JP2006349634A - Method for detecting particle concentration - Google Patents

Method for detecting particle concentration Download PDF

Info

Publication number
JP2006349634A
JP2006349634A JP2005179668A JP2005179668A JP2006349634A JP 2006349634 A JP2006349634 A JP 2006349634A JP 2005179668 A JP2005179668 A JP 2005179668A JP 2005179668 A JP2005179668 A JP 2005179668A JP 2006349634 A JP2006349634 A JP 2006349634A
Authority
JP
Japan
Prior art keywords
light
particle concentration
transmittance
amount
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005179668A
Other languages
Japanese (ja)
Inventor
Rie Oosaki
理江 大▲崎▼
Naoya Kato
直也 加藤
Kiyoshi Yoshinaga
潔 吉永
Yukio Nishiii
幸男 西飯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2005179668A priority Critical patent/JP2006349634A/en
Publication of JP2006349634A publication Critical patent/JP2006349634A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particle concentration detection method, capable of suppressing detection error resulted from the component ratio of particles in a liquid in detection of a particle concentration in the liquid based on a transmitted light quantity. <P>SOLUTION: Visible light is emitted from a visible light emission part 12a1 toward lubricating oil, and a visible light transmittance (visible light transmission quantity I1/visible light emission quantity Io1×100) at that time is calculated. Infrared light is emitted from an infrared light emitting part 12a2 toward the lubricating oil, and an infrared light transmittance (infrared light transmission quantity I2/infrared light emitting quantity Io2×100) at that time is calculated. Based on an equation showing the relation of the ratio of visible light transmittance to infrared light transmittance (visible light transmittance T1/ray transmittance T2) with the particle concentration of the lubricating oil, more specifically, based on an approximation of particle concentration using the logarithm of the ratio of transmittance as a variable, the particle concentration of the lubricating oil is detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、液体の透過光量に基づいて同液体の粒子濃度を検出する粒子濃度検出方法に関するものである。   The present invention relates to a particle concentration detection method for detecting the particle concentration of the liquid based on the transmitted light quantity of the liquid.

例えば機関の潤滑油に混入した煤の濃度等、液体中の粒子濃度をその液体の光透過特性、具体的には同液体を透過する透過光の光量に基づいて検出するといった方法が知られている。この検出方法では発光部から液体に向けて光を照射し、同液体を透過する透過光の光量が受光部で検出される。発光部から照射された光の一部は、液体に混入した粒子によって吸収・散乱されるため、受光部で検出される透過光量は液中粒子の量に応じたものとなる。従って、その透過光量に基づいて粒子濃度を検出することができる。   For example, a method is known in which the concentration of particles in a liquid, such as the concentration of soot mixed in engine lubricating oil, is detected based on the light transmission characteristics of the liquid, specifically, the amount of light transmitted through the liquid. Yes. In this detection method, light is emitted from the light emitting unit toward the liquid, and the amount of transmitted light that passes through the liquid is detected by the light receiving unit. A part of the light emitted from the light emitting part is absorbed and scattered by particles mixed in the liquid, so that the amount of transmitted light detected by the light receiving part corresponds to the amount of particles in the liquid. Therefore, the particle concentration can be detected based on the transmitted light amount.

ここで、潤滑油に含まれる粒子の成分比は、潤滑油の種類や機関の運転状態、あるいは潤滑油の劣化進行状態等によって変化する。この粒子の成分比は、潤滑油内での光の散乱量や吸収量に影響を与えるため、潤滑油に含まれる粒子の量が同じ、すなわち粒子濃度が同じであっても同粒子の成分比が異なっていれば透過光量は変化してしまう。そのため、透過光量に基づく粒子濃度の検出は、遠心分離法等による粒子濃度の測定方法と比較して、より簡易な態様で粒子濃度を検出することができるものの、そうした粒子の成分比の影響を受けやすく、検出精度の点では劣ってしまうといった問題がある。   Here, the component ratio of the particles contained in the lubricating oil varies depending on the type of the lubricating oil, the operating state of the engine, the progress of deterioration of the lubricating oil, and the like. This particle component ratio affects the amount of light scattering and absorption in the lubricating oil, so even if the amount of particles contained in the lubricating oil is the same, that is, the particle concentration is the same, the component ratio of the same particle If they are different, the amount of transmitted light changes. Therefore, the particle concentration detection based on the amount of transmitted light can detect the particle concentration in a simpler mode compared to the particle concentration measurement method such as the centrifugal separation method. There is a problem that it is easily received and inferior in detection accuracy.

そこで、特許文献1に記載の方法では、粒子濃度等と相関性のある潤滑油の劣化度をそうした光透過特性を利用して検出するに際し、以下のような態様でその検出を行うことにより、同劣化度の検出精度を高めるようにしている。   Therefore, in the method described in Patent Document 1, when detecting the degree of deterioration of the lubricating oil having a correlation with the particle concentration or the like by using such light transmission characteristics, by detecting the deterioration in the following manner, The detection accuracy of the degree of deterioration is increased.

同文献に記載の方法では、短波長及び長波長の光を用いて各波長における潤滑油の光透過特性(吸光度または透過光量)をそれぞれ計測し、各波長で計測された光透過特性に基づいて潤滑油の劣化進行状態が初期劣化であるか、中間劣化であるか、あるいは後期劣化であるかを判定する。そして、判定された劣化進行状態に最適化された校正曲線(吸光度と劣化度との対応関係を示す線)を選択し、同校正曲線と短波長の光で計測された光透過特性とを用いて潤滑油の劣化度を求めるようにしている。   In the method described in this document, light transmission characteristics (absorbance or transmitted light amount) of the lubricating oil at each wavelength are measured using light of short wavelength and long wavelength, respectively, and based on the light transmission characteristics measured at each wavelength. It is determined whether the progress of deterioration of the lubricating oil is initial deterioration, intermediate deterioration, or late deterioration. Then, select a calibration curve (a line indicating the correspondence between the absorbance and the degree of deterioration) optimized for the determined deterioration progress state, and use the calibration curve and the light transmission characteristics measured with light of a short wavelength. Therefore, the deterioration degree of the lubricating oil is obtained.

こうした同文献に記載の方法によれば、潤滑油中の粒子の成分比に影響を与える劣化進行状態に応じて、潤滑油の劣化度を求めるための校正曲線が選択されるため、粒子の成分比が光透過特性に与える影響をある程度抑えることができる。
特開平8−62207号公報
According to the method described in the document, a calibration curve for determining the degree of deterioration of the lubricating oil is selected according to the deterioration progress state that affects the component ratio of the particles in the lubricating oil. The influence of the ratio on the light transmission characteristics can be suppressed to some extent.
JP-A-8-62207

ここで、特許文献1に記載の方法では、校正曲線に基づいて劣化度を求める際に短波長の光で計測された光透過特性を利用するようにしている。従って、劣化進行状態に応じて校正曲線を切り替えることにより、同校正曲線に対する粒子成分比の影響を抑えることができたとしても、参照値である光透過特性には同粒子成分比に起因する誤差が含まれてしまう。そのため、同文献と同様な態様で液体の粒子濃度を検出する場合には、液中粒子の成分比に起因する検出誤差を抑えることができず、その検出精度にも自ずと限界が生じてしまう。   Here, in the method described in Patent Document 1, the light transmission characteristic measured with light of a short wavelength is used when obtaining the degree of deterioration based on the calibration curve. Therefore, even if the influence of the particle component ratio on the calibration curve can be suppressed by switching the calibration curve according to the deterioration progress state, the light transmission characteristic as a reference value has an error caused by the particle component ratio. Will be included. For this reason, when the liquid particle concentration is detected in the same manner as in the same document, the detection error due to the component ratio of the particles in the liquid cannot be suppressed, and the detection accuracy is naturally limited.

この発明はこうした事情に鑑みてなされたものであって、その目的は、透過光量に基づいて液体中の粒子濃度を検出するに際して、液中粒子の成分比に起因する検出誤差を抑えることのできる粒子濃度検出方法を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to suppress detection errors caused by the component ratio of particles in the liquid when detecting the particle concentration in the liquid based on the amount of transmitted light. It is to provide a particle concentration detection method.

上記目的を達成するための手段及びその作用効果について以下に記載する。
請求項1に記載の発明は、発光部から液体に光を照射して同液体を透過した透過光量を受光部で計測し、その計測された透過光量に基づいて前記液体に混入した粒子の濃度を検出する粒子濃度検出方法において、異なる波長の光を用いてそれぞれの波長における前記液体の透過光量を計測し、その計測される各透過光量毎に透過率を算出し、それら各透過率の比と前記粒子濃度との関係を示す式であって予め設定された関係式に基づいて前記液体の粒子濃度を検出することをその要旨とする。
The means for achieving the above object and the effects thereof will be described below.
In the first aspect of the present invention, the amount of transmitted light transmitted through the liquid by irradiating the liquid from the light emitting unit is measured by the light receiving unit, and the concentration of particles mixed in the liquid based on the measured transmitted light amount In the particle concentration detection method for detecting the light, the transmitted light amount of the liquid at each wavelength is measured using light of different wavelengths, the transmittance is calculated for each measured transmitted light amount, and the ratio of the respective transmittances The gist of the present invention is to detect the particle concentration of the liquid based on a preset relational expression.

本発明者は、透過光量に基づいて液体中の粒子濃度を検出するに際して、異なる波長の光でそれぞれ計測された透過光量を利用することにより、液体の粒子成分比に起因する検出誤差が抑えられることを見出した。   When the present inventor detects the particle concentration in the liquid based on the transmitted light amount, the detection error due to the particle component ratio of the liquid can be suppressed by using the transmitted light amount respectively measured with light of different wavelengths. I found out.

より具体的には、異なる波長の光を用いてそれぞれの波長における液体の透過光量を計測し、その計測される各透過光量毎に透過率を算出する。なお、透過率とは、発光部の発光量と受光部の受光量との比(受光部の受光量/発光部の発光量×100(%))で定義される値である。そして、各透過光量毎に算出されたそれら各透過率の比を求め、その透過率の比と粒子濃度との関係を示す式であって予め設定された関係式に基づいて液体の粒子濃度を検出することにより、粒子濃度の検出に際して、液中粒子の成分比に起因する検出誤差を抑えることができることを見出した。   More specifically, the transmitted light amount of the liquid at each wavelength is measured using light of different wavelengths, and the transmittance is calculated for each measured transmitted light amount. The transmittance is a value defined by a ratio between the light emission amount of the light emitting unit and the light reception amount of the light receiving unit (light reception amount of the light receiving unit / light emission amount of the light emitting unit × 100 (%)). Then, the ratio of the respective transmittances calculated for each transmitted light amount is obtained, and is an expression showing the relationship between the transmittance ratio and the particle concentration, and the liquid particle concentration is calculated based on a preset relational expression. It has been found that detection error due to the component ratio of particles in the liquid can be suppressed when detecting the particle concentration.

こうした態様をもって粒子濃度を検出する上記方法によれば、透過光量に基づいて液体中の粒子濃度を検出するに際して、液中粒子の成分比に起因する検出誤差を好適に抑えることができるようになる。   According to the above method for detecting the particle concentration in such a manner, when detecting the particle concentration in the liquid based on the amount of transmitted light, it is possible to suitably suppress the detection error due to the component ratio of the particles in the liquid. .

また、本発明者は、透過率の比の対数と粒子濃度との関係は強い相関にあることを確認した。そこで、請求項2に記載の発明によるように、透過率の比の対数を変数とする粒子濃度の近似式を求め、透過率の比と粒子濃度との関係を示す上記関係式としてその近似式を用いることにより、液中粒子の成分比に起因する検出誤差が抑えられた、精度の高い粒子濃度を適切に検出することができるようになる。   The inventor has also confirmed that the relationship between the logarithm of the transmittance ratio and the particle concentration has a strong correlation. Therefore, according to the invention described in claim 2, an approximate expression of the particle concentration using the logarithm of the transmittance ratio as a variable is obtained, and the approximate expression as the above relational expression showing the relationship between the transmittance ratio and the particle concentration. By using this, it is possible to appropriately detect a highly accurate particle concentration in which detection errors due to the component ratio of particles in the liquid are suppressed.

なお、請求項3に記載の発明によるように、透過率の比を変数とする粒子濃度の3次関数式を求め、透過率の比と粒子濃度との関係を示す上記関係式としてその関数式を用いるようにしても、液中粒子の成分比に起因する検出誤差が抑えられた、精度の高い粒子濃度を適切に検出することができるようになる。   As in the third aspect of the present invention, a cubic function expression of the particle concentration using the transmittance ratio as a variable is obtained, and the function expression is used as the relational expression indicating the relationship between the transmittance ratio and the particle concentration. Even if it is used, it becomes possible to appropriately detect a highly accurate particle concentration in which detection errors due to the component ratio of particles in the liquid are suppressed.

上記異なる波長の光としては、液中の粒子によって散乱、及び吸収される短波長の光と、同粒子によって散乱される長波長の光とを用いることが望ましく、具体的には請求項4に記載の発明によるように、短波長の光として可視光を利用し、長波長の光として赤外光を利用することにより、液中粒子の成分比に起因する検出誤差を適切に抑えることができるようになる。   As the light of the different wavelengths, it is desirable to use short wavelength light scattered and absorbed by particles in the liquid and long wavelength light scattered by the particles. As described in the invention, by using visible light as short-wavelength light and using infrared light as long-wavelength light, detection errors due to the component ratio of particles in the liquid can be appropriately suppressed. It becomes like this.

また、請求項5に記載の発明によるように、上記可視光として、600nm〜700nmの波長の光を用いるようにしたり、請求項6に記載の発明によるように、上記赤外光として、800nm〜1100nmの波長の光を用いるようにしたりすることにより、異なる波長の光でそれぞれ計測される上記各透過光量を好適に計測することができるようになる。   According to the invention described in claim 5, light having a wavelength of 600 nm to 700 nm is used as the visible light, and as the infrared light according to invention described in claim 6, 800 nm to By using light having a wavelength of 1100 nm, it is possible to suitably measure the respective transmitted light amounts respectively measured with light of different wavelengths.

以下、この発明にかかる粒子濃度検出方法を具体化した一実施形態について、図1〜図9を併せ参照して説明する。
図1に、本実施形態の粒子濃度検出方法に用いる粒子濃度検出装置の構成を示す。同粒子濃度検出装置は内燃機関の潤滑油を検査対象液とし、その潤滑油の透過光量に基づいて当該潤滑油に混入した粒子(例えば煤等)の濃度を検出するようにしている。この粒子濃度検出装置は、検出機構10、演算部20、表示部30等から構成されている。
Hereinafter, an embodiment embodying a particle concentration detection method according to the present invention will be described with reference to FIGS.
FIG. 1 shows the configuration of a particle concentration detection apparatus used in the particle concentration detection method of this embodiment. The particle concentration detection apparatus uses the lubricating oil of an internal combustion engine as a liquid to be inspected, and detects the concentration of particles (for example, soot) mixed in the lubricating oil based on the amount of light transmitted through the lubricating oil. The particle concentration detection apparatus includes a detection mechanism 10, a calculation unit 20, a display unit 30, and the like.

図2に、検出機構10の外観図を示す。この検出機構10は検査対象液である潤滑油の透過光量を計測する機構であり、大きくはボディー11、潤滑油の透過光量を計測する検出部12、潤滑油を入れる容器であって検出機構10から着脱可能なセル13、検出部12への電力供給や同検出部12からの計測信号が出力される入出力ポート14等から構成されている。   FIG. 2 shows an external view of the detection mechanism 10. The detection mechanism 10 is a mechanism that measures the amount of light transmitted through the lubricating oil that is the liquid to be inspected, and is largely a body 11, a detection unit 12 that measures the amount of light transmitted through the lubricating oil, and a container that contains the lubricating oil. The detachable cell 13 includes a power supply to the detection unit 12, an input / output port 14 from which a measurement signal is output from the detection unit 12, and the like.

図3に、セル13の構造を示す。このセル13は、開口面を備える有底のケース13a及びその開口面を閉塞するプレート13bから構成されている。そして、検査対象液である潤滑油がケース13aに入れられた後、同潤滑油はプレート13bによってケース13a内に密閉される。なお、このセル13は光の減衰率が小さい素材、例えば石英ガラス等で形成されている。   FIG. 3 shows the structure of the cell 13. The cell 13 includes a bottomed case 13a having an opening surface and a plate 13b for closing the opening surface. And after lubricating oil which is a liquid for inspection is put into case 13a, the lubricating oil is sealed in case 13a by plate 13b. The cell 13 is made of a material having a low light attenuation rate, such as quartz glass.

図4に、ボディー11の部分断面図であって、先の図2に示すA部の断面構造を示す。この図4に示すように、ボディー11には、セル13を挿入可能な挿入穴15が形成されており、同セル13は検出機構10に対して着脱可能となっている。   FIG. 4 is a partial cross-sectional view of the body 11 and shows a cross-sectional structure of a portion A shown in FIG. As shown in FIG. 4, an insertion hole 15 into which the cell 13 can be inserted is formed in the body 11, and the cell 13 can be attached to and detached from the detection mechanism 10.

ボディー11内に構成される上記検出部12は、光を発する発光部12aとその光を受光する受光部12bとから構成されており、さらにその発光部12aは、図5に示すように、波長が670nmの可視光を発する可視光発光部12a1、及び波長が890nmの赤外光を発する赤外光発光部12a2から構成されている。   The detection unit 12 configured in the body 11 includes a light emitting unit 12a that emits light and a light receiving unit 12b that receives the light, and the light emitting unit 12a has a wavelength as shown in FIG. Is composed of a visible light emitting unit 12a1 that emits visible light having a wavelength of 670 nm and an infrared light emitting unit 12a2 that emits infrared light having a wavelength of 890 nm.

また、同図5に示すように、受光部12bは、可視光発光部12a1から発光された光を受光する可視光受光部12b1、及び赤外光発光部12a2から発光された光を受光する赤外光受光部12b2から構成されている。   In addition, as shown in FIG. 5, the light receiving unit 12b receives the light emitted from the visible light emitting unit 12a1 and the red light receiving the light emitted from the infrared light emitting unit 12a2. The external light receiving unit 12b2 is configured.

これら発光部12a及び受光部12bは、先の図4に示すように、前記挿入穴15を挟んで互いに対向するように配設されている。さらに、発光部12a及び受光部12bの間の光路が前記セル13の挿入方向に対して直交するように当該発光部12a及び受光部12bは配設されている。こうした構成により、セル13は、発光部12a及び受光部12bの間を着脱可能とされている。   The light emitting portion 12a and the light receiving portion 12b are disposed so as to face each other with the insertion hole 15 interposed therebetween as shown in FIG. Further, the light emitting unit 12a and the light receiving unit 12b are arranged so that the optical path between the light emitting unit 12a and the light receiving unit 12b is orthogonal to the insertion direction of the cell 13. With this configuration, the cell 13 is detachable between the light emitting unit 12a and the light receiving unit 12b.

前記可視光発光部12a1は、潤滑油に可視光を照射する部分であり、発光素子や発光用レンズ等から構成されている。この発光素子は波長が670nmの検査光を発する素子であり、所定の電流が流されと一定光量の可視光を発する。なお、本実施形態ではこの発光素子として、LED(発光ダイオード)を用いている。発光素子の先端には上記発光用レンズが設けられており、このレンズによって検査光は平行光に変換される。すなわち、発光用レンズによって発光素子から発せられる光のほとんどが拡散されることなく可視光受光部12b1に向けられる。なお、前記赤外光発光部12a2は、その発光素子が波長890nmの検査光を発する素子である点、及びその検査光が赤外光受光部12b2に向けられている点を除いて、可視光発光部12a1と同一の構造になっている。   The visible light emitting portion 12a1 is a portion that irradiates the lubricating oil with visible light, and includes a light emitting element, a light emitting lens, and the like. This light emitting element is an element that emits inspection light having a wavelength of 670 nm, and emits a constant amount of visible light when a predetermined current flows. In the present embodiment, an LED (light emitting diode) is used as the light emitting element. The light emitting element is provided with the light emitting lens, and the inspection light is converted into parallel light by the lens. That is, most of the light emitted from the light emitting element by the light emitting lens is directed to the visible light receiving unit 12b1 without being diffused. The infrared light emitting section 12a2 is visible light except that the light emitting element is an element that emits inspection light having a wavelength of 890 nm and the inspection light is directed to the infrared light receiving section 12b2. It has the same structure as the light emitting part 12a1.

前記可視光受光部12b1は、可視光発光部12a1から発せられた検査光の光量を検出する部分であり、受光素子等から構成されている。この受光素子は、可視光発光部12a1からの検査光を受光してその光量を検出する素子であり、その出力は受光量が増大するほど大きくなる。なお、本実施形態ではこの受光素子として、フォトダイオードを用いている。そしてこの受光素子の出力は増幅回路にて適宜増幅される。なお、赤外光受光部12b2は、赤外光発光部12a2から発せられた検査光の光量を検出する部分である点を除いて、可視光受光部12b1と同一の構造になっている。   The visible light receiving portion 12b1 is a portion that detects the amount of inspection light emitted from the visible light emitting portion 12a1, and includes a light receiving element or the like. The light receiving element is an element that receives inspection light from the visible light emitting unit 12a1 and detects the amount of light, and the output increases as the amount of received light increases. In the present embodiment, a photodiode is used as the light receiving element. The output of the light receiving element is appropriately amplified by an amplifier circuit. The infrared light receiving unit 12b2 has the same structure as the visible light receiving unit 12b1 except that the infrared light receiving unit 12b2 is a part that detects the amount of inspection light emitted from the infrared light emitting unit 12a2.

そして、前記セル13が挿入穴15に挿入されていない状態、すなわち発光部12a及び受光部12bの間にセル13が装着されていない状態において発光部12aを発光させた場合には、可視光発光部12a1の発光量(以下、可視光発光量Io1という)が可視光受光部12b1によって計測される。また、同様に、赤外光発光部12a2の発光量(以下、赤外光発光量Io2という)が赤外光受光部12b2によって計測される。   When the light emitting unit 12a emits light when the cell 13 is not inserted into the insertion hole 15, that is, when the cell 13 is not mounted between the light emitting unit 12a and the light receiving unit 12b, visible light is emitted. The light emission amount of the unit 12a1 (hereinafter referred to as the visible light emission amount Io1) is measured by the visible light receiving unit 12b1. Similarly, the light emission amount of the infrared light emitting unit 12a2 (hereinafter referred to as infrared light emission amount Io2) is measured by the infrared light receiving unit 12b2.

一方、前記セル13が挿入穴15に挿入されている状態、すなわち発光部12a及び受光部12bの間にセル13が装着されている状態において発光部12aを発光させた場合には、潤滑油を透過した可視光の透過光量(以下、可視光透過量I1という)が可視光受光部12b1によって計測される。また、同潤滑油を透過した赤外光の透過光量(以下、赤外光透過量I2という)が赤外光受光部12b2によって計測される。   On the other hand, when the light emitting unit 12a emits light in a state where the cell 13 is inserted into the insertion hole 15, that is, in a state where the cell 13 is mounted between the light emitting unit 12a and the light receiving unit 12b, lubricating oil is used. The transmitted light amount of the transmitted visible light (hereinafter referred to as visible light transmission amount I1) is measured by the visible light receiving unit 12b1. Further, the amount of infrared light transmitted through the lubricating oil (hereinafter referred to as infrared light transmission amount I2) is measured by the infrared light receiving unit 12b2.

ここで、受光部12bで計測される透過光量は粒子濃度のみならず、発光部12aの温度特性、検出部12に付着する汚れ、あるいは検出部12の経時変化等といった検出部12の特性変化によっても変化する。そのため、粒子濃度の検出精度を高める上では、こうした検出部12の特性変化に起因する誤差の影響を可能な限り抑えることが望ましい。そこで、本実施形態では、潤滑油に可視光を照射したときの透過率(以下、可視光透過率T1という)を、上記可視光発光量Io1及び可視光透過量I1に基づいて次式(1)から求めるようにしている。また、潤滑油に赤外光を照射したときの透過率(以下、赤外光透過率T2という)を、上記赤外光発光量Io2及び赤外光透過量I2に基づいて次式(2)から求めるようにしている。なお、周知のように、透過率とは発光部の発光量と受光部の受光量との比(受光部の受光量/発光部の発光量×100(%))で定義される値であり、粒子濃度が高くなるほどその値は小さくなる。   Here, the amount of transmitted light measured by the light receiving unit 12b is not only due to the particle concentration, but also due to changes in the characteristics of the detection unit 12, such as temperature characteristics of the light emitting unit 12a, dirt attached to the detection unit 12, or changes over time of the detection unit 12. Also changes. Therefore, in order to increase the detection accuracy of the particle concentration, it is desirable to suppress as much as possible the influence of the error due to the characteristic change of the detection unit 12. Therefore, in this embodiment, the transmittance when the lubricating oil is irradiated with visible light (hereinafter referred to as visible light transmittance T1) is expressed by the following formula (1) based on the visible light emission amount Io1 and the visible light transmission amount I1. ). Further, the transmittance when the lubricating oil is irradiated with infrared light (hereinafter referred to as infrared light transmittance T2) is expressed by the following equation (2) based on the infrared light emission amount Io2 and the infrared light transmission amount I2. I want to ask from. As is well known, the transmittance is a value defined by the ratio of the amount of light emitted from the light emitting unit to the amount of received light from the light receiving unit (the amount of light received by the light receiving unit / the amount of light emitted from the light emitting unit × 100 (%)). As the particle concentration increases, the value decreases.


可視光透過率T1=可視光透過量I1/可視光発光量Io1×100(%) …(1)

赤外光透過率T2=赤外光透過量I2/赤外光発光量Io2×100(%) …(2)

上記可視光発光量Io1は、可視光発光部12a1の発光量を示すものであり、検出部12の特性変化に起因する発光量や受光量の変化を含んだものになっている。また、可視光透過量I1は、検出部12の特性変化に起因する発光量や受光量の変化と潤滑油中の粒子濃度とが反映されたものになっている。そして、可視光発光部12a1や可視光受光部12b1から構成される検出部12にあってその特性変化に起因する上記可視光発光量Io1の変化分と、同特性変化に起因する上記可視光透過量I1の変化分とはほぼ同一である。従って、可視光発光量Io1と可視光透過量I1との比を求めれば、可視光発光量Io1の変化分と可視光透過量I1の変化分とを相殺することができ、その比、すなわち上記可視光透過率T1には潤滑油の粒子濃度のみが反映される。そのため、上記態様で透過率を求めることにより、粒子濃度の検出に際して、検出部12の特性変化に起因する誤差の影響を抑えることが可能となる。同様に、上記赤外光透過率T2にも潤滑油の粒子濃度のみが反映され、もって、検出部12の特性変化に起因する誤差の影響を抑えることが可能となる。

Visible light transmittance T1 = visible light transmission amount I1 / visible light emission amount Io1 × 100 (%) (1)

Infrared light transmittance T2 = Infrared light transmission amount I2 / Infrared light emission amount Io2 × 100 (%) (2)

The visible light emission amount Io1 indicates the light emission amount of the visible light emission unit 12a1, and includes changes in the light emission amount and the light reception amount due to the characteristic change of the detection unit 12. Further, the visible light transmission amount I1 reflects the change in the light emission amount and the light reception amount due to the characteristic change of the detection unit 12 and the particle concentration in the lubricating oil. And in the detection part 12 comprised from the visible light light emission part 12a1 and the visible light light-receiving part 12b1, the amount of change of the visible light emission amount Io1 caused by the characteristic change and the visible light transmission caused by the characteristic change The amount of change of the quantity I1 is almost the same. Therefore, if the ratio between the visible light emission amount Io1 and the visible light transmission amount I1 is obtained, the change in the visible light emission amount Io1 and the change in the visible light transmission amount I1 can be offset, that is, Only the particle concentration of the lubricating oil is reflected in the visible light transmittance T1. Therefore, by obtaining the transmittance in the above-described manner, it is possible to suppress the influence of errors caused by the characteristic change of the detection unit 12 when detecting the particle concentration. Similarly, only the particle concentration of the lubricating oil is reflected in the infrared light transmittance T2, so that it is possible to suppress the influence of errors caused by the characteristic change of the detection unit 12.

なお、本実施形態では、このような態様をもって検出部12の特性変化に起因する誤差の影響を抑えるようにしているが、この他の態様をもってそうした誤差の影響を抑えるようにしてもよい。例えば、予め設定された可視光発光量Io1及び赤外光発光量Io2の初期値(装置組み込み時の発光量等)と上記可視光透過量I1及び赤外光透過量I2とに基づいて可視光透過率T1及び赤外光透過率T2をそれぞれ求め、それら可視光透過率T1及び赤外光透過率T2を適宜の係数にてそれぞれ補正するようにしてもよい。また、場合によっては、こうした誤差抑制のための処置を省略してもよい。   In this embodiment, the influence of the error due to the characteristic change of the detection unit 12 is suppressed with such an aspect, but the influence of such an error may be suppressed with another aspect. For example, visible light based on preset initial values of visible light emission amount Io1 and infrared light emission amount Io2 (emission amount when incorporated in the device, etc.) and the visible light transmission amount I1 and infrared light transmission amount I2. The transmittance T1 and the infrared light transmittance T2 may be obtained, respectively, and the visible light transmittance T1 and the infrared light transmittance T2 may be corrected by appropriate coefficients. Further, in some cases, such a measure for suppressing errors may be omitted.

他方、図6に、潤滑油の粒子濃度と透過率との関係について、発光部と受光部との間の距離、すなわち光路長を種々変更した場合の傾向を模式的に示す。なお、同図6においてL1〜L7で示される値は、種々設定された上記光路長の値を表している。   On the other hand, FIG. 6 schematically shows the tendency when the distance between the light emitting part and the light receiving part, that is, the optical path length is variously changed, regarding the relationship between the particle concentration of the lubricating oil and the transmittance. In FIG. 6, the values indicated by L1 to L7 represent various values of the optical path length set.

この図6に示されるように、光路長が短くなるほど粒子濃度に対する透過率は高くなる傾向にあり、検出可能な粒子濃度の範囲は高濃度領域側に広くなる傾向にある。換言すれば検出可能な粒子濃度の上限値が大きくなる傾向にある。これは光路長が短くなるほど透過光量における減衰量が小さくなり、受光部で受光される光量が増大するためである。   As shown in FIG. 6, as the optical path length becomes shorter, the transmittance with respect to the particle concentration tends to increase, and the detectable particle concentration range tends to widen toward the high concentration region. In other words, the upper limit value of the detectable particle concentration tends to increase. This is because as the optical path length becomes shorter, the attenuation amount in the transmitted light amount becomes smaller and the light amount received by the light receiving unit increases.

一方、光路長が長くなるほど透過光量における減衰量は大きくなるため、高濃度領域では粒子濃度の差違に起因する光透過率の変化は小さくなる。このため光路長が長くなるほど高濃度領域にある粒子濃度を検出することは困難になり、検出可能な粒子濃度の範囲は狭くなる。しかし、同図6に示されるように、低濃度領域では光路長が長くなるほど粒子濃度の差違に起因する光透過率の変化は大きくなる傾向にあるため、わずかな粒子濃度の違いも検出することができるようになる。すなわち、光路長が短くなるほどより高濃度の粒子濃度を検出することができる一方、光路長が長くなるほど低濃度領域における粒子濃度の検出精度をより向上させることができる。従って、計測しようとしている潤滑油の粒子濃度範囲にあわせて上記光路長を適宜設定したり、可変としたりすることにより、その粒子濃度を適切に検出することができる。   On the other hand, as the optical path length increases, the amount of attenuation in the transmitted light amount increases. Therefore, the change in light transmittance due to the difference in particle concentration is small in the high concentration region. For this reason, as the optical path length becomes longer, it becomes more difficult to detect the particle concentration in the high concentration region, and the detectable particle concentration range becomes narrower. However, as shown in FIG. 6, in the low concentration region, the change in light transmittance tends to increase as the optical path length increases, so that a slight difference in particle concentration is detected. Will be able to. That is, as the optical path length becomes shorter, a higher concentration of particle concentration can be detected. On the other hand, as the optical path length becomes longer, the particle concentration detection accuracy in the low concentration region can be further improved. Therefore, the particle concentration can be appropriately detected by appropriately setting or varying the optical path length according to the particle concentration range of the lubricating oil to be measured.

そこで、本実施形態では、先の図3に示したセル13のケース13aにあって、その深さDが種々異なる複数のケース13a、実質的には先の図5に示す光路長Lが種々異なる複数のケース13aを用意するようにしている。そして、潤滑油の粒子濃度検出に際しては、計測しようとしている潤滑油の粒子濃度範囲に適した深さDを有するケース13aを使用するようにしており、これにより幅広い粒子濃度を精度よく検出することができるようにしている。ちなみに、ガソリンエンジン用の潤滑油であって、0〜10wt%の範囲における粒子濃度を検出する場合には、深さDが0.2mmに形成されているケース13aを使用することが望ましい。   Therefore, in the present embodiment, there are a plurality of cases 13a having different depths D in the case 13a of the cell 13 shown in FIG. 3, and various optical path lengths L shown in FIG. A plurality of different cases 13a are prepared. In detecting the particle concentration of the lubricating oil, the case 13a having a depth D suitable for the particle concentration range of the lubricating oil to be measured is used, and thereby a wide range of particle concentrations can be detected with high accuracy. To be able to. Incidentally, it is desirable to use a case 13a which is a lubricating oil for a gasoline engine and has a depth D of 0.2 mm when detecting a particle concentration in a range of 0 to 10 wt%.

前記演算部20は、中央処理制御装置(CPU)、各種プログラムやマップ等を予め記憶した読出専用メモリ(ROM)、CPUの演算結果等を一時記憶するランダムアクセスメモリ(RAM)、入力インターフェース、出力インターフェース等を備えたマイクロコンピュータを中心として構成されている。この演算部20は、検出機構10の入出力ポート14から出力される信号を演算処理して潤滑油の粒子濃度を算出するとともに、その演算結果、例えば検出された粒子濃度等を表示部30に表示する。   The arithmetic unit 20 includes a central processing control device (CPU), a read-only memory (ROM) that stores various programs and maps in advance, a random access memory (RAM) that temporarily stores CPU calculation results, an input interface, and an output. It is mainly composed of a microcomputer equipped with an interface. The calculation unit 20 calculates a particle concentration of the lubricating oil by calculating a signal output from the input / output port 14 of the detection mechanism 10, and outputs the calculation result, for example, the detected particle concentration to the display unit 30. indicate.

次に、演算部20によって実施される潤滑油の粒子濃度検出方法であって、本実施形態における粒子濃度検出方法について、図7〜図9を併せ参照して説明する。
一般に、内燃機関の潤滑油の場合、その劣化に伴って油中に混入する粒子の成分としては、カルボニル基、ニトロ基、ベンゼン核、硫酸塩、煤、摩耗粉などがある。こうした粒子の成分比は、潤滑油の種類、内燃機関の種類、機関の運転状態、あるいは潤滑油の劣化進行状態等によって変化する。ちなみに、カルボニル基やニトロ基は茶褐色であり、ベンゼン核、硫酸塩、煤、摩耗粉は黒色であるため、そうした粒子の成分比が異なると、潤滑油の色も異なるようになる。
Next, the particle concentration detection method of the lubricating oil performed by the calculation unit 20 and the particle concentration detection method in the present embodiment will be described with reference to FIGS.
In general, in the case of a lubricating oil for an internal combustion engine, the components of particles mixed in the oil as it deteriorates include carbonyl groups, nitro groups, benzene nuclei, sulfates, soot, and wear powder. The component ratio of such particles varies depending on the type of lubricating oil, the type of internal combustion engine, the operating state of the engine, the progress of deterioration of the lubricating oil, and the like. By the way, the carbonyl group and nitro group are brown, and the benzene nucleus, sulfate, soot, and wear powder are black. Therefore, if the composition ratio of such particles is different, the color of the lubricating oil will be different.

潤滑油に入射された光は、スラッジ前駆体等といった液中の粒子に当たることなくそのまま液中を透過したり、同粒子に当たって多重散乱されながら液中を透過したりする。可視光は多重散乱される際、粒子の色によって吸収される性質がある一方、赤外光はそうした多重散乱の際に吸収されない性質がある。   The light incident on the lubricating oil passes through the liquid as it is without hitting particles in the liquid such as a sludge precursor, or passes through the liquid while being scattered multiple times. Visible light has the property of being absorbed by the color of the particles when multiple scattered, while infrared light has the property of not being absorbed by such multiple scattering.

図7に、粒子濃度はほぼ同一であって、粒子の成分比が異なる2種類の劣化油について、それら透過率の波長特性を示す。同図7に示されるように、粒子濃度がほぼ同一である劣化油A及び劣化油Bについて、可視光域では劣化油Aの透過率が劣化油Bの透過率よりも小さくなっている。一方、赤外光域では劣化油Aの透過率が劣化油Bの透過率よりも大きくなっており、検査光の波長によって透過率の大小関係は変化することがわかる。劣化油Aは劣化油Bに比べて可視光域の透過率が小さくなっていることから、吸光成分となる粒子、例えば黒色の粒子が多いと考えられる。   FIG. 7 shows the wavelength characteristics of the transmittances of two kinds of deteriorated oils having almost the same particle concentration and different particle component ratios. As shown in FIG. 7, for the deteriorated oil A and the deteriorated oil B having almost the same particle concentration, the transmittance of the deteriorated oil A is smaller than the transmittance of the deteriorated oil B in the visible light region. On the other hand, in the infrared light region, the transmittance of the deteriorated oil A is larger than the transmittance of the deteriorated oil B, and it can be seen that the magnitude relationship of the transmittance changes depending on the wavelength of the inspection light. Since the deteriorated oil A has a lower visible light transmittance than the deteriorated oil B, it is considered that there are many particles that serve as light absorbing components, for example, black particles.

このように潤滑油中の粒子の成分比は、潤滑油内での光の散乱量や吸収量に影響を与える。従って、潤滑油に含まれる粒子の量が同じ、すなわち粒子濃度が同じであっても同粒子の成分比が異なっていれば透過光量は変化してしまう。そのため、透過光量に基づく粒子濃度の検出は、遠心分離法等による粒子濃度の測定方法と比較して、より簡易な態様で粒子濃度を検出することができるものの、そうした粒子の成分比の影響を受けやすく、検出精度の点では劣ってしまうといった問題がある。そこで、本実施形態では、透過光量に基づいて潤滑油中の粒子濃度を検出するに際して、以下に説明するごとく、異なる波長の光を用いてそれぞれの波長における潤滑油の透過光量を計測するようにしている。そして、それら計測される各透過光量から算出される各透過率を利用して粒子濃度を検出することにより、液中粒子の成分比に起因する粒子濃度の検出誤差を抑えるようにしている。   Thus, the component ratio of the particles in the lubricating oil affects the amount of light scattering and absorption in the lubricating oil. Accordingly, even if the amount of particles contained in the lubricating oil is the same, that is, the particle concentration is the same, the amount of transmitted light changes if the component ratio of the particles is different. Therefore, the particle concentration detection based on the amount of transmitted light can detect the particle concentration in a simpler mode compared to the particle concentration measurement method such as the centrifugal separation method. There is a problem that it is easily received and inferior in detection accuracy. Therefore, in this embodiment, when detecting the particle concentration in the lubricating oil based on the transmitted light amount, as described below, the transmitted light amount of the lubricating oil at each wavelength is measured using light of different wavelengths. ing. Then, by detecting each particle concentration using each transmittance calculated from each measured transmitted light amount, a detection error of the particle concentration due to the component ratio of the particles in the liquid is suppressed.

まず、ランベルト・ベールの法則を用いて、液体の透過率を光の吸収項と散乱項とで表すと、次式(3)のようになる。

Ln(1/T)={ε(λ)×C×L}+{G(λ)×C×L} …(3)
Ln:自然対数
T:液体の透過率
ε(λ):光の波長λにおける粒子の吸光係数
G(λ):光の波長λにおける粒子の減光係数
C:粒子濃度
L:光路長

なお、式3において、「{ε(λ)×C×L}」の項は吸収項であり、「{G(λ)×C×L}」の項は散乱項である。
First, using the Lambert-Beer law, the transmittance of the liquid is expressed by the light absorption term and the scattering term as shown in the following equation (3).

Ln (1 / T) = {ε (λ) × C × L} + {G (λ) × C × L} (3)
Ln: natural logarithm
T: Liquid transmittance ε (λ): Absorption coefficient of particles at wavelength λ of light G (λ): Dimming coefficient of particles at wavelength λ of light
C: Particle concentration
L: Optical path length

In Equation 3, the term “{ε (λ) × C × L}” is an absorption term, and the term “{G (λ) × C × L}” is a scattering term.

可視光発光部12a1から潤滑油に向けて照射される可視光は、散乱成分、吸収成分、及び透過成分に分類される。従って、上記可視光透過率T1は、上記式(3)から次式(4)のように表すことができる。   Visible light emitted toward the lubricating oil from the visible light emitting unit 12a1 is classified into a scattering component, an absorption component, and a transmission component. Therefore, the visible light transmittance T1 can be expressed by the following equation (4) from the above equation (3).


Ln(1/T1)={ε(670)×C×L}+{G(670)×C×L} …(4)
T1:潤滑油に波長670nmの光を照射したときの透過率
(=可視光透過量I1/可視光発光量Io1×100)
ε(670):光の波長670nmにおける粒子の吸光係数
G(670):光の波長670nmにおける粒子の減光係数

一方、赤外光発光部12a2から潤滑油に向けて照射される赤外光は、散乱成分及び透過成分に分類される。従って、上記赤外光透過率T2は、上記式(3)から次式(5)のように表すことができる。

Ln (1 / T1) = {ε (670) × C × L} + {G (670) × C × L} (4)
T1: Transmittance when the lubricating oil is irradiated with light having a wavelength of 670 nm
(= Visible light transmission amount I1 / visible light emission amount Io1 × 100)
ε (670): Absorption coefficient of particle at light wavelength of 670 nm G (670): Light attenuation coefficient of particle at light wavelength of 670 nm

On the other hand, the infrared light irradiated toward the lubricating oil from the infrared light emitting unit 12a2 is classified into a scattering component and a transmission component. Therefore, the infrared light transmittance T2 can be expressed as the following equation (5) from the above equation (3).


Ln(1/T2)=G(890)×C×L …(5)
T2:潤滑油に波長890nmの光を照射したときの透過率
(=赤外光透過量I2/赤外光発光量Io2×100)
G(890):光の波長890nmにおける粒子の減光係数

次に、上記式(4)と式(5)との差を求め、粒子濃度Cについてまとめると次式(6)のようになる。

Ln (1 / T2) = G (890) × C × L (5)
T2: Transmittance when the lubricating oil is irradiated with light having a wavelength of 890 nm
(= Infrared light transmission amount I2 / Infrared light emission amount Io2 × 100)
G (890): Particle extinction coefficient at light wavelength of 890 nm

Next, the difference between the above formula (4) and formula (5) is obtained, and the particle concentration C is summarized as the following formula (6).

Figure 2006349634
この式(6)に示されるように、粒子濃度Cは、透過率の比と粒子濃度Cとの関係を示す式であって予め設定可能な関係式から求めることができる。より具体的には、可視光透過率T1と赤外光透過率T2と比の対数を変数とする近似式から粒子濃度Cを求めることができることを本発明者は見出した。
Figure 2006349634
As shown in this equation (6), the particle concentration C is an equation showing the relationship between the transmittance ratio and the particle concentration C, and can be obtained from a relational equation that can be set in advance. More specifically, the present inventor has found that the particle concentration C can be obtained from an approximate expression using the logarithm of the ratio of the visible light transmittance T1 and the infrared light transmittance T2 as a variable.

そこで、本発明者は、粒子の成分比や粒子濃度が異なる種々の潤滑油を市場から回収し、それら各潤滑油について、可視光透過率T1及び赤外光透過率T2を計測してそれら各透過率の比の対数を算出するとともに、その透過率の比の対数の算出対象となった潤滑油の実際の粒子濃度を遠心分離法によって計測した。図8に、その計測結果であって、透過率の比の対数と実際の粒子濃度との対応関係を表した散布図を示す。なお、ここでの実際の粒子濃度は、nペンタン不溶解分による不溶解分濃度を示している。この図8に示されるように、「−Ln(T1/T2)」にて表される透過率の比の対数と実際の粒子濃度とは強い相関にあり、その相関係数は「0.99」であった。また、この図8の計測結果に関する回帰式を、次式(7)に示す。   Therefore, the present inventor collects various lubricating oils having different particle component ratios and particle concentrations from the market, and measures the visible light transmittance T1 and the infrared light transmittance T2 for each of these lubricating oils to measure each of them. The logarithm of the transmittance ratio was calculated, and the actual particle concentration of the lubricating oil that was the calculation target of the logarithm of the transmittance ratio was measured by a centrifugal separation method. FIG. 8 is a scatter diagram showing the correspondence between the logarithm of the transmittance ratio and the actual particle concentration, which is the measurement result. In addition, the actual particle concentration here has shown the insoluble content concentration by n pentane insoluble content. As shown in FIG. 8, the logarithm of the transmittance ratio represented by “−Ln (T1 / T2)” and the actual particle concentration have a strong correlation, and the correlation coefficient is “0.99”. "Met. Moreover, the regression equation regarding the measurement result of FIG. 8 is shown in the following equation (7).


粒子濃度C=54264×{−Ln(T1/T2)} …(7)

この式(7)は、上記式(6)においてαの値を「54264」としたものに一致する。

Particle concentration C = 54264 × {−Ln (T1 / T2)} (7)

This equation (7) matches the equation (6) in which the value of α is “54264”.

このように、粒子の成分比が異なっていても、透過率の比の対数と実際の粒子濃度とは強い相関にあり、そうした透過率の比の対数に基づいて粒子濃度を検出することにより、潤滑油の粒子成分比に起因する検出誤差が抑えられることを本発明者は確認した。   Thus, even if the component ratio of particles is different, the logarithm of the transmittance ratio and the actual particle concentration are strongly correlated, and by detecting the particle concentration based on the logarithm of such a transmittance ratio, The present inventor confirmed that the detection error caused by the particle component ratio of the lubricating oil can be suppressed.

すなわち、本発明者は、透過光量に基づいて潤滑油中の粒子濃度を検出するに際して、異なる波長の光でそれぞれ計測された透過光量を利用することにより、潤滑油の粒子成分比に起因する検出誤差が抑えられることを見出した。   That is, when detecting the particle concentration in the lubricating oil based on the transmitted light amount, the present inventor uses the transmitted light amount measured with light of different wavelengths to detect the particle component ratio of the lubricating oil. We found that the error can be suppressed.

より具体的には、異なる波長の光を用いてそれぞれの波長における潤滑油の透過光量を計測し、その計測される各透過光量毎に透過率を算出する。そして、各透過光量毎に算出されたそれら各透過率の比を求め、その透過率の比と粒子濃度との関係を示す関係式に基づいて潤滑油の粒子濃度Cを検出することにより、粒子濃度Cの検出に際して、液中粒子の成分比に起因する検出誤差を抑えることができることを見出した。   More specifically, the transmitted light amount of the lubricating oil at each wavelength is measured using light of different wavelengths, and the transmittance is calculated for each measured transmitted light amount. Then, the ratio of each transmittance calculated for each transmitted light amount is obtained, and the particle concentration C of the lubricating oil is detected based on the relational expression indicating the relationship between the transmittance ratio and the particle concentration. It has been found that when detecting the concentration C, detection errors due to the component ratio of the particles in the liquid can be suppressed.

そこで、本実施形態における粒子濃度検出方法では、式(7)、あるいは式(6)で示される、粒子濃度Cと各透過率の比との対応関係をマップ化して上記ROMに記憶させておく。そして、潤滑油に可視光及び赤外光を照射したときの上記可視光透過率T1及び上記赤外光透過率T2をそれぞれ算出し、それら可視光透過率T1と赤外光透過率T2との比に基づき、ROMに記憶された上記マップを参照して粒子濃度Cを求めるようにしている。   Therefore, in the particle concentration detection method according to the present embodiment, the correspondence relationship between the particle concentration C and the ratio of each transmittance shown by the equation (7) or the equation (6) is mapped and stored in the ROM. . Then, the visible light transmittance T1 and the infrared light transmittance T2 when the lubricating oil is irradiated with visible light and infrared light are respectively calculated, and the visible light transmittance T1 and the infrared light transmittance T2 are calculated. Based on the ratio, the particle concentration C is obtained by referring to the map stored in the ROM.

図9に、本実施形態の粒子濃度検出方法による粒子濃度Cの検出結果を示す。この図9は、市場から回収された潤滑油であって、粒子の成分比や粒子濃度が種々異なる潤滑油について、遠心分離法によって測定された実際の粒子濃度と本検出方法によって検出された粒子濃度Cとの対応関係を示す散布図となっている。同図9に示されるように、実際の粒子濃度と、本検出方法によって検出された粒子濃度Cとは強い相関にあり、その相関係数は「0.96」であった。この結果から、透過光量に基づいて潤滑油の粒子濃度Cを検出するに際して、本検出方法を用いることにより、液中粒子の成分比に起因する検出誤差を抑えることができると確認された。   FIG. 9 shows the detection result of the particle concentration C by the particle concentration detection method of the present embodiment. FIG. 9 shows the actual oil concentration measured by the centrifugal separation method and the particles detected by the present detection method for lubricating oils collected from the market and having different particle component ratios and particle concentrations. It is a scatter diagram showing the correspondence with density C. As shown in FIG. 9, the actual particle concentration and the particle concentration C detected by the present detection method have a strong correlation, and the correlation coefficient is “0.96”. From this result, it was confirmed that the detection error caused by the component ratio of the particles in the liquid can be suppressed by using this detection method when detecting the particle concentration C of the lubricating oil based on the transmitted light amount.

以上説明したように、本実施形態によれば、次のような効果を得ることができる。
(1)異なる波長の光を用いてそれぞれの波長における潤滑油の透過光量を計測し、その計測される各透過光量毎に透過率を算出し、それら各透過率の比と粒子濃度Cとの関係を示す式であって予め設定された関係式に基づいて粒子濃度Cを検出するようにしている。従って、透過光量に基づいて潤滑油の粒子濃度Cを検出するに際して、液中粒子の成分比に起因する検出誤差を好適に抑えることができるようになる。
As described above, according to the present embodiment, the following effects can be obtained.
(1) The transmitted light amount of the lubricating oil at each wavelength is measured using light of different wavelengths, the transmittance is calculated for each measured transmitted light amount, and the ratio between the respective transmittances and the particle concentration C The particle concentration C is detected based on a relational expression that is a relational expression that is set in advance. Therefore, when detecting the particle concentration C of the lubricating oil based on the amount of transmitted light, it is possible to suitably suppress a detection error caused by the component ratio of the particles in the liquid.

(2)本発明者は、透過率の比の対数と粒子濃度Cとの関係は強い相関にあることを確認した。そこで、透過率の比の対数を変数とする粒子濃度の近似式を求め、透過率の比と粒子濃度との関係を示す上記関係式としてその近似式を用いるようにしている。従って、液中粒子の成分比に起因する検出誤差が抑えられた、精度の高い粒子濃度を適切に検出することができるようになる。   (2) The present inventor confirmed that the relationship between the logarithm of the transmittance ratio and the particle concentration C has a strong correlation. Therefore, an approximate expression of the particle concentration using the logarithm of the transmittance ratio as a variable is obtained, and the approximate expression is used as the relational expression indicating the relationship between the transmittance ratio and the particle concentration. Therefore, it is possible to appropriately detect a highly accurate particle concentration in which detection errors due to the component ratio of the particles in the liquid are suppressed.

(3)上記異なる波長の光として、液中の粒子によって散乱、及び吸収される短波長の光と、同粒子によって散乱される長波長の光とを用いるようにしている。より具体的には、短波長の光として可視光を利用し、長波長の光として赤外光を利用するようにしており、これにより、本検出方法にあって液中粒子の成分比に起因する検出誤差を適切に抑えることができるようになる。   (3) As the light of the different wavelength, short wavelength light scattered and absorbed by particles in the liquid and long wavelength light scattered by the particles are used. More specifically, visible light is used as short-wavelength light, and infrared light is used as long-wavelength light, which results in the component ratio of particles in the liquid in this detection method. Detection error can be suppressed appropriately.

なお、上記実施形態は以下のように変更して実施することもできる。
・可視光発光部12a1及び赤外光発光部12a2といった2つの発光部からそれぞれ可視光及び赤外光を発光させるようにしたが、1つの発光部内に可視光発光素子及び赤外光発光素子を設け、同1つの発光部から可視光及び赤外光を発光させるようにしてもよい。
In addition, the said embodiment can also be changed and implemented as follows.
-Visible light and infrared light are emitted from two light emitting parts such as the visible light emitting part 12a1 and the infrared light emitting part 12a2, respectively, but the visible light emitting element and the infrared light emitting element are provided in one light emitting part. And visible light and infrared light may be emitted from the same light emitting unit.

・可視光として670nmの波長の光を用いるようにしたが、同可視光として600nm〜700nmの範囲の波長の光を用いるようにしても、異なる波長の光でそれぞれ計測される上記各透過光量を好適に計測することができ、もって上記実施形態と同様な効果を得ることができる。   -Although light having a wavelength of 670 nm is used as visible light, even if light having a wavelength in the range of 600 nm to 700 nm is used as the visible light, each transmitted light amount measured with light of a different wavelength is used. Therefore, it is possible to appropriately measure, and the same effect as in the above embodiment can be obtained.

・赤外光として890nmの波長の光を用いるようにしたが、同赤外光として800nm〜1100nmの範囲の波長の光を用いるようにしても、異なる波長の光でそれぞれ計測される上記各透過光量を好適に計測することができ、もって上記実施形態と同様な効果を得ることができる。   Although light having a wavelength of 890 nm is used as infrared light, each of the transmissions measured with light having different wavelengths can be used even if light having a wavelength in the range of 800 nm to 1100 nm is used as the infrared light. The amount of light can be suitably measured, and the same effect as in the above embodiment can be obtained.

・上記実施形態では2つの異なる波長の光を用いるようにしたが、3つ以上の異なる波長の光を用いるようにしてもよい。この場合には、例えば次のような態様で粒子濃度を検出することもできる。まず、A、B、及びCといった3つの波長の光を用いてそれぞれの波長における透過光量を計測し、その計測される各透過光量から各波長毎の透過率を求める。そして、A及びBの波長の光に対応する透過率の比から粒子濃度C1を求めるとともに、A及びCの波長の光に対応する透過率の比から粒子濃度C2を求め、粒子濃度C1及び粒子濃度C2の平均値を最終的な粒子濃度Cとするようにしてもよい。   In the above embodiment, light having two different wavelengths is used, but light having three or more different wavelengths may be used. In this case, for example, the particle concentration can be detected in the following manner. First, the amount of transmitted light at each wavelength is measured using light of three wavelengths such as A, B, and C, and the transmittance for each wavelength is determined from the measured amount of transmitted light. Then, the particle concentration C1 is obtained from the ratio of the transmittance corresponding to the light having the wavelengths A and B, and the particle concentration C2 is obtained from the ratio of the transmittance corresponding to the light having the wavelengths A and C. The average value of the concentration C2 may be the final particle concentration C.

・異なる波長の光として可視光及び赤外光を用いるようにしたが、上記実施形態で説明した検出態様にて粒子濃度を検出する際に、液中粒子の成分比に起因する検出誤差を抑えることができるのであれば、他の波長の光を用いるようにしてもよい。   -Visible light and infrared light are used as light of different wavelengths, but when detecting the particle concentration in the detection mode described in the above embodiment, detection errors due to the component ratio of particles in the liquid are suppressed. If possible, light of other wavelengths may be used.

・上記式(7)や式(6)で示される、粒子濃度Cと各透過率の比との対応関係をマップ化して上記ROMに記憶させておき、そのマップに基づいて粒子濃度Cを求めるようにした。これに代えて、同式(7)や式(6)で示される透過率の比と粒子濃度Cとの関係式から直接、粒子濃度Cを求めるようにしてもよい。   The correspondence relationship between the particle concentration C and the ratio of each transmittance shown in the above equations (7) and (6) is mapped and stored in the ROM, and the particle concentration C is obtained based on the map. I did it. Instead of this, the particle concentration C may be obtained directly from the relational expression between the transmittance ratio and the particle concentration C shown in the equations (7) and (6).

・上記実施形態では、式(6)におけるαを「54264」とした。しかし、この値は一例であり、透過率の比の対数に基づいて粒子濃度Cを求める際に、その精度を適切に向上させることができるのであれば、他の値を用いるようにしてもよい。   In the above embodiment, α in Equation (6) is “54264”. However, this value is only an example, and when the particle concentration C is obtained based on the logarithm of the transmittance ratio, other values may be used as long as the accuracy can be improved appropriately. .

・上記実施形態において、透過率の比と粒子濃度との関係を示す式であって予め設定された関係式は、同透過率の比の対数を変数とする粒子濃度の近似式であった。しかし、透過率の比と粒子濃度との関係を示す関係式として、その他の関係式を用いるようにしてもよい。例えば、透過率の比を変数とする粒子濃度Cの3次関数式を求め、透過率の比と粒子濃度Cとの関係を示す上記関係式としてその関数式を用いるようにした場合でも、同関数式から求められる粒子濃度Cと実際の粒子濃度とは強い相関にあることを本発明者は確認している。従って、そうした3次関数式を用いるようにしても、液中粒子の成分比に起因する検出誤差が抑えられた、精度の高い粒子濃度を適切に検出することができるようになる。ちなみに、この場合の3次関数式であってその一例を次式(8)を示す。   In the above embodiment, the relational expression indicating the relationship between the transmittance ratio and the particle concentration, which is a preset relational expression, is an approximate expression of the particle concentration using the logarithm of the transmittance ratio as a variable. However, other relational expressions may be used as the relational expression indicating the relation between the transmittance ratio and the particle concentration. For example, even when a cubic function expression of the particle concentration C using the transmittance ratio as a variable is obtained and the function expression is used as the relational expression indicating the relationship between the transmittance ratio and the particle concentration C, The present inventor has confirmed that the particle concentration C obtained from the functional equation is strongly correlated with the actual particle concentration. Therefore, even when such a cubic function equation is used, it is possible to appropriately detect a highly accurate particle concentration in which a detection error due to the component ratio of the particles in the liquid is suppressed. Incidentally, a cubic function formula in this case, an example of which is shown by the following formula (8).

Figure 2006349634
・上記セル13の構造は一例である。要は、発光部12a及び受光部12bの間を着脱可能であって、潤滑油を入れることができる構造を有しているものであればよい。
Figure 2006349634
The structure of the cell 13 is an example. In short, what is necessary is just to have the structure which can attach or detach between the light emission part 12a and the light-receiving part 12b, and can put lubricating oil.

・検出機構10に演算部20や表示部30を内蔵させるようにしてもよい。
・また、上記粒子濃度検出装置は一例である。要は、異なる波長の光を用いてそれぞれの波長における潤滑油の透過光量を計測することができる検出部と、上記演算部20相当の構成とを備える粒子濃度検出装置であれば、本発明にかかる粒子濃度検出方法は同様に適用することができる。
-You may make it make the detection part 10 incorporate the calculating part 20 and the display part 30. FIG.
-Moreover, the said particle | grain concentration detection apparatus is an example. In short, any particle concentration detection apparatus including a detection unit capable of measuring the amount of transmitted light of lubricating oil at each wavelength using light of different wavelengths and a configuration corresponding to the calculation unit 20 will be included in the present invention. Such a particle concentration detection method can be similarly applied.

・上記実施形態では内燃機関の潤滑油の粒子濃度を検出するようにしたが、他の液体の粒子濃度を検出する場合にも本発明は同様に適用することができる。   In the above embodiment, the particle concentration of the lubricating oil of the internal combustion engine is detected. However, the present invention can be similarly applied to the case of detecting the particle concentration of another liquid.

本発明の粒子濃度検出方法にかかる一実施形態において、同方法に用いる粒子濃度検出装置の構成を示す概略図。In one embodiment concerning the particle concentration detection method of the present invention, the schematic diagram showing the composition of the particle concentration detection device used for the method. 同実施形態における検出機構の外観図。FIG. 3 is an external view of a detection mechanism in the same embodiment. 同実施形態におけるセルの構造図。FIG. 3 is a structural diagram of a cell in the same embodiment. 図2に示すA部の断面図。Sectional drawing of the A section shown in FIG. 同実施形態における検出部の構成を示す模式図。The schematic diagram which shows the structure of the detection part in the embodiment. 潤滑油の粒子濃度と透過率との関係について、光路長を種々変更した場合の態様を示すグラフ。The graph which shows the aspect at the time of changing various optical path lengths about the relationship between the particle | grain density | concentration of lubricating oil, and the transmittance | permeability. 粒子の成分比が異なる2種類の劣化油について、それら透過率の波長特性を示すグラフ。The graph which shows the wavelength characteristic of those transmittance | permeability about two types of deteriorated oil from which the component ratio of particle | grains differs. 透過率の比の対数と実際の粒子濃度との対応関係を示す散布図。A scatter diagram showing the correspondence between the logarithm of the transmittance ratio and the actual particle concentration. 本検出方法によって検出された粒子濃度Cと実際の粒子濃度との対応関係を示す散布図。The scatter diagram which shows the correspondence of the particle concentration C detected by this detection method, and an actual particle concentration.

符号の説明Explanation of symbols

10…検出機構、11…ボディー、12…検出部、12a…発光部(12a1…可視光発光部、12a2…赤外光発光部、12b…受光部(12b1…可視光受光部、12b2…赤外光受光部)、13…セル、13a…ケース、13b…プレート、14…入出力ポート、15…挿入穴、20…演算部、30…表示部。   DESCRIPTION OF SYMBOLS 10 ... Detection mechanism, 11 ... Body, 12 ... Detection part, 12a ... Light emission part (12a1 ... Visible light emission part, 12a2 ... Infrared light emission part, 12b ... Light reception part (12b1 ... Visible light reception part, 12b2 ... Infrared (Light receiving part), 13 ... cell, 13a ... case, 13b ... plate, 14 ... input / output port, 15 ... insertion hole, 20 ... calculation part, 30 ... display part.

Claims (6)

発光部から液体に光を照射して同液体を透過した透過光量を受光部で計測し、その計測された透過光量に基づいて前記液体に混入した粒子の濃度を検出する粒子濃度検出方法において、
異なる波長の光を用いてそれぞれの波長における前記液体の透過光量を計測し、その計測される各透過光量毎に透過率を算出し、それら各透過率の比と前記粒子濃度との関係を示す式であって予め設定された関係式に基づいて前記液体の粒子濃度を検出する
ことを特徴とする粒子濃度検出方法。
In the particle concentration detection method of irradiating the liquid from the light emitting unit and measuring the transmitted light amount transmitted through the liquid with the light receiving unit, and detecting the concentration of the particles mixed in the liquid based on the measured transmitted light amount,
The amount of transmitted light of the liquid at each wavelength is measured using light of different wavelengths, the transmittance is calculated for each measured amount of transmitted light, and the relationship between the ratio of each transmittance and the particle concentration is shown. A particle concentration detection method comprising: detecting a particle concentration of the liquid based on a relational expression set in advance.
前記関係式は、前記透過率の比の対数を変数とする前記粒子濃度の近似式である
請求項1に記載の粒子濃度検出方法。
The particle concentration detection method according to claim 1, wherein the relational expression is an approximate expression of the particle concentration using a logarithm of the transmittance ratio as a variable.
前記関係式は、前記透過率の比を変数とする前記粒子濃度の3次関数式である
請求項1に記載の粒子濃度検出方法。
The particle concentration detection method according to claim 1, wherein the relational expression is a cubic function expression of the particle concentration using the transmittance ratio as a variable.
前記異なる波長の光として、可視光及び赤外光を用いる
請求項1〜3のいずれか1項に記載の粒子濃度検出方法。
The particle concentration detection method according to claim 1, wherein visible light and infrared light are used as the light having different wavelengths.
前記可視光として、600nm〜700nmの波長の光を用いる
請求項4に記載の粒子濃度検出方法。
The particle concentration detection method according to claim 4, wherein light having a wavelength of 600 nm to 700 nm is used as the visible light.
前記赤外光として、800nm〜1100nmの波長の光を用いる
請求項4または5に記載の粒子濃度検出方法。
The particle concentration detection method according to claim 4, wherein light having a wavelength of 800 nm to 1100 nm is used as the infrared light.
JP2005179668A 2005-06-20 2005-06-20 Method for detecting particle concentration Pending JP2006349634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179668A JP2006349634A (en) 2005-06-20 2005-06-20 Method for detecting particle concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179668A JP2006349634A (en) 2005-06-20 2005-06-20 Method for detecting particle concentration

Publications (1)

Publication Number Publication Date
JP2006349634A true JP2006349634A (en) 2006-12-28

Family

ID=37645641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179668A Pending JP2006349634A (en) 2005-06-20 2005-06-20 Method for detecting particle concentration

Country Status (1)

Country Link
JP (1) JP2006349634A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276281A (en) * 2008-05-16 2009-11-26 Nippon Soken Inc Substance concentration detector
US8139224B2 (en) 2007-07-20 2012-03-20 Toyota Jidosha Kabushiki Kaisha Particle concentration detecting device
JP2017215254A (en) * 2016-06-01 2017-12-07 株式会社Ihi Lubricant state determination device and lubricant state determination method
CN110927123A (en) * 2019-12-11 2020-03-27 宜宾丝丽雅股份有限公司 Rapid detection device and method for transmittance of fiber oil
JP2020180946A (en) * 2019-04-26 2020-11-05 株式会社日立ビルシステム Method and device for detecting foreign substance
KR102249269B1 (en) * 2021-02-02 2021-05-10 주식회사 제이텍 Real-time by-products measuring device using optical concentration analyser of Sodium Hypochlorite

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8139224B2 (en) 2007-07-20 2012-03-20 Toyota Jidosha Kabushiki Kaisha Particle concentration detecting device
JP2009276281A (en) * 2008-05-16 2009-11-26 Nippon Soken Inc Substance concentration detector
JP2017215254A (en) * 2016-06-01 2017-12-07 株式会社Ihi Lubricant state determination device and lubricant state determination method
JP2020180946A (en) * 2019-04-26 2020-11-05 株式会社日立ビルシステム Method and device for detecting foreign substance
JP7165101B2 (en) 2019-04-26 2022-11-02 株式会社日立ビルシステム Foreign matter detection method and foreign matter detection device
CN110927123A (en) * 2019-12-11 2020-03-27 宜宾丝丽雅股份有限公司 Rapid detection device and method for transmittance of fiber oil
KR102249269B1 (en) * 2021-02-02 2021-05-10 주식회사 제이텍 Real-time by-products measuring device using optical concentration analyser of Sodium Hypochlorite
WO2022169189A1 (en) * 2021-02-02 2022-08-11 주식회사 제이텍 Real-time byproduct quantitative measurement device through optical concentration analysis of sodium hypochlorite

Similar Documents

Publication Publication Date Title
CN105823739B (en) Method for determining lipid and other interfering substances in body fluid sample
JP2006349634A (en) Method for detecting particle concentration
US6519034B1 (en) Oil quality sensor
JP6120842B2 (en) Method and system for measuring the concentration of a substance in a body fluid
US5489977A (en) Photomeric means for monitoring solids and fluorescent material in waste water using a falling stream water sampler
Röttgers et al. Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters
US20180011020A9 (en) Optical density monitor and comparator systems and methods
WO2007129948A1 (en) A method and a system for quantitative hemoglobin determination
CN102735626B (en) Method and apparatus for measuring the pH value of medium solution
US8213016B2 (en) Turbidity measuring device and a method for determing a concentration of a turbidity-causing material
US20140362381A1 (en) Method and calibration insert for adjusting, calibrating and/or checking a function of a photometric sensor
CN107064119A (en) For the device for the light source for monitoring optical sensor
JP4794434B2 (en) Apparatus and method for automatically detecting at least one indicator of fluorescence and / or light absorption contained in a liquid service fluid during a process of filling a service fluid into a machine
JP4758401B2 (en) Particle concentration detector
JPH11295220A (en) Liquid sample inspection method and device
Holbrook et al. Excitation–emission matrix fluorescence spectroscopy for natural organic matter characterization: a quantitative evaluation of calibration and spectral correction procedures
Bright et al. Contribution of particulate organic matter to riverine suspended material in the Glendhu Experimental Catchments, Otago, New Zealand
KR20190015382A (en) Method and apparatus for determining the concentration of a substance in a liquid medium
JP7166386B2 (en) Smoke detectors
JPS5910837A (en) Optical measuring device for physical quantity value and concentration of substance and method of disposing scattered piece in indicator chamber
JP2020008578A (en) Method for determining lipids, hemoglobin and bilirubin in body fluid samples
McFarland et al. Impact of phytoplankton size and physiology on particulate optical properties determined with scanning flow cytometry
US9335268B2 (en) Device and method for determining the concentration of fluorophores in a sample
JP2006343200A (en) Particle concentration detection method and particle concentration detection device
JP5635436B2 (en) Chemiluminescence measuring apparatus and chemiluminescence measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105