JP2006349648A - Analysis method of organic material used for organic electroluminescence element, analysis method of composite film and analysis method of multilayer film using spectral ellipsometer - Google Patents

Analysis method of organic material used for organic electroluminescence element, analysis method of composite film and analysis method of multilayer film using spectral ellipsometer Download PDF

Info

Publication number
JP2006349648A
JP2006349648A JP2005179954A JP2005179954A JP2006349648A JP 2006349648 A JP2006349648 A JP 2006349648A JP 2005179954 A JP2005179954 A JP 2005179954A JP 2005179954 A JP2005179954 A JP 2005179954A JP 2006349648 A JP2006349648 A JP 2006349648A
Authority
JP
Japan
Prior art keywords
film
dielectric function
sample
spectroscopic ellipsometer
analysis method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005179954A
Other languages
Japanese (ja)
Inventor
Mari Kamimura
真理 上村
Isao Yokota
勲 横田
Naohiko Kato
直彦 加藤
Tomomi Motohiro
友美 元廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP2005179954A priority Critical patent/JP2006349648A/en
Publication of JP2006349648A publication Critical patent/JP2006349648A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and accurately analyze the composition of a film-like organic layer in a non-destructive state. <P>SOLUTION: In step S1, the transmittance spectrum or absorption spectrum of a single-layer film of a sample to be analyzed is measured by a spectrophotometer. In step S2, at least either the composition or structure of the sample is predicted based on the spectrum, and a multi-dimensional function is set. In step S3, ellipso-parameters Δ and Ψ of the sample are measured with a spectral ellipsometer. In step S4, ellipso-parameters Δand Ψof the sample are calculated using the dielectric function, and fitting is performed by regression analysis so that the average square error, between the calculated values of the elipso-parameters Δ and Ψ and the measured values by the spectral ellipsometer, is minimized or lies within an allowable range to estimate an optimum dielectric function. In step S5, a refractive index n and an attenuation coefficient k are determined. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、分光エリプソメータを用いた有機エレクトロルミネッセンス素子に用いられる有機物質の解析方法、複合膜の解析方法及び多層膜の解析方法に係る。   The present invention relates to an organic substance analysis method, a composite film analysis method, and a multilayer film analysis method used for an organic electroluminescence device using a spectroscopic ellipsometer.

従来、有機エレクトロルミネッセンス素子(以下、エレクトロルミネッセンスをELと表記する場合もある。)の製造方法において、ホスト材料とドーパント材料を所定の混合比となるように混合して発光層を構成する方法が提案されている。そして、ホスト材料に対するドーパント材料の混合比(ドーパント濃度)を求める方法として、液体クロマトグラフィーを用いることが開示されている(特許文献1参照。)。   Conventionally, in a method for manufacturing an organic electroluminescence element (hereinafter, electroluminescence may be referred to as EL), there is a method in which a host material and a dopant material are mixed so as to have a predetermined mixing ratio to form a light emitting layer. Proposed. And as a method of calculating | requiring the mixing ratio (dopant density | concentration) of dopant material with respect to host material, using liquid chromatography is disclosed (refer patent document 1).

また、分光エリプソメータを用いた極薄膜2層構造の解析方法が提案されている(特許文献2参照。)。特許文献2の方法では、まず、分光エリプソメータを用いて計測対象の基板表面の極薄膜2層構造を測定し、入射光の波長を変えて各波長λi ごとの入射光と反射光の偏光の変化である測定スペクトルΨE (λi )とΔE (λi )を得る。そして、分光エリプソメータを用いて得たデータ(以下、エリプソデータと表記する場合もある。)の解析には、第1段階として実際の試料に良く合うと思われるモデルを複数選択して初期値を決定する。モデルをたてる際には、各薄膜の材料(Mat1,Mat2)の考えられる複素屈折率(N1,(n1,k1)),(N2,(n2,k2))、各層の膜厚(d1,d2)を利用し、いくつかのモデルをたてる。次の第2段階としてその初期値をもとに広範囲極小計算法(Extended Best Local Minimum Calculation )を行う。次に第3段階としてその結果を利用して最終的なフィッティング、確認、保存を行って各層の光学定数(屈折率n及び消衰係数k)と膜厚を求める。
特開2004−134154号公報(明細書の段落[0013]) 特開2003−302334号公報
In addition, an analysis method of an ultrathin film two-layer structure using a spectroscopic ellipsometer has been proposed (see Patent Document 2). In the method of Patent Document 2, first, a very thin two-layer structure on the surface of a substrate to be measured is measured using a spectroscopic ellipsometer, and the polarization of incident light and reflected light for each wavelength λi is changed by changing the wavelength of incident light. The measurement spectra Ψ E (λ i) and Δ E (λ i) are obtained. In the analysis of data obtained using a spectroscopic ellipsometer (hereinafter sometimes referred to as ellipso data), the first step is to select a plurality of models that are likely to fit the actual sample, and to set initial values. decide. When creating a model, the possible complex refractive indices (N1, (n1, k1)), (N2, (n2, k2)) of the materials (Mat1, Mat2) of each thin film, the film thicknesses (d1, Several models are created using d2). As the next second step, an extended best local minimum calculation is performed based on the initial value. Next, as a third step, the results are used to perform final fitting, confirmation, and storage to determine the optical constants (refractive index n and extinction coefficient k) and film thickness of each layer.
JP 2004-134154 A (paragraph [0013] of the specification) JP 2003-302334 A

液体クロマトグラフィーを用いてホスト材料中のドーパント量を求めるためには、膜を溶媒に溶かす必要があり、試料である膜を非破壊状態では測定できない。また、溶解のための手間がかかり、材料によっては適正な溶媒がなく分析が困難な場合もある。   In order to determine the amount of dopant in the host material using liquid chromatography, it is necessary to dissolve the film in a solvent, and the film as a sample cannot be measured in a non-destructive state. In addition, it takes time for dissolution, and depending on the material, there is no proper solvent and analysis may be difficult.

特許文献2では、エリプソデータの解析に際して、第1段階として実際の試料に良く合うと思われるモデルを複数選択して初期値を決定する。試料が無機物の場合は、解析に使用するモデルを複数選択するためのリファレンスとして利用可能な既知のデータが多い。しかし、有機エレクトロルミネッセンス素子に用いられる有機物質の場合は、そのようなリファレンスとして利用可能な既知のデータが非常に少ない。   In Patent Document 2, when analyzing ellipso data, as a first stage, a plurality of models that seem to fit well with an actual sample are selected to determine initial values. When the sample is inorganic, there are many known data that can be used as a reference for selecting a plurality of models to be used for analysis. However, in the case of organic materials used in organic electroluminescent devices, there is very little known data available as such a reference.

従って、有機エレクトロルミネッセンス素子に用いられる有機物質の場合にはエリプソデータの解析に際して、薄膜の材料の複素屈折率を既知のデータから選択してモデルをたてることが難しい。そのため、エリプソデータの解析に際して、物質の誘電率の波長依存性を示す式である分散式を使用する。しかし、有機エレクトロルミネッセンス素子に用いられる有機物質の場合は、分子構造が複雑である上、物質の種類が多く誘電関数が複雑であることと、利用可能な既知のデータが少ないため、適当な誘電関数を設定するのが難しく、試行錯誤の回数が多くなり組成を容易に解析することが難しい。その上、解析結果の精度を上げることも困難であった。   Therefore, in the case of an organic substance used for an organic electroluminescence element, it is difficult to create a model by selecting the complex refractive index of the thin film material from known data when analyzing the ellipso data. Therefore, in the analysis of the ellipso data, a dispersion formula that is a formula showing the wavelength dependence of the dielectric constant of a substance is used. However, in the case of organic materials used in organic electroluminescence devices, the molecular structure is complex, the dielectric function is complex with many types of materials, and there are few known data available. It is difficult to set a function, the number of trials and errors increases, and it is difficult to analyze the composition easily. In addition, it is difficult to improve the accuracy of the analysis results.

本発明は、前記従来の問題に鑑みてなされたものであって、その目的は膜状の有機層を非破壊状態で容易に精度よく解析することができる分光エリプソメータを用いた有機物質の解析方法を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to analyze an organic substance using a spectroscopic ellipsometer capable of easily and accurately analyzing a film-like organic layer in a non-destructive state. Is to provide.

前記の目的を達成するために、請求項1に記載の発明は、分光エリプソメータを用いた有機エレクトロルミネッセンス素子に用いられる有機物質の解析方法である。そして、解析すべき試料の単層膜の透過率スペクトル又は吸収スペクトルを分光光度計で測定するステップと、前記スペクトルに基づいて前記試料の組成及び構造の少なくとも一方を予測して多次元の誘電関数を設定するステップと、分光エリプソメータで試料のエリプソパラメータΔ,ψを測定するステップとを備えている。また、前記誘電関数を用いて試料のエリプソパラメータΔ,ψの理論値を計算し、そのエリプソパラメータΔ,ψの理論値と前記分光エリプソメータによる測定値との平均2乗誤差が最小又は許容範囲内になるように回帰解析法で前記誘電関数のフィッティングパラメータのフィッティングを行って最適推定誘電関数を求めるステップを備えている。なお、Δはs偏光とp偏光との位相差、ψはs偏光とp偏光との振幅比である。   In order to achieve the above object, an invention according to claim 1 is a method for analyzing an organic substance used in an organic electroluminescence device using a spectroscopic ellipsometer. And measuring the transmittance spectrum or absorption spectrum of the single layer film of the sample to be analyzed with a spectrophotometer, and predicting at least one of the composition and the structure of the sample based on the spectrum, and a multidimensional dielectric function And a step of measuring the ellipso parameters Δ and ψ of the sample with a spectroscopic ellipsometer. Further, the theoretical values of the ellipso parameters Δ, ψ of the sample are calculated using the dielectric function, and the mean square error between the theoretical values of the ellipso parameters Δ, ψ and the measured values by the spectroscopic ellipsometer is minimum or within an allowable range. So that the optimum estimated dielectric function is obtained by fitting the fitting parameter of the dielectric function by regression analysis. Δ is the phase difference between s-polarized light and p-polarized light, and ψ is the amplitude ratio between s-polarized light and p-polarized light.

この発明では、解析すべき試料の単層膜の透過率スペクトル又は吸収スペクトルを分光光度計で測定し、そのスペクトルに基づいて試料の組成及び構造の少なくとも一方を予測して多次元の誘電関数を設定するため、エリプソデータの解析に際して、適切な誘電関数が設定される確率が高くなる。設定された誘電関数を用いて試料のエリプソパラメータΔ,ψを計算した理論値と、分光エリプソメータによる測定値との平均2乗誤差が最小又は許容範囲内になるように回帰解析法でフィッティングを行う。その結果、最適に推定された誘電関数が求められる。また、この誘電関数から、物質固有の光学定数である屈折率n及び消衰係数kが求めらる。従って、膜状の有機層を非破壊状態で容易に精度よく解析することができる。   In this invention, a transmittance spectrum or an absorption spectrum of a single layer film of a sample to be analyzed is measured with a spectrophotometer, and at least one of the composition and structure of the sample is predicted based on the spectrum, and a multidimensional dielectric function is obtained. Therefore, the probability that an appropriate dielectric function is set in the analysis of the ellipso data is increased. Fitting is performed by regression analysis so that the mean square error between the theoretical value obtained by calculating the ellipso parameters Δ and ψ of the sample using the set dielectric function and the measured value by the spectroscopic ellipsometer is within the minimum or allowable range. . As a result, an optimally estimated dielectric function is obtained. Further, from this dielectric function, a refractive index n and an extinction coefficient k, which are optical constants specific to the substance, are obtained. Therefore, the film-like organic layer can be analyzed easily and accurately in a non-destructive state.

請求項2に記載の発明は、単層膜中に複数の有機物質が存在する複合膜の分光エリプソメータを用いた解析方法である。そして、前記複合膜の各構成材料に関して単独で単層膜を作成するとともに請求項1の手法によって最適推定誘電関数を求め、その最適推定誘電関数を使用するとともに前記複数の有機物質の組成比をフィッティングパラメータとして有効媒質近似を利用して前記複合膜に対するフィッティングを行って複合膜の組成比の推定値及び複合膜の最適推定誘電関数を求める。この発明では、複合膜を構成する複数種の有機物質に関してそれぞれ単独の適正な誘電関数を求めて、それに基づいて全体の組成が解析されるため、最初から混合状態の有機物質に対応する誘電関数を設定する場合に比較して容易に精度よく複合膜を解析することができる。   The invention according to claim 2 is an analysis method using a spectroscopic ellipsometer of a composite film in which a plurality of organic substances are present in a single layer film. In addition, a single layer film is created independently for each constituent material of the composite film, and an optimum estimated dielectric function is obtained by the method of claim 1, and the composition ratio of the plurality of organic substances is determined using the optimum estimated dielectric function. By fitting the composite film using the effective medium approximation as a fitting parameter, an estimated value of the composition ratio of the composite film and an optimal estimated dielectric function of the composite film are obtained. In the present invention, a single proper dielectric function is obtained for each of a plurality of types of organic substances constituting the composite film, and the entire composition is analyzed based on the obtained dielectric functions, so that the dielectric function corresponding to the mixed organic substance from the beginning. The composite membrane can be analyzed easily and accurately as compared with the case of setting.

請求項3に記載の発明は、請求項2に記載の発明において、前記複合膜はホスト及びドーパントからなる有機材料で構成されている。
請求項4に記載の発明は、単層膜が複数積層された多層膜の分光エリプソメータを用いた解析方法であって、各単層膜について請求項1又は請求項2の手法によって単層膜の最適推定誘電関数を求め、各単層膜の積層順と膜厚をフィッティングパラメータとして前記分光エリプソメータによる測定値とのフィッティングを行って積層順及び膜厚の推定値を求める。この発明では、多層膜であっても非破壊状態で容易に精度よく解析することができる。この発明では、例えば、有機EL素子の正孔輸送層、発光層、電子輸送層等の積層順や膜厚を非破壊状態で解析することができる。各層はホストとドーパントから成る層(複合膜)であっても、単独の材料からなる層であっても、あるいは両者が混合された層であってもよい。
According to a third aspect of the invention, in the invention of the second aspect, the composite film is made of an organic material comprising a host and a dopant.
The invention according to claim 4 is an analysis method using a multilayer film ellipsometer in which a plurality of single-layer films are stacked, and each single-layer film is analyzed by the method according to claim 1 or claim 2. An optimum estimated dielectric function is obtained, and an estimated value of the stacking order and film thickness is obtained by fitting the measured value by the spectroscopic ellipsometer with the stacking order and film thickness of each single layer film as a fitting parameter. In the present invention, even a multilayer film can be analyzed easily and accurately in a non-destructive state. In this invention, for example, the stacking order and film thickness of the hole transport layer, the light emitting layer, the electron transport layer, etc. of the organic EL element can be analyzed in a non-destructive state. Each layer may be a layer (composite film) made of a host and a dopant, a layer made of a single material, or a layer in which both are mixed.

本発明によれば、膜状の有機層を非破壊状態で容易に精度よく解析することができる。   According to the present invention, a film-like organic layer can be easily and accurately analyzed in a non-destructive state.

以下、本発明を具体化した一実施形態を図面を参照して説明する。
まず、解析すべき試料が一種類の有機物質で構成された単層膜の場合について図1のフローチャートに従って説明する。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
First, the case where the sample to be analyzed is a single layer film composed of one kind of organic substance will be described with reference to the flowchart of FIG.

ステップS1において、解析すべき試料の単層膜の透過率スペクトル又は吸収スペクトルを分光光度計で測定する。測定は波長λが250〜1000nmの範囲で行われる。
次にステップS2において、ステップS1で得られたスペクトルデータに基づいて試料の組成及び構造の少なくとも一方を予測して、多次元の誘電関数を設定する。誘電関数としてGaussian振動子型の誘電関数が使用される。
In step S1, the transmittance spectrum or absorption spectrum of the single layer film of the sample to be analyzed is measured with a spectrophotometer. The measurement is performed in the wavelength range of 250 to 1000 nm.
Next, in step S2, at least one of the composition and structure of the sample is predicted based on the spectrum data obtained in step S1, and a multidimensional dielectric function is set. A Gaussian oscillator type dielectric function is used as the dielectric function.

Gaussian振動子型の誘電関数及びフィッティングパラメータは次式で表される。
ε=εn1+iεn2
εn2=Amp・exp{−(E−En)/Br}+Amp・exp{−(E+En)/Br
The dielectric function and fitting parameters of the Gaussian oscillator type are expressed by the following equations.
ε n = ε n1 + iε n2
ε n2 = Amp n · exp {− (E−En n ) / Br n } + Amp n · exp {− (E + En n ) / Br n }

Figure 2006349648
εn1はKramers-Kronig(K−K)の関係を満足する。
Figure 2006349648
ε n1 satisfies the Kramers-Kronig (KK) relationship.

Amp:n番目の振動子の振幅、En:n番目の振動子の中心エネルギー
Br:n番目の振動子の広がり
次にステップS3において、分光エリプソメータで解析すべき試料の単層膜のエリプソパラメータΔ,ψを測定する。Δはs偏光とp偏光との位相差、ψはs偏光とp偏光との振幅比である。
Amp n : amplitude of the n th vibrator, En n : center energy of the n th vibrator Br n : spread of the n th vibrator Next, in step S3, the single layer film of the sample to be analyzed by the spectroscopic ellipsometer Measure the ellipso parameters Δ, ψ. Δ is a phase difference between s-polarized light and p-polarized light, and ψ is an amplitude ratio between s-polarized light and p-polarized light.

次にステップS4において、試料のエリプソパラメータΔ,ψの理論値と測定値との回帰解析法によるフィッティングが行われる。回帰解析法には、例えばLevenberg-Marquardt 法に基づく回帰解析法が使用される。「フィッティング」とは、モデルに含まれている未知数(層の厚さや誘電関数のパラメータ等)を変化させながら、測定値に合わせていくことを意味する。ステップS4の作業はコンピュータによって行われる。   Next, in step S4, fitting by the regression analysis method between the theoretical values and measured values of the ellipso parameters Δ and ψ of the sample is performed. As the regression analysis method, for example, a regression analysis method based on the Levenberg-Marquardt method is used. “Fitting” means matching unknown values (layer thickness, dielectric function parameters, etc.) included in the model to the measured value. The operation in step S4 is performed by a computer.

詳述すれば、ステップS2で設定した誘電関数のフィッティングパラメータを用いて試料のエリプソパラメータΔ,ψを計算する。そして、その計算値と、ステップS3で得られた分光エリプソメータによる測定値との平均2乗誤差(Mean Squared Error:MSE)が許容範囲内になるようにフィッティングが回帰解析法により行われる。即ち、設定した誘電関数から理論的に求められるエリプソパラメータΔ,ψの理論値と測定値との平均2乗誤差が最小又は許容範囲内か否かを判断し、平均2乗誤差が最小又は許容範囲内でなければ、誘電関数のパラメータを変更した後、エリプソパラメータΔ,ψの理論値を計算し、測定値との平均2乗誤差を演算する。そして、フィッテイグを繰り返して平均2乗誤差が最小又は許容範囲内になると最適に推定された誘電関数が求まり、ステップS5に進む。例えば、平均2乗誤差が20以下になるまでフィッテイグを繰り返す。   More specifically, the ellipso parameters Δ, ψ of the sample are calculated using the dielectric function fitting parameters set in step S2. Then, fitting is performed by the regression analysis method so that the mean squared error (MSE) between the calculated value and the value measured by the spectroscopic ellipsometer obtained in step S3 is within an allowable range. That is, it is determined whether the mean square error between the theoretical value and the measured value of the ellipso parameters Δ and ψ theoretically obtained from the set dielectric function is minimum or within an allowable range, and the mean square error is minimum or allowable. If it is not within the range, the dielectric function parameters are changed, the theoretical values of the ellipso parameters Δ and ψ are calculated, and the mean square error from the measured values is calculated. When the fitting is repeated and the mean square error is minimum or within an allowable range, an optimally estimated dielectric function is obtained, and the process proceeds to step S5. For example, the fitting is repeated until the mean square error becomes 20 or less.

ステップS5において、最適推定誘電関数から屈折率n及び消衰係数kが求められる。屈折率n及び消衰係数kは物質固有の光学定数である。
次に解析すべき試料が、単層膜中に複数の有機物質が存在する複合膜の場合について説明する。解析すべき試料が複合膜の場合は、複合膜の各構成材料に関して単独で単層膜の試料を作成する。そして、各試料に関して前記ステップS1〜ステップS4の作業を行うことにより、複合膜を構成する複数種の有機物質に関してそれぞれ単独の最適に推定された誘電関数を求める。
In step S5, the refractive index n and the extinction coefficient k are obtained from the optimum estimated dielectric function. The refractive index n and the extinction coefficient k are optical constants specific to the material.
Next, the case where the sample to be analyzed is a composite film in which a plurality of organic substances are present in a single layer film will be described. When the sample to be analyzed is a composite film, a single-layer film sample is created independently for each constituent material of the composite film. Then, by performing the operations of Step S1 to Step S4 for each sample, a single optimally estimated dielectric function is obtained for each of a plurality of types of organic substances constituting the composite film.

次に複合膜を構成する各有機物質の構成比をフィッティングパラメータとして、有効媒質近似を利用して複合膜の誘電関数を計算する。有効媒質近似には、例えばブラグマンの有効媒質近似(Bruggeman’s Effective Medium Approximation)が利用される。   Next, the dielectric function of the composite film is calculated using the effective medium approximation, with the composition ratio of each organic material constituting the composite film as a fitting parameter. For the effective medium approximation, for example, Bruggeman's Effective Medium Approximation is used.

また、分光エリプソメータで解析すべき試料の複合膜のエリプソパラメータΔ,ψを測定する。
次に複合膜の誘電関数を使用して複合膜のエリプソパラメータΔ,ψの理論値を計算する。そして、その理論値と、分光エリプソメータによる測定値との平均2乗誤差が最小又は許容範囲内になるようにフィッティングが回帰解析法により行われる。平均2乗誤差が最小又は許容範囲内になると、複合膜を構成する各有機物質の組成比と、複合膜の最適推定誘電関数が求められる。
In addition, the ellipso parameters Δ and ψ of the composite film of the sample to be analyzed by the spectroscopic ellipsometer are measured.
Next, theoretical values of the ellipso parameters Δ and ψ of the composite film are calculated using the dielectric function of the composite film. Then, the fitting is performed by the regression analysis method so that the mean square error between the theoretical value and the measured value by the spectroscopic ellipsometer is within the minimum or allowable range. When the mean square error is minimum or within an allowable range, the composition ratio of each organic material constituting the composite film and the optimum estimated dielectric function of the composite film are obtained.

次に解析すべき試料が、単層膜が複数積層された多層膜の場合について説明する。解析すべき試料が多層膜の場合は、各単層膜毎に上述の手法によって各単層膜の誘電関数を求める。また、分光エリプソメータで解析すべき試料の多層膜のエリプソパラメータΔ,ψを測定する。そして、各単層膜の積層順と膜厚をフィッティングパラメータとして、各単層膜の誘電関数、各単層膜の積層順及び膜厚を使用して計算したエリプソパラメータΔ,ψの理論値と、分光エリプソメータによる測定値とのフィッティングを行う。理論値と、分光エリプソメータによる測定値との平均2乗誤差が最小又は許容範囲内になると、積層順と膜厚の推定値が求められる。   Next, a case where the sample to be analyzed is a multilayer film in which a plurality of single-layer films are stacked will be described. When the sample to be analyzed is a multilayer film, the dielectric function of each single layer film is obtained for each single layer film by the method described above. Further, the ellipso parameters Δ and ψ of the multilayer film of the sample to be analyzed by the spectroscopic ellipsometer are measured. Then, using the stacking order and film thickness of each single-layer film as fitting parameters, the dielectric function of each single-layer film, the theoretical values of the ellipso parameters Δ and ψ calculated using the stacking order and film thickness of each single-layer film, and Fitting with the measured value by the spectroscopic ellipsometer. When the mean square error between the theoretical value and the value measured by the spectroscopic ellipsometer is minimum or within an allowable range, an estimated value of the stacking order and film thickness is obtained.

以下、有機物質として有機ELの正孔輸送層、発光層、電子輸送層の材料として使用される有機材料としての有機エレクトロルミネッセンス材料を試料とした実施例により本発明をさらに詳細に説明する。ただし、それらは例示であって、本発明を限定するものではない。各実施例において分光エリプソメータとして、J.A.Woollam社製、M−2000Uを使用した。   Hereinafter, the present invention will be described in more detail with reference to examples in which an organic electroluminescent material as an organic material used as a material for an organic EL hole transport layer, a light emitting layer, and an electron transport layer is used as a sample. However, these are merely examples and do not limit the present invention. In each embodiment, as a spectroscopic ellipsometer, J.A. A. M-2000U manufactured by Woollam was used.

<実施例1>
厚さ0.5mmのガラス基板を用意し、洗浄後、ガラス基板上に真空蒸着装置により、トリス(8−ヒドロキシキノリン)アルミニウム(Alq3)を蒸着して膜厚14.9nmの単層膜の試料を作成した。その試料のGaussian振動子型の誘電関数におけるフィッティングパラメータのAmp、En及びBrを3種類ずつ次のように設定した。
<Example 1>
A glass substrate having a thickness of 0.5 mm is prepared, washed, and then a trilayer (8-hydroxyquinoline) aluminum (Alq3) is vapor-deposited on the glass substrate by a vacuum vapor deposition apparatus. It was created. Three types of fitting parameters Amp n , En n and Br n in the Gaussian oscillator type dielectric function of the sample were set as follows.

Amp1 0.784
En1 3.100
Br1 0.428
Amp2 1.719
En2 5.769
Br2 3.314
Amp3 3.741
En3 4.585
Br3 0.313
なお、上記フィッティングパラメータは、小数点第4位を四捨五入し、小数点第3位までの値を示した。
Amp1 0.784
En1 3.100
Br1 0.428
Amp2 1.719
En2 5.769
Br2 3.314
Amp3 3.741
En3 4.585
Br3 0.313
In addition, the said fitting parameter rounded off the 4th decimal point and showed the value to the 3rd decimal point.

前記単層膜の試料について分光エリプソメータによりエリプソパラメータΔ,ψを測定した。測定は入射角を60°、65°及び70°に設定して、それぞれ波長λが250〜1000nmの範囲で行った。   Ellipso parameters Δ and ψ were measured with a spectroscopic ellipsometer for the single-layer film sample. The measurement was performed by setting the incident angles to 60 °, 65 °, and 70 ° and the wavelength λ in the range of 250 to 1000 nm.

そして、前記誘電関数から計算したエリプソパラメータΔ,ψの理論値と、分光エリプソメータによる測定値とのフィッティングを行った。その結果、MSE=3.6であった。   Then, fitting was performed between the theoretical values of the ellipso parameters Δ and ψ calculated from the dielectric function and the measured values by the spectroscopic ellipsometer. As a result, MSE = 3.6.

結果を図2〜図5に示す。図2〜図4は波長分散特性を表し、図2は透過率と波長との関係を示すグラフ(図2において、図中のExpとは、入射角を90度に設定して、透過率スペクトルを測定したものである。)、図3はΔと波長の関係を示すグラフ、図4はψと波長の関係を示すグラフ、図5は光学定数である屈折率n及び消衰係数kと波長の関係を示すグラフである。図2〜図4からフィッティングが良好に行われ、誘電関数が精度よく推定されたことが確認される。   The results are shown in FIGS. 2 to 4 show the chromatic dispersion characteristics, and FIG. 2 is a graph showing the relationship between the transmittance and the wavelength (in FIG. 2, Exp in FIG. 2 indicates the transmittance spectrum with the incident angle set to 90 degrees). 3 is a graph showing the relationship between Δ and wavelength, FIG. 4 is a graph showing the relationship between ψ and wavelength, and FIG. 5 is an optical constant of refractive index n, extinction coefficient k and wavelength. It is a graph which shows the relationship. 2 to 4, it is confirmed that the fitting was performed well and the dielectric function was estimated with high accuracy.

<実施例2>
厚さ0.5mmのガラス基板を用意し、洗浄後、ガラス基板上に真空蒸着装置により、キナクリドンを蒸着して膜厚23.8nmの単層膜の試料を作成した。その試料のGaussian振動子型の誘電関数におけるフィッティングパラメータのAmp、En及びBrを6種類ずつ次のように設定した。
<Example 2>
A glass substrate having a thickness of 0.5 mm was prepared, washed, and then quinacridone was deposited on the glass substrate by a vacuum deposition apparatus to prepare a single layer film sample having a thickness of 23.8 nm. Six types of fitting parameters Amp n , En n and Br n in the Gaussian oscillator type dielectric function of the sample were set as follows.

Amp1 2.355
En1 2.189
Br1 0.162
Amp2 0.931
En2 2.360
Br2 0.107
Amp3 1.063
En3 2.395
Br3 0.446
Amp4 0.099
Br4 0.154
En5 3.685
Amp5 1.458
En5 4.375
Br5 0.518
Amp6 2.795
En6 5.635
Br6 2.246
なお、上記フィッティングパラメータは、小数点第4位を四捨五入し、小数点第3位までの値を示した。
Amp1 2.355
En1 2.189
Br1 0.162
Amp2 0.931
En2 2.360
Br2 0.107
Amp3 1.063
En3 2.395
Br3 0.446
Amp4 0.099
Br4 0.154
En5 3.685
Amp5 1.458
En5 4.375
Br5 0.518
Amp6 2.795
En6 5.635
Br6 2.246
In addition, the said fitting parameter rounded off the 4th decimal point and showed the value to the 3rd decimal point.

前記単層膜の試料について分光エリプソメータによりエリプソパラメータΔ,ψを測定した。測定は入射角を60°、65°及び70°に設定して、それぞれ波長λが250〜1000nmの範囲で行った。   Ellipso parameters Δ and ψ were measured with a spectroscopic ellipsometer for the single-layer film sample. The measurement was performed by setting the incident angles to 60 °, 65 °, and 70 ° and the wavelength λ in the range of 250 to 1000 nm.

そして、前記誘電関数から計算したエリプソパラメータΔ,ψの理論値と、分光エリプソメータによる測定値とのフィッティングを行った。その結果、MSE=14.7であった。   Then, fitting was performed between the theoretical values of the ellipso parameters Δ and ψ calculated from the dielectric function and the measured values by the spectroscopic ellipsometer. As a result, MSE = 14.7.

結果を図6〜図9に示す。図6〜図8は波長分散特性を表し、図6は透過率と波長の関係を示すグラフ(図6において図中のExpとは、入射角を90度に設定して、透過率スペクトルを測定したものである。)、図7はΔと波長の関係を示すグラフ、図8はψと波長の関係を示すグラフ、図9は光学定数である屈折率n及び消衰係数kと波長の関係を示すグラフである。図6〜図8からフィッティングが良好に行われ、誘電関数が精度よく推定されたことが確認される。   The results are shown in FIGS. 6 to 8 show chromatic dispersion characteristics, and FIG. 6 is a graph showing the relationship between the transmittance and the wavelength (Exp in FIG. 6 is an incident angle set to 90 degrees and the transmittance spectrum is measured. 7 is a graph showing the relationship between Δ and wavelength, FIG. 8 is a graph showing the relationship between ψ and wavelength, and FIG. 9 is a relationship between refractive index n and extinction coefficient k, which are optical constants, and wavelength. It is a graph which shows. It can be confirmed from FIGS. 6 to 8 that the fitting was performed well and the dielectric function was estimated with high accuracy.

<実施例3>
厚さ0.5mmのガラス基板を用意し、洗浄後、ガラス基板上に真空蒸着装置により、4−ジシアノメチレン−2−メチル−6−(4−ジメチルアミノスチリル)−4H−ピラン(DCM1)を蒸着して膜厚25.9nmの単層膜の試料を作成した。その試料のGaussian振動子型の誘電関数におけるフィッティングパラメータのAmp、En及びBrを6種類ずつ次のように設定した。
<Example 3>
A glass substrate having a thickness of 0.5 mm is prepared, and after washing, 4-dicyanomethylene-2-methyl-6- (4-dimethylaminostyryl) -4H-pyran (DCM1) is deposited on the glass substrate by a vacuum deposition apparatus. A single layer film sample having a thickness of 25.9 nm was prepared by vapor deposition. Six types of fitting parameters Amp n , En n and Br n in the Gaussian oscillator type dielectric function of the sample were set as follows.

Amp1 1.257
En1 2.291
Br1 0.213
Amp2 2.152
En2 2.470
Br2 0.342
Amp3 2.509
En3 2.668
Br3 0.487
Amp4 1.106
En4 3.122
Br4 0.831
Amp5 3.558
En5 9.957
Br5 5.450
Amp6 0.931
En6 4.143
Br6 1.170
なお、上記フィッティングパラメータは、小数点第4位を四捨五入し、小数点第3位までの値を示した。
Amp1 1.257
En1 2.291
Br1 0.213
Amp2 2.152
En2 2.470
Br2 0.342
Amp3 2.509
En3 2.668
Br3 0.487
Amp4 1.106
En4 3.122
Br4 0.831
Amp5 3.558
En5 9.957
Br5 5.450
Amp6 0.931
En6 4.143
Br6 1.170
In addition, the said fitting parameter rounded off the 4th decimal point and showed the value to the 3rd decimal point.

前記単層膜の試料について分光エリプソメータによりエリプソパラメータΔ,ψを測定した。測定は入射角を60°、65°及び70°に設定して、それぞれ波長λが250〜1000nmの範囲で行った。   Ellipso parameters Δ and ψ were measured with a spectroscopic ellipsometer for the single-layer film sample. The measurement was performed by setting the incident angles to 60 °, 65 °, and 70 ° and the wavelength λ in the range of 250 to 1000 nm.

そして、前記誘電関数から計算したエリプソパラメータΔ,ψの理論値と、分光エリプソメータによる測定値とのフィッティングを行った。その結果、MSE=6.7であった。   Then, fitting was performed between the theoretical values of the ellipso parameters Δ and ψ calculated from the dielectric function and the measured values by the spectroscopic ellipsometer. As a result, MSE = 6.7.

結果を図10〜図13に示す。図10〜図12は波長分散特性を表し、図10は透過率と波長の関係を示すグラフ(図10において、図中のExpとは、入射角を90度に設定して、透過率スペクトルを測定したものである。)、図11はΔと波長の関係を示すグラフ、図12はψと波長の関係を示すグラフ、図13は光学定数である屈折率n及び消衰係数kと波長の関係を示すグラフである。図10〜図12からフィッティングが良好に行われ、誘電関数が精度よく推定されたことが確認される。   The results are shown in FIGS. 10 to 12 show the chromatic dispersion characteristics, and FIG. 10 is a graph showing the relationship between the transmittance and the wavelength (in FIG. 10, Exp in the figure means that the incident angle is set to 90 degrees and the transmittance spectrum is FIG. 11 is a graph showing the relationship between Δ and wavelength, FIG. 12 is a graph showing the relationship between ψ and wavelength, and FIG. 13 is an optical constant of refractive index n, extinction coefficient k and wavelength. It is a graph which shows a relationship. From FIG. 10 to FIG. 12, it is confirmed that the fitting was performed well and the dielectric function was accurately estimated.

<実施例4>
次に解析すべき試料が、単層膜中に複数の有機物質が存在する複合膜の場合の実施例について説明する。
<Example 4>
Next, an example will be described in which the sample to be analyzed is a composite film in which a plurality of organic substances are present in a single layer film.

厚さ0.5mmのガラス基板を用意し、洗浄後、ガラス基板上に真空蒸着装置により、
Alq3をホストとし、キナクリドンをドーパントとして膜厚16.2nmの複合膜の試料を作成した。キナクリドンはAlq3に対して5wt%になるように作成した。
Prepare a glass substrate with a thickness of 0.5 mm, and after cleaning, use a vacuum evaporation system on the glass substrate.
A composite film sample having a film thickness of 16.2 nm was prepared using Alq3 as a host and quinacridone as a dopant. Quinacridone was prepared so as to be 5 wt% with respect to Alq3.

前記複合膜の試料について分光エリプソメータによりエリプソパラメータΔ,ψを測定した。測定は入射角を60°、65°及び70°に設定して、それぞれ波長λが250〜1000nmの範囲で行った。   Ellipso parameters Δ and ψ were measured with a spectroscopic ellipsometer for the composite film sample. The measurement was performed by setting the incident angles to 60 °, 65 °, and 70 ° and the wavelength λ in the range of 250 to 1000 nm.

そして、実施例1、2で推定したAlq3とキナクリドンの誘電関数、及びフィッティンブパラメータであるこれら2つの物質の体積分率(組成比)からブラグマンの有効媒質近似を用いて計算したエリプソパラメータΔ,ψの理論値と、分光エリプソメータによる測定値とのフィッティングを行った。その結果、MSE=10.59であった。   Then, the Ellipso parameter Δ, calculated using the effective medium approximation of Braggman from the dielectric function of Alq3 and quinacridone estimated in Examples 1 and 2 and the volume fraction (composition ratio) of these two substances which are fitting parameters. Fitting was performed between the theoretical value of ψ and the value measured with a spectroscopic ellipsometer. As a result, the MSE was 10.59.

結果を図14〜図17に示す。図14〜図16は波長分散特性を表し、図14は透過率と波長の関係を示すグラフ(図14において、図中のExpとは、入射角を90度に設定して、透過率スペクトルを測定したものである。)、図15はΔと波長の関係を示すグラフ、図16はψと波長の関係を示すグラフ、図17は光学定数である屈折率n及び消衰係数kと波長の関係を示すグラフである。図14〜図16からフィッティングが良好に行われ、2つの物質の組成比と複合膜の誘電関数が精度よく推定されたたことが確認される。   The results are shown in FIGS. 14 to 16 show the chromatic dispersion characteristics, and FIG. 14 is a graph showing the relationship between the transmittance and the wavelength (in FIG. 14, Exp in the figure means that the incident angle is set to 90 degrees and the transmittance spectrum is shown). FIG. 15 is a graph showing the relationship between Δ and wavelength, FIG. 16 is a graph showing the relationship between ψ and wavelength, and FIG. 17 is an optical constant of refractive index n, extinction coefficient k and wavelength. It is a graph which shows a relationship. 14 to 16, it is confirmed that the fitting was performed well and the composition ratio of the two substances and the dielectric function of the composite film were accurately estimated.

<実施例5>
次にAlq3をホストとし、キナクリドンをドーパントとした複合膜における複素屈折率波長分散の仕込み量依存性について調べた実施例について説明する。
<Example 5>
Next, an example in which the dependence of the complex refractive index wavelength dispersion on the charged amount in a composite film using Alq3 as a host and quinacridone as a dopant is examined will be described.

キナクリドンの仕込み量、即ちホストであるAlq3に対するキナクリドンの濃度を表1に示すように変えた4種類の試料を作成して、実施例4と同様にしてキナクリドンのドープ濃度(組成比)を求めた。   Four samples were prepared by changing the amount of quinacridone charged, that is, the concentration of quinacridone relative to Alq3 as a host, as shown in Table 1, and the dope concentration (composition ratio) of quinacridone was determined in the same manner as in Example 4. .

結果を図18及び表1に示す。   The results are shown in FIG.

Figure 2006349648
表1からキナクリドンのドープ濃度(組成比)が精度よく求められていることを確認できた。
Figure 2006349648
From Table 1, it was confirmed that the dope concentration (composition ratio) of quinacridone was obtained with high accuracy.

<実施例6>
次に解析すべき試料が、単層膜が複数積層された多層膜の場合の実施例について説明する。
<Example 6>
Next, an example in which the sample to be analyzed is a multilayer film in which a plurality of single-layer films are stacked will be described.

有機EL層を正孔輸送層、発光層及び電子輸送層の3層構造とした場合の一例として、正孔輸送層を構成するTPTE層、発光層を構成するAlq3をホストとしキナクリドンをドーパントとしたキナクリドン/Alq3層、電子輸送層を構成するAlq3層の3層構成である多層膜の試料を作成した。そして、各層の積層順、膜厚及びキナクリドン/Alq3におけるキナクリドンのドープ濃度を求めた。   As an example when the organic EL layer has a three-layer structure of a hole transport layer, a light emitting layer, and an electron transport layer, TPTE layer constituting the hole transport layer, Alq3 constituting the light emitting layer as a host, and quinacridone as a dopant A multilayer film sample having a three-layer structure of an quinacridone / Alq3 layer and an Alq3 layer constituting an electron transport layer was prepared. And the lamination | stacking order of each layer, the film thickness, and the dope density | concentration of quinacridone in quinacridone / Alq3 were calculated | required.

まず、実施例1〜3と同様の手順により、TPTE、Alq3及びキナクリドンの誘電関数を推定した。次に、得られた誘電関数、積層順、Alq3とキナクリドンの組成比及び各層の膜厚からエリプソパラメータΔ、ψの理論値を計算した。ここでは、積層順、Alq3とキナクリドンの組成比及び各層の膜厚がフィッティングパラメータである。そして、エリプソパラメータの理論値と測定値とのフィッティングを行った。   First, the dielectric functions of TPTE, Alq3, and quinacridone were estimated by the same procedure as in Examples 1 to 3. Next, theoretical values of the ellipso parameters Δ and ψ were calculated from the obtained dielectric function, stacking order, composition ratio of Alq3 and quinacridone, and film thickness of each layer. Here, the stacking order, the composition ratio of Alq3 and quinacridone, and the film thickness of each layer are the fitting parameters. And the fitting of the theoretical value of the ellipso parameter and the measured value was performed.

仕込み量と、エリプソパラメータΔ,ψによるフィッティングで得られた解析値の値を表2に示す。表2において、上から順に、陽極からの積層順を示す。   Table 2 shows the charged amount and the value of the analysis value obtained by fitting with the ellipso parameters Δ and ψ. In Table 2, the stacking order from the anode is shown in order from the top.

Figure 2006349648
表2から、試料が多層膜であっても、積層順、キナクリドンのドープ濃度(組成比)及び各層の膜厚が比較的精度よく求められていることを確認できた。
Figure 2006349648
From Table 2, it was confirmed that even when the sample was a multilayer film, the stacking order, the quinacridone dope concentration (composition ratio), and the film thickness of each layer were obtained with relatively high accuracy.

この実施形態では以下の効果を有する。
(1)解析すべき試料の単層膜の透過率スペクトル又は吸収スペクトルを分光光度計で測定し、そのスペクトルに基づいて試料の組成及び構造の少なくとも一方を予測して多次元の誘電関数を設定する。そして、分光エリプソメータにより測定されたエリプソデータの解析に際して、前記誘電関数を用いて計算したエリプソパラメータΔ,ψの計算値と、分光エリプソメータによる測定値との平均2乗誤差が最小又は許容範囲内になるように回帰解析法でフィッティングを行う。その結果、最適に推定された誘電関数が求められる。従って、従来の分析手法(液体クロマトグラフィー)では分析困難であった膜状の有機層を、非破壊状態で容易に精度よく解析することができる。
This embodiment has the following effects.
(1) Measure the transmittance spectrum or absorption spectrum of the single layer film of the sample to be analyzed with a spectrophotometer, and predict at least one of the composition and structure of the sample based on the spectrum to set a multidimensional dielectric function To do. When analyzing the ellipso data measured by the spectroscopic ellipsometer, the mean square error between the calculated values of the ellipso parameters Δ and ψ calculated using the dielectric function and the measured value by the spectroscopic ellipsometer is within a minimum or allowable range. The fitting is performed by the regression analysis method. As a result, an optimally estimated dielectric function is obtained. Therefore, it is possible to easily and accurately analyze a film-like organic layer, which has been difficult to analyze by a conventional analysis method (liquid chromatography), in a non-destructive state.

(2)単層膜中に複数の有機物質が存在する複合膜を解析する場合は、複合膜の各構成材料に関して単独で単層膜を作成するとともに、各単層膜の材料に関して前記手法によって誘電関数を求め、その誘電関数を使用するとともに有効媒質近似を利用して複合膜に対するフィッティングを行う。従って、最初から混合状態の有機物質に対応する誘電関数を設定する場合に比較して容易に精度よく複合膜の解析することができる。   (2) When analyzing a composite film having a plurality of organic substances in the single layer film, a single layer film is created independently for each constituent material of the composite film, and the material for each single layer film is A dielectric function is obtained, and the dielectric film is used and fitting to the composite film is performed using the effective medium approximation. Therefore, the composite film can be analyzed easily and accurately compared to the case where the dielectric function corresponding to the mixed organic substance is set from the beginning.

(3)複合膜がホスト及びドーパントからなる有機EL材料で、膜厚が10〜30nm程度の薄い膜であっても非破壊状態で組成を解析することができる。
(4)単層膜が複数積層された多層膜の試料を解析する場合は、各単層膜毎に前記手法によって誘電関数を求め、各単層膜の積層順と膜厚を変更して分光エリプソメータによる測定値とのフィッティングを行う。従って、多層膜であっても組成を非破壊状態で容易に解析することができる。有機EL素子は、正孔輸送層、発光層、電子輸送層を有する多層構成が一般的なため、有機EL素子の有機EL材料の組成を非破壊状態で解析することができる。
(3) The composition can be analyzed in a non-destructive state even when the composite film is an organic EL material composed of a host and a dopant, and is a thin film having a thickness of about 10 to 30 nm.
(4) When analyzing a multilayer film sample in which a plurality of single-layer films are stacked, the dielectric function is obtained for each single-layer film by the method described above, and the spectral order is changed by changing the stacking order and film thickness of each single-layer film. Fitting with the measured value by ellipsometer. Therefore, even a multilayer film can be easily analyzed in a non-destructive state. Since the organic EL element generally has a multilayer structure including a hole transport layer, a light emitting layer, and an electron transport layer, the composition of the organic EL material of the organic EL element can be analyzed in a non-destructive state.

実施形態は前記に限定されるものではなく、例えば、次のように構成してもよい。
○ 誘電関数としてGaussian振動子型の誘電関数以外の関数を使用してもよい。例えば、Tauc-Lorentz振動子型の誘電関数を用いてもよい。
The embodiment is not limited to the above, and may be configured as follows, for example.
○ A function other than the Gaussian oscillator type dielectric function may be used as the dielectric function. For example, a Tauc-Lorentz oscillator type dielectric function may be used.

○ ブラグマンの有効媒質近似以外の有効媒質近似法を使用してもよい。
○ 試料のエリプソパラメータΔ,ψの計算値と、分光エリプソメータによる測定値との平均2乗誤差が最小又は許容範囲内になるようにフィッティングを行う回帰解析法は、Levenberg-Marquardt 法に基づく回帰解析法に限らない。
○ Effective medium approximation methods other than Braggman effective medium approximation may be used.
○ Regression analysis based on the Levenberg-Marquardt method is a regression analysis method that performs fitting so that the mean square error between the calculated values of the ellipso parameters Δ and ψ of the sample and the values measured by the spectroscopic ellipsometer is within the minimum or allowable range. Not limited to law.

以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1〜請求項4のいずれか一項に記載の発明において、前記誘電関数はGaussian振動子型の誘電関数である。
The following technical idea (invention) can be understood from the embodiment.
(1) In the invention according to any one of claims 1 to 4, the dielectric function is a Gaussian oscillator type dielectric function.

試料の解析方法の手順を示すフローチャート。The flowchart which shows the procedure of the analysis method of a sample. 実施例1の透過率と波長の関係を示すグラフ。3 is a graph showing the relationship between the transmittance and wavelength in Example 1. 同じくΔと波長の関係を示すグラフ。The graph which similarly shows the relationship between (DELTA) and a wavelength. 同じくψと波長の関係を示すグラフ。The graph which similarly shows the relationship between (psi) and a wavelength. 同じく光学定数である屈折率n及び消衰係数kと波長の関係を示すグラフ。The graph which shows the relationship between the refractive index n and the extinction coefficient k which are optical constants similarly, and a wavelength. 実施例2の透過率と波長の関係を示すグラフ。6 is a graph showing the relationship between the transmittance and wavelength in Example 2. 同じくΔと波長の関係を示すグラフ。The graph which similarly shows the relationship between (DELTA) and a wavelength. 同じくψと波長の関係を示すグラフ。The graph which similarly shows the relationship between (psi) and a wavelength. 同じく光学定数である屈折率n及び消衰係数kと波長の関係を示すグラフ。The graph which shows the relationship between the refractive index n and the extinction coefficient k which are optical constants similarly, and a wavelength. 実施例3の透過率と波長の関係を示すグラフ。10 is a graph showing the relationship between transmittance and wavelength in Example 3. 同じくΔと波長の関係を示すグラフ。The graph which similarly shows the relationship between (DELTA) and a wavelength. 同じくψと波長の関係を示すグラフ。The graph which similarly shows the relationship between (psi) and a wavelength. 同じく光学定数である屈折率n及び消衰係数kと波長の関係を示すグラフ。The graph which shows the relationship between the refractive index n and the extinction coefficient k which are optical constants similarly, and a wavelength. 実施例4の透過率と波長の関係を示すグラフ。10 is a graph showing the relationship between transmittance and wavelength in Example 4. 同じくΔと波長の関係を示すグラフ。The graph which similarly shows the relationship between (DELTA) and a wavelength. 同じくψと波長の関係を示すグラフ。The graph which similarly shows the relationship between (psi) and a wavelength. 同じく光学定数である屈折率n及び消衰係数kと波長の関係を示すグラフ。The graph which shows the relationship between the refractive index n and the extinction coefficient k which are optical constants similarly, and a wavelength. 実施例5の各試料の屈折率n及び消衰係数kと波長の関係を示すグラフ。The graph which shows the relationship between the refractive index n of each sample of Example 5, the extinction coefficient k, and a wavelength.

符号の説明Explanation of symbols

S1,S2,S3,S4,S5…ステップ。   S1, S2, S3, S4, S5... Step.

Claims (4)

分光エリプソメータを用いた有機エレクトロルミネッセンス素子に用いられる有機物質の解析方法であって、解析すべき試料の単層膜の透過率スペクトル又は吸収スペクトルを分光光度計で測定するステップと、前記スペクトルに基づいて前記試料の組成及び構造の少なくとも一方を予測して多次元の誘電関数を設定するステップと、分光エリプソメータで試料のエリプソパラメータΔ,ψを測定するステップと、前記誘電関数を用いて試料のエリプソパラメータΔ,ψの理論値を計算し、そのエリプソパラメータΔ,ψの理論値と前記分光エリプソメータによる測定値との平均2乗誤差が最小又は許容範囲内になるように回帰解析法で前記誘電関数のフィッティングパラメータのフィッティングを行って最適推定誘電関数を求めるステップとを備えた、分光エリプソメータを用いた有機エレクトロルミネッセンス素子に用いられる有機物質の解析方法。   A method for analyzing an organic substance used in an organic electroluminescence device using a spectroscopic ellipsometer, comprising: measuring a transmittance spectrum or absorption spectrum of a single layer film of a sample to be analyzed with a spectrophotometer; and based on the spectrum Predicting at least one of the composition and structure of the sample and setting a multidimensional dielectric function; measuring the ellipso parameters Δ and ψ of the sample with a spectroscopic ellipsometer; and using the dielectric function, the ellipso of the sample The theoretical values of the parameters Δ and ψ are calculated, and the dielectric function is calculated by the regression analysis method so that the mean square error between the theoretical values of the ellipso parameters Δ and ψ and the measured value by the spectroscopic ellipsometer is at a minimum or within an allowable range. To obtain an optimal estimated dielectric function by fitting the fitting parameters of Example was the analysis method of the organic substance used in the organic electroluminescence device using the spectroscopic ellipsometer. 単層膜中に複数の有機物質が存在する複合膜の分光エリプソメータを用いた解析方法であって、前記複合膜の各構成材料に関して単独で単層膜を作成するとともに請求項1の手法によって最適推定誘電関数を求め、当該最適推定誘電関数を使用するとともに、前記複数の有機物質の組成比をフィッティングパラメータとして有効媒質近似を利用して前記複合膜に対するフィッティングを行って組成比の推定値及び前記複合膜の最適推定誘電関数を求める分光エリプソメータを用いた複合膜の解析方法。   An analysis method using a spectroscopic ellipsometer of a composite film in which a plurality of organic substances are present in a single layer film, wherein a single layer film is independently created for each constituent material of the composite film and optimized by the method of claim 1 Obtaining an estimated dielectric function, using the optimum estimated dielectric function, and performing fitting on the composite film using effective medium approximation with the composition ratio of the plurality of organic substances as a fitting parameter, and the estimated value of the composition ratio and A method for analyzing a composite film using a spectroscopic ellipsometer to obtain an optimum estimated dielectric function of the composite film. 前記複合膜はホスト及びドーパントからなる有機材料で構成されている請求項2に記載の分光エリプソメータを用いた複合膜の解析方法。   The method for analyzing a composite film using a spectroscopic ellipsometer according to claim 2, wherein the composite film is made of an organic material comprising a host and a dopant. 単層膜が複数積層された多層膜の分光エリプソメータを用いた解析方法であって、各単層膜について請求項1又は請求項2の手法によって単層膜の最適推定誘電関数を求め、各単層膜の積層順と膜厚をフィッティングパラメータとして前記分光エリプソメータによる測定値とのフィッティングを行って積層順および膜厚の推定値を求める分光エリプソメータを用いた多層膜の解析方法。   An analysis method using a spectroscopic ellipsometer of a multilayer film in which a plurality of single-layer films are stacked, and for each single-layer film, an optimum estimated dielectric function of the single-layer film is obtained by the method of claim 1 or 2, and A multilayer film analysis method using a spectroscopic ellipsometer that obtains an estimated value of the stacking order and film thickness by performing fitting with the measurement value by the spectroscopic ellipsometer using the stacking order and film thickness of the layer film as a fitting parameter.
JP2005179954A 2005-06-20 2005-06-20 Analysis method of organic material used for organic electroluminescence element, analysis method of composite film and analysis method of multilayer film using spectral ellipsometer Pending JP2006349648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179954A JP2006349648A (en) 2005-06-20 2005-06-20 Analysis method of organic material used for organic electroluminescence element, analysis method of composite film and analysis method of multilayer film using spectral ellipsometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179954A JP2006349648A (en) 2005-06-20 2005-06-20 Analysis method of organic material used for organic electroluminescence element, analysis method of composite film and analysis method of multilayer film using spectral ellipsometer

Publications (1)

Publication Number Publication Date
JP2006349648A true JP2006349648A (en) 2006-12-28

Family

ID=37645654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179954A Pending JP2006349648A (en) 2005-06-20 2005-06-20 Analysis method of organic material used for organic electroluminescence element, analysis method of composite film and analysis method of multilayer film using spectral ellipsometer

Country Status (1)

Country Link
JP (1) JP2006349648A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273363A (en) * 2006-03-31 2007-10-18 Horiba Ltd Method and device for manufacturing organic el element
JP2009097857A (en) * 2007-10-12 2009-05-07 Otsuka Denshi Co Ltd Device and method for measuring optical characteristics
JP2009103598A (en) * 2007-10-24 2009-05-14 Dainippon Screen Mfg Co Ltd Spectroscopic ellipsometer and polarization analysis method
JP2013137973A (en) * 2011-12-28 2013-07-11 Panasonic Corp Organic el device manufacturing method, organic el device inspection method, and organic el device determination method
CN111781148A (en) * 2019-04-04 2020-10-16 神华(北京)光伏科技研发有限公司 Method and device for detecting longitudinal nonuniformity of film, terminal and detection system
CN113690153A (en) * 2021-08-10 2021-11-23 深圳市华星光电半导体显示技术有限公司 Method for preventing ESD from damaging TFT, preparation method of TFT and display panel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273363A (en) * 2006-03-31 2007-10-18 Horiba Ltd Method and device for manufacturing organic el element
JP4511488B2 (en) * 2006-03-31 2010-07-28 株式会社堀場製作所 Organic EL device manufacturing equipment
JP2009097857A (en) * 2007-10-12 2009-05-07 Otsuka Denshi Co Ltd Device and method for measuring optical characteristics
JP2009103598A (en) * 2007-10-24 2009-05-14 Dainippon Screen Mfg Co Ltd Spectroscopic ellipsometer and polarization analysis method
JP2013137973A (en) * 2011-12-28 2013-07-11 Panasonic Corp Organic el device manufacturing method, organic el device inspection method, and organic el device determination method
CN111781148A (en) * 2019-04-04 2020-10-16 神华(北京)光伏科技研发有限公司 Method and device for detecting longitudinal nonuniformity of film, terminal and detection system
CN111781148B (en) * 2019-04-04 2024-03-12 神华(北京)光伏科技研发有限公司 Method, device, terminal and system for detecting longitudinal non-uniformity of film
CN113690153A (en) * 2021-08-10 2021-11-23 深圳市华星光电半导体显示技术有限公司 Method for preventing ESD from damaging TFT, preparation method of TFT and display panel
CN113690153B (en) * 2021-08-10 2023-10-31 深圳市华星光电半导体显示技术有限公司 Method for preventing ESD from damaging TFT and preparation method of TFT

Similar Documents

Publication Publication Date Title
Sreekanth et al. Phase‐change‐material‐based low‐loss visible‐frequency hyperbolic metamaterials for ultrasensitive label‐free biosensing
KR100892743B1 (en) Method for analyzing thin-film layer structure using spectroscopic ellipsometer
Synowicki Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants
JP2006349648A (en) Analysis method of organic material used for organic electroluminescence element, analysis method of composite film and analysis method of multilayer film using spectral ellipsometer
Woollam et al. Spectroscopic ellipsometry studies of indium tin oxide and other flat panel display multilayer materials
Gordan et al. The anisotropic dielectric function for copper phthalocyanine thin films
CN112595673B (en) Method for measuring optical constant of monocrystalline diamond substrate
Del Rosso et al. Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy
JP2005062188A (en) Thickness measuring apparatus and thickness measuring method
CN103884494A (en) Optical parameter detecting method for Si-based buffer layer coated glass
Sun et al. Embedded metal oxide plasmonics using local plasma oxidation of AZO for planar metasurfaces
Thompson et al. Optical characterization of porous alumina from vacuum ultraviolet to midinfrared
Szendrei‐Temesi et al. Tracking Molecular Diffusion in One‐Dimensional Photonic Crystals
JP4136740B2 (en) Analysis method of thin film trilayer structure using spectroscopic ellipsometer
US7259850B2 (en) Approach to improve ellipsometer modeling accuracy for solving material optical constants N &amp; K
CN103884657A (en) Method for measuring radiance of on-line low-radiance energy-saving coated glass
Zhu et al. Determination of the optical constants of polymer light-emitting diode films from single reflection measurements
JP3928714B2 (en) Analytical method of thin film multilayer structure using spectroscopic ellipsometer
McGahan et al. Combined spectroscopic ellipsometry and reflectometry for advanced semiconductor fabrication metrology
JP2002267835A (en) Deciding method for refractive index dispersion and deciding method for refractive index distribution
Wagner et al. Materials characterization in the vacuum ultraviolet with variable angle spectroscopic ellipsometry
Adamson Reflection of light in a long-wavelength approximation from an N-layer system of inhomogeneous dielectric films and optical diagnostics of ultrathin layers. I. Absorbing substrate
JP3937149B2 (en) Analysis method of ultrathin film double layer structure using spectroscopic ellipsometer
Borghesi et al. Optical characterization of oxynitride films in the visible-ultraviolet range
Hilfiker et al. Using Artifact Minimization to Model Thin Metallic Films in Spectroscopic Ellipsometry