JP2006349631A - Radiowave monitoring device - Google Patents

Radiowave monitoring device Download PDF

Info

Publication number
JP2006349631A
JP2006349631A JP2005179597A JP2005179597A JP2006349631A JP 2006349631 A JP2006349631 A JP 2006349631A JP 2005179597 A JP2005179597 A JP 2005179597A JP 2005179597 A JP2005179597 A JP 2005179597A JP 2006349631 A JP2006349631 A JP 2006349631A
Authority
JP
Japan
Prior art keywords
radio wave
received
emission source
reception
radiowave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005179597A
Other languages
Japanese (ja)
Other versions
JP4686265B2 (en
Inventor
Shuichi Kawano
修一 川野
Yukihiro Kamimura
幸弘 上村
Hirokazu Shimomaki
裕和 下牧
Yasuhiro Ando
康浩 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005179597A priority Critical patent/JP4686265B2/en
Publication of JP2006349631A publication Critical patent/JP2006349631A/en
Application granted granted Critical
Publication of JP4686265B2 publication Critical patent/JP4686265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiowave monitoring device, detecting an effective radiant power of radiowave emitted from a radiowave emitting source. <P>SOLUTION: The device comprises: a radiowave receiving part 11 receiving radiowave emitted from the radiowave emitting source T; conversion parts 12R and 121-12N converting a received signal received by the radiowave receiving part to received data by digitalization; and a signal processing part 15 processing the received data converted by the conversion parts 12R and 121-12N to determine a distance of the radiowave emitting source T, and determining the effective radiant power of the emitting source T, based on a radiowave attenuation obtained using the determined distance information, the received power of the received signal, and the antenna gain of the radiowave receiving part 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は電波発射源から発射された電波を監視する電波監視装置に関する。   The present invention relates to a radio wave monitoring apparatus that monitors radio waves emitted from a radio wave emission source.

電波監視装置は違法な電波などを監視する装置で、たとえば電波発射源から発射された電波の到来方向や中心周波数、帯域幅、スプリアス強度などを検出している。また、その検出結果を表示器の画面上などに表示している。   A radio wave monitoring device is a device that monitors illegal radio waves and the like, and detects, for example, the arrival direction, center frequency, bandwidth, and spurious intensity of radio waves emitted from a radio wave emission source. The detection result is displayed on the screen of the display.

従来の電波監視装置は、電波の到来方向を検知する場合、たとえば電波発射源から発射された電波を複数のアンテナで受信し、その受信した信号を処理し、電波の到来方向を検知し推定している(特許文献1参照)。
特開平7−209358号公報
When a conventional radio wave monitoring device detects the direction of arrival of radio waves, for example, it receives radio waves emitted from a radio wave emission source with multiple antennas, processes the received signals, detects the direction of arrival of radio waves, and estimates it. (See Patent Document 1).
JP-A-7-209358

従来の電波監視装置は、電波の到来方向および電波の質、たとえば中心周波数や帯域幅、スプリアス強度などを検知している。しかし、電波発射源の実効輻射電力を測定できないため、電波発射源から発射される電波の出力が違法であるかどうかを監視できないという問題がある。   Conventional radio wave monitoring devices detect the arrival direction of radio waves and the quality of radio waves, such as the center frequency, bandwidth, and spurious intensity. However, since the effective radiation power of the radio wave emission source cannot be measured, there is a problem that it is impossible to monitor whether the output of the radio wave emitted from the radio wave emission source is illegal.

本発明は、上記した欠点を解決し、電波発射源から発射される電波の実効輻射電力を測定できる電波監視装置を提供することを目的とする。   An object of the present invention is to provide a radio wave monitoring apparatus that solves the above-described drawbacks and can measure the effective radiated power of radio waves emitted from a radio wave emission source.

本発明の電波監視装置は、電波発射源から発射された電波を受信する電波受信手段と、この電波受信手段で受信した受信信号をデジタル化して受信データに変換する変換手段と、この変換手段で変換した前記受信データを処理し、前記電波発射源の距離を求める距離測定手段と、この距離測定手段で求めた距離情報をもとにその距離による電波減衰量を求める電波減衰量算出手段と、この電波減衰量算出手段で求めた前記電波減衰量および前記受信信号の受信電力、前記電波受信手段のアンテナ利得をもとに、前記電波発射源の実効輻射電力を求める実効輻射電力算出手段とを具備したことを特徴とする。   The radio wave monitoring apparatus according to the present invention includes a radio wave receiving unit that receives a radio wave emitted from a radio wave emitting source, a conversion unit that digitizes a received signal received by the radio wave receiving unit and converts the received signal into reception data, and the conversion unit. A distance measuring means for processing the converted reception data and obtaining a distance of the radio wave emission source; a radio wave attenuation calculating means for obtaining a radio wave attenuation amount based on the distance information obtained by the distance measuring means; An effective radiation power calculating means for obtaining an effective radiation power of the radio wave emission source based on the radio wave attenuation obtained by the radio wave attenuation amount calculating means, the received power of the received signal, and the antenna gain of the radio wave receiving means; It is characterized by having.

本発明によれば、電波監視に必要な情報、たとえば電波発射源から発射される電波の実効輻射電力を測定できる電波監視装置を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the radio wave monitoring apparatus which can measure the information required for radio wave monitoring, for example, the effective radiant power of the radio wave emitted from the radio wave emission source, is realizable.

本発明の実施形態について図1の回路構成図を参照して説明する。   An embodiment of the present invention will be described with reference to the circuit configuration diagram of FIG.

電波発射源Tから発射された電波を受信する電波受信部11は、基準アンテナ11aとアレーアンテナ11bとで構成されている。基準アンテナ11aはたとえば1個の基準用アンテナ素子11Rから形成され、アレーアンテナ11bは、たとえば複数のN個のアレー用アンテナ素子111〜11Nから形成されている。基準アンテナ11aとアレーアンテナ11bは近傍に配置され、N個のアレ用ーアンテナ素子111〜11Nは、たとえばある間隔で直線上に設けるアレー配列、あるいは、縦方向および横方向にそれぞれある間隔で設ける2次元配列に配置される。   The radio wave receiving unit 11 that receives radio waves emitted from the radio wave emission source T includes a reference antenna 11a and an array antenna 11b. The reference antenna 11a is formed from, for example, one reference antenna element 11R, and the array antenna 11b is formed from, for example, a plurality of N array antenna elements 111 to 11N. The reference antenna 11a and the array antenna 11b are arranged in the vicinity, and the N array antenna elements 111 to 11N are, for example, arranged in an array on a straight line at a certain interval, or provided at a certain interval in the vertical and horizontal directions, respectively. Arranged in a dimensional array.

図1では、基準アンテナ11aとアレーアンテナ11bを別に設けている。しかし、アレー用アンテナ素子111〜11Nの1つを基準アンテナ11aとして用いることもできる。   In FIG. 1, a reference antenna 11a and an array antenna 11b are provided separately. However, one of the array antenna elements 111 to 11N can be used as the reference antenna 11a.

基準アンテナ11aで受信された受信信号は周波数変換部12Rに供給される。アレー用アンテナ素子111〜11Nは切替器SWに接続されている。アレー用アンテナ素子111〜11Nで受信された受信信号は、たとえば切替器SWの動作によって、ある時間間隔で1つずつ順に取り出され、周波数変換部121〜12Nに供給される。周波数変換部12R、121〜12Nに供給された受信信号はそれぞれ、局部発振部13から加えられる局発信号によって周波数変換され、AD変換部14R、141〜14Nに送られる。   The received signal received by the reference antenna 11a is supplied to the frequency converter 12R. The array antenna elements 111 to 11N are connected to the switch SW. The reception signals received by the array antenna elements 111 to 11N are sequentially extracted one by one at a certain time interval, for example, by the operation of the switch SW, and supplied to the frequency conversion units 121 to 12N. The received signals supplied to the frequency conversion units 12R and 121 to 12N are frequency-converted by the local oscillation signal applied from the local oscillation unit 13 and sent to the AD conversion units 14R and 141 to 14N.

AD変換部14R、141〜14Nでは受信信号をデジタル化し、受信データに変換する。AD変換部14R、141〜14Nから出力する受信データは信号処理部15に送られる。   The AD converters 14R and 141 to 14N digitize the received signals and convert them into received data. The reception data output from the AD conversion units 14R and 141 to 14N is sent to the signal processing unit 15.

信号処理部15は受信データを処理し、電波発射源から発射された電波の実効輻射電力(以下、EIRPという)などの計算を行い、その計算結果を操作表示入力部16に送る。操作表示入力部16は、信号処理部15の計算結果を画面上に表示し、また、操作者からの入力を受け付ける。   The signal processing unit 15 processes the received data, calculates the effective radiant power (hereinafter referred to as EIRP) of the radio wave emitted from the radio wave emission source, and sends the calculation result to the operation display input unit 16. The operation display input unit 16 displays the calculation result of the signal processing unit 15 on the screen and accepts input from the operator.

たとえば、操作表示入力部16は、操作者から受信希望周波数帯が入力されると、その受信希望周波数帯情報を信号処理部15に送る。信号処理部15は、希望周波数帯情報が送られてくると、周波数設定信号Cを局部発振部13に送り、受信希望周波数帯の信号を受信できるように、局部発振部13が発生する局部発振信号の周波数を設定する。   For example, when a desired reception frequency band is input from the operator, the operation display input unit 16 sends the desired reception frequency band information to the signal processing unit 15. When the desired frequency band information is sent, the signal processing unit 15 sends the frequency setting signal C to the local oscillating unit 13 and the local oscillation generated by the local oscillating unit 13 so as to receive the signal of the desired receiving frequency band. Set the signal frequency.

ここで、信号処理部15について図2の回路構成図を参照して説明する。   Here, the signal processing unit 15 will be described with reference to the circuit configuration diagram of FIG.

信号処理部15は複数のメモリ21R、211〜21Nなどから構成されている。メモリ21R、211〜21Nは、AD変換部14R、141〜14Nから送られる受信データをそれぞれ、受信データDR、D1〜DNとして一時的に記憶する。   The signal processing unit 15 includes a plurality of memories 21R and 211 to 21N. The memories 21R and 211 to 21N temporarily store the reception data transmitted from the AD conversion units 14R and 141 to 14N as reception data DR and D1 to DN, respectively.

メモリ21Rに記憶した受信データDRは信号解析部22に送られる。信号解析部22は受信データDRを処理、たとえば周波数解析を行い、電波の質たとえば中心周波数23aや帯城幅23b、スプリアス強度23c、受信電力23dなどを検出する。これらの検出情報はEIRP計算処理部24に送られる。なお、EIRP計算処理部24には、アンテナ利得テーブルなどから、受信電波の周波数および方向毎に測定した電波受信手段11のアンテナ利得データ25が送られている。   The reception data DR stored in the memory 21R is sent to the signal analysis unit 22. The signal analysis unit 22 processes the received data DR, for example, performs frequency analysis, and detects the radio wave quality such as the center frequency 23a, the band width 23b, the spurious intensity 23c, the received power 23d, and the like. These pieces of detection information are sent to the EIRP calculation processing unit 24. Note that the antenna gain data 25 of the radio wave receiving means 11 measured for each frequency and direction of the received radio wave is sent to the EIRP calculation processing unit 24 from an antenna gain table or the like.

また、メモリ21R、211〜21Nに記憶した受信データDR、D1〜DNは相関マトリクス処理部26に送られる。相関マトリクス処理部26は、受信データDR、D1〜DNをもとに相関マトリクスを求め、求めた相関マトリクスを2次元FFT部27に送る。   The received data DR and D1 to DN stored in the memories 21R and 211 to 21N are sent to the correlation matrix processing unit 26. The correlation matrix processing unit 26 obtains a correlation matrix based on the received data DR, D1 to DN, and sends the obtained correlation matrix to the two-dimensional FFT unit 27.

2次元FFT部27は、相関マトリクス処理部26で得た相関マトリクスをもとに2次元FFTを行い、電波ホログラフィ像28を出力する。この電波ホログラフィ像28はピーク検出処理部29に送られる。ピーク検出処理部29は、電波ホログラフィ像28の出力からピーク検出を行い、電波発射源Tの位置を特定し、電波発射源Tまでの距離を算出した距離算出結果30、および、電波発射源Tの方向を探知した方向探知結果31を出力する。これらの距離算出結果30および方向探知結果31は、たとえばEIRP計算処理部24に送られる。   The two-dimensional FFT unit 27 performs a two-dimensional FFT based on the correlation matrix obtained by the correlation matrix processing unit 26 and outputs a radio holographic image 28. The radio holographic image 28 is sent to the peak detection processing unit 29. The peak detection processing unit 29 performs peak detection from the output of the radio holographic image 28, specifies the position of the radio wave emission source T, calculates the distance to the radio wave emission source T, and the radio wave emission source T. A direction detection result 31 obtained by detecting the direction is output. The distance calculation result 30 and the direction detection result 31 are sent to the EIRP calculation processing unit 24, for example.

EIRP計算処理部24は、信号解析部22から送られる中心周波数23aや受信電力23d、および、受信アンテナ利得25aや距離計算結果30をもとに、式(1)によってEIRPを計算し、電波発射源Tから発射された電波のEIRPを検出する。   The EIRP calculation processing unit 24 calculates the EIRP by the equation (1) based on the center frequency 23a and the reception power 23d sent from the signal analysis unit 22, the reception antenna gain 25a and the distance calculation result 30, and the radio wave emission EIRP of radio waves emitted from the source T is detected.

Pt=Pr−Gra+Lspan…(1)
Pt:電波発射源の実効輻射電力(dBW)
Pr:受信電力(dBW)
Gra:受信アンテナ利得(dB)…予め、周波数および方向毎のアンテナ利得を測定し、アンテナ利得テーブルに蓄積しておく。
Pt = Pr-Gra + Lspan (1)
Pt: Effective radiation power (dBW) of radio wave emission source
Pr: Received power (dBW)
Gra: Receive antenna gain (dB): The antenna gain for each frequency and direction is measured in advance and stored in the antenna gain table.

Lspan:電波発射源および受信点間の距離による減衰(dB)で、式(2)の関係がある。 Lspan: Attenuation (dB) due to the distance between the radio wave emission source and the reception point, and has the relationship of Equation (2).

Lspan=20log(4×π×D/λ)…(2)
D:電波発射源とアレーアンテナとの距離
λ:中心周波数の波長
そして、上記の方法で算出した電波発射源のEIRP、および、信号解析部22で検知した中心周波数やスプリアス強度、帯域幅などの各データが、EIRP計算処理部24からたとえば操作表示入力部16に送られる。
Lspan = 20 log (4 × π × D / λ) (2)
D: distance between the radio wave emission source and the array antenna λ: wavelength of the center frequency And the EIRP of the radio wave emission source calculated by the above method and the center frequency, spurious intensity, bandwidth, etc. detected by the signal analysis unit 22 Each data is sent from the EIRP calculation processing unit 24 to, for example, the operation display input unit 16.

なお、上記したように、電波発射源の距離および電波発射源の方向を検知する場合、メモリ21R、211〜21Nに蓄積した受信データDR、D1〜DNを用いて演算処理が行われる。この演算処理は、たとえば図3に示すようなパラメータを用いて行われる。たとえば電波発射源Tまでの距離をz、電波受信部11と電波発射源Tとを結ぶz軸に直交する軸をx軸とする。また、基準用アンテナ11Rのx座標をξrefとし、N個のアレイ用アンテナ素子111〜11Nのx座標をξ1,ξ2,…,ξNとする。   As described above, when detecting the distance of the radio wave emission source and the direction of the radio wave emission source, the arithmetic processing is performed using the reception data DR and D1 to DN stored in the memories 21R and 211 to 21N. This calculation process is performed using parameters as shown in FIG. 3, for example. For example, the distance to the radio wave emission source T is z, and the axis orthogonal to the z axis connecting the radio wave reception unit 11 and the radio wave emission source T is the x axis. Further, the x coordinate of the reference antenna 11R is ξref, and the x coordinates of the N array antenna elements 111 to 11N are ξ1, ξ2,.

そして、たとえば基準用アンテナ11の受信信号に基づく受信データDRをフーリエ変換しその複素共役を求める。また、アレイ用アンテナ素子111〜11Nの受信信号に基づく受信データD1〜DNをフーリエ変換する。そして、受信データDRをフーリエ変換した演算結果と、受信データD1〜DNをフーリエ変換した演算結果とを、電波発射源Tから発射される電波の周波数範囲で掛け合わせて足しこみ、相関マトリクスu(ξn)を求める。さらに、この演算結果u (ξn)をフレネル近似を用いた式に代入し、電波発射源のホログラフィ再生像を求める。その後、ホログラフィ再生像が最大となる座標から電波発射源Tの位置を特定し、電波発射源Tの距離および電波発射源Tの方向を検知する。   Then, for example, the received data DR based on the received signal of the reference antenna 11 is Fourier transformed to obtain its complex conjugate. Also, the received data D1 to DN based on the received signals of the array antenna elements 111 to 11N are Fourier transformed. Then, the result of Fourier transform of the received data DR and the result of Fourier transform of the received data D1 to DN are multiplied by the frequency range of the radio wave emitted from the radio wave emission source T, and added, and the correlation matrix u ( ξn) is obtained. Further, the calculation result u (ξn) is substituted into an equation using Fresnel approximation to obtain a holographic reproduction image of the radio wave emission source. Thereafter, the position of the radio wave emission source T is specified from the coordinates at which the holographic reproduction image becomes maximum, and the distance of the radio wave emission source T and the direction of the radio wave emission source T are detected.

次に、本発明の動作について図4のフロー図を参照して説明する。   Next, the operation of the present invention will be described with reference to the flowchart of FIG.

まず、操作表示入力部16からの入力に基づいて受信希望周波数帯を設定する(S401)。次に、受信希望周波数帯の信号を受信するために各定数、たとえば局部発振器13の局発信号の周波数を設定する(S402)。次に、到来電波を電波受信手段11で受信する(S403)。次に、AD変換によってデジタル化した受信データを蓄積する(S404)。次に、必要期間、たとえば電波発射源Tの位置を特定するために必要なデータを収集する期間が完了したか否かを判定する(S405)。   First, a desired reception frequency band is set based on an input from the operation display input unit 16 (S401). Next, in order to receive a signal in the desired reception frequency band, each constant, for example, the frequency of the local oscillation signal of the local oscillator 13 is set (S402). Next, the incoming radio wave is received by the radio wave receiving means 11 (S403). Next, the received data digitized by AD conversion is accumulated (S404). Next, it is determined whether or not a necessary period, for example, a period for collecting data necessary for specifying the position of the radio wave emission source T has been completed (S405).

この判定で、必要期間のデータの蓄積を完了したと判定した場合、周波数解析部22において、メモリ21Rの受信データDRをもとに、受信信号の周波数解析を行い(S406)、到来電波の中心周波数23aおよび帯域幅23b、スプリアス強度23c、受信電力23dなどを検知する。   If it is determined in this determination that the accumulation of data for the necessary period has been completed, the frequency analysis unit 22 performs frequency analysis of the received signal based on the received data DR in the memory 21R (S406), and the center of the incoming radio wave The frequency 23a, bandwidth 23b, spurious intensity 23c, received power 23d, and the like are detected.

次に、各受信データDR、D1〜DNをもとに相関関数を計算し、相関マトリクスu(ξn)を作成する(S407)。次に、2次元FFTを行う(S408)。次に、電波発射源Tの方向を検知する測距処理を行う(S410)。この測距処理(S410)の後、S403〜S410を繰り返す。   Next, a correlation function is calculated based on each received data DR, D1 to DN, and a correlation matrix u (ξn) is created (S407). Next, two-dimensional FFT is performed (S408). Next, a ranging process for detecting the direction of the radio wave emission source T is performed (S410). After this distance measuring process (S410), S403 to S410 are repeated.

また、S405の判定で、必要期間のデータの蓄積を完了していないと判定した場合はS403に戻る。   If it is determined in S405 that the accumulation of data for the necessary period has not been completed, the process returns to S403.

ここで、上記の測定結果を操作表示入力部16に表示した画面例を図5に示す。たとえば横軸に周波数(MHz)が示され、縦軸にレベル(dB)が示される。   Here, FIG. 5 shows a screen example in which the measurement result is displayed on the operation display input unit 16. For example, the horizontal axis represents frequency (MHz), and the vertical axis represents level (dB).

そして、画面上に、計算で得た送信波形51や受信した受信波形52などが示される。規定値がたとえば枠53で表示され、たとえば送信波形51の振幅(EIRP)が枠53の外まで延び、規定値を越えていると判定される。また、枠53の外にスプリアス54が表示されている。中心周波数55や帯域幅は枠53内で、規定値の範囲内であることが表示されている。この場合、規定値を越えた項目、たとえばEIRPおよびスプリアスを枠56で囲み、規定値をオーバしているがどうかを識別できるようにしている。   Then, the transmission waveform 51 obtained by calculation, the received reception waveform 52, and the like are shown on the screen. The specified value is displayed, for example, in a frame 53, and it is determined that, for example, the amplitude (EIRP) of the transmission waveform 51 extends outside the frame 53 and exceeds the specified value. A spurious 54 is displayed outside the frame 53. It is displayed that the center frequency 55 and the bandwidth are within the specified value range within the frame 53. In this case, items exceeding the specified value, for example, EIRP and spurious are surrounded by a frame 56 so that it can be identified whether or not the specified value is exceeded.

このように、信号処理部15の計算結果を操作表示入力部16で画面表示すれば、送信波形が規定値をオーバしているがどうかが容易に検知できる。   In this way, if the calculation result of the signal processing unit 15 is displayed on the screen by the operation display input unit 16, it can be easily detected whether or not the transmission waveform exceeds the specified value.

上記した本発明によれば、電波監視に必要な情報、たとえば電波発射源から発射される電波の実効輻射電力を検知できる電波監視装置を実現できる。したがって、実効輻射電力が規定値を超えているかどうかの運用者による確認が容易になり、運用効率が向上する。   According to the present invention described above, it is possible to realize a radio wave monitoring apparatus that can detect information necessary for radio wave monitoring, for example, effective radiant power of radio waves emitted from a radio wave emission source. Therefore, it becomes easy for the operator to check whether the effective radiated power exceeds the specified value, and the operation efficiency is improved.

本発明の実施形態を説明する回路構成図である。It is a circuit block diagram explaining embodiment of this invention. 本発明に係る信号処理部を説明する回路構成図である。It is a circuit block diagram explaining the signal processing part which concerns on this invention. 本発明に係る電波発射源の位置の特定に用いるパラメータを説明するための図である。It is a figure for demonstrating the parameter used for specification of the position of the radio wave emission source which concerns on this invention. 本発明の動作を説明するためのフロー図である。It is a flowchart for demonstrating operation | movement of this invention. 本発明に係る操作表示入力部の表示例を説明する表示画面図である。It is a display screen figure explaining the example of a display of the operation display input part which concerns on this invention.

符号の説明Explanation of symbols

11…電波受信部
11a…基準アンテナ
11b…アレーアンテナ
12R、121〜12N…周波数変換部
13…局部発振部
14R、141〜14N…AD変換部
15…信号処理部
16…操作表示入力部
21R、211〜21N…メモリ
22…信号解析部
24…EIRP計算処理部
26…相関マトリクス処理部
27…2次元FFT部
28…電波ホログラフィ像
SW…切替器
DESCRIPTION OF SYMBOLS 11 ... Radio wave reception part 11a ... Reference antenna 11b ... Array antenna 12R, 121-12N ... Frequency conversion part 13 ... Local oscillation part 14R, 141-14N ... AD conversion part 15 ... Signal processing part 16 ... Operation display input part 21R, 211 -21N ... Memory 22 ... Signal analysis unit 24 ... EIRP calculation processing unit 26 ... Correlation matrix processing unit 27 ... Two-dimensional FFT unit 28 ... Radio holographic image SW ... Switch

Claims (4)

電波発射源から発射された電波を受信する電波受信手段と、この電波受信手段で受信した受信信号をデジタル化して受信データに変換する変換手段と、この変換手段で変換した前記受信データを処理し、前記電波発射源の距離を求める距離測定手段と、この距離測定手段で求めた距離情報をもとにその距離による電波減衰量を求める電波減衰量算出手段と、この電波減衰量算出手段で求めた前記電波減衰量および前記受信信号の受信電力、前記電波受信手段のアンテナ利得をもとに、前記電波発射源の実効輻射電力を求める実効輻射電力算出手段とを具備したことを特徴とする電波監視装置。   Radio wave reception means for receiving radio waves emitted from a radio wave emission source, conversion means for digitizing a reception signal received by the radio wave reception means and converting it into reception data, and processing the reception data converted by the conversion means A distance measurement means for obtaining a distance of the radio wave emission source, a radio wave attenuation amount calculating means for obtaining a radio wave attenuation amount based on the distance information obtained by the distance measurement means, and a radio wave attenuation amount calculation means. And an effective radiation power calculating means for obtaining an effective radiation power of the radio wave emission source based on the amount of radio wave attenuation, the received power of the received signal, and the antenna gain of the radio wave receiving means. Monitoring device. 電波減衰量をLspan、受信電力をPr、アンテナ利得をGra、実効輻射電力をPtとした場合、実効輻射電力を、Pt=Pr−Gra+Lspanで求める請求項1記載の電波監視装置。   2. The radio wave monitoring apparatus according to claim 1, wherein the effective radiation power is obtained by Pt = Pr-Gra + Lspan, where Lspan is the radio wave attenuation, Pr is the received power, Gra is the antenna gain, and Pt is the effective radiation power. 距離測定手段が、変換手段で変換された受信データを用い、フレネル近似を用いた電波ホログラフィ法によって電波発射源の距離を求める請求項1記載の電波監視装置。   The radio wave monitoring apparatus according to claim 1, wherein the distance measurement unit obtains the distance of the radio wave emission source by the radio holography method using the Fresnel approximation using the reception data converted by the conversion unit. 電波受信手段がアレイアンテナとこのアレイアンテナの近傍に配置する基準アンテナとを有し、距離測定手段が、変換手段で変換した受信データのうち、前記基準アンテナの受信信号に基づく受信データをフーリエ変換して、その複素共役を求める第1演算手段と、前記変換手段で変換した受信データのうち、前記アレイアンテナの各素子による受信信号に基づく受信データをフーリエ変換する第2演算手段と、前記第1演算手段の演算結果と前記第2演算手段の演算結果とを、電波発射源から発射される電波の周波数範囲で掛け合わせて足しこむ第3演算手段と、この第3演算手段の演算結果をフレネル近似して、前記電波発射源のホログラフィ再生像を求める第4演算手段と、この第4演算手段で求めたホログラフィ再生像が最大となる座標を、前記電波発射源の位置として検出する第5演算手段とを有する請求項1記載の電波監視装置。   The radio wave reception means has an array antenna and a reference antenna arranged in the vicinity of the array antenna, and the distance measurement means performs Fourier transform on the reception data based on the reception signal of the reference antenna among the reception data converted by the conversion means. A first computing means for obtaining the complex conjugate; a second computing means for Fourier transforming received data based on a received signal from each element of the array antenna among the received data converted by the converting means; A third calculation means for multiplying the calculation result of the first calculation means and the calculation result of the second calculation means within the frequency range of the radio wave emitted from the radio wave emission source, and the calculation result of the third calculation means; The fourth calculation means for obtaining the holographic reproduction image of the radio wave emission source by Fresnel approximation, and the holography reproduction image obtained by the fourth calculation means are maximized. The target, radio monitoring device according to claim 1, further comprising a fifth computing means for detecting a position of the radio wave source.
JP2005179597A 2005-06-20 2005-06-20 Radio monitoring device Active JP4686265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179597A JP4686265B2 (en) 2005-06-20 2005-06-20 Radio monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179597A JP4686265B2 (en) 2005-06-20 2005-06-20 Radio monitoring device

Publications (2)

Publication Number Publication Date
JP2006349631A true JP2006349631A (en) 2006-12-28
JP4686265B2 JP4686265B2 (en) 2011-05-25

Family

ID=37645638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179597A Active JP4686265B2 (en) 2005-06-20 2005-06-20 Radio monitoring device

Country Status (1)

Country Link
JP (1) JP4686265B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192323A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Wave source survey device, wave source survey method, and wave source estimation method
JP2020201187A (en) * 2019-06-12 2020-12-17 株式会社Nttドコモ Radiated power estimation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12040844B2 (en) 2021-11-23 2024-07-16 Samsung Electronics Co., Ltd. Device and method of estimating output power of array antenna

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176965A (en) * 1988-01-02 1989-07-13 Manabu Koda Radio wave or aerial ultrasonic wave system for safety supervision of swimming
JPH042986A (en) * 1990-04-20 1992-01-07 Nec Corp Detecting system of radio wave
JPH09134113A (en) * 1995-11-08 1997-05-20 Advantest Corp Wave source visualizing method and device therefor
JPH11326483A (en) * 1998-05-12 1999-11-26 Advantest Corp Field moving type radio wave imaging method and device
JPH11326480A (en) * 1998-05-13 1999-11-26 Advantest Corp Specific-regional radio wave visualizing method and its device
JP2002098748A (en) * 2000-09-26 2002-04-05 Toshiba Corp Threat alarm system
WO2007092034A1 (en) * 2005-06-13 2007-08-16 Raytheon Company System and method for passively estimating angle and range of a source using signal samples collected simulataneously from a multi-aperture antenna

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176965A (en) * 1988-01-02 1989-07-13 Manabu Koda Radio wave or aerial ultrasonic wave system for safety supervision of swimming
JPH042986A (en) * 1990-04-20 1992-01-07 Nec Corp Detecting system of radio wave
JPH09134113A (en) * 1995-11-08 1997-05-20 Advantest Corp Wave source visualizing method and device therefor
JPH11326483A (en) * 1998-05-12 1999-11-26 Advantest Corp Field moving type radio wave imaging method and device
JPH11326480A (en) * 1998-05-13 1999-11-26 Advantest Corp Specific-regional radio wave visualizing method and its device
JP2002098748A (en) * 2000-09-26 2002-04-05 Toshiba Corp Threat alarm system
WO2007092034A1 (en) * 2005-06-13 2007-08-16 Raytheon Company System and method for passively estimating angle and range of a source using signal samples collected simulataneously from a multi-aperture antenna
JP2008544251A (en) * 2005-06-13 2008-12-04 レイセオン・カンパニー System and method for passively estimating source angle and distance using signal samples collected simultaneously from a multi-aperture antenna

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192323A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Wave source survey device, wave source survey method, and wave source estimation method
JP2020201187A (en) * 2019-06-12 2020-12-17 株式会社Nttドコモ Radiated power estimation method
JP7233312B2 (en) 2019-06-12 2023-03-06 株式会社Nttドコモ Radiation power estimation method

Also Published As

Publication number Publication date
JP4686265B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP6806250B2 (en) Positioning device, position measuring method and program
US9213095B2 (en) Combined direction finder and radar system, method and computer program product
JPWO2018025421A1 (en) Object detection apparatus and object detection method
JP2006337281A (en) Device and method for visualizing radio wave generation source
JP2007064671A (en) Radar system
JP2010197050A (en) Position estimating system
US20200295972A1 (en) Adaptive ota leakage cancellation for mmwave radar
JP4686265B2 (en) Radio monitoring device
US11467242B2 (en) Direction-of-arrival estimation apparatus, method, and non-transitory medium
JP4911571B2 (en) Radio wave emission source visualization device and method
JP4723916B2 (en) Radio wave source visualization apparatus and radio wave source visualization method
JP6264194B2 (en) Radar equipment
JP4266810B2 (en) Wind speed vector calculation device
JP2007155381A (en) Radar device
JP4519478B2 (en) Target distance measuring device
JP2007212228A (en) Electric wave emission source visualization device and method therefor
JP2013167524A (en) Electromagnetic wave imaging device and electromagnetic wave imaging method
JP2007017393A (en) Source display device of electric wave emission
JP2021038975A (en) Rader system, and rader test method
JP5236517B2 (en) Electromagnetic field strength measuring device, electromagnetic field strength measuring method
JP2005148013A (en) Radar device
JP3723854B2 (en) Radar equipment
KR20110134307A (en) Apparatus and method for estimating signal in communication system
JP2013124888A (en) Radar system and detection method
JPH0793534B2 (en) Antenna device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4686265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3