JP2006507417A - High stretch recovery nonwoven fabric and manufacturing method - Google Patents

High stretch recovery nonwoven fabric and manufacturing method Download PDF

Info

Publication number
JP2006507417A
JP2006507417A JP2004554031A JP2004554031A JP2006507417A JP 2006507417 A JP2006507417 A JP 2006507417A JP 2004554031 A JP2004554031 A JP 2004554031A JP 2004554031 A JP2004554031 A JP 2004554031A JP 2006507417 A JP2006507417 A JP 2006507417A
Authority
JP
Japan
Prior art keywords
fibers
crystalline polyester
nonwoven fabric
poly
polyester component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004554031A
Other languages
Japanese (ja)
Other versions
JP4520859B2 (en
JP2006507417A5 (en
Inventor
イー.バン トランプ ジェームス
ターモニア イベス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INVISTA Technologies S.a.r.l.
Original Assignee
INVISTA Technologies S.a.r.l.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INVISTA Technologies S.a.r.l. filed Critical INVISTA Technologies S.a.r.l.
Publication of JP2006507417A publication Critical patent/JP2006507417A/en
Publication of JP2006507417A5 publication Critical patent/JP2006507417A5/ja
Application granted granted Critical
Publication of JP4520859B2 publication Critical patent/JP4520859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/04Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres
    • D04H1/06Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres by treatment to produce shrinking, swelling, crimping or curling of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/50Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by treatment to produce shrinking, swelling, crimping or curling of fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • D21H15/10Composite fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/24Polyesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • D21H15/06Long fibres, i.e. fibres exceeding the upper length limit of conventional paper-making fibres; Filaments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/005Mechanical treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/601Nonwoven fabric has an elastic quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/601Nonwoven fabric has an elastic quality
    • Y10T442/602Nonwoven fabric comprises an elastic strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/629Composite strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/632A single nonwoven layer comprising non-linear synthetic polymeric strand or fiber material and strand or fiber material not specified as non-linear
    • Y10T442/633Synthetic polymeric strand or fiber material is of staple length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/635Synthetic polymeric strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/635Synthetic polymeric strand or fiber material
    • Y10T442/636Synthetic polymeric strand or fiber material is of staple length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/638Side-by-side multicomponent strand or fiber material

Abstract

本発明は、高い伸び回復によって特徴づけられる新規な不織布および潜在捲縮性の繊維を用いることによる前記布の製造方法に関する。The present invention relates to a novel nonwoven fabric characterized by high elongation recovery and a method for producing said fabric by using latent crimpable fibers.

Description

本発明は、高い伸び回復によって特徴づけられる新規な不織布および潜在捲縮性の繊維を用いることによる前記布の製造方法に関する。   The present invention relates to a novel nonwoven fabric characterized by high elongation recovery and a method for producing said fabric by using latent crimpable fibers.

熱可塑性合成繊維から製造される不織布は当該技術では周知であり、両方ともデュポン・カンパニー(DuPont Company)から入手可能な、ティベック(Tyvek)(登録商標)およびソンタラ(Sontara)(登録商標)のような商品名などで広範囲に商業的利用されている。   Nonwoven fabrics made from thermoplastic synthetic fibers are well known in the art and are both available from DuPont Company, such as Tyvek (R) and Sontara (R). It is widely used for commercial purposes under various brand names.

高い伸び回復と組み合わされた高い伸縮性を有する嵩高いテキスタイル様製品が不織布で待望されている。かかる布は、まとめて「伸縮性不織布」として知られている。伸縮性不織布の製造への多くのアプローチが講じられてきた。   Bulky textile-like products with high stretch combined with high elongation recovery are awaited with nonwovens. Such fabrics are collectively known as “stretchable nonwoven fabrics”. Many approaches to the production of stretchable nonwovens have been taken.

伸縮性不織布の製造の一アプローチは、捲縮繊維の交絡が伸縮性不織布で必要とされる凝集力および回復を提供する、捲縮ステープルファイバーを用いることであった。当該技術において幾つかの場合には、捲縮繊維はマットへ形成され、空気または水ジェットの使用によって交錯させられる。当該技術において他の場合には、潜在捲縮性を有する真っ直ぐなまたは実質的に真っ直ぐな繊維は先ずマットへ形成され、その後潜在捲縮性は加熱によって実現され、それによって「それ自体交絡した」構造物を生み出す。しかしながら、当該技術の伸縮性不織布は、多くのテキスタイルおよび工業用途で有用であるための、引張弾性率と極限伸びとの積と定義される靱性、および密度に乏しい。それが伸ばされ得る量およびその回復の力である、その「伸縮性」を決定するのは布の靱性である。当該技術の伸縮性不織布は、低密度の、または専門用語で言えば、非常に低い伸縮性の嵩高い布に限定される。   One approach to making stretchable nonwovens has been to use crimped staple fibers where the entanglement of crimped fibers provides the cohesive strength and recovery required by stretchable nonwovens. In some cases in the art, crimped fibers are formed into mats and interlaced through the use of air or water jets. In other cases in the art, a straight or substantially straight fiber with latent crimp is first formed into a mat, after which the latent crimp is realized by heating, thereby “entangled itself”. Create a structure. However, the stretch nonwovens of the art have poor toughness and density, defined as the product of tensile modulus and ultimate elongation, to be useful in many textile and industrial applications. It is the toughness of the fabric that determines its “stretchability,” the amount it can be stretched and its recovery force. The stretch nonwoven fabrics of the art are limited to low density or, in technical terms, very bulky fabrics with very low stretch.

荒永ら、(特許文献1)は、潜在捲縮性を有するポリエチレンテレフタレート/ポリプロピレンテレフタレートの複合繊維から不織布を形成するためのウェット−レイ法を開示している。生じた不織布は、高い百分率の回復を有すると言われている。ウェット−レイ法は、捲縮を発現させる前に十分な交絡を提供するために繊維を水流交絡させる工程を含む。それによって製造された不織布は、0.3mm厚さの布で30g/m2の坪量によって特徴づけられる。高回復捲縮繊維が高価値不織布の製造の可能性を有することは、荒永および他の所で認められている。しかしながら、荒永ではっきりと認められた難関は、高い収縮力を有する繊維が単独で捲縮し、交絡形成を減少させて布嵩高さの増加をもたらす傾向があることである。それはまたしばしば収縮中の布破損と関係がある。その結果は典型的には荷重を受けない用途に好適な高い嵩高さ布であり、高回復繊維の全潜在力は実現されない。 Aranaga et al. (Patent Document 1) discloses a wet-lay method for forming a nonwoven fabric from a composite fiber of polyethylene terephthalate / polypropylene terephthalate having latent crimpability. The resulting nonwoven fabric is said to have a high percentage recovery. The wet-lay process involves hydroentangling the fibers to provide sufficient entanglement before developing crimps. The non-woven fabric produced thereby is characterized by a basis weight of 30 g / m 2 with a 0.3 mm thick fabric. It has been recognized by Aronaga and elsewhere that high recovery crimped fibers have the potential to produce high value nonwovens. However, an obvious and perceived difficulty is that fibers with high shrinkage tend to crimp alone, reducing entanglement formation and increasing fabric bulk. It is also often associated with fabric breakage during shrinkage. The result is a high bulk fabric that is typically suitable for applications that are not subjected to loads, and the full potential of high recovery fibers is not realized.

フルカワ(Furukawa)、米国特許公報(特許文献2)は、捲縮したポリオレフィン複合ステープルファイバーから形成された0.020g/cm3未満の嵩密度を有する非常に嵩高い不織布を開示している。インチ当たり12捲縮より大きな捲縮頻度は、それがウェブ密度を過度に高くするので、ウェブ形成に有害であると言われている。フルカワによる構造物は、熱接合によって「溶融接着されて」いると言われ、繊維交絡よりもむしろ、前記溶融接着がその構造物を一緒に保持している主な機構であると言われている。 Furukawa, U.S. Pat. No. 6,057,028 discloses a very bulky nonwoven having a bulk density of less than 0.020 g / cm < 3 > formed from crimped polyolefin composite staple fibers. Crimp frequencies greater than 12 crimps per inch are said to be detrimental to web formation because it makes the web density too high. Furukawa structures are said to be “melt bonded” by thermal bonding, and rather than fiber entanglement, said melt bonding is said to be the main mechanism holding the structure together. .

ストークス(Stokes)ら、(特許文献3)は、弾力性を維持するための架橋がそれに続く捲縮複合ポリオレフィン繊維からの耐圧縮性の嵩高い不織布の形成方法を開示している。   Stokes, et al. (US Pat. No. 5,639,097) disclose a method for forming a bulky nonwoven fabric with high compression resistance from crimped composite polyolefin fibers followed by cross-linking to maintain elasticity.

テラカワ(Terakawa)ら、(特許文献4)は、潜在捲縮性を有する紡糸されたままの糸束を空気交絡させ、捲縮が発現する温度まで加熱する、および交差点で接合を引き起こす温度まで加熱する、連続複合ポリオレフィン繊維からの不織布の製造方法を開示している。テラカワによる不織布は0.030g/cm3より下の密度を有する。 Terakawa et al. (US Pat. No. 5,697,049), air-entangled as-spun yarn bundles with latent crimps, heats to a temperature at which crimps develop, and heats to a temperature that causes joining at the intersection. A method for producing a nonwoven fabric from continuous composite polyolefin fibers is disclosed. The nonwoven fabric by Terrakawa has a density below 0.030 g / cm 3 .

シャウバー(Shawver)ら、米国特許公報(特許文献5)は、エラストマー内層シートに積層されたスパンボンド材料からできた伸縮性不織布を開示している。   Shawver et al., U.S. Pat. No. 5,677,086, discloses a stretchable nonwoven made from a spunbond material laminated to an elastomeric inner layer sheet.

パイク(Pike)ら、米国特許公報(特許文献6)は、潜在捲縮性を有する、および熱接合不織ウェブの形成前に空気中で様々な程度に捲縮させられた連続多成分熱可塑性繊維、特にポリオレフィンからの不織ウェブの形成を開示している。   Pike et al., U.S. Pat. No. 6,037,049, describes a continuous multicomponent thermoplastic having latent crimpability and crimped to varying degrees in air prior to the formation of a thermally bonded nonwoven web. The formation of nonwoven webs from fibers, especially polyolefins, is disclosed.

特開平11−158733号公報JP-A-11-158733 米国特許第4,469,540号明細書US Pat. No. 4,469,540 国際公開第00/18995号パンフレットInternational Publication No. 00/18995 Pamphlet 欧州特許第0 391 260 B1号明細書European Patent No. 0 391 260 B1 米国特許第5,540,976号明細書US Pat. No. 5,540,976 米国特許第5,418,045号明細書US Pat. No. 5,418,045 米国特許第3,338,992号明細書US Pat. No. 3,338,992 米国特許第3,671,379号明細書U.S. Pat. No. 3,671,379

本発明は、第1結晶性ポリエステル成分と第2結晶性ポリエステル成分とを含む複数の交絡した螺旋状に捲縮した非対称複合繊維を含む不織布であって、前記第1結晶性ポリエステル成分が前記第2結晶性ポリエステル成分より遅い結晶化速度を示し、前記繊維が0.5〜6デニールのデニール範囲によって特徴づけられ、前記繊維が0.2mm以下の捲縮曲率半径を持つ、インチ当たり少なくとも50捲縮を示し、かつ、前記繊維が主に互いに交絡し、かつ、さらに前記繊維がはっきりと画定された平面に主に配向されており、前記不織布が0.2〜0.4g/cm3の嵩密度によって特徴づけられる不織布を提供する。 The present invention is a nonwoven fabric comprising a plurality of entangled helically crimped asymmetric composite fibers comprising a first crystalline polyester component and a second crystalline polyester component, wherein the first crystalline polyester component is the first crystalline polyester component. At least 50% per inch, exhibiting a slower crystallization rate than the bicrystalline polyester component, wherein the fiber is characterized by a denier range of 0.5-6 denier, and the fiber has a crimp radius of curvature of 0.2 mm or less. The fibers are mainly entangled with each other, and the fibers are mainly oriented in a well-defined plane, and the nonwoven fabric has a bulk of 0.2 to 0.4 g / cm 3 Provide a non-woven fabric characterized by density.

本発明はさらに、潜在捲縮性を有する複数の非対称複合繊維を、オーバーラップする繊維の平面アレーに配置する工程であって、前記繊維がその平面に主に配向され、前記平面アレーを2つの制約面間に配置する工程と、加熱の少なくとも一部の間に、前記不織構造物が前記制約面と制約接触しているという条件で前記平面アレーを加熱して前記潜在捲縮性の少なくとも一部を発現させる工程とを含む不織布の形成方法を提供する。   The present invention further includes the step of disposing a plurality of asymmetric composite fibers having latent crimpability in a planar array of overlapping fibers, wherein the fibers are mainly oriented in the plane, and the planar array is divided into two Between the constraining surfaces and at least part of the heating, heating the planar array on the condition that the non-woven structure is in constraining contact with the constraining surfaces to provide at least the latent crimpability And a method of forming a nonwoven fabric.

当該技術では、潜在捲縮性を有する複合繊維の平面アレー、典型的には繊維マットを製造し、引き続いて加熱して捲縮を発現させ、それによって繊維を交絡させて安定な不織布構造を生み出すことによって不織布を製造することは公知である。捲縮発現工程の間ずっと、繊維マットまたは他の構造物は、平面に直角の方向に同時に起こる膨張と共に平面で収縮を受ける。結果として、当該技術の不織布は一般に0.1g/cm3より十分に下の全く低い嵩密度にある。結果として、それらは、高靱性または高い伸び回復を必要とする多くのテキスタイル用途では限定された実用性を有する。 In the art, a planar array of conjugate fibers with latent crimpability, typically a fiber mat, is manufactured and subsequently heated to develop crimps, thereby entangle the fibers and create a stable nonwoven structure It is known to produce non-woven fabrics. Throughout the crimping process, the fiber mat or other structure undergoes contraction in the plane with simultaneous expansion in a direction perpendicular to the plane. As a result, the nonwovens of the art are in a very low bulk density, generally well below 0.1 g / cm 3 . As a result, they have limited utility in many textile applications that require high toughness or high elongation recovery.

本発明は、高捲縮、高回復繊維間の交絡形成が捲縮発現の工程中に布の平面に直角方向の布膨張の注意深い制御によって促され得るという発見に基づいている。当該技術の方法では、捲縮発現は通常、平面に直角の方向における不随する膨張と共に平面での大きな収縮につながる。   The present invention is based on the discovery that entanglement between high crimp and high recovery fibers can be facilitated by careful control of fabric expansion perpendicular to the plane of the fabric during the crimp development process. In the state of the art, the occurrence of crimp usually leads to a large contraction in the plane with involuntary expansion in a direction perpendicular to the plane.

本発明の方法では、第1工程で潜在捲縮性を有する複数の非対称複合繊維は前記繊維の平面アレーを形成するために配置され、前記繊維はその平面に主に配向され、ここで、圧倒的多数の前記繊維は少なくとも1つの他の前記繊維とクロス状に接触している。好ましい実施形態での前記平面アレーは本明細書では、本発明の方法の第2工程、捲縮発現工程を受ける前の不織布構造物を示すために「繊維マット・プリフォーム」と言われる。捲縮発現工程は、平面アレーが平面アレーの平面に少なくともほぼ平行に配向された2つの制約面間に配置されている間に平面アレーを加熱して捲縮を発現させることによって行われる。2つの制約面の分離は、捲縮発現工程の少なくともある部分の間、平面に直角方向の平面アレーの膨張が両制約面との同時接触によって制約されるように調節される。膨張工程の間のこの接触は収縮中のアレーに圧縮力を導入する。生じた不織布は、匹敵する出発原料から製造される、平面に直角方向の膨張を制約することなしに製造される不織布より高い密度およびもっと強い物理的性質を示す。   In the method of the present invention, a plurality of asymmetric composite fibers having latent crimpability in the first step are arranged to form a planar array of the fibers, wherein the fibers are mainly oriented in the plane, where overwhelming A number of said fibers are in cross contact with at least one other said fiber. The planar array in a preferred embodiment is referred to herein as a “fiber mat preform” to indicate the nonwoven structure prior to undergoing the second step of the method of the present invention, the crimping step. The crimping step is performed by heating the planar array to develop crimps while the planar array is disposed between two constraining surfaces that are oriented at least approximately parallel to the plane of the planar array. The separation of the two constraining surfaces is adjusted so that during at least some part of the crimping process, the expansion of the planar array perpendicular to the plane is constrained by simultaneous contact with both constraining surfaces. This contact during the expansion process introduces a compressive force on the shrinking array. The resulting nonwovens exhibit higher density and stronger physical properties than nonwovens made from comparable starting materials and made without constraining expansion perpendicular to the plane.

本発明の方法に好適な複合繊維は、2つの相が他と異なる収縮を示し、それによって収縮時に螺旋状捲縮の発現を可能にする、互いに接触した2つの連続相中に存在する、好ましくは同じ属群の2つのポリマーを含む繊維である。相は、サイドバイサイドまたは非対称シース−コア配置に配置されてもよい。サイドバイサイドが好ましい。好適な複合繊維には、複合ポリエステル、複合ポリアミド、および複合ポリオレフィンが含まれるが、それらに限定されない。ポリエステルが好ましい。これらの広範なクラス内のポリマーの共重合体はその中に含まれる。ポリエステルのうち好ましい種の複合繊維には、ポリエチレンテレフタレート(PET)/ポリプロピレンテレフタレート(PPT)、PET/ポリブチレンテレフタレート(PBT)、およびPPT/PBTが含まれ、PET/PPTが好ましい。   A composite fiber suitable for the method of the present invention is preferably present in two continuous phases in contact with each other, wherein the two phases exhibit a different contraction from the other, thereby allowing the development of a helical crimp upon contraction, preferably Are fibers containing two polymers of the same genus group. The phases may be arranged in a side-by-side or asymmetric sheath-core arrangement. Side by side is preferred. Suitable composite fibers include, but are not limited to, composite polyesters, composite polyamides, and composite polyolefins. Polyester is preferred. Included therein are copolymers of these broad classes of polymers. Among the polyesters, preferred types of composite fibers include polyethylene terephthalate (PET) / polypropylene terephthalate (PPT), PET / polybutylene terephthalate (PBT), and PPT / PBT, with PET / PPT being preferred.

また、ポリアミドおよびポリエステルのような、異なる群からのポリマーを含む二成分と時々言われる繊維もまた用語「複合」に包含される。しかしながら、二成分繊維はそれほど好ましくない。   Also encompassed by the term “composite” are fibers sometimes referred to as bicomponents comprising polymers from different groups, such as polyamides and polyesters. However, bicomponent fibers are less preferred.

本発明の目的のためには、潜在捲縮性を有する繊維は、2成分の収縮挙動の差を利用することによって、典型的には成分の少なくとも1つをそのガラス転移温度より上に加熱することによって、追加の捲縮を発現する固有の能力を有する繊維である。潜在捲縮性繊維は幾らかの捲縮を示しても、または何の捲縮も示さなくてもよい。本発明の実施では、潜在捲縮性繊維は好ましくは平らで、捲縮なしである。   For purposes of this invention, latently crimpable fibers typically heat at least one of the components above their glass transition temperature by taking advantage of the difference in shrinkage behavior of the two components. This is a fiber that has the inherent ability to develop additional crimps. Latent crimped fibers may exhibit some or no crimps. In the practice of the present invention, the latent crimpable fibers are preferably flat and free of crimps.

それの発明者らは、例えば繊維マット・プリフォームの平面に平行な2つの金属板の間に置かれた布で捲縮発現を行うことによる場合のように、その平面に直角方向での布の膨張が制約される条件下で捲縮発現が行われる場合、その結果は布にかなりの高密度化を受けさせ、個別の繊維をより高度に交絡するようにさせることであることを発見した。結果は、同一の繊維マット・プリフォームから出発する先行技術方法によって製造された布より改善された伸び回復の、高密度の強靱な布である。   The inventors of the present invention, for example, the expansion of the fabric in a direction perpendicular to the plane, such as by crimping with a fabric placed between two metal plates parallel to the plane of the fiber mat preform. It has been discovered that when crimp expression is performed under conditions where is constrained, the result is that the fabric is subjected to considerable densification, making the individual fibers more highly entangled. The result is a dense, tough fabric with improved stretch recovery over fabrics made by prior art methods starting from the same fiber mat preform.

達成することができる高密度化の程度および特性は、平面アレーの出発嵩密度、繊維が互いにオーバーラップする程度、および制約面間の分離の距離だけでなく、本発明で用いられる特定のタイプの繊維の捲縮収縮に依存するであろう。他のものが等しいとすれば、より高い捲縮収縮、繊維間オーバーラップのより大きい程度、より高い出発嵩密度、および制約面間のより狭いギャップ(繊維がもはやスリップできない、および捲縮加工が著しく妨害されるポイントまで)はすべてより高い密度不織製品、より高い靱性、およびより高い伸び回復に関係する。   The degree of densification and characteristics that can be achieved are not only the starting bulk density of the planar array, the extent to which the fibers overlap each other, and the separation distance between the constrained surfaces, but also the specific type used in the present invention. It will depend on the crimp shrinkage of the fiber. If others are equal, higher crimp shrinkage, greater degree of inter-fiber overlap, higher starting bulk density, and narrower gaps between constraining surfaces (fibers can no longer slip, and crimping is All up to the point of significant hindrance) is related to higher density nonwoven products, higher toughness, and higher elongation recovery.

本発明の方法の便益は全く一般的であり、オーバーラップする繊維の平面アレーに潜在捲縮性を持った複合繊維が用いられるという条件で、本質的に任意の組成の不織布の製造に適用されてもよい。   The benefits of the method of the invention are quite general and apply to the production of nonwovens of essentially any composition, provided that composite fibers with latent crimp are used in the planar array of overlapping fibers. May be.

本発明で用いられる繊維は、連続のまたは長い繊維の形態であってもよいし、またはそれらはステープルファイバーであってもよい。連続繊維はマルチフィラメント糸の形で紡糸されてもよいが、好ましくは繊維マット前駆体を形成するために個別の繊維として沈積される。ステープルファイバーが好ましく、3〜25mmの長さ範囲の、およびフィラメント当たり0.5〜6デニール(dpf)の範囲の繊維デニールの繊維が好ましい。好ましい実施形態では、繊維は、それぞれ70:30〜30:70、好ましくはそれぞれ60:40〜40:60の濃度比のPETおよびPPTの複合ステープルファイバーである。   The fibers used in the present invention may be in the form of continuous or long fibers, or they may be staple fibers. Continuous fibers may be spun in the form of multifilament yarns, but are preferably deposited as individual fibers to form a fiber mat precursor. Staple fibers are preferred, fibers of fiber denier in the 3-25 mm length range and in the range of 0.5-6 denier per filament (dpf). In a preferred embodiment, the fibers are PET and PPT composite staple fibers in a concentration ratio of 70:30 to 30:70, respectively, preferably 60:40 to 40:60, respectively.

より好ましい実施形態では、本発明で用いられる繊維は、少なくとも40%、好ましくは70〜80%の潜在捲縮収縮を有する未捲縮ステープルPET/PPT複合繊維である。PETおよびPPTの両方とも結晶性ポリマーである。しかしながら、PPTはPETより高い結晶化速度を示す。   In a more preferred embodiment, the fibers used in the present invention are uncrimped staple PET / PPT bicomponent fibers having a latent crimp shrinkage of at least 40%, preferably 70-80%. Both PET and PPT are crystalline polymers. However, PPT shows a higher crystallization rate than PET.

本発明での使用に好ましいPET/PPT繊維は、0.4〜0.8、好ましくは0.5〜0.6の固有粘度(I.V.)を有するPETの溶融流れを、0.8〜1.5、好ましくは0.9〜1.0のI.V.を有するPPTの溶融流れと組み合わせ、組み合わせた流れを多孔紡糸口金にフィードし、そこからそれを260℃〜285℃、好ましくは265℃〜270℃の温度で押し出すことによって製造されてもよい。押出物は集められ、急冷され、次に延伸工程なしで巻き取られる。紡糸速度は1900〜3500m/分の範囲にあり、2000〜3000m/分が好ましい。紡糸後に、糸は、20〜25mmの長さが好ましい、3〜25mmの長さへの切断を受ける。I.V.はp−クロロフェノール中25℃で測定された際のものである。   Preferred PET / PPT fibers for use in the present invention have a melt flow of PET having an intrinsic viscosity (IV) of 0.4 to 0.8, preferably 0.5 to 0.6, 0.8 Of 1.5 to 1.5, preferably 0.9 to 1.0. V. In combination with a melt flow of PPT having the following: feed the combined stream to a porous spinneret and extrude it from 260 ° C. to 285 ° C., preferably 265 ° C. to 270 ° C. The extrudate is collected, quenched, and then wound without a stretching step. The spinning speed is in the range of 1900-3500 m / min, preferably 2000-3000 m / min. After spinning, the yarn undergoes cutting to a length of 3-25 mm, preferably a length of 20-25 mm. I. V. Is measured at 25 ° C. in p-chlorophenol.

その実施者は、所望の繊維特性を与える紡糸速度の具体的な値が用いられるポリマーの具体的選択、紡糸温度の仕様、繊維径、および急冷のタイプに依存することを理解するであろう。その実施者はさらに、PET/PPT繊維に好適な紡糸速度範囲が他の組成物に好適な紡糸速度範囲とは異なることを理解するであろう。例えば、PET/PBT繊維については運転範囲は約1700〜3200m/分で、1800〜3000m/分が好ましく、PPT/PBT繊維については運転範囲は600〜2000m/分で、800〜1600m/分が好ましいことが分かった。   The practitioner will understand that the specific value of spinning speed that gives the desired fiber properties depends on the specific choice of polymer used, spinning temperature specifications, fiber diameter, and type of quenching. The practitioner will further appreciate that the spinning speed range suitable for PET / PPT fibers is different from the spinning speed range suitable for other compositions. For example, for PET / PBT fibers, the operating range is about 1700-3200 m / min, preferably 1800-3000 m / min, and for PPT / PBT fibers the operating range is 600-2000 m / min, preferably 800-1600 m / min. I understood that.

そのように製造されたステープルファイバー糸は次に界面活性剤の助けで0.05g/l〜1g/l、好ましくは0.25g/l〜0.75g/lの範囲の固形分含有量で水に分散される。分散系は、繊維の均質な十分に分離した混合物を得るために乱流を引き起こすことなく撹拌される。次に繊維分散系は多孔性基材上に沈積され、過剰の水が排出され、生じた繊維のマットは70℃より下の温度、好ましくは約40℃で乾燥される。好ましくは乾燥は表面を拭き取りながら達成される。   The staple fiber yarn so produced is then water with a solids content in the range of 0.05 g / l to 1 g / l, preferably 0.25 g / l to 0.75 g / l with the aid of a surfactant. To be distributed. The dispersion is agitated without causing turbulence to obtain a homogeneous, well-separated mixture of fibers. The fiber dispersion is then deposited on a porous substrate, excess water is drained, and the resulting fiber mat is dried at a temperature below 70 ° C, preferably about 40 ° C. Preferably drying is accomplished while wiping the surface.

繊維を分散させるための他の手段および媒体が用いられてもよい。繊維は、液体が本質的に不活性である限り水以外の液体を用いて分散させてもよい。または繊維は空気のようなガス媒体に、または超臨界CO2に分散させることができる。しかしながら、周知の製紙法のそれに類似の技術を用いる水分散法が最も便利であり、それ故好ましい。 Other means and media for dispersing the fibers may be used. The fibers may be dispersed using a liquid other than water as long as the liquid is essentially inert. Or fibers can be dispersed in a gaseous medium such as air, or supercritical CO 2. However, an aqueous dispersion method using techniques similar to those of known papermaking methods is most convenient and is therefore preferred.

本発明の代わりの実施形態では、繊維は潜在捲縮性を有する連続マルチフィラメント糸の形態である。かかる連続フィラメントが用いられる場合、本発明の方法に好適な平面アレーまたは繊維マット前駆体を形成するために、高度のフィラメント分離が起こらなければならない。当該フィラメント分離を達成する一方法は、糸束に静電気を帯電させることである。移動するマルチフィラメント糸束は、隣接フィラメントから各フィラメントを分離するのに十分な電位に静電気帯電させられ、次に、このように分離している間に、フィラメントはランダム不織ウェブとして集められる。好ましい糸は、フィラメントの最大分離を達成するためにゼロ撚りまたは捲縮を有する。電荷の最小レベルは30,000静電単位(esu)である。かかる張力が取り除かれるまで、すなわち、その上に平面アレーが形成されることになっている受入れ面の方へそれらが押し進められた後までそれらが分離しないような十分な張力下にある間に、帯電は成し遂げられ、その結果フィラメントは直ちに分離する。フィラメントは、コロナ放電によって、摩擦電気接触によって、電界帯電によって、または他の好適な方法によって帯電させられてもよい。一実施形態では、本発明の方法に従って形成された、新たに形成された合成有機フィラメントは、それらの凝固温度よりまだ上にある間に高強度電場を通過させることによって帯電させられる。本発明の実施に好適な糸束に電荷を帯電させるために好適な装置および詳細な手順は、米国特許公報(特許文献7)に記載されている。そのように処理された糸を構成するフィラメントは、レイダウンされてオーバーラップするパターンを形成し、フィラメントがその平面に主に配向されている平面アレーまたは繊維マット前駆体を生み出す。   In an alternative embodiment of the present invention, the fiber is in the form of a continuous multifilament yarn with latent crimpability. When such continuous filaments are used, a high degree of filament separation must occur in order to form a planar array or fiber mat precursor suitable for the method of the present invention. One way to achieve such filament separation is to charge the yarn bundle with static electricity. The moving multifilament yarn bundle is electrostatically charged to a potential sufficient to separate each filament from adjacent filaments, and then during such separation, the filaments are collected as a random nonwoven web. Preferred yarns have zero twist or crimp to achieve maximum filament separation. The minimum level of charge is 30,000 electrostatic units (esu). Until such tension is removed, i.e. under sufficient tension such that they do not separate until after they have been pushed towards the receiving surface on which the planar array is to be formed. Charging is accomplished, so that the filaments are separated immediately. The filament may be charged by corona discharge, by triboelectric contact, by electric field charging, or by other suitable methods. In one embodiment, newly formed synthetic organic filaments formed according to the method of the present invention are charged by passing a high intensity electric field while still above their solidification temperature. A suitable apparatus and detailed procedure for charging a yarn bundle suitable for the practice of the present invention is described in US Pat. The filaments that make up such treated yarns are laid down to form an overlapping pattern, producing a planar array or fiber mat precursor in which the filaments are primarily oriented in that plane.

そのように製造された連続繊維の平面アレーは次に連続または回分連続法で加熱ゾーンに搬送され、そこで潜在捲縮性が発現され、本発明の不織布が生み出される。加熱を提供する多くの方法が当該技術で知られているが、本発明の実施に好適ないかなる方法も必然的に前駆体布の平面に直角方向の制約膨張を伴うであろう。かかる方法には、2プレート間の固定加熱ゾーンのような回分タイプ法、またはカレンダー加工、もしくは加熱コンベアのような連続プロセス法が含まれるであろう。所望の捲縮を実現する方法は、前記加熱の少なくとも一部分の間に、前記不織構造物が制約面と制約接触しているという条件をそれが満たす限り決定的に重要ではない。   The planar array of continuous fibers so produced is then conveyed to the heating zone in a continuous or batch continuous process where latent crimps are developed and the nonwoven fabric of the present invention is produced. Although many methods for providing heating are known in the art, any method suitable for the practice of the present invention will necessarily involve a constrained expansion perpendicular to the plane of the precursor fabric. Such methods would include batch type methods such as a fixed heating zone between two plates, or continuous process methods such as calendering or heated conveyors. The method of achieving the desired crimp is not critical as long as it satisfies the condition that the nonwoven structure is in constraining contact with the constraining surface during at least a portion of the heating.

そのように製造された不織構造物中の繊維の潜在捲縮性を発現させるための加熱は、当業者の十分理解し得る範囲内であるような様々な方法を用いて成し遂げられてもよい。満足できる結果は(i)強制対流流れの熱風オーブン中でのような熱風中80℃より上の温度、好ましくは約120℃で、または(ii)水中約95℃の温度で加熱することによって達成されることが本発明の実施で分かった。本発明の方法の典型的な実施では、捲縮発現は示された熱暴露後数秒以内に起こる。制約面間の距離が約2mmを超える場合、熱風が好ましい加熱媒体である。約2mmより厚いサンプルの熱水加熱はしばしばサンプル破砕をもたらすことが本発明の実施で分かる。   Heating to develop the potential crimpability of the fibers in the nonwoven structure so produced may be accomplished using a variety of methods that are well within the purview of those skilled in the art. . Satisfactory results are achieved by (i) heating at a temperature above 80 ° C. in hot air, such as in a forced convection hot air oven, preferably at about 120 ° C., or (ii) at a temperature of about 95 ° C. in water. It has been found in the practice of the present invention. In a typical implementation of the method of the invention, crimp development occurs within seconds after the indicated heat exposure. Hot air is a preferred heating medium when the distance between the constraining surfaces exceeds about 2 mm. It can be seen in the practice of the invention that hot water heating of samples thicker than about 2 mm often results in sample crushing.

さらなる実施形態では、本発明の目的は、高靱性および高伸縮性/低剛性から高剛性/低伸縮性の範囲の制御された特性の交絡した不織布を提供することにある。これは(i)高い潜在捲縮性の繊維を用いること、および(ii)本明細書で記載されるような本発明の方法に従って熱誘導面積収縮中の布厚さの膨張を抑えることによって得られる。捲縮発現中の面積収縮は捲縮発現の程度の指標である。   In a further embodiment, it is an object of the present invention to provide entangled nonwovens with high toughness and controlled properties ranging from high stretch / low stiffness to high stiffness / low stretch. This is obtained by (i) using highly latent crimpable fibers and (ii) suppressing fabric thickness expansion during thermally induced area shrinkage according to the method of the present invention as described herein. It is done. Area shrinkage during crimp development is an indicator of the degree of crimp development.

本発明の不織布は、初期ヤング率(Young’s modulus)とその極限伸びとの積と定義される靱性の特に望ましい特性を有する。不織布が本発明の方法の好ましい実施形態に従って製造される場合、1.2〜12MPaの範囲の初期ヤング率値および150%までの極限伸びを示す布が製造される。本発明の不織布の好ましい実施形態は、0.20〜0.28g/cm3の嵩密度を有する布で、それぞれ、約30%および6MPaからそれぞれ100%および1.8MPaの範囲の極限伸びおよび引張弾性率の組合せを提供する。 The nonwoven fabric of the present invention has a particularly desirable property of toughness, defined as the product of the Young's modulus and its ultimate elongation. When a nonwoven is produced according to a preferred embodiment of the method of the present invention, a fabric is produced that exhibits an initial Young's modulus value in the range of 1.2-12 MPa and an ultimate elongation of up to 150%. A preferred embodiment of the nonwoven fabric of the present invention is a fabric having a bulk density of 0.20 to 0.28 g / cm 3 , with ultimate elongation and tension ranging from about 30% and 6 MPa to 100% and 1.8 MPa, respectively. Provides a combination of elastic moduli.

本発明の不織布は、第1結晶性ポリエステル成分と第2結晶性ポリエステル成分とを含む複数の交絡した螺旋状に捲縮したサイドバイサイド型複合繊維であって、前記第1結晶性ポリエステル成分が前記第2結晶性ポリエステル成分より遅い結晶化速度を示し、0.5〜6dpfのデニール範囲によって特徴づけられ、0.2mm以下の捲縮曲率半径を持つ、インチ当たり少なくとも50捲縮を示し、かつ、主に互いに交絡し、かつ、さらに、はっきりと画定された平面に主に配向されている繊維を含み、0.2〜0.4g/cm3の嵩密度によって特徴づけられる。 The nonwoven fabric of the present invention is a side-by-side type composite fiber crimped into a plurality of entangled spirals containing a first crystalline polyester component and a second crystalline polyester component, wherein the first crystalline polyester component is the first crystalline polyester component. Exhibit at least 50 crimps per inch with a crimp radius of curvature of 0.2 mm or less, characterized by a denier range of 0.5 to 6 dpf, exhibiting a slower crystallization rate than a bicrystalline polyester component And are further characterized by a bulk density of 0.2-0.4 g / cm 3 , which further includes fibers that are entangled with each other and that are primarily oriented in a well-defined plane.

本発明の不織布の密度は、既知面積の試験片をカットし、その厚さおよびその重量を測定し、式
δ(密度)=重量(g)/(面積(cm2)×厚さ(cm))
によって密度をコンピューター計算することによって求められる。
The density of the nonwoven fabric of the present invention is determined by cutting a specimen having a known area, measuring its thickness and its weight, and formula δ (density) = weight (g) / (area (cm 2 ) × thickness (cm) )
The density is calculated by computer calculation.

本発明の不織布は容易に圧縮され、繊維間に多くの隙間を与える。それ故、密度の正確な測定をするために厚さの正確な測定値を得ることは問題をはらむ。普通は、フィルムおよび布のような物体の厚さは当該技術では接触厚さ計の使用によって測定され、該厚さ計では測定されるべき試験片は、固定された金敷と厚さを表示するためのある手段に取り付けられた垂直に移動可能なフートとの間に置かれる。垂直に移動可能なフートが余りにも狭い断面を有する場合、それは隣接する繊維間でスリップし、それによって間違って低い厚さ読みを与えるかもしれない。垂直に移動可能なフートが測定中のエリアに過度の圧力をかける場合、それは布の圧縮をもたらし、再び、間違って低い厚さ読みをもたらすかもしれない。   The nonwoven fabric of the present invention is easily compressed and provides many gaps between the fibers. Therefore, obtaining an accurate measurement of thickness to make an accurate measurement of density is problematic. Normally, the thickness of objects such as film and cloth is measured in the art by the use of a contact thickness meter, where the specimen to be measured displays a fixed anvil and thickness. Placed between a vertically movable foot attached to a means for. If the vertically movable foot has a too narrow cross section, it may slip between adjacent fibers, thereby incorrectly giving a low thickness reading. If the vertically movable foot places excessive pressure on the area being measured, it may result in fabric compression and again, erroneously resulting in a low thickness reading.

これらの落とし穴を回避するために、厚さ測定は、少なくとも0.5cm直径の円形断面の平らな試験片接触面を持った垂直に移動可能なフートを有し、95g以下の総力を加える厚さ計を用いて行われるべきである。厚さ計精度は少なくとも±0.0005cmであるべきである。それらの制限を満たす任意の機器が本発明によるサンプルの厚さを測定するのに好適であるが、満足できる幾つかの商業的に入手可能な機器が利用可能である。本発明による厚さ測定に好適であることが分かった一つのかかる機器は、モデル35B−8−R−1スタンドに取り付けられたモデルPT223接触フートを備えたモデルPT223フェデラル(Federal)(ロードアイランド州プロビデンス(Providence,RI))C2I比較測長器(Comparator)計である。厚さ測定は、試験片上の異なる点で取られた少なくとも3つの読みの平均を表すべきである。   In order to avoid these pitfalls, the thickness measurement has a vertically movable foot with a flat specimen contact surface with a circular cross section of at least 0.5 cm diameter and a thickness applying a total force of 95 g or less. Should be done using a meter. Thickness accuracy should be at least ± 0.0005 cm. Although any instrument that meets these limitations is suitable for measuring the thickness of a sample according to the present invention, several satisfactory commercially available instruments are available. One such instrument that has been found suitable for thickness measurement according to the present invention is model PT223 Federal (Rhode Island) with a model PT223 contact foot attached to a model 35B-8-R-1 stand. Providence (RI) C2I comparative length meter (Comparator) meter. The thickness measurement should represent the average of at least three readings taken at different points on the specimen.

重量は、少なくとも0.0001gの精度を有する実験室はかりで測定される。   The weight is measured with a laboratory balance having an accuracy of at least 0.0001 g.

本発明の不織布での使用に好適な複合繊維は、好ましくは、PET/PPT、PET/PBT、およびPPT/PBT繊維よりなる群から選択されたサイドバイサイド型複合繊維である。先行群の中で、前記第1結晶性ポリエステル成分は最初にリストされ、第2結晶性成分は二番目にリストされている。言い換えると、結晶化するのがより遅いポリマーが最初にリストされてポリマーはリストされている。最も好ましくは、前記複合繊維はPET/PPTのサイドバイサイド型複合繊維である。   The conjugate fiber suitable for use in the nonwoven fabric of the present invention is preferably a side-by-side conjugate fiber selected from the group consisting of PET / PPT, PET / PBT, and PPT / PBT fibers. Within the preceding group, the first crystalline polyester component is listed first and the second crystalline component is listed second. In other words, polymers that are slower to crystallize are listed first and polymers are listed. Most preferably, the conjugate fiber is a PET / PPT side-by-side conjugate fiber.

本発明の不織布での使用に好ましいPET/PPT繊維は、0.5〜1.2、好ましくは0.7〜0.9の固有粘度(I.V.)を有するPETの溶融流れを、0.8dl/g〜1.5dl/g、好ましくは0.9〜1のI.V.を有するPPTの溶融流れと組み合わせ、組み合わされた流れを多孔紡糸口金にフィードすることによって製造されてもよく、紡糸口金から265℃〜285℃、好ましくは265℃〜270℃の温度で単一複合ストランドがその各孔から押し出される。押出物は集められ、急冷され、次に延伸工程なしで巻き取られる。この場合紡糸速度と同義語である巻取速度は2000〜3500m/分の範囲にあり、2500〜3000m/分が好ましい。紡糸後に、糸は、25mmの長さが好ましい、3〜25mmの長さへの切断を受ける。I.V.はp−クロロフェノール中25℃で測定された際のものである。   Preferred PET / PPT fibers for use in the nonwoven fabric of the present invention have a melt flow of PET having an intrinsic viscosity (IV) of 0.5 to 1.2, preferably 0.7 to 0.9, 0 .8 dl / g to 1.5 dl / g, preferably 0.9 to 1. V. In combination with a melt flow of PPT having a single composite at a temperature of 265 ° C. to 285 ° C., preferably 265 ° C. to 270 ° C. from the spinneret. Strands are extruded from their respective holes. The extrudate is collected, quenched, and then wound without a stretching step. In this case, the winding speed, which is synonymous with the spinning speed, is in the range of 2000-3500 m / min, preferably 2500-3000 m / min. After spinning, the yarn undergoes a cut to a length of 3 to 25 mm, preferably a length of 25 mm. I. V. Is measured at 25 ° C. in p-chlorophenol.

そのように製造された好ましい繊維は次に既に記載されたその方法に従って加工され、本発明の不織布をもたらす。   The preferred fibers so produced are then processed according to the method already described, resulting in the nonwoven fabric of the present invention.

本発明の不織布の異常に高い密度および高い回復力は、細粒濾過および保護用途のような分野でそれらを有用にする。不織布は、繊維のそれらのランダム配置が個別の流れへのキャリア相の迅速な分配を可能にするので、工業ダスト除去用途の理想的な候補である。不織布の大部分はニードルパンチされ、通常、約0.2g/cm3の密度の「ニードルフェルト」として知られている。同じ密度で、本発明の布は、繊維の3次元ランダム配置を容易にもたらすので、優れた濾過効率を有すると期待される。後者は、ダストの浸透を極めて低いレベルまで急速に減らすために非常に重要である「ダストブリッジ」のビルドアップを大きく促進する。 The unusually high density and high resiliency of the nonwoven fabrics of the present invention makes them useful in areas such as fine grain filtration and protective applications. Nonwoven fabrics are ideal candidates for industrial dust removal applications because their random arrangement of fibers allows for rapid distribution of the carrier phase into individual streams. The majority of nonwovens are needle punched and are commonly known as “needle felts” with a density of about 0.2 g / cm 3 . At the same density, the fabric of the present invention is expected to have excellent filtration efficiency as it easily provides a three-dimensional random arrangement of fibers. The latter greatly facilitates “dust bridge” build-up, which is very important for rapidly reducing dust penetration to very low levels.

別の実施形態では、本発明での使用に好適な複合繊維は、生じた布の強度、耐熱性および貫入抵抗を高めるために、好ましくは繊維マット前駆体のレイダウン中に、デュポン・カンパニーから入手可能なノメックス(Nomex)(登録商標)またはケブラー(Kevlar)(登録商標)繊維のようなポリアラミド繊維と組み合わせられてもよい。この実施形態では、一般に熱収縮を示さないポリアラミドステープルファイバーは、本発明の実施に好適な複合繊維と混ぜ合わせられて繊維マット前駆体を形成する。本発明の方法に従った捲縮発現中に、ポリアラミド繊維は撚りおよび捲縮複合繊維との交絡を受けて、交絡した繊維の高度に強化されたネットワークを形成し、ポリアラミド繊維を不織布にしっかりと結合させる。この密接結合は、ポリアラミドを含むブレンドの製造で一般に用いられるような結合剤の使用なしに達成することができる。   In another embodiment, a bicomponent fiber suitable for use in the present invention is obtained from DuPont Company, preferably during fiber mat precursor laydown, to increase the strength, heat resistance and penetration resistance of the resulting fabric. It may be combined with polyaramid fibers such as possible Nomex® or Kevlar® fibers. In this embodiment, polyaramid staple fibers that generally do not exhibit thermal shrinkage are blended with bicomponent fibers suitable for the practice of the present invention to form a fiber mat precursor. During crimp development according to the method of the present invention, the polyaramid fibers are entangled with twisted and crimped composite fibers to form a highly reinforced network of entangled fibers, and the polyaramid fibers are firmly attached to the nonwoven fabric. Combine. This tight coupling can be achieved without the use of binders as commonly used in the manufacture of blends containing polyaramid.

例えば、抗菌性および難燃性を与えるために、表面改質剤および添加剤が本発明の不織布へ容易に組み入れられ得る。潜在捲縮性を示すまたは示さない他のポリマー繊維もまた、本発明の実施で複合繊維とのブレンドによって、特に本発明の好ましい実施形態の水スラリー段階で繊維を組み合わせることによって、容易に組み入れることができる。短いポリアラミド繊維の添加は、例えば、難燃性および耐摩耗性を改善すると考えることができよう。   For example, surface modifiers and additives can be easily incorporated into the nonwoven fabrics of the present invention to provide antibacterial and flame retardant properties. Other polymer fibers that show or do not show latent crimp are also easily incorporated by blending with composite fibers in the practice of the invention, particularly by combining the fibers in the water slurry stage of the preferred embodiment of the invention. Can do. The addition of short polyaramid fibers may be considered to improve, for example, flame retardancy and abrasion resistance.

本発明は、次の具体的な実施形態についてさらに記載されるが、それに限定されない。   The invention will be further described in the following specific embodiments, but is not limited thereto.

次の実施例で用いる繊維は、50/50比のPET(クライスター(Crystar)4415、IV=0.54±0.02)およびPPT(シデュー(CIDU)、IV=1.04±0.03)製の複合サイドバイサイド型糸であった。ポリマーを、当該技術における標準手順に従って、およびエバンス(Evans)ら、米国特許公報(特許文献8)に記載されているような、サイドバイサイド型複合繊維を製造するための当該技術で標準的な周知の押出ブロックおよび紡糸口金パックを用いて265〜270℃で34穴紡糸口金によって溶融紡糸した。   The fibers used in the following examples are 50/50 ratio PET (Crystar 4415, IV = 0.54 ± 0.02) and PPT (CIDU), IV = 1.04 ± 0.03. ) Composite side-by-side type yarn. Polymers are well known in the art for producing side-by-side composite fibers, according to standard procedures in the art and as described in Evans et al., US Pat. Melt spinning was performed with a 34-hole spinneret at 265-270 ° C. using an extrusion block and spinneret pack.

押出物を、長さ72インチのクロスフロー急冷ゾーンを通過させることによって、おおよそ10m/分で糸経路と直角に移動する室温急冷空気の流れで冷却した。次にそれを、いかなる別個の延伸段階もなしに、具体的な実施例で示す速度で巻き取った。生じた糸は真っ直ぐであり、すなわち、それは何の目に見える捲縮も示さなかった。   The extrudate was cooled with a stream of room temperature quench air moving perpendicular to the yarn path at approximately 10 m / min by passing through a 72 inch long cross flow quench zone. It was then wound at the speed shown in the specific examples without any separate stretching step. The resulting yarn was straight, i.e. it did not show any visible crimp.

紡糸後に、糸を、11cmの直径を有する小さなモーター駆動かせ機にそれぞれ90mの長さで巻き直した。次に各かせをはさみで、具体的な実施例に示す長さの短繊維フロックへカットした。2リットル水中の5グラムのF−98プリル(Prill)(ニュージャージー州マウントオリーブのバスフ社(BASF Corp.,Mt.Olive,NJ)から入手可能な界面活性剤)の溶液を、寸法28cm×28cm×28cmを有するウィリアムス標準パルプ試験装置(Williams Standard Pulp Testing Apparatus)の溜めへ注ぎ込んだ。溜めを一杯にするために追加の冷水を加えた。次に6gのフロックを、スパチュラを用いてパルプ装置中で穏やかに分散させ、水性スラリーを、その中に穴のある幅広いスチール板よりなる携帯型かき混ぜ機を用いて約30秒間かき混ぜた。必然的に凝集につながる乱流を避けるよう高度の注意を払わなければならない。次に水を排出し、それによって溜めの底部の多孔性クロス上に繊維マットを沈積させた。   After spinning, the yarn was rewound by a length of 90 m each on a small motor driven skein machine with a diameter of 11 cm. Each skein was then cut with scissors into short fiber flocs of the length shown in the specific examples. A solution of 5 grams of F-98 Prill (surfactant available from BASF Corp., Mt. Olive, NJ) in 2 liters of water, dimensions 28 cm × 28 cm × Pour into the reservoir of a Williams Standard Pulp Testing Apparatus having a 28 cm length. Additional cold water was added to fill the reservoir. 6 g of floc was then gently dispersed in the pulp apparatus using a spatula and the aqueous slurry was agitated for about 30 seconds using a portable agitator consisting of a wide steel plate with holes in it. High care must be taken to avoid turbulence that inevitably leads to agglomeration. The water was then drained, thereby depositing the fiber mat on the porous cloth at the bottom of the reservoir.

次にクロスおよび繊維マットを、ニューヨーク州ウォータータウンのウィリアムス・アパレイタス(Williams Apparatus,Watertown,NY)によってまた製造されたシート乾燥機上へ移した。図1に示すシート乾燥機は多孔性金属ドラム1よりなり、その円周の半分以下にわたってクロスおよび繊維マット2を配置した。マットを所定の位置に固定するために、ドラムの表面上に一端4で固定したキャンバスシート3をクロスおよび繊維マット2の一面に置き、キャンバスシートの他端が取り付けられているノブ5を回すことによって締め付ける。所望の締め付け度までノブを手動で回すことによって、キャンバスシートによってクロスおよび繊維マットに加えられる圧力を、幾分主観的ではあるが、広い範囲にわたって変えてもよい。   The cloth and fiber mat were then transferred onto a sheet dryer also manufactured by Williams Apparatus, Watertown, NY. The sheet dryer shown in FIG. 1 is composed of a porous metal drum 1, and a cloth and a fiber mat 2 are arranged over half of the circumference of the drum. In order to fix the mat in place, the canvas sheet 3 fixed at one end 4 on the surface of the drum is placed on one side of the cloth and the fiber mat 2, and the knob 5 to which the other end of the canvas sheet is attached is turned. Tighten with. By manually turning the knob to the desired degree of tightening, the pressure applied to the cloth and fiber mat by the canvas sheet may vary over a wide range, albeit somewhat subjective.

マットを35℃〜40℃で乾燥した。乾燥は、ノブの約2回転によってシートを覆うキャンバスを締め付けることによって得られた僅かな圧力下に行った。1時間の乾燥時間後に、マットを取り出し、正方形3インチ×3インチ・サンプルへカットした。次に、各サンプルを個別に、それぞれ554gの重さがある2つの16cm×21cm×0.7cmテフロン(登録商標)被覆アルミニウム板の間に挿入した。板間距離は、0.25から4mmまで変わる厚さのシムの挿入によって制御した。次に、複合体(2板+サンプル+シム)を熱風により120℃で約30分間加熱した。   The mat was dried at 35 ° C to 40 ° C. Drying took place under the slight pressure obtained by tightening the canvas covering the sheet by approximately two turns of the knob. After 1 hour of drying time, the mat was removed and cut into square 3 inch x 3 inch samples. Each sample was then individually inserted between two 16 cm × 21 cm × 0.7 cm Teflon-coated aluminum plates, each weighing 554 g. The distance between the plates was controlled by inserting shims with thicknesses varying from 0.25 to 4 mm. Next, the composite (2 plates + sample + shim) was heated with hot air at 120 ° C. for about 30 minutes.

機械試験はすべて、テーブルトップ・インストロン引張試験機、モデル1123(Instron Tensile Tester,Model 1123)を用いて行った。該機械は、MTS作動(Testworks)ソフトウェア・バージョン4.0を含むMTS更新パッケージ(Renew Package)でアップグレードされていた。   All mechanical tests were performed using a table top Instron tensile tester, model 1123 (Instron Tensile Tester, Model 1123). The machine was upgraded with an MTS update package (Renew Package) that included MTS Works software version 4.0.

本発明の方法で用いることになっている糸の捲縮収縮(CC)は次の通り評価した。糸の4インチ片を熱風中120℃で30分間加熱した。次に、当該片をその中点でホックから吊し、それによってループを形成し、その2端をテープで貼り合わせた。そのテープで貼り合わせた端に取り付けた1.5mg/d荷重下の糸の長さをL1.5で示し、100mg/d荷重下のそれをL100で示すと、捲縮収縮は、CC(%)=[(L100−L1.5)/L100]×100として計算した。3試験片を平均して結果を得た。 The crimp shrinkage (CC) of the yarn to be used in the method of the present invention was evaluated as follows. A 4-inch piece of yarn was heated in hot air at 120 ° C. for 30 minutes. Next, the piece was hung from the hook at its midpoint, thereby forming a loop, and the two ends were bonded together with tape. When the length of the thread under 1.5 mg / d load attached to the end bonded with the tape is indicated by L 1.5 and that under 100 mg / d load is indicated by L 100 , the crimp contraction is CC (% ) = [(L 100 −L 1.5 ) / L 100 ] × 100. Results were obtained by averaging three test pieces.

インチ当たりの捲縮(CPI)の数を測定するために、捲縮収縮試験におけるように糸の別個の試験片を加熱した。次に、それを2つのガラス板の間に挟み、頂光付き立体鏡を約16倍の倍率で用いて検査した。CPI数は、1インチに等しい両端距離を有するセクションにわたって繊維軸の一面上でピークの数を計算することによって得た。   To measure the number of crimps per inch (CPI), separate specimens of the yarn were heated as in the crimp shrinkage test. Next, it was sandwiched between two glass plates and inspected using a stereoscope with peak light at a magnification of about 16 times. The CPI number was obtained by calculating the number of peaks on one side of the fiber axis over a section with end distance equal to 1 inch.

密度は、スタンド(モデル35B−8−R−1)に取り付けた、フェデレラルC2I比較測長器計を用いて3インチ×3インチ(7.62cm×7.62cm)正方形試験片の厚さを測定することによって求めた。該比較測長器は、93±2gの全体力を加える平らな接触点モデルPT223、および0.18インチ(0.46cm)のフート径を有する。厚さは、試験片上の異なる場所での5つの測定値の平均であった。   Density measured 3 inch x 3 inch (7.62 cm x 7.62 cm) square specimen thickness using a federal C2I comparative length measuring instrument attached to a stand (model 35B-8-R-1) Sought by. The comparative length gauge has a flat contact point model PT223 that applies a total force of 93 ± 2 g and a foot diameter of 0.18 inches (0.46 cm). The thickness was the average of five measurements at different locations on the specimen.

布試験片の重量は、精度0.0001gを有するメトラー(Mettler)8200はかりを用いて測定した。   The weight of the fabric specimen was measured using a Mettler 8200 scale with an accuracy of 0.0001 g.

熱処理の前に、1/4インチ・フロックでできた典型的なウェットレイド・シートは厚さ0.28±0.02mmを有する。   Prior to heat treatment, a typical wet laid sheet made of ¼ inch floc has a thickness of 0.28 ± 0.02 mm.

面積収縮は、関係100×(A−A)/(A)(ここで、AおよびAは収縮前後の正方形サンプルの面積を表す)を用いて全体サンプルについて測定した。 The area shrinkage was measured for the entire sample using the relationship 100 × ( before A− after A) / ( before A) (where, before A and after A represents the area of the square sample before and after shrinkage).

(実施例1)
本明細書で上に記載した方法に従って、フィラメント当たり5.9デニールを有する34フィラメント50/50PET/PPT複合糸を3030m/分の速度で紡糸した。糸束は1.6グラム/デニールの引張強度を示した。そのように製造した糸をはさみで1インチ・フロックへカットし、加熱剤として熱風を使って、本明細書で上に記載した方法を用いてウィリアムス標準パルプ試験装置で加工した。生じた捲縮糸は次の特性を有した。捲縮収縮CC=74%、0.13mmの平均曲率半径でインチ当たりの捲縮の数CPI=58であった。異なるシム厚さについて布の特性を表Iに示す。各値は2サンプルにわたる平均であった。弾性率と伸びとの積(靱性と言われる)は約2の一定値を有した。
Example 1
A 34 filament 50/50 PET / PPT composite yarn having 5.9 denier per filament was spun at a speed of 3030 m / min according to the method described hereinabove. The yarn bundle exhibited a tensile strength of 1.6 grams / denier. The yarn so produced was cut into 1 inch flocs with scissors and processed on a Williams standard pulp tester using the method described hereinabove, using hot air as the heating agent. The resulting crimped yarn had the following characteristics: Crimp shrinkage CC = 74%, average radius of curvature of 0.13 mm, number of crimps per inch CPI = 58. The properties of the fabric are shown in Table I for different shim thicknesses. Each value was an average over two samples. The product of elastic modulus and elongation (referred to as toughness) had a constant value of about 2.

Figure 2006507417
Figure 2006507417

(実施例2)
ウィリアムス標準パルプ試験装置での分散の前に、1インチ・フロックを水中のポリエチレンオキシド(Mw=900,000)の1%w/w溶液中で完全に湿らせたことを除いては実施例1の材料および手順を繰り返した。結果を表IIに示す。
(Example 2)
Example 1 except that 1 inch floc was thoroughly moistened in a 1% w / w solution of polyethylene oxide in water (Mw = 900,000) prior to dispersion in the Williams standard pulp test equipment. The materials and procedures were repeated. The results are shown in Table II.

Figure 2006507417
Figure 2006507417

(実施例3)
繊維を1/4インチ・フロックへカットしたことを除いては実施例1の材料および手順を繰り返した。結果を表IIIに示す。
(Example 3)
The material and procedure of Example 1 was repeated except that the fiber was cut to 1/4 inch floc. The results are shown in Table III.

Figure 2006507417
Figure 2006507417

(比較例1)
糸を1850m/分で紡糸して約1.17g/dの引張強度のフィラメント糸当たり4.7デニールをもたらしたことを除いては実施例3の方法および材料を繰り返した。本明細書で上に概説した方法に従ってその潜在捲縮性を発現させると、糸は次の特性:捲縮収縮CC=0.42、1.1mmの平均曲率半径でインチ当たりの捲縮の数CPI=17を有した。結果を表IVに示す。本比較例でのフロックは長さ0.64cmであった。
(Comparative Example 1)
The method and materials of Example 3 were repeated except that the yarn was spun at 1850 m / min resulting in 4.7 denier per filament yarn with a tensile strength of about 1.17 g / d. When developing its potential crimpability according to the method outlined herein above, the yarn has the following properties: crimp shrinkage CC = 0.42, number of crimps per inch with an average radius of curvature of 1.1 mm. CPI = 17. The results are shown in Table IV. The floc in this comparative example was 0.64 cm long.

Figure 2006507417
Figure 2006507417

(比較例2)
フロック長さが51mmであったことを除いては実施例1の材料および方法を繰り返した。結果を表Vに示す。
(Comparative Example 2)
The material and method of Example 1 were repeated except that the floc length was 51 mm. The results are shown in Table V.

Figure 2006507417
Figure 2006507417

(比較例3)
本比較例は、60℃より高い乾燥温度で、収縮で制約された繊維がヒートセットを受け、それによって潜在捲縮性を削除することを例示する。
(Comparative Example 3)
This comparative example illustrates that at drying temperatures higher than 60 ° C., shrinkage constrained fibers undergo heat setting, thereby eliminating latent crimpability.

表VIに示すように様々な温度で乾燥を行って、実施例3の材料および手順を繰り返した。しかしながら、実施例3とは違って、繊維マットに圧力を加え、繊維の可動性を抑制し、それによって収縮を防ぐために乾燥の間ずっと繊維マットをカバーするキャンバスシートを非常に強く締め付けた。結果は、3030m/分で紡糸し、1/4インチ・フロックへカットし、その後2mmシムを用いて熱風中で熱処理した糸についてである。   The material and procedure of Example 3 was repeated with drying at various temperatures as shown in Table VI. However, unlike Example 3, pressure was applied to the fiber mat to restrain the fiber mobility and thereby tightly tighten the canvas sheet covering the fiber mat during drying to prevent shrinkage. The results are for yarns spun at 3030 m / min, cut to 1/4 inch floc and then heat treated in hot air using a 2 mm shim.

Figure 2006507417
Figure 2006507417

(比較例4)
捲縮発現段階を95℃水中で行ったことを除いては実施例3の材料および手順を繰り返した。結果を表VIIに示す。サンプルは大きなシム厚さ>1mmで水中で破断した。
(Comparative Example 4)
The material and procedure of Example 3 was repeated except that the crimping stage was performed in 95 ° C. water. The results are shown in Table VII. The sample broke in water with a large shim thickness> 1 mm.

Figure 2006507417
Figure 2006507417

(比較例5)
比較例4と同じであったが、糸については1850m/分で紡糸した。結果を表VIIIに示す。
(Comparative Example 5)
Same as Comparative Example 4, but the yarn was spun at 1850 m / min. The results are shown in Table VIII.

Figure 2006507417
Figure 2006507417

ウィリアムス・パルプ試験装置の乾燥ドラム上の湿った繊維マット前駆体およびクロスサポートの配置を描く。8 depicts the placement of the wet fiber mat precursor and cross support on the drying drum of the Williams Pulp Test Equipment.

Claims (20)

第1結晶性ポリエステル成分と第2結晶性ポリエステル成分とを含む複数の交絡した螺旋状に捲縮した非対称複合繊維を含む不織布であって、前記第1結晶性ポリエステル成分が前記第2結晶性ポリエステル成分より遅い結晶化速度を示し、前記繊維が0.5〜6デニールのデニール範囲によって特徴づけられ、前記繊維が0.2mm以下の捲縮曲率半径を持つ、インチ当たり少なくとも50捲縮を示し、かつ、前記繊維が主に互いに交絡し、かつ、さらに前記繊維がはっきりと画定された平面に主に配向されており、前記不織布が0.2〜0.4g/cm3の嵩密度によって特徴づけられることを特徴とする不織布。 A non-woven fabric comprising a plurality of entangled helically crimped asymmetric composite fibers comprising a first crystalline polyester component and a second crystalline polyester component, wherein the first crystalline polyester component is the second crystalline polyester Exhibit at least 50 crimps per inch, exhibiting a slower crystallization rate than the component, wherein the fibers are characterized by a denier range of 0.5-6 denier, and the fibers have a crimp radius of curvature of 0.2 mm or less; The fibers are mainly entangled with each other, and the fibers are mainly oriented in a well-defined plane, and the nonwoven fabric is characterized by a bulk density of 0.2-0.4 g / cm 3 A non-woven fabric characterized in that 前記複合繊維がサイドバイサイド型複合繊維であることを特徴とする請求項1に記載の不織布。   The nonwoven fabric according to claim 1, wherein the conjugate fiber is a side-by-side conjugate fiber. 前記第1結晶性ポリエステル成分がポリ(エチレンテレフタレート)であり、かつ、前記第2結晶性ポリエステル成分がポリ(プロピレンテレフタレート)であることを特徴とする請求項1に記載の不織布。   The nonwoven fabric according to claim 1, wherein the first crystalline polyester component is poly (ethylene terephthalate) and the second crystalline polyester component is poly (propylene terephthalate). 前記第1結晶性ポリエステル成分がポリ(プロピレンテレフタレート)であり、かつ、前記第2結晶性ポリエステル成分がポリ(ブチレンテレフタレート)であることを特徴とする請求項1に記載の不織布。   The nonwoven fabric according to claim 1, wherein the first crystalline polyester component is poly (propylene terephthalate) and the second crystalline polyester component is poly (butylene terephthalate). 前記第1結晶性ポリエステル成分がポリ(エチレンテレフタレート)であり、かつ、前記第2結晶性ポリエステル成分がポリ(ブチレンテレフタレート)であることを特徴とする請求項1に記載の不織布。   The nonwoven fabric according to claim 1, wherein the first crystalline polyester component is poly (ethylene terephthalate) and the second crystalline polyester component is poly (butylene terephthalate). 前記複合繊維が主にステープルファイバーであることを特徴とする請求項1に記載の不織布。   The nonwoven fabric according to claim 1, wherein the conjugate fiber is mainly staple fiber. それぞれ70:30〜30:70の範囲の濃度比で、前記第1結晶性ポリエステルがポリ(エチレンテレフタレート)であり、かつ、前記第2結晶性ポリエステルがポリ(プロピレンテレフタレート)であることを特徴とする請求項6に記載の不織布。   The first crystalline polyester is poly (ethylene terephthalate) and the second crystalline polyester is poly (propylene terephthalate) at a concentration ratio in the range of 70:30 to 30:70, respectively. The nonwoven fabric according to claim 6. 前記濃度比がそれぞれ60:40〜40:60の範囲にあることを特徴とする請求項7に記載の不織布。   The nonwoven fabric according to claim 7, wherein the concentration ratio is in the range of 60:40 to 40:60, respectively. 前記複合繊維が連続であることを特徴とする請求項1に記載の不織布。   The nonwoven fabric according to claim 1, wherein the composite fiber is continuous. 1.2〜12MPaの初期ヤング率および150%までの極限伸びによってさらに特徴づけられることを特徴とする請求項1に記載の不織布。   The nonwoven fabric of claim 1 further characterized by an initial Young's modulus of 1.2-12 MPa and an ultimate elongation of up to 150%. 範囲60:40〜40:60の濃度比でポリエチレンテレフタレートとポリプロピレンテレフタレートとを含む、0.5〜6デニールの範囲および20〜25ミリメートルの範囲の未捲縮長さの複数の交絡した螺旋状に捲縮したサイドバイサイド型複合ステープルファイバーを含む不織布であって、前記繊維が0.2mm以下の捲縮曲率半径を持つ、インチ当たり少なくとも50捲縮を示し、かつ、前記繊維が主に互いに交絡し、かつ、さらに前記繊維がはっきりと画定された平面に主に配向されており、0.2〜0.4g/cm3の嵩密度、1.2〜12MPaの初期ヤング率、および150%までの極限伸びによって特徴づけられることを特徴とする不織布。 In a plurality of interlaced spirals of polyethylene terephthalate and polypropylene terephthalate in a concentration ratio in the range of 60:40 to 40:60, with an uncrimp length in the range of 0.5-6 denier and in the range of 20-25 millimeters A non-woven fabric comprising crimped side-by-side composite staple fibers, wherein the fibers have a crimp radius of curvature of 0.2 mm or less, exhibit at least 50 crimps per inch, and the fibers are primarily entangled with each other; In addition, the fibers are primarily oriented in a well-defined plane, with a bulk density of 0.2-0.4 g / cm 3 , an initial Young's modulus of 1.2-12 MPa, and an extreme up to 150% Nonwoven fabric characterized by elongation. 潜在捲縮性を有する複数の非対称複合繊維を、オーバーラップする繊維の平面アレーに配置する工程であって、前記繊維がその平面に主に配向され、前記平面アレーを2つの制約面間に配置する工程と、加熱の少なくとも一部の間に、前記不織構造物が前記制約面と制約接触しているという条件で前記平面アレーを加熱して前記潜在捲縮性の少なくとも一部を発現させる工程とを含むことを特徴とする不織布の形成方法。   Arranging a plurality of asymmetric composite fibers having latent crimpability in a planar array of overlapping fibers, wherein the fibers are primarily oriented in that plane and the planar array is disposed between two constraining surfaces And at least a part of heating, the planar array is heated under the condition that the nonwoven structure is in constraining contact with the constraining surface to develop at least a part of the latent crimpability. A process for forming a nonwoven fabric comprising the steps of: 前記平面アレーが繊維マット・プリフォームの形態であることを特徴とする請求項12に記載の方法。   13. The method of claim 12, wherein the planar array is in the form of a fiber mat preform. 前記複合繊維がサイドバイサイド型複合繊維であることを特徴とする請求項12に記載の方法。   The method according to claim 12, wherein the composite fiber is a side-by-side type composite fiber. 前記複合繊維がポリエステルより本質的になることを特徴とする請求項12に記載の方法。   The method of claim 12, wherein the composite fiber consists essentially of polyester. 前記第1結晶性ポリエステル成分がポリ(エチレンテレフタレート)であり、かつ、前記第2結晶性ポリエステル成分がポリ(プロピレンテレフタレート)であることを特徴とする請求項12に記載の方法。   The method of claim 12, wherein the first crystalline polyester component is poly (ethylene terephthalate) and the second crystalline polyester component is poly (propylene terephthalate). 前記第1結晶性ポリエステル成分がポリ(プロピレンテレフタレート)であり、かつ、前記第2結晶性ポリエステル成分がポリ(ブチレンテレフタレート)であることを特徴とする請求項12に記載の方法。   The method of claim 12, wherein the first crystalline polyester component is poly (propylene terephthalate) and the second crystalline polyester component is poly (butylene terephthalate). 前記第1結晶性ポリエステル成分がポリ(エチレンテレフタレート)であり、かつ、前記第2結晶性ポリエステル成分がポリ(ブチレンテレフタレート)であることを特徴とする請求項12に記載の方法。   The method of claim 12, wherein the first crystalline polyester component is poly (ethylene terephthalate) and the second crystalline polyester component is poly (butylene terephthalate). 3〜25ミリメートルの平均長さを有するフロックの水性スラリーから繊維マット・プリフォームを形成する工程をさらに含むことを特徴とする請求項12に記載の方法。   The method of claim 12, further comprising forming a fiber mat preform from an aqueous slurry of floc having an average length of 3 to 25 millimeters. 70〜80%の潜在捲縮収縮、長さ20〜25ミリメートルを有するサイドバイサイド型未捲縮ステープル複合繊維の水性スラリーから繊維マット・プリフォームを形成し、前記繊維マット・プリフォームを2つの制約面間に配置する工程と、加熱の少なくとも一部の間に、前記繊維マット・プリフォームが前記制約面と制約接触しているという条件で前記平面アレーを加熱して前記潜在捲縮性の少なくとも一部を発現させる工程とを含む不織布の形成方法であって、前記複合繊維がポリエチレンテレフタレートとポリプロピレンテレフタレートとを60:40〜40:60の範囲のそれぞれの濃度比で含むことを特徴とする方法。

A fiber mat preform is formed from an aqueous slurry of side-by-side uncrimped staple composite fibers having a latent crimp shrinkage of 70-80% and a length of 20-25 millimeters, and the fiber mat preform has two constraining surfaces. At least one of the latent crimpability by heating the planar array on the condition that the fiber mat preform is in constraining contact with the constraining surface during at least a portion of the heating. A method of forming a nonwoven fabric, wherein the composite fiber contains polyethylene terephthalate and polypropylene terephthalate in respective concentration ratios in the range of 60:40 to 40:60.

JP2004554031A 2002-11-21 2003-11-21 High stretch recovery nonwoven fabric and manufacturing method Expired - Fee Related JP4520859B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42799902P 2002-11-21 2002-11-21
PCT/US2003/037672 WO2004046442A1 (en) 2002-11-21 2003-11-21 High stretch recovery non-woven fabric and process for preparing

Publications (3)

Publication Number Publication Date
JP2006507417A true JP2006507417A (en) 2006-03-02
JP2006507417A5 JP2006507417A5 (en) 2006-12-07
JP4520859B2 JP4520859B2 (en) 2010-08-11

Family

ID=32326627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004554031A Expired - Fee Related JP4520859B2 (en) 2002-11-21 2003-11-21 High stretch recovery nonwoven fabric and manufacturing method

Country Status (10)

Country Link
US (1) US20040116027A1 (en)
EP (1) EP1567700B1 (en)
JP (1) JP4520859B2 (en)
KR (1) KR101065094B1 (en)
CN (1) CN100430546C (en)
AU (1) AU2003302048A1 (en)
BR (1) BR0315715B8 (en)
DE (1) DE60317094T2 (en)
HK (1) HK1086868A1 (en)
WO (1) WO2004046442A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015972A1 (en) * 2006-08-04 2008-02-07 Kuraray Kuraflex Co., Ltd. Stretch nonwoven fabric and tapes
JP2009183363A (en) * 2008-02-04 2009-08-20 Kuraray Kuraflex Co Ltd Underlap tape
JP2009184697A (en) * 2008-02-06 2009-08-20 Kuraray Kuraflex Co Ltd Nonwoven fabric, packing material, and packing method
KR20170047276A (en) 2014-08-27 2017-05-04 주식회사 쿠라레 Stretchable non-woven fabric having excellent repetition durability

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054090A1 (en) * 2004-11-16 2007-03-08 Rockwell Anthony L Polymer blanket for use in multi-cavity molding operations
US7923092B2 (en) * 2005-08-22 2011-04-12 Owens Corning Intellectual Capital, Llc Die cut insulation blanket and method for producing same
US8133568B2 (en) * 2005-08-22 2012-03-13 Owens Corning Intellectual Capital, Llc Die cut insulation blanket
DE102006016724B4 (en) 2006-04-04 2010-03-11 Faurecia Innenraum Systeme Gmbh Interior trim part for covering an airbag and method for its production
EP2184391B1 (en) * 2007-08-31 2016-10-12 Kuraray Co., Ltd. Buffer substrate and use thereof
CN101671917B (en) * 2009-08-25 2011-06-01 浙江航天无纺布有限公司 Non-woven fabric used for synthetic leather and artificial leather and production method thereof
WO2014190259A2 (en) 2013-05-24 2014-11-27 Tex Tech Industries, Inc. Puncture resistant material
JP5567734B1 (en) * 2013-11-29 2014-08-06 株式会社フジクラ Input device
CN107002330B (en) * 2014-10-15 2020-07-28 英威达纺织(英国)有限公司 High-tenacity or high-load-bearing nylon fiber and yarn and fabric thereof
CA2967001A1 (en) 2014-11-06 2016-05-12 The Procter & Gamble Company Patterned apertured webs, laminates, and methods for making the same
US20160167334A1 (en) 2014-11-06 2016-06-16 The Procter & Gamble Company Crimped Fiber Spunbond Nonwoven Webs/Laminates
EP3426207A1 (en) * 2016-03-08 2019-01-16 Urgo Recherche Innovation et Développement Dressing in the form of a self-adhesive tape
ES2819241T3 (en) 2016-05-18 2021-04-15 Fibertex Personal Care As Non-woven fabric comprising a layer of high elasticity
EP4335420A2 (en) 2017-02-16 2024-03-13 The Procter & Gamble Company Absorbent articles with substrates having repeating patterns of apertures comprising a plurality of repeat units
US11913151B2 (en) 2021-01-11 2024-02-27 Fitesa Simpsonville, Inc. Nonwoven fabric having a single layer with a plurality of different fiber types, and an apparatus, system, and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177269A (en) * 1986-01-28 1987-08-04 ユニチカ株式会社 Polyester extensible nonwoven fabric and its production
JPH03294556A (en) * 1990-04-09 1991-12-25 Teijin Koodore Kk Production of non-woven fabric
JPH10310965A (en) * 1997-05-09 1998-11-24 Unitika Ltd Polyester short fiber nonwoven fabric
JPH11158733A (en) * 1997-11-26 1999-06-15 Toyobo Co Ltd Polyester staple for wet type nonwoven fabric having latent crimping development and its production
JP2000328370A (en) * 1999-03-15 2000-11-28 Teijin Ltd Polyester composite fiber and nonwoven fabric including the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338992A (en) * 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
US3671379A (en) * 1971-03-09 1972-06-20 Du Pont Composite polyester textile fibers
JPS492975A (en) * 1972-05-02 1974-01-11
IT985775B (en) * 1972-06-26 1974-12-20 Unitika Ltd OPAQUE AND WATER PERMEABLE NON WOVEN FILAMENT CANVAS
GB1500778A (en) * 1975-05-07 1978-02-08 Asahi Chemical Ind Bulky non-woven fabric
JPS5823951A (en) * 1981-07-31 1983-02-12 チッソ株式会社 Production of bulky nonwoven fabric
US4950529A (en) * 1987-11-12 1990-08-21 Asahi Kasei Kogyo Kabushiki Kaisha Polyallylene sulfide nonwoven fabric
JP2703294B2 (en) * 1988-11-18 1998-01-26 株式会社クラレ Polyester conjugate fiber, nonwoven fabric containing the fiber, and method for producing the nonwoven fabric
US5302443A (en) * 1991-08-28 1994-04-12 James River Corporation Of Virginia Crimped fabric and process for preparing the same
JP2741123B2 (en) * 1991-10-28 1998-04-15 ユニチカ株式会社 Stretchable long-fiber nonwoven fabric and method for producing the same
US5382400A (en) * 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5540976A (en) * 1995-01-11 1996-07-30 Kimberly-Clark Corporation Nonwoven laminate with cross directional stretch
MXPA01011064A (en) * 1999-04-30 2002-06-04 Kimberly Clark Co Stretchable nonwoven material.
JP2002069822A (en) * 2000-08-30 2002-03-08 Unitika Ltd Stretchable bulky filament nonwoven fabric and method for producing the same
JP3934916B2 (en) * 2001-11-06 2007-06-20 オペロンテックス株式会社 Stretchable nonwoven fabric and method for producing the same
US7036197B2 (en) * 2001-12-21 2006-05-02 Invista North America S.A.R.L. Stretchable multiple-component nonwoven fabrics and methods for preparing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177269A (en) * 1986-01-28 1987-08-04 ユニチカ株式会社 Polyester extensible nonwoven fabric and its production
JPH03294556A (en) * 1990-04-09 1991-12-25 Teijin Koodore Kk Production of non-woven fabric
JPH10310965A (en) * 1997-05-09 1998-11-24 Unitika Ltd Polyester short fiber nonwoven fabric
JPH11158733A (en) * 1997-11-26 1999-06-15 Toyobo Co Ltd Polyester staple for wet type nonwoven fabric having latent crimping development and its production
JP2000328370A (en) * 1999-03-15 2000-11-28 Teijin Ltd Polyester composite fiber and nonwoven fabric including the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015972A1 (en) * 2006-08-04 2008-02-07 Kuraray Kuraflex Co., Ltd. Stretch nonwoven fabric and tapes
JPWO2008015972A1 (en) * 2006-08-04 2009-12-24 クラレクラフレックス株式会社 Elastic nonwoven fabric and tapes
JP4943436B2 (en) * 2006-08-04 2012-05-30 株式会社クラレ Elastic nonwoven fabric and tapes
US8518841B2 (en) 2006-08-04 2013-08-27 Kuraray Co., Ltd. Stretchable nonwoven fabric and tape
KR101423797B1 (en) * 2006-08-04 2014-07-25 가부시키가이샤 구라레 Stretch nonwoven fabric and tapes
JP2009183363A (en) * 2008-02-04 2009-08-20 Kuraray Kuraflex Co Ltd Underlap tape
JP2009184697A (en) * 2008-02-06 2009-08-20 Kuraray Kuraflex Co Ltd Nonwoven fabric, packing material, and packing method
KR20170047276A (en) 2014-08-27 2017-05-04 주식회사 쿠라레 Stretchable non-woven fabric having excellent repetition durability
US11598034B2 (en) 2014-08-27 2023-03-07 Kuraray Co., Ltd. Stretchable non-woven fabric having excellent repetition durability

Also Published As

Publication number Publication date
HK1086868A1 (en) 2006-09-29
EP1567700A1 (en) 2005-08-31
CN100430546C (en) 2008-11-05
KR20050088407A (en) 2005-09-06
AU2003302048A1 (en) 2004-06-15
WO2004046442A1 (en) 2004-06-03
BR0315715A (en) 2005-09-06
BR0315715B8 (en) 2013-02-19
KR101065094B1 (en) 2011-09-16
US20040116027A1 (en) 2004-06-17
JP4520859B2 (en) 2010-08-11
CN1714184A (en) 2005-12-28
DE60317094T2 (en) 2008-08-07
EP1567700B1 (en) 2007-10-24
DE60317094D1 (en) 2007-12-06
BR0315715B1 (en) 2013-01-08

Similar Documents

Publication Publication Date Title
JP4520859B2 (en) High stretch recovery nonwoven fabric and manufacturing method
KR100954704B1 (en) Machine crimped synthetic fiber having latent three-dimensional crimpability and method for production thereof
JP3743007B2 (en) Bulky polytetrafluoroethylene long fibers and split yarns, process for producing them, process for producing cotton-like materials using them, and filter cloth for collecting dust
KR0141744B1 (en) Composite Fibers and Molded Products Using the Same
EP0696655B1 (en) Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
TWI686520B (en) Polyester binder fiber
JP3680418B2 (en) Composite fiber and method for producing the same
JPH0192415A (en) Heat-bondable fiber and nonwoven fabric thereof
JPH0770898A (en) Heat-bonded nonwoven cloth and its production
JP2872543B2 (en) Thermally bonded nonwoven fabric and method for producing the same
JP2691320B2 (en) Stretchable non-woven fabric
JPH0754213A (en) Sheath-core type composite short fiber and production thereof
JP7334623B2 (en) Copolymer polyphenylene sulfide fiber
TWI790279B (en) The compressing molding body using complex-fiber and manufacturing method thereof
JP2741122B2 (en) Stretchable bulky long-fiber nonwoven fabric and method for producing the same
TWI324647B (en) High stretch recovery non-woven fabric and process for preparing
BR112021005980A2 (en) self-crimping multicomponent fibers and methods of making them
EP1525341A1 (en) Spinnerette and process for fiber production
JP4379127B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the composite fiber
JPH02216295A (en) Production of highly strong polyester fiber paper
JP3188054B2 (en) Mixed fiber long-fiber nonwoven fabric and method for producing the same
JPH01266218A (en) Production of heat-weldable hollow sheath-core fiber
JPH03260115A (en) Heat-adhesion conjugate fiber
JP2788140B2 (en) Method for producing polypropylene-based composite short fiber and nonwoven fabric
JP2022154117A (en) Fine-denier polyester staple fiber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100202

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100302

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees