JP2003232495A - Charged high-purity high-pressure gas - Google Patents

Charged high-purity high-pressure gas

Info

Publication number
JP2003232495A
JP2003232495A JP2002030674A JP2002030674A JP2003232495A JP 2003232495 A JP2003232495 A JP 2003232495A JP 2002030674 A JP2002030674 A JP 2002030674A JP 2002030674 A JP2002030674 A JP 2002030674A JP 2003232495 A JP2003232495 A JP 2003232495A
Authority
JP
Japan
Prior art keywords
gas
purity
cylinder
iron
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002030674A
Other languages
Japanese (ja)
Inventor
Kazunari Ishida
一成 石田
Yoshihiko Kanbara
芳彦 神原
Toshihiko Sakamoto
年彦 坂本
Yoshio Tanaka
良雄 田仲
Takeshi Yasutake
剛 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002030674A priority Critical patent/JP2003232495A/en
Publication of JP2003232495A publication Critical patent/JP2003232495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of causing a lowering of purity by metallic impurities caused by the material of a high-pressure gas container although manganese steel or chromium molybdenum steel is generally used as the material of the high-pressure gas container used for storing and transporting high-purity compressed gas or high-purity liquefied gas in a semiconductor industry field or the like. <P>SOLUTION: The interior of a high-pressure gas container of manganese steel or chromium molybdenum steel is subjected to shot-blast polishing, wet polishing, electrolytic complex polishing or electrolytic polishing, then to washing treatment with a basic wash liquid containing an oxidizer, to demineralized water washing and to washing treatment with an organic solvent, and then cleaned by heating vacuum or purged with inert gas such as nitrogen or argon and then subjected to heat treatment in an oxidizing gas atmosphere to obtain a container which is charged with high-purity gas for use. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高圧ガス容器に充
填された高純度ガスに関する。詳しくは、高純度でしか
も経時的に純度が変化することのない充填されたガスに
関する。
TECHNICAL FIELD The present invention relates to a high purity gas filled in a high pressure gas container. More specifically, it relates to a filled gas which is highly pure and whose purity does not change with time.

【0002】[0002]

【従来の技術】近年の半導体産業の発展に伴い、多くの
種類のガス、特に高純度のものがボンベ状の容器に充填
され用いられるようになった。そのための容器としては
高圧ガス取締法の容器保安規則に基づき、炭素鋼、マン
ガン鋼、クロムモリブデン鋼、ステンレス鋼、アルミニ
ウム合金などが用いられている。
2. Description of the Related Art With the recent development of the semiconductor industry, many kinds of gases, particularly high-purity gases, have been used by filling a cylinder-shaped container. As a container for that purpose, carbon steel, manganese steel, chrome molybdenum steel, stainless steel, aluminum alloy, etc. are used based on the container safety rule of the High Pressure Gas Control Law.

【0003】[0003]

【発明が解決しようとする課題】高純度のガスの製造方
法はすでに確立されているため、充填時あるいは充填直
後には極めて高純度の充填高圧ガスが得られる。しかし
ながら高純度ガス(例えば6ナイン以上の純度を有する
ガス)では通常の容器に充填すると充填されたガスの純
度は経時的に変化し純度が低下するという問題があり実
際の充填高圧ガスは充填前のガス程は高純度ではないと
いう問題があった。このような問題点の改良のため特公
平7−43078ではボンベ内面に電解複合研磨を実施
する方法が開示されている。しかしながら、高価なステ
ンレス鋼では比較的簡単に不動態化皮膜が形成される
が、マンガン鋼あるいはクロムモリブデン鋼など比較的
安価な材料を使用した容器では簡便には不動態化皮膜が
形成されないという問題があり結果として充填高純度高
圧ガスは得られないという問題がある。
Since a method for producing a high-purity gas has already been established, an extremely high-purity filled high-pressure gas can be obtained during or immediately after filling. However, when a high-purity gas (for example, a gas having a purity of 6 nines or more) is filled in an ordinary container, the purity of the filled gas changes with time and the purity is lowered. There is a problem that the gas is not as pure as the gas. In order to improve such problems, Japanese Patent Publication No. 7-43078 discloses a method of performing electrolytic composite polishing on the inner surface of a cylinder. However, a passivation film is formed relatively easily on expensive stainless steel, but a passivation film is not easily formed on a container using a relatively inexpensive material such as manganese steel or chromium molybdenum steel. As a result, there is a problem that a filled high-purity high-pressure gas cannot be obtained.

【0004】一方、近年半導体製造用に用いるガスを始
め高純度のガスの需要が増大している。しかしながら、
実際に需要家に供給され利用される際には純度が低下し
ていることがあり特に長時間容器に保存されたものはそ
の傾向がある。市場では、充填、運搬、使用状態への設
置などが完了し実際に利用される段階で高純度を保って
いることが必要とされており、実際に使用される際にも
高純度であるような充填高純度ガスが望まれている。
On the other hand, in recent years, there has been an increasing demand for high-purity gases including those used for semiconductor manufacturing. However,
When it is actually supplied to and used by customers, the purity may be lowered, and this is particularly the case when stored in a container for a long time. In the market, it is necessary to maintain high purity at the stage of actual use after completing filling, transportation, installation in use, etc., and it seems that it is also high purity when actually used. A highly charged high purity gas is desired.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記問題を
解決した充填高純度ガスについて鋭意検討し本発明に到
達した。即ち本発明は、主として鉄からなる金属で構成
され、内表面が鉄の酸化物から構成され、その酸素化学
形態において、水酸化鉄の酸素が全酸素の40%未満であ
る高純度高圧ガス用容器に高純度ガスを充填してなる高
純度高圧ガスである。そして本発明はまた、主として鉄
からなる金属で構成され、内表面が鉄の酸化物から構成
され、その酸素化学形態において、水酸化鉄の酸素が全
酸素の40%未満である耐圧容器に充填して保存する高純
度ガスの保存方法である。本発明はまた、主として鉄か
らなる金属で構成され、内表面が鉄の酸化物から構成さ
れ、その酸素化学形態において、水酸化鉄の酸素が全酸
素の40%未満である耐圧容器に充填して輸送することを
特徴とする高純度ガスの輸送方法である。
The inventors of the present invention have earnestly studied a filled high-purity gas that has solved the above problems, and have reached the present invention. That is, the present invention is for a high-purity high-pressure gas, which is mainly composed of a metal consisting of iron, the inner surface of which is composed of an oxide of iron, and in its oxygen chemical form, oxygen of iron hydroxide is less than 40% of total oxygen. It is a high-purity high-pressure gas obtained by filling a container with high-purity gas. And the present invention is also composed of a metal mainly composed of iron, the inner surface of which is composed of an oxide of iron, and in its oxygen chemical form, filled in a pressure resistant container in which oxygen of iron hydroxide is less than 40% of total oxygen. It is a method of storing high-purity gas. The present invention also comprises a pressure-resistant container, which is mainly composed of a metal composed of iron, whose inner surface is composed of an oxide of iron, and in its oxygen chemical form, oxygen of iron hydroxide is less than 40% of total oxygen. It is a method of transporting a high-purity gas, which is characterized in that

【0006】[0006]

【発明の実施の形態】本発明の高純度高圧ガス用容器に
ついてその製造を示すことにより具体的に説明する。本
発明で用いる高純度高圧ガス用容器とは、内表面が特定
の構造であることをのぞけば、一般に、ボンベという名
称で販売されている耐圧金属容器と同様のものである。
その材質は、炭素鋼、マンガン鋼、ステンレス鋼、クロ
ムモリブデン鋼など主として鉄から構成されるものであ
り、特にマンガン鋼、クロムモリブデン鋼などが好まし
く使用される。また、熱処理材、非熱処理材のどちらで
あっても良い。本発明で用いる容器はまず種々の方法で
研磨される。研磨方法としては、ショットブラスト研
磨、湿式研磨、電解複合研磨、電解研磨などが利用でき
それらは既に公知である。本発明で容器の内容面を処理
するのに用いられる酸化性ガスとしては、酸素、二酸化
窒素、オゾンの少なくとも一種を含有するガスである。
本発明でボンベの内表面を洗浄するに用いる洗浄液とし
ては、塩基性洗浄液が好ましく用いられ、過炭酸ソー
ダ、過ホウ酸ソーダ、重クロム酸カリウム、過硫酸カリ
ウム、過酸化水素、過マンガン酸カリウムなどの酸化剤
の少なくとも一種を混合して用いることができる。中で
も脂肪酸塩と脂肪酸アミド及び非イオン界面活性剤の混
合液あるいはさらに、当該混合液と過酸化水素水からな
るものが好ましく利用できる。例えば共栄社化学社製T
KXコンパウンド液を使用水に対して1〜30重量%と
過酸化水素が1〜30重量%からなるものが好ましい、
特には共栄社化学社製TKXコンパウンド液が使用水に
対して2〜8%重量%と過酸化水素が1〜5重量%から
なるものが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The high purity high pressure gas container of the present invention will be specifically described by showing its production. The high-purity high-pressure gas container used in the present invention is generally the same as a pressure-resistant metal container sold under the name of a cylinder, except that the inner surface has a specific structure.
The material is mainly composed of iron such as carbon steel, manganese steel, stainless steel, and chrome molybdenum steel, and manganese steel and chrome molybdenum steel are particularly preferably used. Further, it may be either a heat-treated material or a non-heat-treated material. The container used in the present invention is first polished by various methods. As the polishing method, shot blast polishing, wet polishing, electrolytic composite polishing, electrolytic polishing and the like can be used, and they are already known. The oxidizing gas used for treating the content side of the container in the present invention is a gas containing at least one of oxygen, nitrogen dioxide and ozone.
As the cleaning liquid used for cleaning the inner surface of the cylinder in the present invention, a basic cleaning liquid is preferably used, and sodium percarbonate, sodium perborate, potassium dichromate, potassium persulfate, hydrogen peroxide, potassium permanganate are used. It is possible to mix and use at least one kind of oxidizing agent such as. Among them, a mixed solution of a fatty acid salt, a fatty acid amide and a nonionic surfactant, or a mixed solution of the mixed solution and hydrogen peroxide water can be preferably used. For example, Kyoeisha Chemical Co., Ltd. T
It is preferable that the KX compound liquid is 1 to 30% by weight and the hydrogen peroxide is 1 to 30% by weight based on the water used.
In particular, the TKX compound liquid manufactured by Kyoeisha Chemical Co., Ltd. is preferably 2 to 8% by weight and 1 to 5% by weight of hydrogen peroxide based on the water used.

【0007】塩基性洗浄液によるボンベ内面処理は、通
常ボンベ内に塩基性洗浄液、必要により酸化剤と混合し
たもの、とセラミックス製ボール及び水を入れて、ボン
ベを水平状態で回転させて清浄処理する。本発明で用い
る容器を製造する1つの態様を以下に示す。まず、ボン
ベの内面を上述のショットブラスト研磨、湿式研磨、電
解複合研磨、電解研磨等で研磨する。次いで、研磨残査
等を除く目的でボンベ内を純水等で洗浄する。水洗後、
塩基性洗浄液でボンベ内面を清浄する。次に、塩基性洗
浄液等を除く目的でボンベ内を純水等で洗浄する。次い
で有機溶剤で洗浄処理し、真空あるいは、窒素、アルゴ
ン等の不活性ガスの気流下で50〜500℃の温度で好まし
くは180〜350℃の温度で加熱処理する。さらに、酸化性
ガスの存在下に50〜500℃の温度で好ましくは180〜350
℃の温度で加熱処理することで本発明の容器を製造する
ことができる。こうして得られた容器の内表面は、後述
する方法で評価すると、内表面は鉄の酸化物(酸化鉄及
び水酸化鉄を意味する)からなり、その酸化物(酸化鉄
及び水酸化鉄)の全酸素のうち、水酸化鉄に由来する酸
素の割合が40%未満であることがわかる。工程上の何
らかの問題で、このような条件を満たさない容器が得ら
れた場合には、本発明の充填高純度高圧ガスには使用で
きない。こうして得られ、水酸化鉄由来の酸素の割合が
40%未満であることが確認された容器に製造工程にお
いて高純度ガスとして製造された高圧ガスを不純物が混
入しないように容器に充填することで充填高純度高圧ガ
スとすることができる。
The inner surface treatment of a cylinder with a basic cleaning liquid is usually performed by putting a basic cleaning liquid, optionally mixed with an oxidizing agent, a ceramic ball and water in the cylinder, and rotating the cylinder in a horizontal state for cleaning. . One embodiment for producing the container used in the present invention is shown below. First, the inner surface of the cylinder is polished by the above-mentioned shot blast polishing, wet polishing, electrolytic composite polishing, electrolytic polishing or the like. Then, the inside of the cylinder is washed with pure water or the like for the purpose of removing polishing residue and the like. After washing with water
Clean the inside of the cylinder with a basic cleaning solution. Next, the inside of the cylinder is washed with pure water or the like for the purpose of removing the basic washing liquid or the like. Then, it is washed with an organic solvent and heat-treated at a temperature of 50 to 500 ° C., preferably at a temperature of 180 to 350 ° C. in a vacuum or a stream of an inert gas such as nitrogen or argon. Furthermore, in the presence of an oxidizing gas at a temperature of 50 ~ 500 ℃ preferably 180 ~ 350
The container of the present invention can be produced by heat treatment at a temperature of ° C. The inner surface of the container thus obtained was evaluated by the method described below, and the inner surface consisted of an oxide of iron (meaning iron oxide and iron hydroxide), and the oxide (iron oxide and iron hydroxide) It can be seen that the proportion of oxygen derived from iron hydroxide is less than 40% of all oxygen. If a container that does not satisfy such conditions is obtained due to some problem in the process, it cannot be used for the filled high-purity high-pressure gas of the present invention. By filling the container obtained in this way and confirmed that the proportion of oxygen derived from iron hydroxide is less than 40% with high-pressure gas produced as high-purity gas in the production process so that impurities are not mixed It can be filled high-purity high-pressure gas.

【0008】本発明においてボンベの内表面は以下の方
法で分析され、酸化鉄および水酸化鉄の全酸素中の水酸
化鉄の酸素の割合が測定される。ここで、酸化鉄とは、
Fe=O及びFe−O−Fe結合を有する成分であり、
水酸化鉄とは、Fe−OH結合を有する成分のことであ
る。内表面の酸化鉄および水酸化鉄の全酸素に対する水
酸化鉄由来の酸素の割合は、具体的には、組成分析はX
線光電子分光(XPS)により測定し、酸素1s軌道の
光電子スペクトルを波形分離し、酸化鉄中の酸素と水酸
化鉄中の酸素の各々の成分比率を算出し全酸素に対する
水酸化鉄の酸素の割合として算出される。この割合が4
0%より大きいと高純度ガスが経時変化し高純度充填ガ
スとはならない。
In the present invention, the inner surface of the cylinder is analyzed by the following method, and the oxygen content of iron hydroxide in the total oxygen content of iron oxide and iron hydroxide is measured. Here, iron oxide is
Fe = O and a component having a Fe-O-Fe bond,
Iron hydroxide is a component having a Fe-OH bond. The ratio of oxygen derived from iron hydroxide to the total oxygen of iron oxide and iron hydroxide on the inner surface is, specifically, X in the composition analysis.
It is measured by line photoelectron spectroscopy (XPS), the photoelectron spectrum of the oxygen 1s orbit is separated by waveform, the ratio of each component of oxygen in iron oxide and oxygen in iron hydroxide is calculated, and the oxygen content of iron hydroxide in total oxygen is calculated. Calculated as a percentage. This ratio is 4
If it is more than 0%, the high-purity gas will change over time and will not become a high-purity filling gas.

【0009】[0009]

【実施例】以下に実施例を示し本発明をさらに説明す
る。 実施例1 <ボンベの調製>マンガン鋼製、容量47リットルのボ
ンベ(住金機工株式会社製)2本の内部を湿式研磨した
後、ボンベ内部にセラミックス製ボールと塩基性洗浄液
として、ラウリル酸ジエタノールアミド及びミリスチン
酸ジエタノールアミンの1対1混合物の3wt%水溶液23リ
ットルを入れ、ボンベを水平状態に保ち、その軸心周り
で自転させつつ、水平軸心周りで左周りに約1時間公転
させる。その後、ボンベの内容物を外部に出し、ボンベ
の口を真下にしてスライド式ノズルをボンベ内に挿入し
て250Kgf/CM2の高圧純水を噴射して内部を洗浄する。次
に、150Kgf/CM2のイソプロピルアルコール(以下、IP
Aという。)で同様に洗浄する。更に5Kgf/CM2の窒素を
吹き込み雰囲気を窒素に置換しながら250℃で30分加熱
乾燥した後、20重量%の酸素を含有した窒素ガスで更に
250℃で60分間酸化処理する。 <XPSによる鉄酸化物中の酸素量の測定>上記処理ボ
ンベの内1本の胴部を切断して1cm各の試験片とした
後、X線光電子分光(XPS)装置に装填する。Alの
Kα線を用い、2mm径の照射面積で鉄2p、酸素1s、
炭素1sの各軌道からの光電子スペクトルを狭域測定
(ナロウスキャン)する。炭素1sピーク(C−C結
合)の位置を284.5eVとして結合エネルギー値を
校正した後、酸素1sピークについて、530eVを水
酸化鉄、531eVを酸化鉄とする2成分に波形分離し
各々の面積百分率を求めた。また、鉄2pピークについ
て、707eVの鉄単体成分が検出されないことを確認
した。結果を表1に示す。
The present invention will be further described with reference to the following examples. Example 1 <Preparation of Cylinder> The inside of two cylinders (manufactured by Sumikin Kiko Co., Ltd.) made of manganese steel and having a capacity of 47 liters were wet-polished, and then ceramic balls were placed inside the cylinder and lauric acid diethanolamide was used as a basic cleaning liquid. Then, 23 liters of a 3 wt% aqueous solution of a 1: 1 mixture of diethanolamine myristate is placed, the cylinder is kept horizontal, and while revolving about its axis, it revolves about the horizontal axis counterclockwise for about 1 hour. After that, the contents of the cylinder are taken out to the outside, and a mouth of the cylinder is placed directly below to insert a slide type nozzle into the cylinder to inject 250 Kgf / CM2 of high-pressure pure water to clean the inside. Next, 150 Kgf / CM2 isopropyl alcohol (hereinafter referred to as IP
It is called A. ). Furthermore, after blowing 5 Kgf / CM2 of nitrogen and replacing the atmosphere with nitrogen, it was dried by heating at 250 ° C. for 30 minutes, and then with nitrogen gas containing 20% by weight of oxygen.
Oxidize at 250 ° C for 60 minutes. <Measurement of Oxygen Content in Iron Oxide by XPS> One of the treated cylinders was cut into 1 cm test pieces, which were then loaded into an X-ray photoelectron spectroscopy (XPS) apparatus. Using Kα ray of Al, iron 2p, oxygen 1s, in irradiation area of 2mm diameter,
Narrow area measurement (narrow scan) of photoelectron spectrum from each orbit of carbon 1s. After calibrating the binding energy value with the position of the carbon 1s peak (C-C bond) set to 284.5eV, the oxygen 1s peak was waveform-separated into two components, 530eV as iron hydroxide and 531eV as iron oxide, and the areas of each were separated. The percentage was calculated. In addition, it was confirmed that the iron single component of 707 eV was not detected in the iron 2p peak. The results are shown in Table 1.

【0010】<高純度ガスの充填>XPS測定用以外の
ボンベに弁を装着後、気密試験でガスのリークがない事
を確認する。このボンベに高純度アンモニア25Kg充填
する。 <ボンベの評価>ボンベを15°に転倒させて、ボンベ弁
の口にテフロン(登録商標)管付きSUS製バルブを接
続する。バルブを徐々に開き予め準備した超純水100m
lが入っている200mlテフロン(登録商標)製容器に
液体アンモニアを約20g採取する。採取液をICP-M
S法で鉄イオン濃度の分析を行った。鉄イオン濃度の分
析は高純度アンモニアガス充填直後と充填後、30日経過
後の2回実施した。結果は表1に示す。
<Filling with high-purity gas> After mounting a valve on a cylinder other than for XPS measurement, it is confirmed by an airtight test that there is no gas leak. This cylinder is filled with 25 kg of high-purity ammonia. <Evaluation of cylinder> The cylinder is turned over at 15 ° and a SUS valve with a Teflon (registered trademark) tube is connected to the mouth of the cylinder valve. Open the valve gradually and prepare 100m of ultrapure water.
About 20 g of liquid ammonia is collected in a 200 ml Teflon (registered trademark) container containing 1 liter. The collected liquid is ICP-M
The iron ion concentration was analyzed by the S method. The analysis of the iron ion concentration was performed twice immediately after the high-purity ammonia gas was filled and 30 days after the filling. The results are shown in Table 1.

【0011】実施例 2 ボンベの調製の項及びXPSの測定の項は実施例1と同
様に操作を行った。
Example 2 The same operations as in Example 1 were carried out for the cylinder preparation section and the XPS measurement section.

【0012】<高純度ガスの充填>ボンベに弁を装着
後、気密試験でガスのリークがないことを確認する。こ
のボンベに高純度塩化水素(HCL)を25kg充填す
る。
<Filling with high purity gas> After mounting the valve on the cylinder, it is confirmed by an airtight test that there is no gas leak. This cylinder is filled with 25 kg of high-purity hydrogen chloride (HCL).

【0013】<ボンベの評価>ボンベを15°に転倒させ
て、ボンベ弁の口にテフロン(登録商標)管付きSUS
製バルブを接続する。バルブを徐々に開き予め準備した
超純水100mlが入っている200mlテフロン(登録商
標)製容器にHCLを約20g採取する。採取液をICP
-MS法で鉄イオン濃度の分析を行った。鉄イオン濃度
の分析はHCL充填直後と充填後、30日経過後の2回実
施した。結果は表1に示す。
<Evaluation of cylinder> The cylinder is turned upside down at 15 °, and a SUS with a Teflon (registered trademark) tube is attached to the mouth of the cylinder valve.
Connect the manufactured valve. Gradually open the valve and collect approximately 20 g of HCL in a 200 ml Teflon (registered trademark) container containing 100 ml of ultrapure water prepared in advance. ICP the collected liquid
-The iron ion concentration was analyzed by the MS method. The analysis of the iron ion concentration was performed twice immediately after the HCL was filled and after 30 days had passed after the HCL was filled. The results are shown in Table 1.

【0014】実施例 3 ボンベの調製の項及びXPSの測定の項は実施例1と同
様に操作を行った。
Example 3 The same operations as in Example 1 were carried out for the cylinder preparation section and the XPS measurement section.

【0015】<高純度ガスの充填>ボンベに弁を装着
後、気密試験でガスのリークがないことを確認する。こ
のボンベに高純度ヨウ化水素(HI)を50kg充填す
る。
<Filling with high purity gas> After mounting the valve on the cylinder, it is confirmed by an airtight test that there is no gas leak. This cylinder is filled with 50 kg of high-purity hydrogen iodide (HI).

【0016】<ボンベの評価>ボンベを15°に転倒させ
て、ボンベ弁の口にテフロン(登録商標)管付きSUS
製バルブを接続する。バルブを徐々に開き予め準備した
超純水100mlが入っている200mlテフロン(登録商
標)製容器にHIを約20g採取する。採取液をICP-
MS法で鉄イオン濃度の分析を行った。鉄イオン濃度の
分析はHI充填直後と充填後、30日経過後の2回実施し
た。結果は表1に示す。
<Evaluation of the cylinder> The cylinder is turned upside down at 15 °, and a SUS with a Teflon (registered trademark) tube is attached to the mouth of the cylinder valve
Connect the manufactured valve. Gradually open the valve and collect about 20 g of HI in a 200 ml Teflon (registered trademark) container containing 100 ml of ultrapure water prepared in advance. ICP-
The iron ion concentration was analyzed by the MS method. The analysis of the iron ion concentration was performed twice immediately after HI filling and 30 days after the filling. The results are shown in Table 1.

【0017】実施例4 酸化剤として30%過酸化水素水2.3リットルを添加した
以外は実施例1と同様に行った。結果は表1に示す。
Example 4 Example 1 was repeated except that 2.3 liter of 30% hydrogen peroxide solution was added as an oxidizing agent. The results are shown in Table 1.

【0018】比較例 1 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例1と同様に行った。結果は表1に示
す。
Comparative Example 1 Pure water was used in place of the basic cleaning liquid, and 20
The same procedure as in Example 1 was performed except that the inner surface treatment was performed with nitrogen instead of the nitrogen gas containing% oxygen. The results are shown in Table 1.

【0019】比較例 2 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例2と同様に行った。結果は表1に示
す。
COMPARATIVE EXAMPLE 2 Pure water was used in place of the basic cleaning liquid, and 20
Example 2 was repeated except that the inner surface was treated with nitrogen instead of the nitrogen gas containing oxygen. The results are shown in Table 1.

【0020】比較例 3 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例3と同様に行った。結果は表1に示
す。
Comparative Example 3 Pure water was used in place of the basic cleaning liquid, and 20
The same procedure as in Example 3 was performed except that the inner surface treatment was performed with nitrogen instead of the nitrogen gas containing 0.1% oxygen. The results are shown in Table 1.

【0021】実施例 5 ボンベの調製の項及びXPSの測定の項は実施例1と同
様に操作を行った。
Example 5 The same operations as in Example 1 were performed for the cylinder preparation section and the XPS measurement section.

【0022】<高純度ガスの充填>ボンベに弁を装着
後、気密試験でガスのリークがないことを確認する。こ
のボンベに三弗化窒素(NF3)を20kg充填する。
<Filling with high purity gas> After mounting the valve on the cylinder, it is confirmed by an airtight test that there is no gas leak. 20 kg of nitrogen trifluoride (NF3) is filled in this cylinder.

【0023】<ボンベの評価>ボンベ弁の出口ラインに
減圧弁、湿式ガスメーター、及び純水20mlを封入し
た吸収瓶を接続する。次に減圧弁出口バルブを徐々に開
いて三弗化窒素を流し、湿式ガスメーターで流量を測定
しながら30Lを純水にバブリングする。本操作によ
り、三弗化窒素中のHF分が純水に吸収される。吸収液
中のHF分は、弗素イオン電極法(ホリバ社製イオンメ
ーター)にて分析を行い、この操作を充填直後及び充填
後20日間経過後の2回実施した。結果は表2に示す。
<Evaluation of cylinder> A pressure reducing valve, a wet gas meter, and an absorption bottle containing 20 ml of pure water are connected to the outlet line of the cylinder valve. Next, the pressure reducing valve outlet valve is gradually opened to allow nitrogen trifluoride to flow, and 30 L of pure water is bubbled while measuring the flow rate with a wet gas meter. By this operation, the HF component in nitrogen trifluoride is absorbed in pure water. The HF content in the absorption liquid was analyzed by the fluorine ion electrode method (ion meter manufactured by Horiba), and this operation was performed twice immediately after the filling and 20 days after the filling. The results are shown in Table 2.

【0024】実施例 6 ショットブラスト研磨した後のボンベを使用した以外
は、実施例5と同様に行った。結果は表2に示す。
Example 6 Example 6 was repeated except that the cylinder after shot blasting was used. The results are shown in Table 2.

【0025】実施例 7 クロムモリブデン鋼製、容量47リットルのボンベ(住
金機工株式会社製)を使用した以外は、実施例5と同様
に行った。結果は表2に示す。
Example 7 Example 5 was repeated except that a chrome molybdenum steel cylinder having a capacity of 47 liters (manufactured by Sumikin Kiko Co., Ltd.) was used. The results are shown in Table 2.

【0026】実施例8 酸化剤として30%過酸化水素水2.3リットルを添加した
以外は実施例5と同様に行った。結果は表2に示す。
Example 8 Example 8 was repeated except that 2.3 liters of 30% hydrogen peroxide solution was added as an oxidizing agent. The results are shown in Table 2.

【0027】比較例 4 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例5と同様に行った。結果は表2に示
す。
Comparative Example 4 Pure water was used in place of the basic cleaning liquid, and 20
The same procedure as in Example 5 was carried out except that the inner surface treatment was performed with nitrogen instead of the nitrogen gas containing% oxygen. The results are shown in Table 2.

【0028】比較例 5 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例6と同様に行った。結果は表2に示
す。
Comparative Example 5 Pure water was used in place of the basic cleaning liquid, and 20
Example 6 was repeated except that the inner surface treatment was performed with nitrogen instead of the nitrogen gas containing 0.1% oxygen. The results are shown in Table 2.

【0029】比較例 6 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例7と同様に行った。結果は表2に示
す。
Comparative Example 6 Pure water was used in place of the basic cleaning liquid, and 20
Example 7 was performed in the same manner as in Example 7, except that the inner surface treatment was performed with nitrogen instead of the nitrogen gas containing% oxygen. The results are shown in Table 2.

【0030】実施例 9 ボンベの調製の項及びXPSの測定の項は実施例1と同
様に操作を行った。 <高純度ガスの充填>ボンベに弁を装着後、気密試験で
ガスのリークがないことを確認する。このボンベに四弗
化珪素(SiF4)を30kg充填する。 <ボンベの評価>ボンベ弁の出口ラインに減圧弁とFT
IR用測定セルを接続した後、減圧弁の出口バルブを徐
々に開いて四弗化珪素を流し、セルにガスをサンプリン
グする。この後、島津製作所社製FTIRにて、ピーク
強度から四弗化珪素中のHFを測定した。この操作を充
填直後及び充填後20日間経過後の2回実施した。結果
は表3に示す。
Example 9 The same operations as in Example 1 were performed for the cylinder preparation section and the XPS measurement section. <Filling with high-purity gas> After mounting the valve on the cylinder, confirm that there is no gas leak by an airtight test. This cylinder is filled with 30 kg of silicon tetrafluoride (SiF4). <Evaluation of cylinder> A pressure reducing valve and FT are installed in the outlet line of the cylinder valve.
After connecting the IR measurement cell, the outlet valve of the pressure reducing valve is gradually opened to flow silicon tetrafluoride, and gas is sampled in the cell. After that, HF in silicon tetrafluoride was measured from the peak intensity by FTIR manufactured by Shimadzu Corporation. This operation was performed twice immediately after the filling and 20 days after the filling. The results are shown in Table 3.

【0031】実施例 10 ショットブラスト研磨した後のボンベを使用した以外
は、実施例9と同様に行った。結果は表3に示す。
Example 10 Example 10 was repeated except that the cylinder after shot blasting was used. The results are shown in Table 3.

【0032】実施例 11 クロムモリブデン鋼製、容量47リットルのボンベを使
用した以外は、実施例9と同様に行った。結果は表3に
示す。
Example 11 Example 9 was repeated except that a cylinder made of chrome molybdenum steel and having a capacity of 47 liters was used. The results are shown in Table 3.

【0033】比較例 7 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例9と同様に行った。結果は表3に示
す。
Comparative Example 7 Pure water was used in place of the basic cleaning liquid, and 20
Example 9 was performed in the same manner as in Example 9 except that the inner surface treatment was performed with nitrogen instead of the nitrogen gas containing% oxygen. The results are shown in Table 3.

【0034】比較例 8 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例10と同様に行った。結果は表3に示
す。
Comparative Example 8 Pure water was used in place of the basic cleaning liquid, and 20
The same procedure as in Example 10 was performed except that the inner surface treatment was performed with nitrogen instead of the nitrogen gas containing% oxygen. The results are shown in Table 3.

【0035】比較例 9 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例11と同様に行った。結果は表3に示
す。
Comparative Example 9 Pure water was used in place of the basic cleaning liquid, and 20
Example 11 was repeated except that the inner surface was treated with nitrogen instead of the nitrogen gas containing 0.1% oxygen. The results are shown in Table 3.

【0036】実施例 12 ボンベの調製の項及びXPSの測定の項は実施例1と同
様に操作を行った。 <高純度ガスの充填>ボンベに弁を装着後、気密試験で
ガスのリークがないことを確認する。このボンベにモノ
シランガス(SiH4)を10kg充填する。 <ボンベの評価>ボンベ弁の出口ラインに減圧弁とガス
クロマトグラフ(GC)用試料採取セルを接続した後、
減圧弁の出口バルブを徐々に開いてモノシランガスを流
し、セルにガスをサンプリングする。この後、Porapak-
PSを充填剤とするGCでFID検出器により、絶対検量
線法でジシランを測定した。この操作を充填直後及び充
填後30日間経過後の2回実施した。結果は表4に示
す。
Example 12 The same operations as in Example 1 were carried out for the cylinder preparation section and the XPS measurement section. <Filling with high-purity gas> After mounting the valve on the cylinder, confirm that there is no gas leak by an airtight test. This cylinder is filled with 10 kg of monosilane gas (SiH4). <Evaluation of cylinder> After connecting a pressure reducing valve and a gas chromatograph (GC) sampling cell to the outlet line of the cylinder valve,
The outlet valve of the pressure reducing valve is gradually opened to flow monosilane gas, and the gas is sampled in the cell. After this, Porapak-
Disilane was measured by an absolute calibration curve method using a FID detector with a GC containing PS as a filler. This operation was performed twice immediately after the filling and 30 days after the filling. The results are shown in Table 4.

【0037】比較例 10 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例12と同様に行った。結果は表4に示
す。
Comparative Example 10 Pure water was used instead of the basic cleaning solution, and 20
Example 12 was carried out in the same manner as in Example 12, except that the inner surface treatment was performed with nitrogen instead of the nitrogen gas containing% oxygen. The results are shown in Table 4.

【0038】実施例 13 ボンベの調製の項及びXPSの測定の項は実施例1と同
様に操作を行った。 <高純度ガスの充填>ボンベに弁を装着後、気密試験で
ガスのリークがないことを確認する。このボンベにジシ
ランガス(Si2H6)を10kg充填する。 <ボンベの評価>ボンベ弁の出口ラインに減圧弁とガス
クロマトグラフ(GC)用試料採取セルを接続した後、
減圧弁の出口バルブを徐々に開いてジシランガスを流
し、セルにガスをサンプリングする。この後、Porapak-
QSを充填剤とするGCでFID検出器により、絶対検
量線法でモノシランを測定した。この操作を充填直後及
び充填後30日間経過後の2回実施した。結果は表4に
示す。
Example 13 The same operations as in Example 1 were carried out for the cylinder preparation section and the XPS measurement section. <Filling with high-purity gas> After mounting the valve on the cylinder, confirm that there is no gas leak by an airtight test. This cylinder is filled with 10 kg of disilane gas (Si2 H6). <Evaluation of cylinder> After connecting a pressure reducing valve and a gas chromatograph (GC) sampling cell to the outlet line of the cylinder valve,
The outlet valve of the pressure reducing valve is gradually opened to flow disilane gas, and the gas is sampled in the cell. After this, Porapak-
Monosilane was measured by an absolute calibration curve method using a FID detector with GC having QS as a filler. This operation was performed twice immediately after the filling and 30 days after the filling. The results are shown in Table 4.

【0039】比較例 11 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例13と同様に行った。結果は表4に示
す。
Comparative Example 11 Pure water was used instead of the basic cleaning liquid, and 20
Example 13 was carried out in the same manner as in Example 13 except that the inner surface treatment was performed with nitrogen instead of the nitrogen gas containing% oxygen. The results are shown in Table 4.

【0040】実施例 14 ボンベの調製の項及びXPSの測定の項は実施例1と同
様に操作を行った。 <高純度ガスの充填>ボンベに弁を装着後、気密試験で
ガスのリークがないことを確認する。このボンベにモノ
メチルシランガス((CH3)SiH3)を5kg充填する。 <ボンベの評価>ボンベ弁の出口ラインに減圧弁とガス
クロマトグラフ(GC)用試料採取セルを接続した後、
減圧弁の出口バルブを徐々に開いてモノメチルシランガ
スを流し、セルにガスをサンプリングする。この後、Po
rapak-Pを充填剤とするGCでPID検出器により、テ
トラメチルジシロキサンのモノメチルシランに対するピ
ーク強度比の変化を測定した。この操作を充填直後及び
充填後30日間経過後の2回実施した。結果は表6に示
す。
Example 14 The same operations as in Example 1 were carried out for the cylinder preparation section and the XPS measurement section. <Filling with high-purity gas> After mounting the valve on the cylinder, confirm that there is no gas leak by an airtight test. This cylinder is filled with 5 kg of monomethylsilane gas ((CH3) SiH3). <Evaluation of cylinder> After connecting a pressure reducing valve and a gas chromatograph (GC) sampling cell to the outlet line of the cylinder valve,
The outlet valve of the pressure reducing valve is gradually opened to allow the flow of monomethylsilane gas, and the gas is sampled in the cell. After this, Po
The change in the peak intensity ratio of tetramethyldisiloxane to monomethylsilane was measured by a PID detector with a GC containing rapak-P as a filler. This operation was performed twice immediately after the filling and 30 days after the filling. The results are shown in Table 6.

【0041】比較例 12 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例14と同様に行った。結果は表6に
示す。
Comparative Example 12 Pure water was used instead of the basic cleaning solution, and 20
The same procedure as in Example 14 was performed except that the inner surface treatment was performed with nitrogen instead of the nitrogen gas containing% oxygen. The results are shown in Table 6.

【0042】実施例 15 ボンベの調製の項及びXPSの測定の項は実施例1と同
様に操作を行った。 <高純度ガスの充填>ボンベに弁を装着後、気密試験で
ガスのリークがないことを確認する。このボンベにトリ
メチルシランガス((CH3)3SiH)を5kg充填する。 <ボンベの評価>ボンベ弁の出口ラインに減圧弁とガス
クロマトグラフ(GC)用試料採取セルを接続した後、
減圧弁の出口バルブを徐々に開いてトリメチルシランガ
スを流し、セルにガスをサンプリングする。この後、Po
rapak-Pを充填剤とするGCでPID検出器により、ヘ
キサメチルジシロキサンのトリメチルシランに対するピ
ーク強度比の変化を測定した。この操作を充填直後及び
充填後30日間経過後の2回実施した。結果は表7に示
す。
Example 15 The same operations as in Example 1 were carried out for the cylinder preparation section and the XPS measurement section. <Filling with high-purity gas> After mounting the valve on the cylinder, confirm that there is no gas leak by an airtight test. This cylinder is filled with 5 kg of trimethylsilane gas ((CH3) 3SiH). <Evaluation of cylinder> After connecting a pressure reducing valve and a gas chromatograph (GC) sampling cell to the outlet line of the cylinder valve,
The outlet valve of the pressure reducing valve is gradually opened to flow trimethylsilane gas, and the gas is sampled in the cell. After this, Po
The change in the peak intensity ratio of hexamethyldisiloxane to trimethylsilane was measured by a PID detector with a GC using rapak-P as a filler. This operation was performed twice immediately after the filling and 30 days after the filling. The results are shown in Table 7.

【0043】比較例 13 塩基性洗浄液の代わりに純水を使用し、加熱乾燥時に20
%の酸素を含有した窒素ガスの代わりに窒素で内面処理
した以外は、実施例15と同様に行った。結果は表7に
示す。
Comparative Example 13 Pure water was used instead of the basic cleaning solution, and 20
The same procedure as in Example 15 was performed except that the inner surface treatment was performed with nitrogen instead of the nitrogen gas containing 0.1% oxygen. The results are shown in Table 7.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【表5】 [Table 5]

【0049】[0049]

【表6】 [Table 6]

【0050】[0050]

【表7】 [Table 7]

【0051】[0051]

【発明の効果】本発明の充填高純度高圧ガスは、移動が
容易で保存安定性も優れており、高純度な高圧ガスを何
時でもい何処でも提供することができ産業に利すること
大である。
INDUSTRIAL APPLICABILITY The filled high-purity high-pressure gas of the present invention is easy to move and has excellent storage stability, and it is possible to provide high-purity high-pressure gas anytime and anywhere, which is of great industrial benefit. is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田仲 良雄 大阪府高石市高砂1丁目6番地 三井化学 株式会社内 (72)発明者 安武 剛 大阪府高石市高砂1丁目6番地 三井化学 株式会社内 Fターム(参考) 3E072 AA01 BA00 CA03 DA05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshio Tanaka             1-6 Takasago, Takaishi-shi, Osaka Mitsui Chemicals             Within the corporation (72) Inventor Takeshi Yasutake             1-6 Takasago, Takaishi-shi, Osaka Mitsui Chemicals             Within the corporation F-term (reference) 3E072 AA01 BA00 CA03 DA05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 主として鉄からなる金属で構成され、内
表面が鉄の酸化物から構成され、その酸素の化学形態に
おいて、水酸化鉄の酸素が鉄の酸化物の全酸素の40%未
満である高純度高圧ガス用容器に高純度ガスを充填して
なる高純度高圧ガス。
1. An iron oxide is contained in the chemical form of iron oxide, the oxygen content of which is less than 40% of the total oxygen content of the iron oxide. High-purity high-pressure gas that is prepared by filling a high-purity high-pressure gas container with high-purity gas.
【請求項2】 主として鉄からなる金属がマンガン鋼あ
るいはクロムモリブデン鋼である請求項1に記載の高純
度高圧ガス。
2. The high-purity high-pressure gas according to claim 1, wherein the metal mainly composed of iron is manganese steel or chromium molybdenum steel.
【請求項3】高純度ガスがアンモニア、塩化水素、沃化
水素、三弗化窒素、四弗化珪素、モノシラン、ジシラ
ン、モノメチルシラン、トリメチルシランである請求項
1記載の高純度ガス。
3. The high purity gas according to claim 1, wherein the high purity gas is ammonia, hydrogen chloride, hydrogen iodide, nitrogen trifluoride, silicon tetrafluoride, monosilane, disilane, monomethylsilane or trimethylsilane.
【請求項4】主として鉄からなる金属で構成され、内表
面が鉄の酸化物から構成され、その酸素化学形態におい
て、水酸化鉄の酸素が全酸素の40%未満である耐圧容器
に充填して保存する高純度ガスの保存方法。
4. A pressure-resistant container which is mainly composed of a metal and whose inner surface is composed of an oxide of iron and whose oxygen chemical form is less than 40% of the total oxygen in iron hydroxide. High-purity gas storage method.
【請求項5】主として鉄からなる金属で構成され、内表
面が鉄の酸化物から構成され、その酸素化学形態におい
て、水酸化鉄の酸素が全酸素の40%未満である耐圧容器
に充填して輸送することを特徴とする高純度ガスの輸送
方法。
5. A pressure-resistant container which is mainly composed of a metal and whose inner surface is composed of an oxide of iron and whose oxygen chemical form is less than 40% of the total oxygen in iron hydroxide. A method for transporting high-purity gas, which comprises transporting the gas in a high purity gas.
JP2002030674A 2002-02-07 2002-02-07 Charged high-purity high-pressure gas Pending JP2003232495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030674A JP2003232495A (en) 2002-02-07 2002-02-07 Charged high-purity high-pressure gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030674A JP2003232495A (en) 2002-02-07 2002-02-07 Charged high-purity high-pressure gas

Publications (1)

Publication Number Publication Date
JP2003232495A true JP2003232495A (en) 2003-08-22

Family

ID=27774337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030674A Pending JP2003232495A (en) 2002-02-07 2002-02-07 Charged high-purity high-pressure gas

Country Status (1)

Country Link
JP (1) JP2003232495A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245249A (en) * 2003-02-10 2004-09-02 Mcc Kogyo:Kk Container for highly purified high-pressure gas, and manufacturing method therefor
CN100460745C (en) * 2005-06-14 2009-02-11 株式会社厚成 Method of storing nitrogen trifluoride
JP2015140860A (en) * 2014-01-29 2015-08-03 日本ゼオン株式会社 Fluorine hydrocarbon compound filling gas container
WO2020109438A1 (en) * 2018-11-30 2020-06-04 Robert Bosch Gmbh Method for producing a hydrogen pressure vessel, pressure vessel, and motor vehicle having a hydrogen pressure vessel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210196A (en) * 1990-11-30 1992-07-31 Tsurumi Soda Kk Anhydrous hydrogen chloride gas bomb and method for cleaning it
JPH0926093A (en) * 1995-07-12 1997-01-28 Teisan Kk Internal surface treatment method for high pressure gas container
JP2000257795A (en) * 1999-03-10 2000-09-19 Mitsui Chemicals Inc Inner surface treatment method of high pressure gas container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210196A (en) * 1990-11-30 1992-07-31 Tsurumi Soda Kk Anhydrous hydrogen chloride gas bomb and method for cleaning it
JPH0926093A (en) * 1995-07-12 1997-01-28 Teisan Kk Internal surface treatment method for high pressure gas container
JP2000257795A (en) * 1999-03-10 2000-09-19 Mitsui Chemicals Inc Inner surface treatment method of high pressure gas container

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245249A (en) * 2003-02-10 2004-09-02 Mcc Kogyo:Kk Container for highly purified high-pressure gas, and manufacturing method therefor
CN100460745C (en) * 2005-06-14 2009-02-11 株式会社厚成 Method of storing nitrogen trifluoride
JP2015140860A (en) * 2014-01-29 2015-08-03 日本ゼオン株式会社 Fluorine hydrocarbon compound filling gas container
WO2020109438A1 (en) * 2018-11-30 2020-06-04 Robert Bosch Gmbh Method for producing a hydrogen pressure vessel, pressure vessel, and motor vehicle having a hydrogen pressure vessel

Similar Documents

Publication Publication Date Title
EP1399382B1 (en) Production of high-purity fluorine gas and method for analyzing trace impurities in high-purity fluorine gas
Dylla et al. Correlation of outgassing of stainless steel and aluminum with various surface treatments
CN100480170C (en) Method and apparatus for producing F2-containing gas, and method and apparatus for modifying article surface
US5817284A (en) Method for decomposing halide-containing gas
KR101732658B1 (en) Cylinder surface treatment for monochlorosilane
JPH06297151A (en) Method of welding stainless steel
CN110832106B (en) Method for producing filled container and filled container
JPH0625822A (en) Treatment for surface passivation of stainless steel
JPH02201984A (en) Purification of excimer laser gas and device therefor
JP2003232495A (en) Charged high-purity high-pressure gas
JP3116038B2 (en) Inner surface treatment method for high pressure gas container
JP4744017B2 (en) Analysis method of trace impurities in high purity fluorine gas
JPH02190472A (en) Method for removing contamination after cleaning by fluorine-based gas in film forming operation system
JP2007176770A (en) Method of producing high purity fluorine gas and apparatus for producing high purity fluorine gas
Koike et al. Decomposition characteristics of concentrated ozone
TWI322030B (en) Exhaust gas treating agent, process for treating exhaust gas and treating apparatus of exhaust gas
KR102489717B1 (en) Container for storing high-purity hydrogen fluoride using a metal substrate having low corrosion resistance, and a method for manufacturing the same
JP2019044264A (en) Processing method of tungsten oxide, and manufacturing method for tungsten hexafluoride
JP2783485B2 (en) How to remove chlorine trifluoride gas
JPH02175855A (en) Metallic material having formed fluorinated passive state film and device using its metallic material
JP3030351B2 (en) Stainless steel on which fluorinated passivation film is formed, method for producing the same, and apparatus using the stainless steel
JP2001506220A (en) Apparatus and method for storing, transporting and producing activated fluorine
JP2004270917A (en) Halogen-based gas charging container, gas charged in the same, and method for processing charging container
JPH08257359A (en) Method for processing perfluorocarbon-containinggas flow
JP2004245249A (en) Container for highly purified high-pressure gas, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028