JP2006348797A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2006348797A
JP2006348797A JP2005173910A JP2005173910A JP2006348797A JP 2006348797 A JP2006348797 A JP 2006348797A JP 2005173910 A JP2005173910 A JP 2005173910A JP 2005173910 A JP2005173910 A JP 2005173910A JP 2006348797 A JP2006348797 A JP 2006348797A
Authority
JP
Japan
Prior art keywords
torque
internal combustion
combustion engine
injection pattern
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005173910A
Other languages
Japanese (ja)
Other versions
JP4258495B2 (en
Inventor
Sumitaka Ikeda
純孝 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005173910A priority Critical patent/JP4258495B2/en
Priority to DE102006000295.4A priority patent/DE102006000295B4/en
Publication of JP2006348797A publication Critical patent/JP2006348797A/en
Application granted granted Critical
Publication of JP4258495B2 publication Critical patent/JP4258495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress torque step generated at a time of injection pattern change over. <P>SOLUTION: ECU calculates difference between indication torque and actual torque as engine variation based on a current injection pattern and stores the engine variation as a correction value. After that, the correction value is reflected to the indication torque calculated based on a next injection pattern when the injection pattern is changed over to calculated target torque, torque control is executed based on the target torque. Consequently, torque step caused by engine variation can be reduced and rotation fluctuation due to change over of the injection pattern can be kept low. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一燃焼サイクル内の噴射回数(噴射パターン)を内燃機関の運転領域に応じて切り替える内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine that switches the number of injections (injection pattern) in one combustion cycle in accordance with the operating region of the internal combustion engine.

従来、自動車等に搭載されるエンジンの燃料噴射制御では、一燃焼サイクル中にて、メイン噴射の前に1回以上のパイロット噴射(微小噴射)、あるいはメイン噴射の後にポスト噴射を行う、いわゆる多段噴射(マルチ噴射)を実施する方法が知られている(特許文献1参照)。この多段噴射(特に、メイン噴射の前に実施されるパイロット噴射)は、主として、燃焼騒音の低減およびNOxの排出を抑制する目的で行われるため、例えば、図5に示す様に、高負荷、高回転域に移行する程、噴射回数を少なくして、噴射パターン(噴射回数)を切り替えることにより、エミッションの低減およびドライバビリティの向上等が図られている(特許文献2、3参照)。
特開2002−327652号公報 特開2004−150318号公報 特開平11−324764号公報
Conventionally, in fuel injection control of an engine mounted on an automobile or the like, in one combustion cycle, one or more pilot injections (micro injection) before main injection or post injection after main injection is performed, so-called multistage. A method of performing injection (multi-injection) is known (see Patent Document 1). This multi-stage injection (particularly pilot injection carried out before the main injection) is performed mainly for the purpose of reducing combustion noise and suppressing NOx emission. For example, as shown in FIG. By shifting the injection pattern (the number of injections) by decreasing the number of injections as the shift to the higher rotation range is performed, reduction of emissions and improvement of drivability are achieved (see Patent Documents 2 and 3).
Japanese Patent Application Laid-Open No. 2002-327652 JP 2004-150318 A JP-A-11-324964

しかし、従来の燃料噴射制御では、例えば、図7に示す様に、噴射回数をA噴射パターン(例えば2段噴射)からB噴射パターン(例えば5段噴射)へ切り替える際に、エンジンの固体差(機差バラツキ)によってトルク段差が発生し、エンジンの目標回転数と実回転数との間にずれ(回転変動)が生じるという問題があった。
本発明は、上記事情に基づいて成されたもので、その目的は、所定の噴射パターンの基で内燃機関の機差バラツキを学習し、噴射パターンが切り替わった時に、学習した内燃機関の機差バラツキを反映したトルク制御を実施することにより、噴射パターンの切り替え時に生じるトルク段差を抑制できる内燃機関の制御装置を提供することにある。
However, in the conventional fuel injection control, for example, as shown in FIG. 7, when the number of injections is switched from an A injection pattern (for example, two-stage injection) to a B injection pattern (for example, five-stage injection), There is a problem that a torque step is generated due to machine difference, and a deviation (rotational fluctuation) occurs between the target engine speed and the actual engine speed.
The present invention has been made on the basis of the above circumstances, and its purpose is to learn the machine difference variation of the internal combustion engine based on a predetermined injection pattern, and to learn the machine difference of the internal combustion engine when the injection pattern is switched. An object of the present invention is to provide a control device for an internal combustion engine that can suppress a torque step generated at the time of switching an injection pattern by performing torque control that reflects variations.

(請求項1の発明)
本発明は、一燃焼サイクル内の噴射回数(噴射パターンと呼ぶ)を内燃機関の運転領域に応じて切り替える内燃機関の制御装置であって、所定の噴射パターンの基で内燃機関のトルクに係わる機差バラツキを学習する機差バラツキ学習手段と、所定の噴射パターンから異なる噴射パターン(次噴射パターンと呼ぶ)に切り替わった時に、その次噴射パターンの基で、内燃機関の機差バラツキを反映したトルク制御を行うトルク制御手段とを有する。
(Invention of Claim 1)
The present invention relates to a control device for an internal combustion engine that switches the number of injections (referred to as an injection pattern) in one combustion cycle in accordance with the operating region of the internal combustion engine, and relates to the torque related to the internal combustion engine based on a predetermined injection pattern. Machine difference variation learning means for learning the difference variation, and torque that reflects the difference in the internal combustion engine based on the next injection pattern when switching from a predetermined injection pattern to a different injection pattern (referred to as the next injection pattern) Torque control means for performing control.

同一の内燃機関であれば、ある噴射パターンの基で機差バラツキが生じる場合、異なった噴射パターンにおいても同様の機差バラツキが生じるはずである。例えば、2段噴射時の機差バラツキが平均的な指標(基準)より大きい場合は、5段噴射時でも機差バラツキの傾向が基準より大きくなると考えられる。
そこで、本発明では、所定の噴射パターンの基で内燃機関の機差バラツキを学習し、噴射パターンが切り替わった時に、学習した機差バラツキを反映したトルク制御を行うので、内燃機関が発生する実トルクと狙い値とのずれを小さくでき、内燃機関の機差バラツキに起因するトルク段差を低減できる。
In the case of the same internal combustion engine, when the machine difference varies based on a certain injection pattern, the same machine difference variation should occur even in different injection patterns. For example, when the machine difference variation at the time of two-stage injection is larger than the average index (reference), it is considered that the tendency of the machine difference variation becomes larger than the reference even at the time of five-stage injection.
Therefore, in the present invention, the machine difference variation of the internal combustion engine is learned on the basis of a predetermined injection pattern, and when the injection pattern is switched, torque control that reflects the learned machine difference variation is performed. The deviation between the torque and the target value can be reduced, and the torque step caused by the machine difference variation of the internal combustion engine can be reduced.

(請求項2の発明)
請求項1に記載した内燃機関の制御装置において、機差バラツキ学習手段は、所定の噴射パターンに対応して設定される指示トルクと、その指示トルクを基に内燃機関が発生する実トルクとの差を、内燃機関の機差バラツキとして学習することを特徴とする。
本発明では、所定の噴射パターンの基で生じるトルクのずれ(指示トルクと実トルクとの差)を内燃機関の機差バラツキとして学習する、つまり、内燃機関の回転数や回転加速度等のトルクに相関するパラメータではなく、トルク自体のずれを内燃機関の機差バラツキとして学習するので、その学習したトルクのずれを次噴射パターンでのトルク制御に反映させることで、次噴射パターンの基で生じるトルクのずれ(狙い値と実トルクとの差)をより小さくできる。
(Invention of Claim 2)
In the control apparatus for an internal combustion engine according to claim 1, the machine difference variation learning means includes a command torque set corresponding to a predetermined injection pattern and an actual torque generated by the internal combustion engine based on the command torque. The difference is learned as a machine difference variation of the internal combustion engine.
In the present invention, a torque deviation (difference between the indicated torque and the actual torque) generated based on a predetermined injection pattern is learned as a machine difference variation of the internal combustion engine, that is, the torque such as the rotational speed or rotational acceleration of the internal combustion engine is learned. Since the deviation of the torque itself is learned not as a correlated parameter but as an engine difference variation of the internal combustion engine, the torque generated based on the next injection pattern is reflected by reflecting the learned torque deviation in the torque control in the next injection pattern. Deviation (difference between target value and actual torque) can be further reduced.

(請求項3の発明)
請求項2に記載した内燃機関の制御装置において、トルク制御手段は、学習した内燃機関の機差バラツキに応じてトルク補正値を求め、次噴射パターンに切り替わった時に設定される指示トルクにトルク補正値を加算して狙いトルクを算出し、この狙いトルクを基にトルク制御を実施することを特徴とする。
本発明によれば、内燃機関の機差バラツキが反映された狙いトルクを基にトルク制御を実施するので、噴射パターンの切り替えに伴って発生するトルク段差を低減できる。
なお、トルク補正値は、内燃機関の機差バラツキである指示トルクと実トルクとの差分として求めても良いし、指示トルクと実トルクとの差分に係数を掛けて算出することもできる。
(Invention of Claim 3)
3. The control device for an internal combustion engine according to claim 2, wherein the torque control means obtains a torque correction value according to the learned machine difference variation of the internal combustion engine, and corrects the torque to the indicated torque set when the next injection pattern is switched. A target torque is calculated by adding the values, and torque control is performed based on the target torque.
According to the present invention, torque control is performed based on the target torque that reflects the machine difference variation of the internal combustion engine, so that the torque step generated with the switching of the injection pattern can be reduced.
The torque correction value may be obtained as a difference between the instruction torque and the actual torque, which is a machine difference variation of the internal combustion engine, or may be calculated by multiplying the difference between the instruction torque and the actual torque by a coefficient.

(請求項4の発明)
請求項3に記載した内燃機関の制御装置において、トルク制御手段は、狙いトルクと、この狙いトルクを基に内燃機関が発生する実トルクとの偏差を求め、その偏差を小さくする方向に、内燃機関の実トルクを制御することを特徴とする。
本発明によれば、内燃機関の機差バラツキを見込んだ状態でトルク制御を実施できるので、後燃焼パターンの基で発生する内燃機関の実トルクを、速やかに狙いトルクに収束させることができる。
(Invention of Claim 4)
4. The control apparatus for an internal combustion engine according to claim 3, wherein the torque control means obtains a deviation between the target torque and an actual torque generated by the internal combustion engine based on the target torque, and reduces the deviation in the internal combustion engine. It is characterized by controlling the actual torque of the engine.
According to the present invention, torque control can be performed in a state where the machine difference variation of the internal combustion engine is expected, so that the actual torque of the internal combustion engine generated based on the post-combustion pattern can be quickly converged to the target torque.

(請求項5の発明)
請求項1〜4に記載した何れかの内燃機関の制御装置において、トルク制御手段は、所定の噴射パターンから次噴射パターンに切り替わった直後より、内燃機関の機差バラツキを徐変しながら反映させて、トルク制御を実施することを特徴とする。
本発明では、所定の噴射パターンから次噴射パターンに切り替わった直後に、内燃機関の機差バラツキを一度に反映させるのではなく、徐変させることで、噴射パターンの切り替えに伴う急激なトルクの変化を抑制できる。
(Invention of Claim 5)
5. The control apparatus for an internal combustion engine according to claim 1, wherein the torque control means reflects the machine difference variation of the internal combustion engine while gradually changing immediately after switching from the predetermined injection pattern to the next injection pattern. Thus, torque control is performed.
In the present invention, immediately after switching from the predetermined injection pattern to the next injection pattern, the change in the engine difference is not reflected at once, but is gradually changed, so that a sudden torque change accompanying the switching of the injection pattern occurs. Can be suppressed.

本発明を実施するための最良の形態を以下の実施例により詳細に説明する。   The best mode for carrying out the present invention will be described in detail by the following examples.

図4は内燃機関の制御システムに係る全体図である。
実施例1に示す内燃機関は、例えば、図4に示す様に、4気筒のディーゼルエンジン1であり、コモンレール式の燃料噴射装置を備える。この燃料噴射装置は、噴射圧力に相当する高圧燃料を蓄圧するコモンレール2と、燃料タンク3より汲み上げた燃料を加圧してコモンレール2に圧送する燃料供給ポンプ4と、コモンレール2に蓄圧された高圧燃料をエンジン1の筒内に噴射するインジェクタ5等を有し、燃料供給ポンプ4およびインジェクタ5等の動作がECU6によって制御される。
FIG. 4 is an overall view related to the control system of the internal combustion engine.
The internal combustion engine shown in Embodiment 1 is, for example, a four-cylinder diesel engine 1 as shown in FIG. 4 and includes a common rail fuel injection device. This fuel injection device includes a common rail 2 that accumulates high-pressure fuel corresponding to the injection pressure, a fuel supply pump 4 that pressurizes and pumps fuel pumped from the fuel tank 3, and a high-pressure fuel that is accumulated in the common rail 2. Are injected into the cylinder of the engine 1, and the operations of the fuel supply pump 4 and the injector 5 are controlled by the ECU 6.

ECU6は、周知のマイクロコンピュータを中心に構成される電子制御装置であり、例えば、図5に示す様に、一燃焼サイクル内の噴射回数(噴射パターン)をエンジン1の運転領域に応じて切り替えると共に、その噴射パターンの切り替えに伴って、以下のトルク制御を実施する。図1はトルク制御のメインルーチンを示すフローチャートである。
なお、ECU6は、本発明に係る機差バラツキ学習手段、およびトルク制御手段の機能を有している。
ステップ10…現在の噴射パターンの基でエンジン1の機差バラツキを学習する。この学習は、図2に示す「機差バラツキ学習ルーチン」に従って処理される(後述する)。
ステップ20…噴射パターンが切り替わったか否かを判定する。判定結果がYESの時、つまり、噴射パターンが異なる噴射パターン(次噴射パターンと呼ぶ)に切り替わった時は、次のステップ30へ進み、判定結果がNOの時は、ステップ50へ進む。
The ECU 6 is an electronic control unit mainly composed of a known microcomputer. For example, as shown in FIG. 5, the ECU 6 switches the number of injections (injection pattern) in one combustion cycle according to the operating region of the engine 1. The following torque control is carried out with the switching of the injection pattern. FIG. 1 is a flowchart showing a main routine of torque control.
The ECU 6 has functions of a machine difference variation learning unit and a torque control unit according to the present invention.
Step 10: Learn the machine difference variation of the engine 1 based on the current injection pattern. This learning is processed according to a “machine difference variation learning routine” shown in FIG. 2 (described later).
Step 20: It is determined whether or not the injection pattern has been switched. When the determination result is YES, that is, when the injection pattern is switched to a different injection pattern (referred to as the next injection pattern), the process proceeds to the next step 30, and when the determination result is NO, the process proceeds to step 50.

ステップ30…ステップ10で学習した値(機差バラツキ)を用いて、狙いトルク(見込み値)を演算する。この狙いトルクの演算は、図3に示す「狙いトルク演算ルーチン」に従って処理される(後述する)。
ステップ40…ステップ30で演算された狙いトルクを基に、エンジン1が発生する実トルクを制御する。このトルク制御では、例えば、狙いトルクと実トルクとの偏差を求め、この偏差が小さくなる様に、エンジン1への噴射量を補正する。
ステップ50…噴射パターンの切り替えが行われていないので、現在の噴射パターンの基で実施されているトルク制御(F/B制御)を継続する。
Step 30... The target torque (expected value) is calculated using the value learned in Step 10 (variation in machine difference). The calculation of the target torque is processed according to a “target torque calculation routine” shown in FIG. 3 (described later).
Step 40: Based on the target torque calculated in step 30, the actual torque generated by the engine 1 is controlled. In this torque control, for example, a deviation between the target torque and the actual torque is obtained, and the injection amount to the engine 1 is corrected so that the deviation becomes small.
Step 50: Since the injection pattern is not switched, the torque control (F / B control) performed based on the current injection pattern is continued.

次に、図2に示す「機差バラツキ学習ルーチン」の処理手順を説明する。
ステップ11…現在の噴射パターンの基で、エンジン1が発生する実トルク(TRQr)を検出し、ECU6のメモリに記憶する。
ステップ12…指示トルク(TRQs)を演算する。この指示トルク(TRQs)は、例えば、エンジン回転数とアクセル開度を基に、マップ検索によって求めることができる。また、エンジン1の運転状態に応じた補正(例えば、水温補正、吸気温補正)を加えても良い。
Next, the processing procedure of the “machine difference variation learning routine” shown in FIG. 2 will be described.
Step 11... The actual torque (TRQr) generated by the engine 1 is detected based on the current injection pattern and stored in the memory of the ECU 6.
Step 12: Calculate the command torque (TRQs). The command torque (TRQs) can be obtained by map search based on the engine speed and the accelerator opening, for example. Moreover, you may add correction | amendment (for example, water temperature correction | amendment, intake air temperature correction | amendment) according to the driving | running state of the engine 1. FIG.

ステップ13…指示トルク(TRQs)と実トルク(TRQr)との差(TRQs−TRQr)をエンジン1の機差バラツキ(TRQb)として算出する。
ステップ14…ステップ13で求めた機差バラツキ(TRQb)が所定の範囲内にあるか否かを判定する。判定結果がYESの時、つまり、機差バラツキが所定の範囲内にある時は、次のステップ15へ進み、判定結果がNOの時は、ステップ16へ進む。
ステップ15…ステップ13で求めた機差バラツキ(TRQb)をメモリに記憶する。
Step 13: The difference (TRQs−TRQr) between the command torque (TRQs) and the actual torque (TRQr) is calculated as the machine difference variation (TRQb) of the engine 1.
Step 14: It is determined whether or not the machine difference variation (TRQb) obtained in step 13 is within a predetermined range. When the determination result is YES, that is, when the machine difference variation is within the predetermined range, the process proceeds to the next step 15, and when the determination result is NO, the process proceeds to step 16.
Step 15 ... The machine difference variation (TRQb) obtained in Step 13 is stored in the memory.

ステップ16…ステップ13で求めた機差バラツキ(TRQb)が所定の範囲を超える場合は、機差バラツキにガードをかけてメモリに記憶する。なお、このステップ16では、例えば、「機差バラツキの学習を再度要求する指示を与える」、あるいは「機差バラツキが所定の範囲をある回数超えた時は、異常であると判定する」等の処理に置き換えることもできる。
ステップ17…学習が始めての時は、ステップ15またはステップ16で記憶した機差バラツキを学習値(TRQb)とし、学習回数が2回以上の時は、例えば、今回までに算出された全ての機差バラツキを合計して平均値を求め、その平均値を学習値(TRQb)としてメモリに記憶する。つまり、学習回数が2回以上の時は、学習精度を高めるために、今回の機差バラツキだけでなく、過去に算出された機差バラツキも含めて学習値(TRQb)を算出する。
Step 16... If the machine difference variation (TRQb) obtained in step 13 exceeds a predetermined range, the machine difference variation is guarded and stored in the memory. In this step 16, for example, “an instruction to request learning of machine difference variation is given again” or “when the machine difference variation exceeds a predetermined range for a certain number of times, it is determined to be abnormal” or the like. It can also be replaced with processing.
Step 17: When learning is started, the machine difference variation stored in Step 15 or Step 16 is used as a learning value (TRQb). When the number of learning is two times or more, for example, all machines calculated so far The difference values are summed to obtain an average value, and the average value is stored in the memory as a learning value (TRQb). That is, when the number of times of learning is two or more, in order to improve learning accuracy, the learning value (TRQb) is calculated including not only the current machine difference variation but also the previously calculated machine difference variation.

続いて、図3に示す「狙いトルク演算ルーチン」の処理手順を説明する。
ステップ31…次噴射パターンでの指示トルク(TRQs)を算出する。指示トルクの算出は、上記の如く、エンジン回転数とアクセル開度を基に、マップ検索によって求めることができる。
ステップ32…先のステップ10で学習した機差バラツキ(学習値:TRQb)をエンジン状態に応じて補正する。すなわち、同じ噴射パターンでも、エンジン回転数や冷却水温等、エンジン1の運転状態が異なる場合があるので、エンジン1の運転状態に応じて選定される補正係数により学習値を補正する(補正後の学習値:TRQbf)。
Next, the processing procedure of the “target torque calculation routine” shown in FIG. 3 will be described.
Step 31: The command torque (TRQs) in the next injection pattern is calculated. As described above, the command torque can be calculated by map search based on the engine speed and the accelerator opening.
Step 32 ... The machine difference variation (learned value: TRQb) learned in the previous step 10 is corrected according to the engine state. That is, even in the same injection pattern, the operating state of the engine 1 such as the engine speed and the cooling water temperature may be different. Therefore, the learning value is corrected by a correction coefficient selected according to the operating state of the engine 1 (after correction) Learning value: TRQbf).

ステップ33…ステップ31で算出した指示トルク(TRQs)に、ステップ32で補正した学習値(TRQbf)を反映して、狙いトルク(TRQn)を算出する。具体的には、指示トルク(TRQs)に学習値(TRQbf)を加算する、あるいは学習値(TRQbf)に係数αを掛けた値を指示トルク(TRQs)に加算して狙いトルク(TRQn)を算出する。
なお、指示トルク(TRQs)に対する学習値(TRQbf)の反映は、噴射パターンの切り替え直後に実施しても良いが、噴射パターンの切り替え直後から徐変しながら反映させても良い。この場合、噴射パターンの切り替えに伴う急激なトルク変化を抑制できるメリットがある。
Step 33: The target torque (TRQn) calculated in step 31 is reflected on the learning value (TRQbf) corrected in step 32 to calculate the target torque (TRQn). Specifically, the target torque (TRQs) is calculated by adding the learning value (TRQbf) to the instruction torque (TRQs) or adding a value obtained by multiplying the learning value (TRQbf) by the coefficient α to the instruction torque (TRQs). To do.
It should be noted that the learning value (TRQbf) with respect to the command torque (TRQs) may be reflected immediately after the switching of the injection pattern, or may be reflected while gradually changing immediately after the switching of the injection pattern. In this case, there is an advantage that a sudden torque change accompanying the switching of the injection pattern can be suppressed.

(実施例1の効果)
実施例1に記載したトルク制御では、噴射パターンが切り替わった時に、予め学習した機差バラツキ(学習値)を反映して狙いトルクを算出し、その狙いトルクを基にトルク制御を実施するので、図6に示す様に、エンジン1の機差バラツキに起因するトルク段差を低減でき、噴射パターンの切り替えによる回転変動を小さく抑えることができる。
なお、実施例1では、本発明をディーゼルエンジン1に適用する一例を記載したが、ディーゼルエンジン1に限定されるものではなく、ガソリンエンジンにも適用できる。
(Effect of Example 1)
In the torque control described in the first embodiment, when the injection pattern is switched, the target torque is calculated by reflecting the machine difference variation (learned value) learned in advance, and the torque control is performed based on the target torque. As shown in FIG. 6, the torque step caused by the machine difference of the engine 1 can be reduced, and the rotation fluctuation due to the switching of the injection pattern can be suppressed to a small level.
In addition, in Example 1, although the example which applies this invention to the diesel engine 1 was described, it is not limited to the diesel engine 1 and can be applied also to a gasoline engine.

トルク制御のメインルーチンを示すフローチャートである。It is a flowchart which shows the main routine of torque control. 機差バラツキ学習ルーチンを示すフローチャートである。It is a flowchart which shows a machine difference variation learning routine. 狙いトルク演算ルーチンを示すフローチャートである。It is a flowchart which shows a target torque calculation routine. ディーゼルエンジンの制御システムに係る全体図である。It is a general view concerning the control system of a diesel engine. 噴射パターンの切り替えイメージ図である。It is a switching image figure of an injection pattern. 実施例1に記載したトルク制御のタイムチャートである。3 is a time chart of torque control described in the first embodiment. 従来技術によるトルク制御のタイムチャートである。It is a time chart of the torque control by a prior art.

符号の説明Explanation of symbols

1 ディーゼルエンジン(内燃機関)
6 ECU(制御装置)
1 Diesel engine (internal combustion engine)
6 ECU (control device)

Claims (5)

一燃焼サイクル内の噴射回数(噴射パターンと呼ぶ)を内燃機関の運転領域に応じて切り替える内燃機関の制御装置であって、
所定の噴射パターンの基で前記内燃機関のトルクに係わる機差バラツキを学習する機差バラツキ学習手段と、
前記所定の噴射パターンから異なる噴射パターン(次噴射パターンと呼ぶ)に切り替わった時に、その次噴射パターンの基で、前記内燃機関の機差バラツキを反映したトルク制御を行うトルク制御手段とを有する内燃機関の制御装置。
A control device for an internal combustion engine that switches the number of injections (referred to as an injection pattern) in one combustion cycle in accordance with the operating region of the internal combustion engine,
Machine difference variation learning means for learning machine difference variations related to the torque of the internal combustion engine based on a predetermined injection pattern;
An internal combustion engine having torque control means for performing torque control reflecting machine difference variation of the internal combustion engine based on the next injection pattern when switching from the predetermined injection pattern to a different injection pattern (referred to as a next injection pattern) Engine control device.
請求項1に記載した内燃機関の制御装置において、
前記機差バラツキ学習手段は、前記所定の噴射パターンに対応して設定される指示トルクと、その指示トルクを基に前記内燃機関が発生する実トルクとの差を、前記内燃機関の機差バラツキとして学習することを特徴とする内燃機関の制御装置。
The control apparatus for an internal combustion engine according to claim 1,
The machine difference variation learning means obtains a difference between an instruction torque set corresponding to the predetermined injection pattern and an actual torque generated by the internal combustion engine based on the instruction torque. A control device for an internal combustion engine characterized by learning as follows.
請求項2に記載した内燃機関の制御装置において、
前記トルク制御手段は、学習した内燃機関の機差バラツキに応じてトルク補正値を求め、前記次噴射パターンに切り替わった時に設定される指示トルクに前記トルク補正値を加算して狙いトルクを算出し、この狙いトルクを基に前記トルク制御を実施することを特徴とする内燃機関の制御装置。
The control device for an internal combustion engine according to claim 2,
The torque control means obtains a torque correction value according to the learned machine difference variation of the internal combustion engine, and calculates the target torque by adding the torque correction value to the command torque set when the next injection pattern is switched. A control device for an internal combustion engine, wherein the torque control is performed based on the target torque.
請求項3に記載した内燃機関の制御装置において、
前記トルク制御手段は、前記狙いトルクと、この狙いトルクを基に前記内燃機関が発生する実トルクとの偏差を求め、その偏差を小さくする方向に、前記内燃機関の実トルクを制御することを特徴とする内燃機関の制御装置。
The control apparatus for an internal combustion engine according to claim 3,
The torque control means obtains a deviation between the target torque and the actual torque generated by the internal combustion engine based on the target torque, and controls the actual torque of the internal combustion engine in a direction to reduce the deviation. A control device for an internal combustion engine characterized by the above.
請求項1〜4に記載した何れかの内燃機関の制御装置において、
前記トルク制御手段は、前記所定の噴射パターンから前記次噴射パターンに切り替わった直後より、前記内燃機関の機差バラツキを徐変しながら反映させて、前記トルク制御を実施することを特徴とする内燃機関の制御装置。
In the control device for an internal combustion engine according to any one of claims 1 to 4,
The internal combustion engine is characterized in that the torque control means performs the torque control by reflecting the machine difference variation of the internal combustion engine while gradually changing immediately after switching from the predetermined injection pattern to the next injection pattern. Engine control device.
JP2005173910A 2005-06-14 2005-06-14 Control device for internal combustion engine Expired - Fee Related JP4258495B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005173910A JP4258495B2 (en) 2005-06-14 2005-06-14 Control device for internal combustion engine
DE102006000295.4A DE102006000295B4 (en) 2005-06-14 2006-06-13 Control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173910A JP4258495B2 (en) 2005-06-14 2005-06-14 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006348797A true JP2006348797A (en) 2006-12-28
JP4258495B2 JP4258495B2 (en) 2009-04-30

Family

ID=37489758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173910A Expired - Fee Related JP4258495B2 (en) 2005-06-14 2005-06-14 Control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4258495B2 (en)
DE (1) DE102006000295B4 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632650C1 (en) * 1996-08-13 1998-03-12 Siemens Ag Method for suppressing torque jumps when operating an internal combustion engine
JP3820750B2 (en) * 1998-05-20 2006-09-13 三菱ふそうトラック・バス株式会社 diesel engine
JP2002327652A (en) * 2001-04-27 2002-11-15 Denso Corp Multi-stage injection controlling method and device for engine
JP4066783B2 (en) * 2002-10-29 2008-03-26 三菱ふそうトラック・バス株式会社 Compression ignition internal combustion engine
JP4120556B2 (en) * 2003-10-06 2008-07-16 株式会社デンソー Fuel injection device
JP4289280B2 (en) * 2004-11-01 2009-07-01 株式会社デンソー Injection amount learning control device

Also Published As

Publication number Publication date
DE102006000295A1 (en) 2006-12-21
JP4258495B2 (en) 2009-04-30
DE102006000295B4 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
US7657361B2 (en) Fuel injection control device for diesel engine
JP2009057911A (en) Fuel injection control device of internal combustion engine
JP4670771B2 (en) Fuel injection control device
JP5634107B2 (en) Fuel injection control correction method and fuel injection control device
US6513496B2 (en) Fuel injection controller of engine
JP2008121546A (en) Pilot injection control method and its device
JP2005120886A (en) Control device for internal combustion engine
JP2005036790A (en) Fuel injection control device of internal combustion engine
JP2009097347A (en) Device for controlling internal combustion engine
JP4258495B2 (en) Control device for internal combustion engine
JP2010133358A (en) Control device of internal combustion engine
JP2006183493A (en) Control device of internal combustion engine
JP2011117388A (en) Control device for internal combustion engine
JP2009002301A (en) Fuel injection control device of diesel engine
JP5511406B2 (en) Metering valve drive control method and common rail fuel injection control device in common rail fuel injection control device
JP2009057865A (en) Fuel injection control device and fuel injection system
JP5448181B2 (en) Fuel injection control correction method and fuel injection control device
JP2010270698A (en) Fuel injection control device for internal combustion engine
JP4510704B2 (en) Fuel injection control device for internal combustion engine
JP2010037986A (en) Method of processing data for analog voltage, and vehicle operation control device
JP2011111904A (en) Engine fuel injection control device
JP2005076499A (en) Device for controlling fuel cut of internal combustion engine
JP2006037903A (en) Operating condition control system
JP6614751B2 (en) Fuel injection control method and common rail fuel injection control device
KR100394656B1 (en) A method for controlling fuel supply of a diesel engine and a system thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees