JP2006349171A - Method of storing nitrogen trifluoride gas - Google Patents

Method of storing nitrogen trifluoride gas Download PDF

Info

Publication number
JP2006349171A
JP2006349171A JP2006161674A JP2006161674A JP2006349171A JP 2006349171 A JP2006349171 A JP 2006349171A JP 2006161674 A JP2006161674 A JP 2006161674A JP 2006161674 A JP2006161674 A JP 2006161674A JP 2006349171 A JP2006349171 A JP 2006349171A
Authority
JP
Japan
Prior art keywords
gas
container
chromium
steel
nitrogen trifluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006161674A
Other languages
Japanese (ja)
Inventor
Yuichi Iikubo
祐一 飯久保
Hyang Ja Jang
張香子
Dae Hyun Kim
金大鉉
Cheol Ho Kim
金哲虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulsan Chemical Co Ltd
Original Assignee
Ulsan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulsan Chemical Co Ltd filed Critical Ulsan Chemical Co Ltd
Publication of JP2006349171A publication Critical patent/JP2006349171A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L5/00Gas handling apparatus
    • B01L5/02Gas collection apparatus, e.g. by bubbling under water
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L5/00Gas handling apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • C01B21/0832Binary compounds of nitrogen with halogens
    • C01B21/0835Nitrogen trifluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storing method of NF<SB>3</SB>gas without deterioration even after storage of long period. <P>SOLUTION: The nitrogen trifluoride gas is filled and stored in a chromium-molybdenum steel vessel manufactured through a deep drawing ironing process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、三フッ化窒素(NF)ガスの貯蔵方法に関する。
さらに詳細には、本発明は、深絞りしごき(Deep Drawing Ironing)工法(以下、「DDI工法」という)で製造されたクロム−モリブデン鋼製容器を用いることによるNFガスの貯蔵方法に関する。
The present invention relates to a method for storing nitrogen trifluoride (NF 3 ) gas.
More specifically, the present invention relates to a method for storing NF 3 gas by using a chromium-molybdenum steel container manufactured by a deep drawing ironing method (hereinafter referred to as “DDI method”).

板金加工において、絞り型(Drawing Die)を用いて底付き円筒状の容器を作る加工方法をDDI工法という。
なお、DDI工法は、深絞り加工法ともいうことがある。炭素工具鋼又は合金工具鋼の上下1組(パンチとダイス)からなっている金型を絞り型という。この絞り型(ダイス)を機械プレスに固定させ、型の間に板材を挟んだ後パンチを押すと、板材が延伸されながら底面と壁面が一体になるコップ状の円筒型容器が成形される。容器の上部を密封し、注入口にバルブを設置すると、ガス貯蔵用高圧容器が完成される。
In sheet metal processing, a processing method for producing a cylindrical container with a bottom using a drawing die is called a DDI method.
The DDI method may also be referred to as a deep drawing method. A die composed of a pair of upper and lower carbon tool steel or alloy tool steel (punch and die) is called a drawing die. When this drawing die (die) is fixed to a mechanical press, a plate material is sandwiched between the dies, and then a punch is pressed, a cup-shaped cylindrical container in which the bottom surface and the wall surface are integrated while the plate material is stretched is formed. When the upper part of the container is sealed and a valve is installed at the inlet, a high-pressure container for gas storage is completed.

NFガスは、半導体素子の製造の際にエッチング剤(etching agent)として用いられる高価な化学工業薬品である。NFは、フッ素ガスとアンモニアとを直接反応させ、あるいは酸性フッ化アンモニウム(NF・HF)とフッ素ガスとを反応させて製造することも、酸性フッ化アンモニウム溶融塩を電気分解して製造することもできる。一般に、NFガスは、高純度の液体状態に製造された後、20〜50Lの容器に高圧ガスの状態で充填してユーザーに供給されている。
NFは、半導体素子構造の製造工程のエッチング剤として用いられるものなので、99.99%以上の高純度のものが要求される。
現在、半導体製造工程では、N:max3ppm、O:max3ppm、CO:max1ppm、CF:max20ppm、HO:max1ppm、NO:max1ppm、HF:max1ppmの純度が保たれるNFガスが要求されている。
NF 3 gas is an expensive chemical industrial chemical used as an etching agent in the manufacture of semiconductor devices. NF 3 can be produced by reacting fluorine gas and ammonia directly, or by reacting acid ammonium fluoride (NF 4 · HF) with fluorine gas, or by electrolyzing acid ammonium fluoride molten salt. You can also In general, NF 3 gas is supplied to a user after being manufactured in a high-purity liquid state and filled in a 20 to 50 L container in a high-pressure gas state.
Since NF 3 is used as an etchant in the manufacturing process of the semiconductor element structure, a high purity of 99.99% or more is required.
Currently, the semiconductor manufacturing process, N 2: max3ppm, O 2 : max3ppm, CO 2: max1ppm, CF 4: max20ppm, H 2 O: max1ppm, N 2 O: max1ppm, HF: NF 3 the purity of Max1ppm is maintained Gas is required.

NFガスは、反応性の高い気体の化学工業薬品であるので、保管又は流通過程で変質してはならないため、特殊な容器に充填して貯蔵することが一般的である。
従来のNFガスを充填して貯蔵する容器としては、マンガン鋼で製造された容器が用いられている。このような用途として用いられるマンガン鋼製容器は、0.5〜1.5%のマンガンを含有するマンガン鋼からなるパイプを熱処理成形加工によって円筒状の密閉容器に作り、この容器の内部を研磨し洗浄するなどの工程を経て製造されたものである。
NFを充填して貯蔵する容器として用いられるマンガン鋼製容器は、内面研磨によって内面粗さ(Ra)を10μm以下に維持させ、洗浄、加熱及び真空作業によって内部の不純物を徹底的に除去してから使われる。
Since NF 3 gas is a highly reactive gaseous chemical industrial chemical, it must not be altered during storage or distribution, and therefore it is common to store it in a special container.
As a conventional container for filling and storing NF 3 gas, a container made of manganese steel is used. Manganese steel containers used for such applications are made by making a pipe made of manganese steel containing 0.5-1.5% manganese into a cylindrical sealed container by heat treatment molding, and polishing the interior of this container It is manufactured through a process such as cleaning.
Manganese steel containers used as containers for filling and storing NF 3 maintain inner surface roughness (Ra) of 10 μm or less by inner surface polishing, and thoroughly remove internal impurities by washing, heating and vacuum operations. Used after.

ところが、内部不純物が除去され、内面粗さ(Ra)が10μm以下に加工処理されたマンガン鋼製容器であっても、NFを充填して保管すると、時間の経過に伴ってNFガスが酸性を示してくるという問題がある。NFガスが酸性を示すということは、NFガスが変質することである。
しかしながら、このようなNFガスの変質原因は、未だその正確なメカニズムが解明されてはいないが、貯蔵容器内に存在する不純物、すなわち酸化鉄(Fe)と水分、酸素による影響であると推測されており、酸性を示す主原因は、NFガスの変質により生成した硝酸による影響であると分析によって明らかになっている。
However, even if the container is made of manganese steel from which the internal impurities are removed and the inner surface roughness (Ra) is processed to 10 μm or less, if NF 3 is filled and stored, the NF 3 gas will increase with time. There is a problem of showing acidity. The fact that NF 3 gas is acidic means that NF 3 gas is altered.
However, alteration causes of such NF 3 gas is still Although the exact mechanism has not yet been elucidated, impurities present in the storage container, i.e. the iron oxide (Fe x O y) and moisture, the influence by oxygen It is speculated that there is an analysis, and it has been revealed by analysis that the main cause of acidity is the influence of nitric acid produced by the alteration of NF 3 gas.

NFガスが、充填容器の内部で硝酸に変質することを示す反応式は、次のとおりである。

Figure 2006349171
The reaction formula showing that NF 3 gas is transformed into nitric acid inside the filled container is as follows.
Figure 2006349171

現在、NFガス製造会社又はNFガス使用会社で適用しているNFガス規格には酸度が規定してあるが、これはHFのみを意味し、硝酸類を規定していないため、硝酸類は管理されていない。
このようにマンガン鋼製容器に充填・貯蔵されたNFガスから硝酸が検出されるということは、マンガン鋼製容器がNF充填容器として適しないことを意味する。
したがって、NFガス製造会社又は使用会社は、長期保管の際に変質を起こさないNF貯蔵方法の開発が必要な実情にある。
For now, but the NF 3 gas standards that are applied in NF 3 gas manufacturers or NF 3 gas used company are defined acidity, this means only HF, but does not specify nitrates, nitrate Kinds are not managed.
Thus, the fact that nitric acid is detected from the NF 3 gas filled and stored in the manganese steel container means that the manganese steel container is not suitable as an NF 3 filled container.
Therefore, the NF 3 gas manufacturing company or the user company is in a situation where it is necessary to develop an NF 3 storage method that does not cause deterioration during long-term storage.

韓国公開特許公報第2003−037465号Korean Published Patent Publication No. 2003-037465

本発明者らは、従来の方法で製造されたマンガン鋼製容器にNFガスを貯蔵する場合、容器の内部を研磨加工して粗さ(Ra)を10μm以下に低くしても、容器内面の組織が緻密ではなく、その結果、微量の遊離鉄(isolated iron)成分や水分などの不純物が存在することになり、このような不純物がNFガスと反応を起こしてNFガスが変質するが、これに対しDDI工法で製造されたクロム−モリブデン鋼製容器を使用すると、長期保管の際にもNFガスが変質を起こさないことを確認し、本発明を完成するに至った。
本発明は、このような問題点に鑑みてなされたもので、その目的とするところは、長期保管の際にも変質を起こさないNFガスの貯蔵方法を提供することにある。
When the NF 3 gas is stored in a manganese steel container manufactured by a conventional method, the inventors of the present invention can reduce the roughness (Ra) to 10 μm or less by polishing the inside of the container and the inner surface of the container. As a result, a small amount of isolated iron component and impurities such as moisture are present, and these impurities react with NF 3 gas and NF 3 gas is altered. However, when a chromium-molybdenum steel container manufactured by the DDI method was used, it was confirmed that the NF 3 gas did not change even during long-term storage, and the present invention was completed.
The present invention has been made in view of such problems, and an object of the present invention is to provide a method for storing NF 3 gas that does not cause alteration even during long-term storage.

上記課題を解決するために、本発明は、DDI工法で製造されたクロム−モリブデン鋼製容器を用いるNFガスの貯蔵方法を提供するものである。 In order to solve the above-described problems, the present invention provides a method for storing NF 3 gas using a chromium-molybdenum steel container manufactured by the DDI method.

本発明のクロム−モリブデン鋼製容器を用いて充填して貯蔵されたNFガスは、2年以上長期保管経過後にも変質しないという効果がある。 The NF 3 gas filled and stored using the chrome-molybdenum steel container of the present invention has an effect that it does not deteriorate after a long-term storage for 2 years or longer.

半導体製造工程において使用されるガスの場合、半導体の集積度が高くなるにつれて、要求されるガスの純度も益々高くなっており、これによりガスの充填容器に対する管理もさらに厳しくなっている。一般に、高純度用ガス充填容器は、充填後、容器の内面に付いている水分及び不純物粒子によるガスの汚染を防止するために、内面研磨工程によって、内面の粗さ(Ra)を10μm以下の水準に維持させ、次いで容器内部の異物を除去するための洗浄、乾燥、真空などの工程を経る。ところが、NFガスの場合、前記のような厳しい工程によって製造された貯蔵容器であっても、充填後、段々酸性化してしまうという問題が発生している。 In the case of a gas used in a semiconductor manufacturing process, as the degree of integration of the semiconductor increases, the purity of the required gas becomes higher and higher, so that the management of the gas filling container becomes more severe. Generally, a high-purity gas-filled container has an inner surface roughness (Ra) of 10 μm or less by an inner surface polishing step in order to prevent gas contamination due to moisture and impurity particles attached to the inner surface of the container after filling. Then, it is subjected to processes such as washing, drying, and vacuum for removing foreign substances inside the container. However, in the case of NF 3 gas, there is a problem that even if the storage container is manufactured by the strict process as described above, it is gradually acidified after filling.

本発明者らは、NFガスの場合、従来のマンガン鋼で製作した充填容器に充填する場合、硝酸化物系の不純物が形成されて製品の酸度(pH)が増加することを観察し、マンガン鋼ではなくクロム−モリブデン鋼を用いてDDI工法で製作した充填容器にNFガスを充填すると、酸度の増加なしに高純度の製品が維持されることを見出した。すなわち、既存のマンガン鋼で製作した充填容器は、如何に内面を精密に加工し、厳しく洗浄乾燥させても、NFガスを充填する場合、時間の経過に伴って酸性物質が生成され、ガスから酸性域のpHが検知されるという問題点があった。しかしながら、DDI工法で製造したクロム−モリブデン鋼製容器を用いて三フッ化窒素ガスを充填すると、いかなる汚染物の生成も全く観察されず、長期間保存の際にも製品の変質がないため、NFの貯蔵容器として適することを見出し、本発明に至った。
このような現象は、クロム−モリブデン鋼の場合、一般なマンガン鋼製容器とは異なり、パイプではなく、鋼板を用いてDDI工法によって製作されるが、材質及び工法の特性上、マンガン鋼製容器とは異なり、別途の内面処理工程を経なくても表面が均一になり、5μm以下の粗さ(Ra)を示し、内面処理工程を経る場合に1μm未満の表面粗さ(Ra)を得ることができるという利点がある。
In the case of NF 3 gas, the present inventors have observed that when filling a conventional container made of manganese steel, a nitrate-based impurity is formed and the acidity (pH) of the product is increased. It has been found that high purity products can be maintained without increasing acidity when NF 3 gas is filled into a filling vessel manufactured by the DDI method using chromium-molybdenum steel instead of steel. That is, even if the filling container made of the existing manganese steel is processed with a precise inner surface and rigorously washed and dried, when filling with NF 3 gas, an acidic substance is generated with the passage of time. Therefore, there is a problem that the pH in the acidic range is detected. However, when nitrogen trifluoride gas is filled using a chromium-molybdenum steel container manufactured by the DDI method, no contamination is observed at all, and there is no deterioration of the product even during long-term storage. It has been found that it is suitable as a storage container for NF 3 and has led to the present invention.
In the case of chromium-molybdenum steel, such a phenomenon is produced by a DDI method using a steel plate instead of a pipe unlike a general manganese steel vessel. Unlike the above, the surface becomes uniform without going through a separate inner surface treatment step, showing a roughness (Ra) of 5 μm or less, and when passing through the inner surface treatment step, a surface roughness (Ra) of less than 1 μm is obtained. There is an advantage that can be.

マンガン鋼パイプを材料として用いて製作されるマンガン鋼製容器は、徹底的な内面処理工程を経ても、極めて微細な隙間の中に付いている水分や粒子などの不純物を完璧に除去することが難しく、隙間の内部表面に露出している遊離(isolated)鉄成分などと三フッ化窒素との反応によりフッ化鉄が生成される上、生成されたフッ化鉄が触媒作用してNFの分解をさらに加速化させることによりNO又は酸性成分が増加する。
これに対し、本発明におけるように、クロム−モリブデン鋼板を主材料としてDDI工法で製造した容器の場合、鉄板の圧縮成形過程で鋼板内部の組織が極めて緻密になって鉄成分の焼結(Sintering)などの現象が現われ、内面処理工程を経なくても表面が均一かつ清浄な形状になる。このような特性は、マンガン鋼より表面の隙間など微細空間が減少して内面の不純物の除去が容易になる上、遊離鉄と微量不純物の量が減少することによりNFガスの分解が抑えられるためであると推定される。
以下、実施例を挙げて本発明を具体的に説明する。
Manganese steel containers manufactured using manganese steel pipes can completely remove impurities such as moisture and particles in extremely fine gaps even after a thorough internal surface treatment process. It is difficult, and iron fluoride is generated by the reaction of isolated iron component exposed on the inner surface of the gap with nitrogen trifluoride, and the generated iron fluoride catalyzes the action of NF 3 By further accelerating the decomposition, N 2 O or acidic components are increased.
On the other hand, as in the present invention, in the case of a container manufactured by the DDI method using a chromium-molybdenum steel plate as a main material, the structure inside the steel plate becomes very dense during the compression molding process of the iron plate and the iron component is sintered (Sintering ) And the like appear, and the surface becomes uniform and clean without going through the inner surface treatment process. Such characteristics make it easier to remove impurities on the inner surface by reducing the fine space such as the gap between the surfaces than manganese steel, and also suppresses the decomposition of NF 3 gas by reducing the amount of free iron and trace impurities. It is presumed that.
Hereinafter, the present invention will be specifically described with reference to examples.

溶融塩状態の酸性フッ化アンモニウムの中にアンモニアとフッ素をガス状態で供給して不純物含有NFガスを製造し、このガスから精製工程を経て低温の液状高純度NFを製造して貯蔵容器に気(液)体状態で受け取った。受け取ったNFガスをマンガン鋼製充填容器とDDI工法で製造されたクロム−モリブデン鋼製充填容器にそれぞれ20kgずつ充填し、充填容器を常温に放置した後、時間経過によるNFガスのpHの変化を測定した。
ここで、マンガン鋼製容器は、マンガン含量1.5wt%の容器を使用し、クロム−モリブデン鋼製容器は、クロム含量1.5wt%、モリブデン含量0.5wt%の容器を使用した。ガスクロマトグラフ(Valco社製、PDD検出器)を用いてNOを分析した。
HNO分析は、NaOHを用いる中和滴定により総酸度を測定し、その総酸度の値からHFの量を差し引いた値をHNOの量として換算することにより行った。HFの量は、Fイオン分析器を用いて分析し、HNOの存在は、硫酸及びFeSOを用いてCS及びKI液を加え、希硫酸酸性液中でCS層の色相が紫色に変化する陰イオン定性分析により確認した。
その結果を、表1及び表2に示した。
表1において、粗さは容器の内面粗さ(Ra)を意味する。
Ammonia and fluorine are supplied in a gaseous state to ammonium acid fluoride in a molten salt state to produce an impurity-containing NF 3 gas, and a low temperature liquid high-purity NF 3 is produced from this gas through a purification process, and a storage container I received it in the state of gas (liquid). The received NF 3 gas was filled in 20 kg each into a manganese steel filling container and a chromium-molybdenum steel filling container produced by the DDI method, and after the standing of the filling container at room temperature, the pH of the NF 3 gas over time Changes were measured.
Here, the manganese steel container was a container having a manganese content of 1.5 wt%, and the chromium-molybdenum steel container was a container having a chromium content of 1.5 wt% and a molybdenum content of 0.5 wt%. N 2 O was analyzed using a gas chromatograph (Valco, PDD detector).
The HNO 3 analysis was performed by measuring the total acidity by neutralization titration using NaOH, and converting the value obtained by subtracting the amount of HF from the value of the total acidity as the amount of HNO 3 . The amount of HF is analyzed using an F ion analyzer, and the presence of HNO 3 is obtained by adding CS 2 and KI solution using sulfuric acid and FeSO 4 , and the hue of CS 2 layer becomes purple in dilute sulfuric acid acidic solution. Confirmed by changing anion qualitative analysis.
The results are shown in Tables 1 and 2.
In Table 1, the roughness means the inner surface roughness (Ra) of the container.

Figure 2006349171
Figure 2006349171

Figure 2006349171
Figure 2006349171

マンガン鋼で製作した充填容器では、時間が経過すると酸成分が検知されるが、これに対し、クロム−モリブデン鋼で製作した充填容器では、2年以上の時間を置いて測定しても何の変化も認められなかった。
一方、マンガン鋼で製作した容器の場合、内部粗さを10μm以下にまで研磨した貯蔵容器では、NFガスの分解の程度は、内部粗さ25μm以上の容器に貯蔵されたガスよりさらに少なかったが、DDI工法で製作されたクロム−モリブデン鋼貯蔵容器よりは多かった。
また、表2のように貯蔵容器内のガス成分を分析した結果、マンガン鋼で作製した充填容器に充填されたNFガスの場合、硝酸とフッ酸の量が多少増加し、これによりpH低下することが確認された。
実際、容器内のNFガス中に含まれるNO量もマンガン鋼の貯蔵容器では時間とともに増加する傾向を示したが、クロム−モリブデンのDDI工法で製作された貯蔵容器に充填されたNFガスでは、時間をおいても殆ど変わらずNFガスは高純度を維持することを確認することができた。
本発明のNFガスを充填して貯蔵する容器としては、クロム含量1.5〜2.0wt%、モリブデン含量0.2〜0.5wt%のクロム−モリブデン鋼のDDI工法で製作された容器が適することが明らかになった。
In packed containers made of manganese steel, acid components are detected over time, whereas in filled containers made of chrome-molybdenum steel, no matter what the measurement takes over two years. No change was observed.
On the other hand, in the case of a container made of manganese steel, in a storage container whose internal roughness is polished to 10 μm or less, the degree of decomposition of NF 3 gas was even less than the gas stored in a container having an internal roughness of 25 μm or more. However, it was more than the chromium-molybdenum steel storage container manufactured by the DDI method.
In addition, as a result of analyzing the gas components in the storage container as shown in Table 2, in the case of NF 3 gas filled in a filling container made of manganese steel, the amount of nitric acid and hydrofluoric acid slightly increased, thereby lowering the pH Confirmed to do.
In fact, the amount of N 2 O contained in the NF 3 gas in the container also tended to increase with time in the manganese steel storage container, but the NF filled in the storage container manufactured by the chromium-molybdenum DDI method was used. With 3 gases, it was confirmed that the NF 3 gas maintained high purity with little change over time.
As a container for filling and storing the NF 3 gas of the present invention, a container manufactured by the DDI method of chromium-molybdenum steel having a chromium content of 1.5 to 2.0 wt% and a molybdenum content of 0.2 to 0.5 wt%. Was found to be suitable.

Claims (2)

三フッ化窒素ガスの貯蔵方法において、三フッ化窒素ガスを深絞りしごき(Deep Drawing Ironing)工法で製造されたクロム−モリブデン鋼製容器に貯蔵することを特徴とする三フッ化窒素ガスの貯蔵方法。   Nitrogen trifluoride gas storage method, wherein nitrogen trifluoride gas is stored in a chromium-molybdenum steel container manufactured by a deep drawing ironing method. Method. 前記クロム−モリブデン鋼が、クロム含量1.5〜2.0wt%、モリブデン含量0.2〜0.5wt%のクロム−モリブデン鋼であることを特徴とする請求項1に記載の三フッ化窒素ガスの貯蔵方法。   2. The nitrogen trifluoride according to claim 1, wherein the chromium-molybdenum steel is a chromium-molybdenum steel having a chromium content of 1.5 to 2.0 wt% and a molybdenum content of 0.2 to 0.5 wt%. Gas storage method.
JP2006161674A 2005-06-14 2006-06-09 Method of storing nitrogen trifluoride gas Pending JP2006349171A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050050668A KR100660444B1 (en) 2005-06-14 2005-06-14 Storage method of Nitrogen trifluoride

Publications (1)

Publication Number Publication Date
JP2006349171A true JP2006349171A (en) 2006-12-28

Family

ID=37513684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161674A Pending JP2006349171A (en) 2005-06-14 2006-06-09 Method of storing nitrogen trifluoride gas

Country Status (6)

Country Link
US (1) US20060280642A1 (en)
JP (1) JP2006349171A (en)
KR (1) KR100660444B1 (en)
CN (1) CN100460745C (en)
DE (1) DE102005060954B4 (en)
IT (1) ITBO20060030A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257795A (en) * 1999-03-10 2000-09-19 Mitsui Chemicals Inc Inner surface treatment method of high pressure gas container
JP3107715U (en) * 2004-09-13 2005-02-03 中国工業株式会社 High pressure gas container

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE737556C (en) * 1935-01-06 1943-07-19 Hoesch Ag Chromium-molybdenum-iron alloy for corrosion-resistant objects, the production of which requires a high level of deep-drawing ability
US4578113A (en) * 1983-05-19 1986-03-25 Union Carbide Corporation High strength steel
US5133928A (en) * 1989-10-28 1992-07-28 Chesterfield Cylinders Limited Cylinder body of a steel composition
JP2927914B2 (en) * 1990-08-31 1999-07-28 三井化学株式会社 Method for producing nitrogen trifluoride gas
JP3068216B2 (en) * 1990-12-28 2000-07-24 東北特殊鋼株式会社 High cold forging electromagnetic stainless steel
JP2933826B2 (en) * 1994-07-05 1999-08-16 川崎製鉄株式会社 Chromium steel sheet excellent in deep drawing formability and secondary work brittleness and method for producing the same
TW336257B (en) * 1996-01-30 1998-07-11 Daido Hoxan Inc A method of carburizing austenitic stainless steel and austenitic stainless steel products obtained thereby
DE10158258B4 (en) * 2000-11-30 2012-08-23 Hyundai Motor Co. Shift control method for an automatic transmission of a vehicle
RU2182556C1 (en) * 2001-09-28 2002-05-20 Зао "Астор-Электроникс" Method of obtaining nitrogen trifluoride
KR100428906B1 (en) * 2001-11-05 2004-04-29 주식회사 소디프신소재 Method for preparing of filling cylinder of highly pure nitrogen trifluoride(nf3) by treating the inner side of filling cylinder and filling cylinder prepared by the method
JP2003232495A (en) * 2002-02-07 2003-08-22 Mitsui Chemicals Inc Charged high-purity high-pressure gas
ES2276047T3 (en) * 2002-02-15 2007-06-16 Benteler Automobiltechnik Gmbh USE OF A STEEL ALLOY AS A PIPE MATERIAL FOR THE MANUFACTURE OF PRESSURE GAS CONTAINERS OR AS A MATERIAL FOR THE MANUFACTURE OF MOLDED PIECES IN STEEL LIGHT STRUCTURES.
JP3816841B2 (en) * 2002-06-25 2006-08-30 日本パイオニクス株式会社 Purifying agent and purifying method for gas containing nitrogen fluoride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257795A (en) * 1999-03-10 2000-09-19 Mitsui Chemicals Inc Inner surface treatment method of high pressure gas container
JP3107715U (en) * 2004-09-13 2005-02-03 中国工業株式会社 High pressure gas container

Also Published As

Publication number Publication date
KR20060130281A (en) 2006-12-19
KR100660444B1 (en) 2006-12-22
DE102005060954A1 (en) 2006-12-28
ITBO20060030A1 (en) 2006-12-15
CN100460745C (en) 2009-02-11
CN1880830A (en) 2006-12-20
DE102005060954B4 (en) 2008-07-31
US20060280642A1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US8372212B2 (en) Supercritical drying method and apparatus for semiconductor substrates
JP6845235B2 (en) Hydrogen sulfide mixture and its manufacturing method and filling container
WO2020129726A1 (en) Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer
CN111139428A (en) Passivation treatment method for steel cylinder for storing fluorine-containing compound electronic grade gas
KR20060063782A (en) Method for treating semiconductor processing components and components formed thereby
JP2017512298A (en) Method for determining the concentration of metallic impurities that contaminate silicon products
KR20200138428A (en) High purity ethylenediamine for semiconductor applications
CN101529235A (en) Washing storage solution for glass electrode and the like
JP2006349171A (en) Method of storing nitrogen trifluoride gas
JP4744017B2 (en) Analysis method of trace impurities in high purity fluorine gas
TWI635275B (en) Deterioration evaluation method, washing condition determining method, and manufacturing method of germanium wafer
JP6745164B2 (en) Method for producing tantalum nitride (Ta3N5)
WO2021182045A1 (en) Sulfur dioxide mixture, method for producing same, and filling container
JP2005326240A (en) Analyzing container and method for analyzing very small amount of element
WO2019188912A1 (en) Washing method, manufacturing method, and washing device for polycrystalline silicon
US5712168A (en) Method for evaluating, monitoring or controlling the efficiency, stability, or exhaustion of a complexing or chelating agent present in a chemical solution used for oxidizing, dissolving, etching or stripping a semiconductor wafer
KR102316409B1 (en) Dry Etching Agent Compositions and Dry Etching Methods
JP2008214187A (en) Carbonyl fluoride having reduced content of hydrogen fluoride and method for producing the same
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JP2000321266A (en) Apparatus and method for evaluation of water quality of ultrapure water
FR2887011A1 (en) Storing nitrogen trifluoride used as etching agent for fabrication of semiconductor device, by storing nitrogen trifluoride in chromium-molybdenum steel vessel manufactured using deep drawing ironing process
TWI810058B (en) Measuring method of liquid mixture purity
JP2008216178A (en) Analytic method of hydrofluoric acid in aqueous solution containing hydrofluoric acid and silicon compound
CN115989192B (en) Broken polysilicon block and its manufacturing method
JP2006522226A (en) Method for reducing degradation of reactive compounds during transport

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104