2の触媒式浄化装置
5 第1の燃焼室グループ
5′ 第2の燃焼室グループ
6 共通の排気管
7 第1のセンサ
7′ 第2のセンサ
8 第3のセンサ
9 第3の触媒式浄化装置
10 吸気装置
10′ 第1の吸気管グループ
10″ 第2の吸気管グループ
DESCRIPTION OF SYMBOLS 1 Exhaust purification equipment 2 Internal combustion engine 2 'Control apparatus 3 1st exhaust pipe 3' 2nd exhaust pipe 4 1st catalytic purification apparatus 4 '2nd catalytic purification apparatus 5 1st combustion chamber group 5' Second combustion chamber group 6 Common exhaust pipe 7 First sensor 7 'Second sensor 8 Third sensor 9 Third catalytic purification device 10 Intake device 10' First intake pipe group 10 "Second Intake pipe group

Claims (17)

第1の触媒式浄化装置(4)を有する第1の排気管(3)と、第2の触媒式浄化装置(4′)を有する第2の排気管(3′)とを備え、第1と第2の排気管が第1と第2の触媒式浄化装置(4,4′)の下流で共通の1本の排気管(6)に案内され、各触媒式浄化装置(4,4′)にそれぞれ1つの第1のセンサ(7,7′)が付設され、この第1のセンサが各触媒式浄化装置の上流においてそれぞれの排気管(3,3′)内に設けられている、NOx吸収装置を備えた内燃機関(2)用排気浄化設備(1)において、触媒式浄化装置(4,4′)がNOx吸収器であり、少なくとも触媒式浄化装置(4,4′)の再生のための共通の第3のセンサ(8)が共通の排気管(6)内に設けられていることを特徴とする排気浄化設備。   A first exhaust pipe (3) having a first catalytic purification device (4) and a second exhaust pipe (3 ') having a second catalytic purification device (4'); And the second exhaust pipe are guided to one common exhaust pipe (6) downstream of the first and second catalytic purification devices (4, 4 '), and each catalytic purification device (4, 4' ), One first sensor (7, 7 ') is provided, and this first sensor is provided in each exhaust pipe (3, 3') upstream of each catalytic purifier. In the exhaust gas purification equipment (1) for an internal combustion engine (2) equipped with the NOx absorber, the catalytic purification device (4, 4 ') is a NOx absorber, and at least the regeneration of the catalytic purification device (4, 4'). Exhaust purification equipment, characterized in that a common third sensor (8) is provided in a common exhaust pipe (6). 3個のセンサ(7,7′,8)の各々がNOxセンサおよび/またはO2 センサであることを特徴とする、請求項1記載の排気浄化設備。   2. An exhaust purification system according to claim 1, characterized in that each of the three sensors (7, 7 ', 8) is a NOx sensor and / or an O2 sensor. 3個のセンサ(7,7′,8)の各々が線形センサおよび/またはステップ応答センサであることを特徴とする、請求項1または2記載の排気浄化設備。   3. An exhaust purification system according to claim 1 or 2, characterized in that each of the three sensors (7, 7 ', 8) is a linear sensor and / or a step response sensor. 各々のセンサが電気信号を発する、請求項1〜3のいずれか一つに記載の排気浄化設備において、信号が制御機器(2′)によって評価可能であることを特徴とする排気浄化設備。   4. An exhaust purification system according to claim 1, wherein each sensor emits an electrical signal, wherein the signal can be evaluated by a control device (2 '). 第1と第2のセンサ(7,7′)の下流および/または第3のセンサ(8)の下流に、少なくとも1個の他の触媒式浄化装置(9)が配置されていることを特徴とする、請求項1〜4のいずれか一つに記載の排気浄化設備。   At least one other catalytic purification device (9) is arranged downstream of the first and second sensors (7, 7 ') and / or downstream of the third sensor (8). The exhaust gas purification equipment according to any one of claims 1 to 4. 請求項1〜5の少なくとも一つに記載の排気浄化設備(1)の第1と第2の触媒式浄化装置(4,4′)を再生するための方法において、再生サイクルのスタートの後で次の方法ステップ
− 過剰の燃料で内燃機関(2)を運転し、
− 共通の排気管(6)内の排気成分の割合を連続して測定し、
− 排気成分の割合が限界値に近づくときに、再生サイクルを終了すること
を特徴とする方法。
6. A method for regenerating first and second catalytic purification devices (4, 4 ') of an exhaust purification system (1) according to at least one of claims 1 to 5, after the start of the regeneration cycle. Next method step-operating the internal combustion engine (2) with excess fuel,
-Continuously measuring the proportion of exhaust components in the common exhaust pipe (6);
A method characterized in that the regeneration cycle is terminated when the proportion of exhaust components approaches a limit value.
次の方法ステップ
− 第1、第2および共通の排気管(3,3′,6)内の排気成分の割合を連続して測定 し、
− 第1、第2および共通の排気管(3,3′,6)内において許容限界内の排気成分の 同じ割合が測定されるときに、再生サイクルを終了すること
を特徴とする、請求項6記載の方法。
Next method step-continuously measure the proportion of exhaust components in the first, second and common exhaust pipes (3, 3 ', 6),
-The regeneration cycle is terminated when the same proportion of exhaust components within tolerance limits is measured in the first, second and common exhaust pipes (3, 3 ', 6). 6. The method according to 6.
内燃機関が少なくとも2つの燃焼室グループ(5,5′)を備え、各々の排気管(3,3′)が排気を案内するように燃焼室グループ(5,5′)に接続され、各燃焼室グループ(5,5′)のための混合比制御が別々に行われる、請求項1〜5の少なくとも一つに記載の排気浄化設備(1)の第1と第2の触媒式浄化装置(4,4′)を再生するための方法において、再生サイクルのスタートの後で次の方法ステップ
− 内燃機関(2)を第1の過剰燃料で運転し、
− 第1、第2および共通の排気管(3,3′,6)内の排気成分の割合を連続して測定 し、
− 推定された再生時間tの経過前に、第1の燃焼室グループ(5)を第2の過剰燃料で 運転し、かつ第2の燃焼室グループ(5′)を第3の過剰燃料で運転し、
− 各々の触媒式浄化装置(4,4′)のための負荷状態を決定し、かつ各々の燃焼室グ ループ(5,5′)のために過剰燃料を適合させ、
− 共通の排気管(6)内の排気成分の割合が限界値に近づくときに、再生サイクルを終 了すること
を特徴とする方法。
The internal combustion engine comprises at least two combustion chamber groups (5, 5 '), each exhaust pipe (3, 3') being connected to the combustion chamber groups (5, 5 ') to guide the exhaust, each combustion First and second catalytic purification devices (1) of exhaust purification equipment (1) according to at least one of claims 1 to 5, wherein the mixing ratio control for the chamber group (5, 5 ') is performed separately. 4, 4 ') in the method for regenerating, after the start of the regeneration cycle, the next method step-operating the internal combustion engine (2) with a first excess fuel,
-Continuously measure the proportion of exhaust components in the first, second and common exhaust pipes (3, 3 ', 6);
-Before the estimated regeneration time t has elapsed, the first combustion chamber group (5) is operated with the second excess fuel and the second combustion chamber group (5 ') is operated with the third excess fuel. And
-Determining the load conditions for each catalytic purifier (4, 4 ') and adapting excess fuel for each combustion chamber group (5, 5');
A method characterized in that the regeneration cycle is terminated when the proportion of the exhaust components in the common exhaust pipe (6) approaches a limit value.
第1と第2の排気管(3,3′)の平均と同じ、許容限界内の排気成分の割合が、共通の排気管(6)内で測定されるときに、再生サイクルを終了することを特徴とする、請求項8記載の方法。   Ending the regeneration cycle when the proportion of exhaust components within the tolerance limits, which is the same as the average of the first and second exhaust pipes (3, 3 '), is measured in the common exhaust pipe (6) The method of claim 8, wherein: 内燃機関が少なくとも2つの燃焼室グループ(5,5′)を備え、各々の排気管(3,3′)が排気を案内するように燃焼室グループ(5,5′)に接続され、各燃焼室グループ(5,5′)のための混合比制御が別々に行われる、請求項1〜5の少なくとも一つに記載の排気浄化設備(1)の第1と第2の触媒式浄化装置(4,4′)を再生するための方法において、再生サイクルのスタートの後で次の方法ステップ
− 第1の燃焼室グループ(5)を過剰燃料で運転し、第2の燃焼室グループを理論混合 気で運転し、第1の再生時間t1 のための測定をスタートし、
− 第1、第2および共通の排気管(3,3′,6)内の排気成分の割合を連続して測定 し、
− 推定された再生時間tの経過前に、第2の燃焼室グループ(5′)を過剰燃料で運転 し、かつ第2の再生時間t2 のための測定をスタートし、
− 第1の燃焼室グループ(5)を理論混合気で運転し、共通の排気管(6)内の排気成 分の割合が限界値に近づくときに、第1の再生時間t1 を決定し、
− 第2の再生時間t2 を決定し、共通の排気管(6)内の排気成分の割合が限界値に近 づくときに、再生サイクルを終了すること
を特徴とする方法。
The internal combustion engine comprises at least two combustion chamber groups (5, 5 '), each exhaust pipe (3, 3') being connected to the combustion chamber groups (5, 5 ') to guide the exhaust, each combustion First and second catalytic purification devices (1) of exhaust purification equipment (1) according to at least one of claims 1 to 5, wherein the mixing ratio control for the chamber group (5, 5 ') is performed separately. 4, 4 ') in the next process step after the start of the regeneration cycle-the first combustion chamber group (5) is operated with excess fuel and the second combustion chamber group is theoretically mixed Driving with care, the first regeneration time t1 Start measuring for
-Continuously measure the proportion of exhaust components in the first, second and common exhaust pipes (3, 3 ', 6);
-Before the estimated regeneration time t has elapsed, the second combustion chamber group (5 ') is operated with excess fuel and measurement for the second regeneration time t2 is started,
The first regeneration time t1 when the first combustion chamber group (5) is operated with a stoichiometric mixture and the proportion of exhaust components in the common exhaust pipe (6) approaches the limit value. Decide
A method for determining a second regeneration time t2 and terminating the regeneration cycle when the proportion of exhaust components in the common exhaust pipe (6) approaches a limit value;
次の方法ステップ
− 第2の再生時間t2 が第1の再生時間t1 よりも長いときに、次の再生サイクル用の 第2の燃焼室グループ(5′)のための混合気を、一層過剰の燃料を有するように変更 し、
− 第2の再生時間t2 が第1の再生時間t1 よりも短いときに、次の再生サイクル用の 第1の燃焼室グループ(5)のための混合気を、一層過剰の燃料を有するように変更す ること
を特徴とする、請求項10記載の方法。
Next method step-the second playback time t2 is the first playback time t1 Longer, change the mixture for the second combustion chamber group (5 ') for the next regeneration cycle to have more excess fuel,
The second playback time t2 is the first playback time t1 11. The air-fuel mixture for the first combustion chamber group (5) for the next regeneration cycle is changed to have more excess fuel when shorter than Method.
内燃機関が少なくとも2つの燃焼室グループ(5,5′)を備え、各々の排気管(3,3′)が排気を案内するように燃焼室グループ(5,5′)に接続され、各燃焼室グループ(5,5′)のための混合比制御が別々に行われる、請求項1〜5の少なくとも一つに記載の排気浄化設備(1)の第1と第2の触媒式浄化装置(4,4′)を再生するための方法において、再生サイクルのスタートの後で次の方法ステップ
− 第1の燃焼室グループ(5)を過剰燃料で運転し、第2の燃焼室グループ(5′)を 理論空気/燃料−混合気または過剰空気で運転し、
− 第1、第2および共通の排気管(3,3′,6)内の排気成分の割合を連続して測定 し、
− 共通の排気管(6)内の排気成分の割合が、許容範囲内の、第1と第2の排気管(3 ,3′)からの排気成分の平均割合に達するときに、第1の燃焼室グループ(5)を理 論空気/燃料−混合気または過剰空気で運転し、第2の燃焼室グループ(5′)を過剰 燃料で運転し、
− 共通の排気管(6)内の排気成分の割合が、許容範囲内の、第1と第2の排気管(3 ,3′)からの排気成分の平均割合に達するときに、再生サイクルを終了すること
を特徴とする方法。
The internal combustion engine comprises at least two combustion chamber groups (5, 5 '), each exhaust pipe (3, 3') being connected to the combustion chamber groups (5, 5 ') to guide the exhaust, each combustion First and second catalytic purification devices (1) of exhaust purification equipment (1) according to at least one of claims 1 to 5, wherein the mixing ratio control for the chamber group (5, 5 ') is performed separately. 4, 4 ') in the next method step after the start of the regeneration cycle-operating the first combustion chamber group (5) with excess fuel and the second combustion chamber group (5' ) With theoretical air / fuel-air mixture or excess air,
-Continuously measure the proportion of exhaust components in the first, second and common exhaust pipes (3, 3 ', 6);
-When the proportion of exhaust components in the common exhaust pipe (6) reaches an average proportion of exhaust components from the first and second exhaust pipes (3, 3 ') within an acceptable range; Operate the combustion chamber group (5) with theoretical air / fuel-fuel mixture or excess air, operate the second combustion chamber group (5 ') with excess fuel,
-When the proportion of exhaust components in the common exhaust pipe (6) reaches the average proportion of exhaust components from the first and second exhaust pipes (3, 3 ') within the allowable range, A method characterized by terminating.
推定再生時間が少なくとも0.2秒であることを特徴とする、請求項8〜11のいずれか一つに記載の方法。   12. A method according to any one of claims 8 to 11, characterized in that the estimated playback time is at least 0.2 seconds. 第1の再生時間t1 と第2の再生時間t2 が全体の再生時間の0.5〜0.99倍であることを特徴とする、請求項10または11記載の方法。 First playback time t1 12. A method according to claim 10 or 11, characterized in that the second reproduction time t2 is 0.5 to 0.99 times the total reproduction time. 推定再生時間tが制御機器(2′)によって決定されることを特徴とする、請求項8〜11のいずれか一つに記載の方法。   12. Method according to any one of claims 8 to 11, characterized in that the estimated playback time t is determined by the control device (2 '). 推定再生時間tが制御機器(2′)によって計算されることを特徴とする、請求項15記載の方法。   16. Method according to claim 15, characterized in that the estimated playback time t is calculated by the control device (2 '). 推定再生時間tが制御機器(2′)によって特性マップから読み取られることを特徴とする、請求項15記載の方法。
16. Method according to claim 15, characterized in that the estimated playback time t is read from the characteristic map by the control device (2 ').
JP2004538920A 2002-09-23 2003-09-17 Method for regenerating first and second catalysts of exhaust purification equipment Expired - Lifetime JP4505330B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002144137 DE10244137A1 (en) 2002-09-23 2002-09-23 Emission control system for an internal combustion engine
PCT/EP2003/010332 WO2004029439A1 (en) 2002-09-23 2003-09-17 Exhaust-gas purification installation for an internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006515910A true JP2006515910A (en) 2006-06-08
JP4505330B2 JP4505330B2 (en) 2010-07-21

Family

ID=31983989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004538920A Expired - Lifetime JP4505330B2 (en) 2002-09-23 2003-09-17 Method for regenerating first and second catalysts of exhaust purification equipment

Country Status (4)

Country Link
EP (1) EP1543229B1 (en)
JP (1) JP4505330B2 (en)
DE (1) DE10244137A1 (en)
WO (1) WO2004029439A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415881B2 (en) * 2005-03-09 2010-02-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
EP2104782A1 (en) * 2006-12-23 2009-09-30 Umicore AG & Co. KG Exhaust emission control system for lean engines and method for operating the system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121944A (en) * 1996-10-16 1998-05-12 Ford Global Technol Inc Method of diagnosing nox trap condition
JP2000073744A (en) * 1998-08-27 2000-03-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000213340A (en) * 1999-01-26 2000-08-02 Nissan Motor Co Ltd Exhaust emission control device and system of internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143131B1 (en) * 2000-04-07 2007-02-14 Volkswagen Aktiengesellschaft Multiple exhaust gas system and method to regulate an air/fuel ratio of a multi-cylinder internal combustion engine
DE10127669B4 (en) * 2001-06-07 2004-07-29 Siemens Ag Process for the regeneration of NOx storage catalytic converters in multi-flow exhaust systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121944A (en) * 1996-10-16 1998-05-12 Ford Global Technol Inc Method of diagnosing nox trap condition
JP2000073744A (en) * 1998-08-27 2000-03-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000213340A (en) * 1999-01-26 2000-08-02 Nissan Motor Co Ltd Exhaust emission control device and system of internal combustion engine

Also Published As

Publication number Publication date
WO2004029439A1 (en) 2004-04-08
EP1543229A1 (en) 2005-06-22
JP4505330B2 (en) 2010-07-21
DE10244137A1 (en) 2004-04-08
EP1543229B1 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
US8892337B2 (en) Apparatus for detecting imbalance abnormality in air-fuel ratio between cylinders in multi-cylinder internal combustion engine
US6244046B1 (en) Engine exhaust purification system and method having NOx occluding and reducing catalyst
JP4877610B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
US8434294B2 (en) Method and device for determining a dynamic time duration for exhaust gas probes of an internal combustion engine
JP3399466B2 (en) Exhaust gas purification device for internal combustion engine
JP4289736B2 (en) Method for determining functionality of NOx storage catalyst
JP4253294B2 (en) Engine self-diagnosis device
WO2012039064A1 (en) Air-fuel ratio control device for internal combustion engine
JP2002519568A (en) Method for regenerating NOx storage catalyst for internal combustion engine
US20170284269A1 (en) Exhaust gas control device for internal combustion engine and control method thereof
US6484493B2 (en) Exhaust emission control device for internal combustion engine
CN108240265B (en) Control device for internal combustion engine
JP4186259B2 (en) Exhaust gas purification device for internal combustion engine
JP3806399B2 (en) Exhaust gas purification device for internal combustion engine
JP6515576B2 (en) Exhaust purification system
JP4106529B2 (en) Exhaust purification device for multi-cylinder internal combustion engine
JP2018135858A (en) Internal combustion engine abnormality diagnostic device
JP4505330B2 (en) Method for regenerating first and second catalysts of exhaust purification equipment
JP2009150367A (en) Catalyst degradation diagnostic apparatus for internal combustion engine
JP4127585B2 (en) Exhaust gas purification device for internal combustion engine
JP3788087B2 (en) Exhaust gas purification device for internal combustion engine
KR101467190B1 (en) Regeneration method for a storage catalytic converter
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JP2003286907A (en) Method for determining abnormality in internal combustion engine and device
JP3866347B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Ref document number: 4505330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term