JP2006349306A - Cooler for electronic equipment, and electronic equipment - Google Patents

Cooler for electronic equipment, and electronic equipment Download PDF

Info

Publication number
JP2006349306A
JP2006349306A JP2005179065A JP2005179065A JP2006349306A JP 2006349306 A JP2006349306 A JP 2006349306A JP 2005179065 A JP2005179065 A JP 2005179065A JP 2005179065 A JP2005179065 A JP 2005179065A JP 2006349306 A JP2006349306 A JP 2006349306A
Authority
JP
Japan
Prior art keywords
working fluid
condensing
condensation
electronic
phase path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005179065A
Other languages
Japanese (ja)
Inventor
Takeshi Irita
丈司 入田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005179065A priority Critical patent/JP2006349306A/en
Publication of JP2006349306A publication Critical patent/JP2006349306A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow an operation as a circulation type cooler even when an attitude of electronic equipment is varied three-dimensionally in any way to cool an electronic element. <P>SOLUTION: A heat pipe 5 constitutes a closed loop comprising an evaporation part 6 fixed to an imaging element 4, a condensation part 10 fixed to a corner of a camera casing 2, a vapor phase path 7, and a liquid phase path 8. A gas flow passage 11 is formed in the condensation part 10 to circulate hollow portions of three hollow plane plates, and condensation areas 13, 14 are arranged in an area surrounded by the annular gas flow passage 11 and an area of enveloping gas flow passage 11. A working fluid brought into a gas phase by heat from the imaging element 4 in the evaporation part 6 flows into the gas flow passage 11 through the vapor phase path 7, comes from the gas flow passage 11 into at least one of the condensation areas 13, 14, even when the posture of an electronic equipment varied three-dimensionally in any way, and is liquefied while radiating the heat to a casing 2 wall face, and a liquid therein flows liquid phase path ports 17, 18 by the action of gravity to be returned to the evaporation part 6 through the liquid phase path 8. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子機器用冷却装置および電子機器に関する。   The present invention relates to a cooling device for electronic devices and an electronic device.

撮像素子等の半導体素子を冷却する手段の1つとして毛管力循環(capillary pumped loops:CPL)を利用したヒートパイプが知られており、このヒートパイプは、蒸発部と凝縮部を気相路および液相路で繋ぎ、作動流体を内部で循環するように構成されている。凝縮部で液相となった作動流体は、液相路を通って蒸発部に達し、熱源(撮像素子)から熱を受け取って気体となり、気相となった作動流体は、気相路を通って凝縮部に達し、熱を放出して再び液体に戻る。以上の動作中、凝縮部では、気相路口から流入した作動流体が気相路口と液相路口を結ぶウィックと称する複数の毛管を通りながら気相から液相へ還元され、その液体が重力作用により液相路口へ還流する。したがって、気相路口から液相路口へ通じるウィックの延在方向が重力方向を向いている状態がヒートパイプを最も効率的に動作させる。   As one of means for cooling a semiconductor element such as an image pickup element, a heat pipe using capillary pumped loops (CPL) is known. This heat pipe connects an evaporation part and a condensation part to a gas phase path and It connects with a liquid phase path and is comprised so that a working fluid may be circulated inside. The working fluid that has become a liquid phase in the condensing unit reaches the evaporation unit through the liquid phase path, receives heat from a heat source (imaging device), becomes a gas, and the working fluid that has become a gas phase passes through the gas phase path. It reaches the condensing part, releases heat, and returns to the liquid again. During the operation described above, in the condensing unit, the working fluid flowing in from the gas phase channel port is reduced from the gas phase to the liquid phase while passing through a plurality of capillaries called wicks connecting the gas phase channel port and the liquid phase channel port, and the liquid acts by gravity. To return to the liquid phase port. Therefore, the state in which the extending direction of the wick leading from the gas phase path port to the liquid phase path port faces the direction of gravity operates the heat pipe most efficiently.

カメラなどの撮像装置は、様々な角度、姿勢で使用されることが多い。角度、姿勢が変化してもヒートパイプが動作するように、特許文献1の従来の装置では、気相路口を挟んで2つの液相路口を設け、平板上に、気相路口から液相路口へ通じる複数のウィックが多くの方向に延在するように、例えば放射状に形成している(例えば、特許文献1参照)。   Imaging devices such as cameras are often used at various angles and postures. In order to operate the heat pipe even if the angle and orientation change, the conventional apparatus of Patent Document 1 is provided with two liquid phase path ports sandwiching the gas phase path port, and from the gas phase path port to the liquid phase path port on a flat plate. For example, it is formed radially so that a plurality of wicks leading to the wick extend in many directions (see, for example, Patent Document 1).

特開2004−19079号公報(第4頁、図5)Japanese Patent Laying-Open No. 2004-19079 (Page 4, FIG. 5)

特許文献1の装置では、気相路口から液相路口へ通じる複数のウィックのいずれかが重力方向を向いていれば、ヒートパイプが効率的に動作する。しかし、特許文献1の装置では、いずれのウィックも重力方向を向いていない水平状態となった場合では、動作しないか効率が著しく低下するという問題が起こる。   In the apparatus of Patent Document 1, if any of the plurality of wicks that lead from the gas phase path port to the liquid phase path port faces the direction of gravity, the heat pipe operates efficiently. However, in the apparatus of Patent Document 1, when any wick is in a horizontal state not facing the direction of gravity, there is a problem that it does not operate or the efficiency is remarkably reduced.

(1)本発明の請求項1による電子機器用冷却装置は、冷却対象で発生する熱が伝達され、その熱で作動流体を気化する蒸発部と、蒸発部で気化された作動流体を冷却して液化する凝縮部と、蒸発部で気化された作動流体を前記凝縮部へ移送する気相路と、凝縮部で液化された作動流体を蒸発部へ移送する液相路とを有する循環型の冷却装置であって、凝縮部は、全体外観形状が三角錐体を呈し、内部が中空状で互いに略直交する3面の構成体を少なくとも有し、構成体には、気相路が接続される作動流体入口と、液相路が接続される作動流体出口とが設けられ、作動流体入口から供給された作動流体が流れる第1の流路が、各構成体の中空状内部にそれぞれが連通して設けられ、第1の流路の周囲には、その第1の流路に供給された作動流体を凝縮する凝縮領域が設けられ、凝縮領域で凝縮された作動流体を作動流体出口に向けて移送する第2の流路が、その凝縮領域内に設けられていることを特徴とする。
(2)請求項2の発明は、請求項1の電子機器用冷却装置において、凝縮領域には、第1の流路から流入する作動流体を放熱するための複数の微小突起がマトリックス状に形成されていることを特徴とする。
(3)請求項3の発明は、請求項1または2の電子機器用冷却装置において、液相路および第2の流路は、毛管構造を有することを特徴とする。
(4)請求項4の電子機器は、内部に各種電子部品、電子基板を収容する筐体と、筐体に設けられた請求項1乃至3のいずれかの電子機器用冷却装置とを備え、電子機器用冷却装置の凝縮部は、筺体内の隅部の壁面に接して配設されることを特徴とする。
(1) A cooling device for electronic equipment according to claim 1 of the present invention cools the working fluid vaporized in the evaporating unit, the evaporating unit that vaporizes the working fluid by the heat generated in the object to be cooled, and the heat. A circulatory type having a condensing part liquefied, a gas phase path for transferring the working fluid vaporized in the evaporation part to the condensing part, and a liquid phase path for transferring the working fluid liquefied in the condensing part to the evaporation part In the cooling device, the condensing unit has a triangular pyramid as a whole and has at least a three-surface structure that is hollow inside and substantially orthogonal to each other, and a gas phase path is connected to the structure. A working fluid inlet and a working fluid outlet to which a liquid phase path is connected. A first flow path through which the working fluid supplied from the working fluid inlet flows is communicated with the hollow interior of each component. The working flow supplied to the first flow path is provided around the first flow path. Condensation zone to condense is provided a second flow path for transferring toward the working fluid condensed in the condensation zone to the working fluid outlet, characterized in that provided on the condensation region.
(2) The invention according to claim 2 is the electronic device cooling device according to claim 1, wherein a plurality of minute protrusions for radiating the working fluid flowing in from the first flow path are formed in a matrix in the condensation region. It is characterized by being.
(3) The invention of claim 3 is the electronic device cooling apparatus of claim 1 or 2, wherein the liquid phase passage and the second passage have a capillary structure.
(4) An electronic device according to a fourth aspect includes a housing that accommodates various electronic components and an electronic substrate therein, and the electronic device cooling device according to any one of the first to third aspects provided in the housing. The condensing part of the cooling device for electronic devices is disposed in contact with the wall surface of the corner in the housing.

本発明の電子機器用冷却装置によれば、電子機器の姿勢が3次元的にどのように変化しても循環型冷却装置として動作し、電子機器を冷却できる。   According to the electronic device cooling device of the present invention, the electronic device can be cooled by operating as a circulation type cooling device regardless of how the posture of the electronic device changes three-dimensionally.

以下、本発明の実施の形態による電子機器用冷却装置および電子カメラについて図1〜図6を参照しながら説明する。図1〜図6では、同じ構成部品には同一符号を付し、方向をXYZ直交座標で表す。   Hereinafter, a cooling device for an electronic apparatus and an electronic camera according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6, the same components are denoted by the same reference numerals, and directions are represented by XYZ orthogonal coordinates.

図1は、本発明の実施の形態による電子カメラの内部構成を模式的に示す全体構成図である。図2は、実施の形態による電子カメラの内部構成をカメラ背面側から見た斜視図である。図3は、図2に示す冷却装置の凝縮部を拡大して示す拡大斜視図である。図4は、実施の形態の冷却装置の蒸発部を拡大して示す拡大図である。図5は、図3に示す凝縮部を簡略化して示す斜視図である。図1〜図5において、重力が作用する−Z方向を鉛直下方、その反対の+Z方向を鉛直上方と呼ぶ。   FIG. 1 is an overall configuration diagram schematically showing an internal configuration of an electronic camera according to an embodiment of the present invention. FIG. 2 is a perspective view of the internal configuration of the electronic camera according to the embodiment as viewed from the back side of the camera. FIG. 3 is an enlarged perspective view showing the condensing part of the cooling device shown in FIG. 2 in an enlarged manner. FIG. 4 is an enlarged view illustrating an evaporation unit of the cooling device according to the embodiment. FIG. 5 is a perspective view showing the condensing unit shown in FIG. 3 in a simplified manner. 1 to 5, the −Z direction in which gravity acts is referred to as a vertically downward direction, and the opposite + Z direction is referred to as a vertically upward direction.

図1を参照すると、電子カメラ1は、カメラ筐体2に設けられているレンズ鏡筒3と、レンズ鏡筒3を通して筺体2に入射する被写体光Lが受光面上で結像する撮像素子4と、撮像素子4を冷却するためのヒートパイプ5とを備えている。撮像素子4は、周知のCCD撮像素子やCMOS撮像素子などであり、受光面上で結像する光像を電気信号に変換して出力する。   Referring to FIG. 1, an electronic camera 1 includes a lens barrel 3 provided in a camera housing 2 and an imaging element 4 on which a subject light L incident on the housing 2 through the lens barrel 3 forms an image on a light receiving surface. And a heat pipe 5 for cooling the imaging device 4. The image sensor 4 is a well-known CCD image sensor, CMOS image sensor, or the like, and converts an optical image formed on the light receiving surface into an electrical signal and outputs the electrical signal.

ヒートパイプ(冷却装置)5は、撮像素子4で発生する熱が伝達され、その熱で作動流体を気化する蒸発部6と、蒸発部6で気化された作動流体を冷却して液化する凝縮部10と、蒸発部6で気化された作動流体を凝縮部10へ移送する管路である気相路7と、凝縮部10で液化された作動流体を蒸発部6へ移送する管路である液相路8とを有する循環型の冷却装置である。蒸発部6は、撮像素子4の受光面と反対側の面に貼着されている。凝縮部10は、カメラ筐体2に効率良く放熱することにより作動流体を冷却するために、筺体2のコーナーの内壁面に密着して配設されている。   The heat pipe (cooling device) 5 is transmitted with heat generated by the image sensor 4, and an evaporator 6 that vaporizes the working fluid with the heat, and a condenser that cools and liquefies the working fluid vaporized by the evaporator 6. 10, a gas phase path 7 that is a pipe that transfers the working fluid vaporized in the evaporator 6 to the condenser 10, and a liquid that is a pipe that transfers the working fluid liquefied in the condenser 10 to the evaporator 6. A circulation type cooling device having a phase path 8. The evaporation unit 6 is attached to a surface opposite to the light receiving surface of the image sensor 4. The condenser 10 is disposed in close contact with the inner wall surface of the corner of the housing 2 in order to cool the working fluid by efficiently radiating heat to the camera housing 2.

以下、図2〜図5を参照しながら、ヒートパイプ5の全体構成およびこの発明で最も特徴的な凝縮部10の構造について詳細に説明する。
先ず、図2,図4を参照して、蒸発部6の構造を説明する。蒸発部6は、平板状の蒸発部本体6Aの平面部分を撮像素子4の背面に密着させ、撮像素子4で発生した熱を蒸発部6に効率よく伝熱するように構成されている。蒸発部6の内部には、複数の毛管状のウィック6cが気相路口6aと液相路口6bを結ぶ方向に延在しており、ウィック6cにより気相路口6aと液相路口6bとは連通している。
Hereinafter, the overall configuration of the heat pipe 5 and the structure of the condensing unit 10 that is the most characteristic of the present invention will be described in detail with reference to FIGS.
First, the structure of the evaporation unit 6 will be described with reference to FIGS. The evaporation unit 6 is configured so that the flat portion of the flat plate-like evaporation unit main body 6A is brought into close contact with the back surface of the image pickup device 4 and heat generated by the image pickup device 4 is efficiently transferred to the evaporation unit 6. Inside the evaporation section 6, a plurality of capillary wicks 6c extend in a direction connecting the gas phase channel port 6a and the liquid phase channel port 6b, and the gas phase channel port 6a and the liquid phase channel port 6b communicate with each other by the wick 6c. is doing.

図2,図3を参照して、凝縮部10の構造を説明する。図2に示されるように、凝縮部10は、互いに直交する3枚の中空平板10x,10y,10zが一体化され、全体としての外観が三角錐体を呈する凝縮部本体10Aを有し、カメラ筐体2の左上前方のコーナーに配設されている。すなわち、凝縮部10は、中空平板10x,10y,10zがそれぞれカメラ筐体2の前板2x,側板2y,上板2zに固着されている。3枚の中空平板10x,10y,10zの中空部分は互いに連通している。   The structure of the condensing part 10 is demonstrated with reference to FIG. 2, FIG. As shown in FIG. 2, the condensing unit 10 includes a condensing unit body 10A in which three hollow flat plates 10x, 10y, and 10z that are orthogonal to each other are integrated, and the appearance as a whole exhibits a triangular pyramid. It is disposed at the upper left front corner of the housing 2. That is, in the condensing unit 10, the hollow flat plates 10x, 10y, and 10z are fixed to the front plate 2x, the side plate 2y, and the upper plate 2z of the camera housing 2, respectively. The hollow portions of the three hollow flat plates 10x, 10y, and 10z communicate with each other.

図3に示されるように、凝縮部10には、3枚の中空平板10x,10y,10zの中空部分のほぼ中央を通って周回する気体通路11が形成されている。各中空平板10x,10y,10zの中空部分において、この環状の気体通路11で取り囲まれた領域が内側凝縮領域13、この気体通路11を包囲する領域が外側凝縮領域14である。内側凝縮領域13および外側凝縮領域14には、図3に示されるように、多数の微小な円柱状突起13a,14aがそれぞれマトリックス状に所定間隔でパターニング形成されている。これにより、凝縮部本体10Aの中空部分の表面積が広くなり、筺体2の内壁面への放熱作用が大きくなる。また、円柱状突起13a,14aが液化した作動流体の流れに対して抵抗となり、液化のための時間を長くとることができる。   As shown in FIG. 3, the condensing unit 10 is formed with a gas passage 11 that circulates through substantially the center of the hollow portions of the three hollow flat plates 10x, 10y, and 10z. In the hollow portion of each of the hollow flat plates 10x, 10y, 10z, a region surrounded by the annular gas passage 11 is an inner condensation region 13, and a region surrounding the gas passage 11 is an outer condensation region 14. As shown in FIG. 3, in the inner condensation region 13 and the outer condensation region 14, a large number of minute columnar protrusions 13a and 14a are formed in a matrix at a predetermined interval. Thereby, the surface area of the hollow part of 10 A of condensation part main bodies becomes large, and the thermal radiation effect | action to the inner wall face of the housing 2 becomes large. Further, the cylindrical protrusions 13a and 14a become resistant to the flow of the liquefied working fluid, and the time for liquefaction can be increased.

また、3枚の中空平板10x,10y,10zには、内側凝縮領域13の3つの稜線部に内側液体通路15が形成され、外側凝縮領域14の3つの稜線部と外縁部に外側液体通路16が形成されている。外側凝縮領域14の外縁部に形成される外側液体通路16も気体通路11とほぼ相似の環状である。内側液体通路15も外側液体通路16も毛管力を生じるメッシュ構造(網目状)を有する。   Further, in the three hollow flat plates 10x, 10y, and 10z, inner liquid passages 15 are formed at the three ridge lines of the inner condensation region 13, and the outer liquid passage 16 is formed at the three ridges and the outer edge of the outer condensation region 14. Is formed. The outer liquid passage 16 formed at the outer edge of the outer condensation region 14 has an annular shape that is substantially similar to the gas passage 11. Both the inner liquid passage 15 and the outer liquid passage 16 have a mesh structure (mesh shape) that generates capillary force.

要するに、この凝縮部10は、図5に簡略化して示す構造を有している。すなわち、内側凝縮領域13は、中空平板10x,10y,10zのそれぞれに円柱状突起13aがパターニング形成された領域と、3つの稜線部に形成された内側液体通路15とを含み、領域全体にわたって気体や液体が通過できる構造を有する。同様に、外側凝縮領域14は、中空平板10x,10y,10zのそれぞれに円柱状突起14aがパターニング形成された領域と、3つの稜線部と環状の外縁部とに形成された外側液体通路16とを含み、領域全体にわたって気体や液体が通過できる構造を有する。その結果、環状の気体通路11は、円柱状突起13aがパターニング形成された領域と円柱状突起14aがパターニング形成された領域とに挟まれた状態で、この気体通路11の全周にわたって内側凝縮領域13にも外側凝縮領域14にも連通している構造となる。   In short, the condensing unit 10 has a structure shown in a simplified manner in FIG. That is, the inner condensing region 13 includes a region where the columnar protrusions 13a are formed by patterning on each of the hollow flat plates 10x, 10y, and 10z, and an inner liquid passage 15 formed at three ridge lines, and gas is present throughout the region. And a structure through which liquid can pass. Similarly, the outer condensing region 14 includes a region where the cylindrical protrusions 14a are formed by patterning on the hollow flat plates 10x, 10y, and 10z, and an outer liquid passage 16 formed on three ridge lines and an annular outer edge. And has a structure through which gas and liquid can pass over the entire region. As a result, the annular gas passage 11 is sandwiched between the region where the cylindrical protrusion 13a is formed by patterning and the region where the cylindrical protrusion 14a is formed by patterning. 13 and the outer condensation region 14.

さらに、気体通路11には気相路7に接続される気相路口12が設けられている。図3では、気相路口12は、中空平板10zのほぼ中央に設けられているが、気体通路11のどの位置に設けてもよい。また、内側液体通路15には液相路8に接続される内側液相路口17が設けられている。内側液相路口17は、図中、3枚の中空平板10x,10y,10zの交差部に設けられているが、内側液体通路15のどの位置に設けてもよい。また、外側液体通路16には液相路8に接続される外側液相路口18が設けられている。外側液相路口18は、図3では、中空平板10xの外縁部の角に設けられているが、外側液体通路16のどの位置に設けてもよい。なお、液相路8は、内側液相路口17からの管路と外側液相路口18からの管路が統合されて1本の管路となり、蒸発部6の液相路口6bに接続される。   Further, the gas passage 11 is provided with a gas phase passage port 12 connected to the gas phase passage 7. In FIG. 3, the gas-phase passage port 12 is provided at substantially the center of the hollow flat plate 10 z, but may be provided at any position in the gas passage 11. Further, the inner liquid passage 15 is provided with an inner liquid phase passage port 17 connected to the liquid phase passage 8. The inner liquid phase passage port 17 is provided at the intersection of the three hollow flat plates 10x, 10y, and 10z in the drawing, but may be provided at any position in the inner liquid passage 15. The outer liquid passage 16 is provided with an outer liquid phase passage port 18 connected to the liquid phase passage 8. In FIG. 3, the outer liquid phase passage port 18 is provided at the corner of the outer edge portion of the hollow flat plate 10 x, but may be provided at any position in the outer liquid passage 16. Note that the liquid phase path 8 is formed by integrating the pipe line from the inner liquid phase path opening 17 and the pipe line from the outer liquid phase path opening 18 into one pipe line, and is connected to the liquid phase path port 6 b of the evaporation unit 6. .

再び図2を参照すると、蒸発部6では、気相路口6aと液相路口6bとは、分岐した複数のウィック6cにより連通しているとともに、図3を参照すると、凝縮部10では、気相路口12と内側液相路口17とは内側凝縮領域13により、気相路口12と外側液相路口18とは外側凝縮領域14により連通している。すなわち、蒸発部6のウィック6cと、気相路7と、凝縮部10の内側凝縮領域13および外側凝縮領域14と、液相路8とによる閉ループが構成されることになる。この閉ループの内部に封入される作動流体は、例えば、水、各種アルコール、エチルエーテル、エチレングリコール、フロリナート等である。   Referring again to FIG. 2, in the evaporation unit 6, the gas phase path port 6 a and the liquid phase path port 6 b communicate with each other by a plurality of branched wicks 6 c, and referring to FIG. 3, The passage port 12 and the inner liquid phase passage port 17 communicate with each other through the inner condensation region 13, and the gas phase passage port 12 and the outer liquid phase passage port 18 communicate with each other through the outer condensation region 14. That is, a closed loop is formed by the wick 6 c of the evaporation unit 6, the gas phase path 7, the inner condensation region 13 and the outer condensation region 14 of the condensation unit 10, and the liquid phase channel 8. The working fluid sealed in the closed loop is, for example, water, various alcohols, ethyl ether, ethylene glycol, or fluorinate.

蒸発部6では、分岐した複数のウィック6cが蒸発部本体6Aに溝状に形成されている。ウィック6cは、例えば、2枚の平板の一方に複数の溝を形成しておき、溝形成面に他方の平板を密着させて貼り合わせることで作製される。なお、蒸発部6のウィック6cは、溝構造に限らず、メッシュ構造、多孔質構造、または凝縮部10の内側凝縮領域13および外側凝縮領域14と同様の微細凹凸構造などを用いることもできる。   In the evaporation section 6, a plurality of branched wicks 6c are formed in the evaporation section body 6A in a groove shape. The wick 6c is produced, for example, by forming a plurality of grooves on one of two flat plates and attaching the other flat plate in close contact with the groove forming surface. The wick 6c of the evaporation unit 6 is not limited to the groove structure, and a mesh structure, a porous structure, or a fine uneven structure similar to the inner condensation region 13 and the outer condensation region 14 of the condensation unit 10 can also be used.

凝縮部10では、前述したように、気体通路11、内側凝縮領域13および外側凝縮領域14が形成されている。内側凝縮領域13および外側凝縮領域14は、例えば、2枚の薄い平坦な銅板の一方にリソグラフィー、エッチングなどを用いて微小な凹凸を付け、すなわち円柱状突起13a,14aのパターニング形成を行い、次に、3つの稜線部と環状の外縁部に棒状のメッシュ材を貼り付け、最後に、他方の平坦な銅板を貼り合わせることで作製される。また、液相路8は、毛管力を発生させる必要があるので、図4に示されるように、配管内に細いファイバあるいは細いワイヤを束ねた毛管状構造を有する細管の集合体で形成されているが、メッシュ構造、多孔質構造などを用いることもできる。   As described above, in the condensing unit 10, the gas passage 11, the inner condensing region 13, and the outer condensing region 14 are formed. The inner condensing region 13 and the outer condensing region 14 are, for example, formed with fine irregularities on one of two thin flat copper plates using lithography, etching, etc., that is, patterning formation of the cylindrical protrusions 13a and 14a is performed. In addition, a rod-like mesh material is attached to the three ridge lines and the annular outer edge, and finally, the other flat copper plate is attached. Further, since the liquid phase path 8 needs to generate a capillary force, as shown in FIG. 4, the liquid phase path 8 is formed by an aggregate of capillaries having a capillary structure in which thin fibers or thin wires are bundled in a pipe. However, a mesh structure, a porous structure, etc. can also be used.

次に、本実施の形態によるヒートパイプ5の作用効果を説明する。
図2および図4を参照すると、撮像素子4で発生した熱は、蒸発部6の各々のウィック6c中に存在する液相の作動流体に伝わり、その熱によって液体が蒸発して気化することにより、結果的に撮像素子4が冷却される。気相となった作動流体は、気相路口6aに集約され、気相路7を通って凝縮部10へと導かれる。
Next, the effect of the heat pipe 5 by this Embodiment is demonstrated.
Referring to FIGS. 2 and 4, the heat generated in the imaging device 4 is transmitted to the liquid-phase working fluid present in each wick 6 c of the evaporation unit 6, and the liquid is evaporated and vaporized by the heat. As a result, the image sensor 4 is cooled. The working fluid that has become a gas phase is collected at the gas phase passage opening 6 a and is guided to the condensing unit 10 through the gas phase passage 7.

凝縮部10に到達した気相の作動流体は、気相路口12から環状の気体通路11に入り、内側凝縮領域13、外側凝縮領域14を通過する際にカメラ筐体2の前板2x,側板2y,上板2zに対して放熱しつつ液化していく。内側凝縮領域13で液化して生じた液滴は、重力作用により内側液体通路15へ還流する。同様に、外側凝縮領域14で液化して生じた液滴も、重力作用により外側液体通路16へ還流する。内側液体通路15、外側液体通路16へ還流した液相の作動流体は、毛管力により、それぞれ内側液相路口17、外側液相路口18へ集約され、液相路8を通って蒸発部6へと導かれる。   The vapor-phase working fluid that has reached the condensing unit 10 enters the annular gas passage 11 from the gas-phase passage port 12 and passes through the inner condensing region 13 and the outer condensing region 14. 2y, liquefying while dissipating heat to the upper plate 2z. The liquid droplets generated by liquefaction in the inner condensation region 13 return to the inner liquid passage 15 by gravity. Similarly, droplets generated by liquefaction in the outer condensation region 14 also return to the outer liquid passage 16 by the gravitational action. The liquid-phase working fluid that has flowed back to the inner liquid passage 15 and the outer liquid passage 16 is collected by the capillary force into the inner liquid-phase passage port 17 and the outer liquid-phase passage port 18, respectively, and passes through the liquid-phase passage 8 to the evaporation unit 6. It is guided.

内側凝縮領域13および外側凝縮領域14による放熱−液化のプロセスは、作動流体の流れる方向によって2通りに大別できる。図6は、実施の形態による冷却装置の凝縮部を拡大して示す拡大斜視図であり、(a)は第1の放熱−液化プロセス、(b)は第2の放熱−液化プロセスを示す図である。図6(a)は、3枚の中空平板10x,10y,10zの交差部が凝縮部10の中で最も鉛直上方に位置する姿勢での放熱−液化プロセスを示す。この姿勢は、凝縮部10が固着されているカメラ筺体2のコーナーが最も鉛直上方に位置し、中空平板10zが水平となっている、いわゆる横位置撮影姿勢である。   The heat release-liquefaction process by the inner condensing region 13 and the outer condensing region 14 can be roughly divided into two types depending on the direction in which the working fluid flows. FIGS. 6A and 6B are enlarged perspective views showing an enlargement of the condensing part of the cooling device according to the embodiment, in which FIG. 6A shows a first heat release-liquefaction process, and FIG. 6B shows a second heat release-liquefaction process. It is. FIG. 6A shows a heat dissipation-liquefaction process in a posture in which the intersecting portion of the three hollow flat plates 10x, 10y, and 10z is located at the most vertically upper position in the condensing unit 10. This posture is a so-called lateral position photographing posture in which the corner of the camera housing 2 to which the condensing unit 10 is fixed is positioned most vertically upward and the hollow flat plate 10z is horizontal.

外側凝縮領域14の一部、すなわち中空平板10xの面領域Axと中空平板10yの面領域Ayは、気体通路11の鉛直下方に位置するので、これらの面領域Ax,Ayでは、白抜き矢印で示す−Z方向に向かって最も効率良く作動流体が流れる。また、気体通路11より鉛直下方側にある内側凝縮領域13および外側凝縮領域14においても、効率は落ちるものの作動流体が流れる。したがって、図6(a)の凝縮部10の姿勢においては、中空平板10x,10yの内側凝縮領域13および外側凝縮領域14において、放熱−液化−還流の一連のプロセスが行われる。   Since a part of the outer condensing region 14, that is, the surface region Ax of the hollow flat plate 10x and the surface region Ay of the hollow flat plate 10y are positioned vertically below the gas passage 11, these surface regions Ax and Ay are indicated by white arrows. The working fluid flows most efficiently in the -Z direction shown. In the inner condensation region 13 and the outer condensation region 14 that are vertically lower than the gas passage 11, the working fluid flows though the efficiency is lowered. Therefore, in the posture of the condensing unit 10 in FIG. 6A, a series of processes of heat release-liquefaction-reflux is performed in the inner condensation region 13 and the outer condensation region 14 of the hollow flat plates 10x, 10y.

図6(b)は、3枚の中空平板10x,10y,10zの交差部が凝縮部10の中で最も鉛直下方に位置する姿勢での放熱−液化プロセスを示す。この姿勢は、凝縮部10が固着されているカメラ筺体2のコーナーが最も鉛直下方に位置し、中空平板10xが水平となっている、下向き撮影姿勢である。   FIG. 6B shows a heat dissipation-liquefaction process in a posture in which the intersection of the three hollow flat plates 10 x, 10 y, 10 z is positioned at the lowest position in the condenser 10. This posture is a downward photographing posture in which the corner of the camera housing 2 to which the condensing unit 10 is fixed is located at the lowest vertical position and the hollow flat plate 10x is horizontal.

内側凝縮領域13の一部、すなわち中空平板10yの面領域Cyと中空平板10zの面領域Czは、気体通路11の鉛直下方に位置するので、これらの面領域Cy,Czでは、白抜き矢印で示す−Z方向に向かって最も効率良く作動流体が流れる。さらに、気体通路11より鉛直下方側にある外側凝縮領域14の面領域Dy,Dzにおいても、効率は落ちるものの作動流体が流れる。したがって、図6(b)の凝縮部10の姿勢においては、中空平板10y,10zの内側凝縮領域13および外側凝縮領域14の一部において、放熱−液化―還流の一連のプロセスが行われる。   A part of the inner condensing region 13, that is, the surface region Cy of the hollow flat plate 10 y and the surface region Cz of the hollow flat plate 10 z are positioned vertically below the gas passage 11. The working fluid flows most efficiently in the -Z direction shown. Further, the working fluid also flows in the surface regions Dy and Dz of the outer condensing region 14 on the vertically lower side from the gas passage 11 although efficiency is lowered. Therefore, in the posture of the condensing unit 10 in FIG. 6B, a series of processes of heat release-liquefaction-reflux is performed in a part of the inner condensation region 13 and the outer condensation region 14 of the hollow flat plates 10y, 10z.

図6(a),(b)により説明したように、この実施の形態のヒートパイプ5は、電子カメラ1が3次元的にどのような姿勢をとっても気体通路11の鉛直下方に内側凝縮領域13および外側凝縮領域14の少なくともいずれかの一部分が位置することになる。換言すれば、内側凝縮領域13、外側凝縮領域14において、気体通路11位置を基準として水平面に対して45°以上の急傾斜面が常に存在する。したがって、ヒートパイプ5を高い効率で動作させることができる。その結果、電子カメラ1の撮像素子4は、電子カメラ1をどの方向に回転させても十分に冷却され、高画質の画像を得ることができる。   As described with reference to FIGS. 6A and 6B, the heat pipe 5 of this embodiment has the inner condensation region 13 vertically below the gas passage 11 regardless of the posture of the electronic camera 1 in three dimensions. And a portion of at least one of the outer condensation regions 14 will be located. In other words, in the inner condensing region 13 and the outer condensing region 14, there is always a steeply inclined surface of 45 ° or more with respect to the horizontal plane with respect to the position of the gas passage 11. Therefore, the heat pipe 5 can be operated with high efficiency. As a result, the image sensor 4 of the electronic camera 1 is sufficiently cooled regardless of the direction in which the electronic camera 1 is rotated, and a high-quality image can be obtained.

本発明は、上記の実施の形態に限られず、本発明の趣旨を逸脱しない範囲で様々な変形が可能である。例えば、凝縮部10の中空平板10x,10y,10zと、カメラ筐体2の前板2x,側板2y,上板2zとの間に、それぞれ凝縮部10からの熱を吸収するための放熱対象部材を介在させてもよい。この放熱対象部材を熱伝導性の良いアルミニウムや銅で作製すれば、凝縮部5の放熱効率が向上する。また、本実施の形態では、中空平板10x,10y,10zは互いに直交していたが、中空平板10x,10y,10zが固着される筺体に応じて直角以外の角度とすることもできる。さらに、撮像素子4に代えてIC,LSIなどの半導体素子をヒートパイプ5の冷却対象としてもよいし、電子カメラ以外の電子機器の撮像素子や半導体素子をヒートパイプ5の冷却対象としてもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, between the hollow flat plates 10x, 10y, and 10z of the condensing unit 10 and the front plate 2x, the side plate 2y, and the upper plate 2z of the camera housing 2, the heat dissipation target members for absorbing heat from the condensing unit 10 respectively. May be interposed. If this heat radiation target member is made of aluminum or copper having good thermal conductivity, the heat radiation efficiency of the condensing part 5 is improved. Further, in the present embodiment, the hollow flat plates 10x, 10y, and 10z are orthogonal to each other. However, the hollow flat plates 10x, 10y, and 10z may have an angle other than a right angle depending on the housing to which the hollow flat plates 10x, 10y, and 10z are fixed. Further, instead of the image sensor 4, a semiconductor element such as an IC or LSI may be a cooling target of the heat pipe 5, or an imaging element or a semiconductor element of an electronic device other than the electronic camera may be a cooling target of the heat pipe 5.

特許請求の範囲と実施の形態による構成要素との対応関係については、構成体が中空平板10x,10y,10zのいずれかに、第1の流路が気体通路11に、凝縮領域が内側凝縮領域13および外側凝縮領域14に、第2の流路が内側液体通路15および外側液体通路16にそれぞれ対応する。なお、以上の説明はあくまで一例であり、発明を解釈する際、上記の実施形態の記載事項と特許請求の範囲の記載事項の対応関係に何ら限定も拘束もされない。   Regarding the correspondence between the claims and the constituent elements according to the embodiment, the constituent body is one of the hollow flat plates 10x, 10y, 10z, the first flow path is the gas passage 11, and the condensing region is the inner condensing region. The second flow path corresponds to the inner liquid passage 15 and the outer liquid passage 16, respectively. In addition, the above description is an example to the last, and when interpreting invention, it is not limited or restrained at all by the correspondence of the description matter of said embodiment, and the description matter of a claim.

本発明の実施の形態に係る電子カメラの内部構成を模式的に示す全体構成図である。It is a whole block diagram which shows typically the internal structure of the electronic camera which concerns on embodiment of this invention. 本発明の実施の形態に係る電子カメラの内部構成をカメラ背面側から見た斜視図である。It is the perspective view which looked at the internal structure of the electronic camera which concerns on embodiment of this invention from the camera back side. 図2に示す冷却装置の凝縮部を拡大して示す拡大斜視図である。It is an expansion perspective view which expands and shows the condensation part of the cooling device shown in FIG. 図2に示す冷却装置の蒸発部を拡大して示す拡大図である。It is an enlarged view which expands and shows the evaporation part of the cooling device shown in FIG. 図3に示す凝縮部を簡略化して示す斜視図である。It is a perspective view which simplifies and shows the condensation part shown in FIG. 本発明の実施の形態に係る冷却装置の凝縮部を拡大して示す拡大斜視図であり、(a)は第1の放熱−液化プロセス、(b)は第2の放熱−液化プロセスを示す図である。It is an expansion perspective view which expands and shows the condensation part of the cooling device concerning an embodiment of the invention, (a) is the 1st heat dissipation-liquefaction process, (b) is the figure which shows the 2nd heat dissipation-liquefaction process. It is.

符号の説明Explanation of symbols

1:電子カメラ 2:カメラ筐体
4:撮像素子 5:ヒートパイプ
6:蒸発部 7:気相路
8:液相路 10:凝縮部
10A:凝縮部本体 10x,10y,10z:中空平板
11:気体通路 12:気相路口
13:内側凝縮領域 14:外側凝縮領域
15:内側液体通路 16:外側液体通路
17:内側液相路口 18:外側液相路口
1: Electronic camera 2: Camera housing 4: Image sensor 5: Heat pipe 6: Evaporating section 7: Gas phase path 8: Liquid phase path 10: Condensing section 10A: Condensing section body 10x, 10y, 10z: Hollow flat plate 11: Gas passage 12: Gas phase passage 13: Inner condensation region 14: Outer condensation region 15: Inner liquid passage 16: Outer liquid passage 17: Inner liquid phase passage 18: Outer liquid phase passage

Claims (4)

冷却対象で発生する熱が伝達され、その熱で作動流体を気化する蒸発部と、
前記蒸発部で気化された作動流体を冷却して液化する凝縮部と、
前記蒸発部で気化された作動流体を前記凝縮部へ移送する気相路と、
前記凝縮部で液化された作動流体を前記蒸発部へ移送する液相路とを有する循環型の冷却装置であって、
前記凝縮部は、全体外観形状が三角錐体を呈し、内部が中空状で互いに略直交する3面の構成体を少なくとも有し、
前記構成体には、前記気相路が接続される作動流体入口と、前記液相路が接続される作動流体出口とが設けられ、
前記作動流体入口から供給された作動流体が流れる第1の流路が、前記各構成体の中空状内部にそれぞれが連通して設けられ、
前記第1の流路の周囲には、その第1の流路に供給された作動流体を凝縮する凝縮領域が設けられ、
前記凝縮領域で凝縮された作動流体を前記作動流体出口に向けて移送する第2の流路が、その凝縮領域内に設けられていることを特徴とする電子機器用冷却装置。
The heat generated in the object to be cooled is transmitted, and the evaporator vaporizes the working fluid with the heat;
A condensing unit for cooling and liquefying the working fluid vaporized in the evaporation unit;
A gas phase path for transferring the working fluid vaporized in the evaporation section to the condensation section;
A circulation type cooling device having a liquid phase path for transferring the working fluid liquefied in the condensing unit to the evaporation unit,
The condensing part has at least a three-surface structure in which the overall appearance shape is a triangular pyramid, the inside is hollow and substantially orthogonal to each other,
The component is provided with a working fluid inlet to which the gas phase path is connected and a working fluid outlet to which the liquid phase path is connected.
A first flow path through which the working fluid supplied from the working fluid inlet flows is provided in communication with the hollow interior of each component,
A condensing region for condensing the working fluid supplied to the first flow path is provided around the first flow path,
A cooling device for electronic equipment, wherein a second flow path for transferring the working fluid condensed in the condensing region toward the working fluid outlet is provided in the condensing region.
請求項1に記載の電子機器用冷却装置において、
前記凝縮領域には、前記第1の流路から流入する作動流体を放熱するための複数の微小突起がマトリックス状に形成されていることを特徴とする電子機器用冷却装置。
In the cooling device for electronic devices of Claim 1,
The cooling apparatus for electronic equipment, wherein a plurality of minute protrusions for radiating the working fluid flowing from the first flow path are formed in a matrix in the condensation region.
請求項1または2に記載の電子機器用冷却装置において、
前記液相路および前記第2の流路は、毛管構造を有することを特徴とする電子機器用冷却装置。
In the cooling device for electronic devices according to claim 1 or 2,
The liquid phase path and the second flow path have a capillary structure, and the electronic device cooling apparatus.
内部に各種電子部品、電子基板を収容する筐体と、
前記筐体に設けられた請求項1乃至3のいずれか一項に記載の電子機器用冷却装置とを備え、
電子機器用冷却装置の前記凝縮部は、筺体内の隅部の壁面に接して配設されることを特徴とする電子機器。
A housing that houses various electronic components and an electronic board inside,
The electronic apparatus cooling device according to any one of claims 1 to 3 provided in the housing.
The said condensation part of the cooling device for electronic devices is arrange | positioned in contact with the wall surface of the corner part in a housing, The electronic device characterized by the above-mentioned.
JP2005179065A 2005-06-20 2005-06-20 Cooler for electronic equipment, and electronic equipment Pending JP2006349306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179065A JP2006349306A (en) 2005-06-20 2005-06-20 Cooler for electronic equipment, and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179065A JP2006349306A (en) 2005-06-20 2005-06-20 Cooler for electronic equipment, and electronic equipment

Publications (1)

Publication Number Publication Date
JP2006349306A true JP2006349306A (en) 2006-12-28

Family

ID=37645338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179065A Pending JP2006349306A (en) 2005-06-20 2005-06-20 Cooler for electronic equipment, and electronic equipment

Country Status (1)

Country Link
JP (1) JP2006349306A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010003980T5 (en) 2009-10-09 2013-01-10 Asahi Sunac Corporation Electrostatic coating system, electrostatic coating spray gun and AC power source unit
CN107439057A (en) * 2014-11-19 2017-12-05 通用电气公司 Target body and its application method for isotope production system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010003980T5 (en) 2009-10-09 2013-01-10 Asahi Sunac Corporation Electrostatic coating system, electrostatic coating spray gun and AC power source unit
CN107439057A (en) * 2014-11-19 2017-12-05 通用电气公司 Target body and its application method for isotope production system
JP2017538926A (en) * 2014-11-19 2017-12-28 ゼネラル・エレクトリック・カンパニイ Target body for isotope production system and method of use thereof

Similar Documents

Publication Publication Date Title
JP4997215B2 (en) Server device
US7665509B2 (en) Heat exchange module for electronic components
TWI548271B (en) Image capture apparatus
JP6886904B2 (en) Loop type heat pipe, manufacturing method of loop type heat pipe, electronic equipment
US7353860B2 (en) Heat dissipating device with enhanced boiling/condensation structure
US7914152B2 (en) Portable projector using an LED and related heat dissipation system
EP3096103B1 (en) Cooling apparatus and electronic apparatus
US20060162903A1 (en) Liquid cooled thermosiphon with flexible partition
US6749013B2 (en) Heat sink
US20100079952A1 (en) Heat-dissipating module and electronic device having the same
JP2010522996A (en) Thin thermal diffusion liquid chamber using boiling
US7447025B2 (en) Heat dissipation device
US20080030688A1 (en) Projection apparatus
JPH0727999B2 (en) Integrated heat pipe module
TWI624218B (en) Thermosyphon radiating plate and electronic device having the same
JP2007263427A (en) Loop type heat pipe
US7063129B2 (en) Heat transport device and electronic apparatus
JP5334288B2 (en) Heat pipes and electronics
JP2006349306A (en) Cooler for electronic equipment, and electronic equipment
JP2008306489A (en) Imaging device
JP2012204983A (en) Full-perimeter camera
US10996006B2 (en) Cycling heat dissipation module
JP2002141449A (en) Boiling cooler
JP2008227939A (en) Imaging device module and electronics using it
JP2022108969A (en) Electronic apparatus