JP2006346161A - Ultrasonic diagnostic device - Google Patents

Ultrasonic diagnostic device Download PDF

Info

Publication number
JP2006346161A
JP2006346161A JP2005176261A JP2005176261A JP2006346161A JP 2006346161 A JP2006346161 A JP 2006346161A JP 2005176261 A JP2005176261 A JP 2005176261A JP 2005176261 A JP2005176261 A JP 2005176261A JP 2006346161 A JP2006346161 A JP 2006346161A
Authority
JP
Japan
Prior art keywords
ultrasonic
reception
delay
signal
transducers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005176261A
Other languages
Japanese (ja)
Inventor
Yutaka Shimizu
豊 清水
Kazuya Koyabu
一弥 小薮
Masaaki Shibata
眞明 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005176261A priority Critical patent/JP2006346161A/en
Publication of JP2006346161A publication Critical patent/JP2006346161A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To optimize a scan system corresponding to the setting of an ultrasonic condition. <P>SOLUTION: A reception circuit 13 is provided with reception channels composed of amplifiers 31 and delay circuits 32 for the same number as ultrasonic vibrators 11, an adder 33 for adding signals passed through the respective reception channels, and a multiplexer 34 for switching output from the ultrasonic vibrators 11 and inputting it to the reception channels. A control circuit 18 controls the multiplexer 34 so as to respectively send the respective reception signals from the ultrasonic vibrators 11 for a number less than a half of the number of the reception channels to two different reception channels and generate addition signals of signals delayed by the combination of two different delay time periods from the adder 33 when a shallow reception focus is set through a user interface 19, and controls the multiplexer 34 so as to input the reception signals from the respective ultrasonic vibrators 11 to one reception channel respectively when a deep reception focus is set. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、超音波を被検体内に入射しその反射波を受信して被検体内のデータを得る超音波診断装置に関し、特に超音波振動子アレイよりなる超音波プローブを備え電子走査方式で超音波ビーム形成を制御する超音波診断装置に関する。   The present invention relates to an ultrasonic diagnostic apparatus that receives ultrasonic waves into a subject and receives reflected waves to obtain data in the subject, and more particularly to an electronic scanning system that includes an ultrasonic probe including an ultrasonic transducer array. The present invention relates to an ultrasonic diagnostic apparatus that controls ultrasonic beam formation.

超音波診断装置は、患者である人間の身体などの被検体中に超音波を送信し、その内部で反射して戻ってくる超音波を受信し、被検体内部の音響反射係数や血流などの動きのある物体によるドプラシフトなどに関するデータを得るものである。電子走査方式の超音波診断装置では、超音波を送受する超音波プローブは、圧電素子などの超音波振動子を短冊状にして多数並べた振動子アレイからなり、このプローブの振動子アレイ部分を被検体表面に密着させて超音波の送受を行う。そして、各超音波振動子に与える超音波周波数のパルスの遅延時間を制御することにより音響媒体(被検体)中で各振動子からの超音波を合成した合成送信超音波ビームを形成する。受信についても、各振動子からの受信信号に対して制御された遅延時間を与えて加算することにより超音波ビームを合成する。   Ultrasound diagnostic equipment transmits ultrasonic waves into a subject such as the human body that is a patient, receives ultrasonic waves that are reflected back inside the subject, and reflects the acoustic reflection coefficient and blood flow inside the subject. Data related to Doppler shift or the like due to an object having a certain movement is obtained. In an electronic scanning ultrasonic diagnostic apparatus, an ultrasonic probe that transmits and receives ultrasonic waves is composed of a transducer array in which a large number of ultrasonic transducers such as piezoelectric elements are arranged in a strip shape. Ultrasonic waves are transmitted and received while being in close contact with the subject surface. Then, by controlling the delay time of the ultrasonic frequency pulse applied to each ultrasonic transducer, a synthesized transmission ultrasonic beam is synthesized by synthesizing ultrasonic waves from each transducer in the acoustic medium (subject). Also for reception, an ultrasonic beam is synthesized by giving a controlled delay time to the received signals from the transducers and adding them.

図3を参照しながら説明すると、超音波振動子11が多数並べられてアレイを構成しており、このアレイ中の超音波振動子11の各々には送信回路12と受信回路13がそれぞれ接続される。送信回路12には、超音波周波数のパルスを発生するパルス発生器21が備えられ、このパルスが遅延回路22および駆動回路23よりなる駆動チャンネルの各々に送られる。駆動チャンネルは振動子11ごとに設けられており、遅延回路22で遅延させられたパルスが駆動回路23に送られ、駆動回路23によって超音波振動子11の各々がパルス駆動される。   Referring to FIG. 3, a large number of ultrasonic transducers 11 are arranged to form an array, and a transmission circuit 12 and a reception circuit 13 are connected to each of the ultrasonic transducers 11 in the array. The The transmission circuit 12 is provided with a pulse generator 21 that generates a pulse having an ultrasonic frequency, and this pulse is sent to each of the drive channels including the delay circuit 22 and the drive circuit 23. A drive channel is provided for each transducer 11, and the pulse delayed by the delay circuit 22 is sent to the drive circuit 23, and each of the ultrasonic transducers 11 is pulse-driven by the drive circuit 23.

各駆動チャンネルの遅延回路22における遅延時間が制御されることにより、各振動子11からそれぞれ異なるタイミングで超音波がパルス状に発射させられる。発射させられたこれらの超音波は伝播媒体(被検体)中で合成されるが、各振動子11に与えるパルスが遅延させられ駆動パルスのタイミングが制御されているので、その遅延時間制御により合成超音波のフォーカスを距離方向および方位方向において定めることができる。   By controlling the delay time in the delay circuit 22 of each drive channel, ultrasonic waves are emitted from each transducer 11 in a pulse shape at different timings. These emitted ultrasonic waves are synthesized in the propagation medium (subject), but the pulse applied to each transducer 11 is delayed and the timing of the drive pulse is controlled. The focus of the ultrasonic wave can be determined in the distance direction and the azimuth direction.

被検体内に入射した超音波は被検体内で反射し、各超音波振動子11に戻って来てこれに入射し、各振動子11から受信信号が生じる。この各振動子11からの受信信号は、受信回路13において、増幅器31および遅延回路32からなる受信チャンネルをそれぞれ経た後、加算器33で加算される。この受信回路13においても、遅延回路32の遅延時間は各々コントロールされており、これによって受信超音波に関して距離方向および方位方向のフォーカス制御ができる。   The ultrasonic wave incident on the subject is reflected in the subject, returns to each ultrasonic transducer 11, enters the ultrasonic transducer 11, and a reception signal is generated from each transducer 11. The reception signal from each transducer 11 passes through the reception channel including the amplifier 31 and the delay circuit 32 in the reception circuit 13, and then is added by the adder 33. Also in the receiving circuit 13, the delay time of the delay circuit 32 is controlled, whereby the focus control in the distance direction and the azimuth direction can be performed with respect to the received ultrasonic wave.

ところで、たとえば下記の特許文献1などに記されているように、一つの送信超音波ビームに対して、両脇で隣接する2つの受信超音波ビームを同時形成することによって、2方向同時受信(パラレルスキャン)を行い、フレームレートを上げる技術が知られている。これは各振動子から得られる同じ受信信号を違う遅延時間の組み合わせで遅延させて加算することによって同時に2つの受信超音波ビームを形成するものである。すなわち、受信回路13のみを示す図4を参照しながら説明すると、各振動子11からの受信信号を増幅・遅延・加算する回路を2系統設け、一方の系統では振動子11の各々の受信信号を増幅器31aおよび遅延回路32aからなる各チャンネルのそれぞれに通して加算器33aに入力し、他方の系統では振動子11の各々の受信信号を増幅器31bおよび遅延回路32bからなる各チャンネルにそれぞれ通して加算器33bに入力する。このようにアレイ中の多数の振動子11からの受信信号に異なる遅延時間の組み合わせを与えた後それぞれ加算することによって、異なる方位の2つの受信超音波ビームを形成することができる。1回の受信で2方向の受信超音波ビームが得られるため、画像を再構成するのに必要な数の受信超音波ビームを得るのに半分の時間で済み、フレームレートを上げることができる。
特開平10−328185号公報
By the way, as described in, for example, the following Patent Document 1, two-direction simultaneous reception is performed by simultaneously forming two reception ultrasonic beams adjacent on both sides for one transmission ultrasonic beam ( A technique for increasing the frame rate by performing parallel scan) is known. This is to form two received ultrasonic beams simultaneously by delaying and adding the same received signal obtained from each transducer with a combination of different delay times. That is, with reference to FIG. 4 showing only the receiving circuit 13, two circuits for amplifying, delaying, and adding the received signals from each transducer 11 are provided, and in each system, each received signal of the transducer 11 is provided. Is passed through each channel comprising the amplifier 31a and the delay circuit 32a and input to the adder 33a. In the other system, each received signal of the vibrator 11 is passed through each channel comprising the amplifier 31b and the delay circuit 32b. The data is input to the adder 33b. In this way, two received ultrasonic beams having different directions can be formed by giving different combinations of delay times to received signals from a large number of transducers 11 in the array and then adding them. Since reception ultrasonic beams in two directions are obtained by one reception, half the time is required to obtain the number of reception ultrasonic beams necessary for reconstructing an image, and the frame rate can be increased.
Japanese Patent Laid-Open No. 10-328185

一方、超音波振動子アレイの各々の振動子からの受信信号の遅延時間は合成受信超音波ビーム中心について対称となっていることを利用し、その対称な振動子については同一遅延時間を与えればよいことから、それぞれ異なる遅延量を与える受信チャンネルを半分にする技術も知られている。たとえば受信回路13のみを示す図5のように、対称な(同一の)遅延時間を与えればよい振動子11のペアについては、その出力を結合して加算した上で一つの増幅器31と一つの遅延回路32よりなる受信チャンネルに通すようにする。こうして各ペアの加算受信信号に異なる遅延時間を与えた上で加算器33で加算する。この対称性を利用した技術によれば、図5からもわかるとおり、受信チャンネル数を半減できるため、コストの点で有利である。また、同じ受信チャンネル数でより多くの振動子からの受信信号を利用することができるようになるため、多数の振動子からの受信信号を用いてより深い位置まで受信超音波をフォーカスさせることができるようになり、深い場所まで画質の優れた画像を得ることができる。   On the other hand, using the fact that the delay time of the received signal from each transducer of the ultrasonic transducer array is symmetric with respect to the center of the combined received ultrasonic beam, if the same delay time is given to the symmetrical transducer, For this reason, a technique of halving the reception channel that gives different delay amounts is also known. For example, as shown in FIG. 5 showing only the receiving circuit 13, for a pair of transducers 11 that only need to provide a symmetric (same) delay time, the outputs are combined and added, and then one amplifier 31 and one The signal is passed through a reception channel including the delay circuit 32. In this way, different delay times are given to the added reception signals of each pair, and the addition is performed by the adder 33. According to the technology using this symmetry, as can be seen from FIG. 5, the number of reception channels can be halved, which is advantageous in terms of cost. In addition, since reception signals from more transducers can be used with the same number of reception channels, reception ultrasound can be focused to a deeper position using reception signals from many transducers. This makes it possible to obtain an image with excellent image quality up to a deep location.

しかしながら、これらパラレルスキャンの技術と対称性を利用した技術はそれぞれ利点があるものの、図4および図5からもわかるとおり、原理的に両立できず、それらの利点を同時に活用することはできない。   However, although these parallel scanning techniques and techniques using symmetry are advantageous, as can be seen from FIGS. 4 and 5, they are not compatible in principle, and these advantages cannot be utilized simultaneously.

この発明の課題は、上記に鑑み、超音波条件の設定に応じてスキャン方式を最適化することができるように改善した超音波診断装置を提供することにある。   In view of the above, an object of the present invention is to provide an improved ultrasonic diagnostic apparatus that can optimize a scanning method in accordance with the setting of ultrasonic conditions.

上記の目的を達成するため、請求項1記載の超音波診断装置においては、多数の超音波振動子が並べられた振動子アレイと、これら振動子の各々を、それぞれ遅延手段を経た超音波周波数のパルスで駆動する送信手段と、上記の振動子の各々からの受信信号を切り換える信号切換手段、該信号切換手段を経た受信信号の各々を増幅する、上記振動子と同数の増幅手段、該増幅手段を経た受信信号をそれぞれ遅延する、上記振動子と同数の遅延手段および該遅延手段を経た受信信号を加算する信号加算手段を含む受信手段と、該送信手段と受信手段のそれぞれの遅延手段を制御するとともに受信手段の信号切換手段を制御し、上記の各振動子からの受信信号をそれぞれ1系統の増幅手段および遅延手段に通すように切り換える第1の信号切換状態と半数以下の個数の振動子の各々からの受信信号をそれぞれ2系統の増幅手段および遅延手段に通すように切り換える第2の信号切換状態とを選択可能とする制御手段とが備えられることが特徴となっている。   In order to achieve the above object, in the ultrasonic diagnostic apparatus according to claim 1, a transducer array in which a large number of ultrasonic transducers are arranged, and each of these transducers is transmitted through an ultrasonic frequency through a delay unit. Transmitting means driven by a pulse of the above, signal switching means for switching received signals from each of the vibrators, amplifying means for amplifying each of the received signals that have passed through the signal switching means, and the amplification Receiving means including a delay means having the same number as the transducers and a signal adding means for adding the received signals passed through the delay means, and a delay means for each of the transmitting means and the receiving means. A first signal switching state in which the signal switching means of the receiving means is controlled and the received signals from the respective vibrators are switched to pass through one amplifying means and delay means respectively. And a control means for enabling selection of a second signal switching state in which received signals from each of the number of vibrators equal to or less than half are passed through two amplifying means and delay means, respectively. It has become.

また、請求項2記載の超音波診断装置においては、多数の超音波振動子が並べられた振動子アレイと、これら振動子の各々を、それぞれ遅延手段を経た超音波周波数のパルスで駆動する送信手段と、上記の振動子の各々からの受信信号を切り換える信号切換手段、該信号切換手段を経た受信信号の各々を増幅する、上記振動子の半数の増幅手段、該増幅手段を経た受信信号をそれぞれ遅延する、上記振動子の半数ずつの2組の遅延手段群および該2組の遅延手段群をそれぞれ経た受信信号を各組ごとに加算する2個の信号加算手段を含む受信手段と、該送信手段と受信手段のそれぞれの遅延手段を制御するとともに、受信手段の信号切換手段を制御することによって上記の振動子のうちの半数以下の振動子からの受信信号をそれぞれ1つの増幅手段に入力するように切り換える第1の信号切換状態と受信超音波の中心軸に対して対称な位置となる2つの振動子からの受信信号を結合してそれぞれ1つの増幅手段に入力するように切り換える第2の信号切換状態とを選択可能とする制御手段とが備えられることが特徴となっている。   Further, in the ultrasonic diagnostic apparatus according to claim 2, a transducer array in which a large number of ultrasonic transducers are arranged, and transmission in which each of these transducers is driven by an ultrasonic frequency pulse that has passed through a delay means, respectively. Means, signal switching means for switching received signals from each of the vibrators, amplifying each of the received signals that have passed through the signal switching means, amplifying means for half of the vibrators, and received signals that have passed through the amplifying means. Receiving means including two delay means groups each of which is half the number of the transducers, and two signal adding means for adding the received signals that have passed through the two delay means groups for each set; In addition to controlling the delay means of each of the transmission means and the reception means, and controlling the signal switching means of the reception means, each of the reception signals from less than half of the vibrators is increased by one. The first signal switching state for switching to input to the means and the received signals from the two vibrators at positions symmetrical to the central axis of the received ultrasonic wave are combined and input to one amplifying means, respectively. It is characterized by comprising control means for enabling selection of the second signal switching state to be switched.

請求項1記載の超音波診断装置において、受信手段には、振動子の各々からの受信信号を切り換える信号切換手段、該信号切換手段を経た受信信号の各々を増幅する、振動子と同数の増幅手段、該増幅手段を経た受信信号をそれぞれ遅延する、振動子と同数の遅延手段および該遅延手段を経た受信信号を加算する信号加算手段が含まれている。信号切換手段は制御手段によって制御されており、第1の信号切換状態と第2の信号切換状態とが選択可能となっている。   2. The ultrasonic diagnostic apparatus according to claim 1, wherein the receiving means includes a signal switching means for switching a received signal from each of the vibrators, and amplifying each of the received signals that have passed through the signal switching means as many as the vibrators. Means, delay means having the same number as the transducers, and signal adding means for adding the received signals passed through the delay means. The signal switching means is controlled by the control means, and the first signal switching state and the second signal switching state can be selected.

第1の信号切換状態では、各振動子からの受信信号がそれぞれ1系統の増幅手段および遅延手段に通されるように切り換えられている。この場合、振動子と、増幅手段および遅延手段の系統とが1対1に対応しており、通常のスキャン方式となっている。他方、第2の信号切換状態では、半数以下の個数の振動子の各々からの受信信号がそれぞれ2系統の増幅手段および遅延手段に通されるように切り換えられている。これにより2組の遅延手段群を経た受信信号が得られ、これら各組の遅延手段群を経た受信信号を各組ごとにそれぞれ加算した合成信号を得ることによって、その各組の遅延手段群における遅延時間を制御することで、2つの方位の受信超音波ビームを形成することができ、いわゆるパラレルスキャンが可能となるので、フレームレートを上げることができる。   In the first signal switching state, switching is performed so that the received signals from the respective vibrators are respectively passed through one system of amplification means and delay means. In this case, the transducer and the system of the amplifying means and the delay means have a one-to-one correspondence, which is a normal scanning method. On the other hand, in the second signal switching state, switching is performed so that the received signals from each of the transducers of less than half the number are passed through the two systems of amplification means and delay means. As a result, a reception signal that has passed through two groups of delay means is obtained, and a combined signal obtained by adding the reception signals that have passed through each of these groups of delay means is obtained for each group. By controlling the delay time, a reception ultrasonic beam in two directions can be formed, and so-called parallel scanning becomes possible, so that the frame rate can be increased.

したがって、たとえば、ユーザインターフェイスを介してフォーカスを深い位置に設定する場合などには、制御手段が信号切換手段を第1の信号切換状態として通常どおりのスキャン方式により、すべての超音波振動子からの受信信号を用いて深い位置まで効果的にフォーカスさせることができる。また、ユーザインターフェイスを介して浅い位置にフォーカスを設定する場合には、通常、超音波の送信・受信とも使用する超音波振動子の数は少ないものとなる。そこで、このように超音波振動子数が少なく、総素子数の半分以下の数の振動子を受信に用いる場合には、その使用する各振動子からの受信信号をそれぞれ2系統の増幅手段および遅延手段に通すように、信号切換手段を切り換えることによって、パラレルスキャンを行い、超音波画像のフレームレートを上げることができる。さらには、送信マルチフォーカスにより1枚の超音波画像を撮像する場合などでは、浅い送信フォーカス領域が上記のパラレルスキャン可能な条件を満たしている場合に総数の半数以下の振動子からの受信信号を用いパラレルスキャンを行ってその領域においてフレームレートを向上させ、他方深い送信フォーカス領域ではすべての超音波振動子からの受信信号を用いることで、深い位置までフォーカスさせることができる。このように、1枚の超音波画像撮像についても適用可能である。   Therefore, for example, when the focus is set to a deep position via the user interface, the control means sets the signal switching means to the first signal switching state and scans from all ultrasonic transducers by a normal scanning method. It is possible to effectively focus to a deep position using the received signal. In addition, when a focus is set at a shallow position via the user interface, the number of ultrasonic transducers used for both transmission and reception of ultrasonic waves is usually small. Therefore, when the number of ultrasonic transducers is small and the number of transducers less than half of the total number of elements is used for reception, the received signals from the respective transducers to be used are amplified by two systems respectively. By switching the signal switching means so as to pass through the delay means, parallel scanning can be performed and the frame rate of the ultrasonic image can be increased. Furthermore, when one ultrasonic image is picked up by transmission multi-focus, etc., when the shallow transmission focus area satisfies the above-mentioned conditions for parallel scanning, signals received from transducers that are less than half of the total number are received. A parallel scan is performed to improve the frame rate in that area, and in the deep transmission focus area, the reception signals from all ultrasonic transducers can be used to focus to a deep position. In this way, the present invention can also be applied to single ultrasonic imaging.

請求項2記載の超音波診断装置では、受信手段には、振動子の各々からの受信信号を切り換える信号切換手段、該信号切換手段を経た受信信号の各々を増幅する、上記振動子の半数の増幅手段、該増幅手段を経た受信信号をそれぞれ遅延する、上記振動子の半数ずつの2組の遅延手段群および該2組の遅延手段群をそれぞれ経た受信信号を各組ごとに加算する2個の信号加算手段が含まれている。このように増幅手段は振動子の半数でよいため、製造コストを削減することができる。上記の信号切換手段は制御手段によって制御されており、第1の信号切換状態と第2の信号切換状態とが選択可能となっている。   In the ultrasonic diagnostic apparatus according to claim 2, the receiving unit includes a signal switching unit that switches a reception signal from each of the transducers, and a half of the transducers that amplify each of the reception signals that have passed through the signal switching unit. Amplifying means, two sets of delay means groups each of which is half the number of the above-mentioned transducers for delaying the received signals that have passed through the amplifying means, and two sets of received signals that have passed through the two sets of delay means groups for each set The signal adding means is included. Thus, since the amplification means may be half of the vibrator, the manufacturing cost can be reduced. The signal switching means is controlled by the control means, and the first signal switching state and the second signal switching state can be selected.

第1の信号切換状態では、全振動子のうちの半数以下の振動子からの受信信号がそれぞれ1つの増幅手段に入力されるように切り換えられており、この場合、この増幅手段の出力は、2組の遅延手段群に入力される。そこで、これら2組の遅延手段群の両方の組の各遅延手段の遅延時間を制御するとともにそれら両方の組の遅延手段群をそれぞれ経た受信信号を加算する2個の信号加算手段の両方の出力を用いることとすれば、2つの方位の受信超音波ビームを形成することができ、いわゆるパラレルスキャンが可能となるので、フレームレートを上げることができる。   In the first signal switching state, switching is performed so that received signals from half or less of all the vibrators are input to one amplifying means. In this case, the output of the amplifying means is Input to two sets of delay means. Therefore, both outputs of the two signal adding means for controlling the delay time of each of the delay means in both sets of these two sets of delay means and adding the received signals respectively passing through both sets of the delay means groups. If this is used, it is possible to form a reception ultrasonic beam in two directions, and so-called parallel scanning is possible, so that the frame rate can be increased.

これに対して、第2の信号切換状態では、受信超音波の中心軸に対して対称な位置となる2つの振動子からの受信信号が結合されてそれぞれ1つの増幅手段に入力されるように切り換えられる。この場合増幅手段の出力は2組の遅延手段群に入力されるが、その一方の組の各遅延手段の遅延時間を制御するとともにその組の遅延手段群を経た受信信号を加算する信号加算手段の出力のみを用いることによって、遅延時間の対称性を利用した受信超音波ビーム形成ができることとなって、多数の超音波振動子からの受信信号を用いて、深い位置まで受信超音波のフォーカスを効かすことができる。   On the other hand, in the second signal switching state, the received signals from the two transducers that are symmetric with respect to the central axis of the received ultrasonic wave are combined and input to one amplifying unit, respectively. Can be switched. In this case, the output of the amplifying means is input to two groups of delay means, and the signal adding means for controlling the delay time of each of the delay means of one set and adding the received signals that have passed through the set of delay means. By using only the output of, it is possible to form a received ultrasonic beam using the symmetry of delay time, and focus the received ultrasonic wave to a deep position using received signals from a number of ultrasonic transducers. It can be effective.

したがって、たとえば、ユーザインターフェイスを介してフォーカスを深い位置に設定する場合などには、制御手段が信号切換手段を第2の信号切換状態とし、対称性を利用した遅延時間制御を行うことによって、すべての超音波振動子からの受信信号を用いて深い位置まで効果的にフォーカスさせることができる。また、ユーザインターフェイスを介して浅い位置にフォーカスを設定する場合には、通常、超音波の送信・受信とも使用する超音波振動子の数は少ないものとなる。そこで、このように超音波振動子数が少なく、総素子数の半分以下の数の振動子を受信に用いる場合には、制御手段が信号切換手段を第1の信号切換状態として、その使用する各振動子からの受信信号をそれぞれ1つの増幅手段に入力する。この場合、振動子数は半数以下となっているため、その振動子と増幅手段とは1対1に接続されるが、増幅手段と遅延手段は1対2に接続される。これら両方の組の遅延手段群をそれぞれ経た受信信号の2つの加算信号を両方用いていわゆるパラレルスキャンを行い、超音波画像のフレームレートを上げることができる。さらには、送信マルチフォーカスにより1枚の超音波画像を撮像する場合などでは、浅い送信フォーカス領域が上記のパラレルスキャン可能な条件を満たしている場合に総数の半数以下の振動子からの受信信号を用いパラレルスキャンを行ってその領域においてフレームレートを向上させ、他方深い送信フォーカス領域では対称性を利用した受信超音波合成を行うことで深い位置までフォーカスを向上させることができるというように、1枚の超音波画像撮像についても適用可能である。   Therefore, for example, when the focus is set to a deep position via the user interface, the control means sets the signal switching means to the second signal switching state, and performs delay time control using symmetry, It is possible to effectively focus to a deep position using the received signal from the ultrasonic transducer. In addition, when a focus is set at a shallow position via the user interface, the number of ultrasonic transducers used for both transmission and reception of ultrasonic waves is usually small. Therefore, when the number of ultrasonic transducers is small and the number of transducers less than half of the total number of elements is used for reception, the control means uses the signal switching means as the first signal switching state. A reception signal from each transducer is input to one amplification unit. In this case, since the number of vibrators is less than half, the vibrator and the amplifying means are connected one-to-one, but the amplifying means and the delay means are connected one-to-two. A so-called parallel scan is performed using both of the two added signals of the received signals that have passed through both sets of delay means groups, and the frame rate of the ultrasonic image can be increased. Furthermore, when one ultrasonic image is picked up by transmission multi-focus, etc., when the shallow transmission focus area satisfies the above-mentioned conditions for parallel scanning, signals received from transducers that are less than half of the total number are received. One frame can be used to improve the frame rate in that area by performing parallel scan, and improve the focus to a deep position by performing reception ultrasonic synthesis using symmetry in the deep transmission focus area The present invention can also be applied to ultrasonic image capturing.

つぎに、この発明を実施した超音波診断装置について図面を参照して説明する。   Next, an ultrasonic diagnostic apparatus embodying the present invention will be described with reference to the drawings.

この発明の第1の実施例にかかる超音波診断装置は、図1に示すように、超音波振動子11が多数並べられてアレイを構成しており、この振動子アレイが超音波プローブに収められる。このアレイ中の超音波振動子11の各々には送信回路12と受信回路13がそれぞれ接続される。送信回路12には、超音波周波数のパルスを発生するパルス発生器21が備えられ、このパルスが遅延回路22および駆動回路23よりなる駆動チャンネルの各々に送られる。駆動チャンネルは振動子11ごとに設けられており、遅延回路22で遅延させられたパルスが駆動回路23に送られ、駆動回路23によって超音波振動子11の各々がパルス駆動される。   As shown in FIG. 1, the ultrasonic diagnostic apparatus according to the first embodiment of the present invention comprises an array in which a large number of ultrasonic transducers 11 are arranged, and this transducer array is housed in an ultrasonic probe. It is done. A transmission circuit 12 and a reception circuit 13 are connected to each of the ultrasonic transducers 11 in the array. The transmission circuit 12 is provided with a pulse generator 21 that generates a pulse having an ultrasonic frequency, and this pulse is sent to each of the drive channels including the delay circuit 22 and the drive circuit 23. A drive channel is provided for each transducer 11, and the pulse delayed by the delay circuit 22 is sent to the drive circuit 23, and each of the ultrasonic transducers 11 is pulse-driven by the drive circuit 23.

受信回路13は、マルチプレクサ(信号切換器)34と、増幅器31および遅延回路32からなる多数の受信チャンネルと、加算器33を含む。振動子11から出力される受信信号はマルチプレクサ34で切り換えられた後、増幅器31および遅延回路32からなる多数の受信チャンネルの各々を経て加算器33で加算されることになる。ここで、増幅器31および遅延回路32からなる受信チャンネルの数は、超音波振動子11の数と同数となっている。   The reception circuit 13 includes a multiplexer (signal switcher) 34, a large number of reception channels including an amplifier 31 and a delay circuit 32, and an adder 33. The reception signal output from the transducer 11 is switched by the multiplexer 34 and then added by the adder 33 through each of a number of reception channels including the amplifier 31 and the delay circuit 32. Here, the number of reception channels including the amplifier 31 and the delay circuit 32 is the same as the number of the ultrasonic transducers 11.

加算後の信号は、信号処理回路14に送られて、ゲイン調整処理、直交検波処理、フィルタ処理、Log圧縮処理、ダイナミックレンジ調整処理、エンハンス処理などを受け、その後画像処理回路15へと送られ、たとえば患者身体の特定断面での断層画像であるBモード画像などが形成され、さらに表示回路16を経て画像モニタ装置17に送られ、Bモード画像などが画像モニタ装置17の表示画面に表示されることになる。   The signal after the addition is sent to the signal processing circuit 14 and subjected to gain adjustment processing, quadrature detection processing, filter processing, log compression processing, dynamic range adjustment processing, enhancement processing, and the like, and then sent to the image processing circuit 15. For example, a B-mode image that is a tomographic image of a specific cross section of the patient's body is formed, and further sent to the image monitor device 17 via the display circuit 16, and the B-mode image or the like is displayed on the display screen of the image monitor device 17. Will be.

制御回路18にはキーボードなどの入力装置を含むユーザインターフェイス19が接続されており、超音波スキャン条件等が入力できるようになっている。制御回路18はその入力された条件に応じて送信回路12および受信回路13の遅延回路22、32の各遅延時間を制御し、さらにマルチプレクサ34を制御して受信信号の切換を行う。また、これらとともに、信号処理回路14、画像処理回路15、表示回路16などを制御する。入力される条件は、超音波周波数、焦点距離、視野深度などである。焦点距離と視野深度は、被検体内での関心領域の位置・大きさなどに応じて定める。超音波周波数は、所望の方位・距離分解能に応じ、高い分解能を得ようとするなら高い周波数を、それほどの分解能が必要ないならば低い周波数を、それぞれ選ぶというようにして設定する。   A user interface 19 including an input device such as a keyboard is connected to the control circuit 18 so that ultrasonic scanning conditions and the like can be input. The control circuit 18 controls the delay times of the delay circuits 22 and 32 of the transmission circuit 12 and the reception circuit 13 according to the input conditions, and further controls the multiplexer 34 to switch the reception signal. Along with these, the signal processing circuit 14, the image processing circuit 15, the display circuit 16 and the like are controlled. The input conditions are an ultrasonic frequency, a focal length, a depth of field, and the like. The focal length and the visual field depth are determined according to the position / size of the region of interest within the subject. The ultrasonic frequency is set according to the desired azimuth / distance resolution by selecting a high frequency if high resolution is to be obtained and a low frequency if not so much.

焦点距離を浅く(短く)設定した場合、通常、F値を一定に保つため、超音波開口長を短くする。つまり、使用する超音波振動子11の数が少なくなるよう制御回路18が制御する。焦点距離を浅くせず、通常の範囲とする場合には、超音波振動子11の全数が用いられるよう制御回路18の制御が行われる。この通常の焦点距離のとき、マルチプレクサ34は、超音波振動子11と、増幅器31および遅延回路32よりなる受信チャンネルとが1対1に接続されるよう制御される。したがって、この場合、遅延回路32の各々の遅延時間制御によって通常の電子スキャンがなされることになる。   When the focal length is set shallow (short), the ultrasonic aperture length is usually shortened in order to keep the F value constant. That is, the control circuit 18 controls so that the number of ultrasonic transducers 11 to be used is reduced. In the case where the focal length is not reduced and is in a normal range, the control circuit 18 is controlled so that the total number of the ultrasonic transducers 11 is used. At this normal focal length, the multiplexer 34 is controlled so that the ultrasonic transducer 11 and the reception channel including the amplifier 31 and the delay circuit 32 are connected one-to-one. Therefore, in this case, a normal electronic scan is performed by the delay time control of each delay circuit 32.

上記のとおり、焦点深さによっては、超音波振動子11は、その総数の半分以下の個数しか使用しないことがあり、受信チャンネルの半数は使用されない状態となる。そこで、このように使用する振動子11の数が受信チャンネルの数の半分となったとき、制御回路18はこのことに対応して、使用する振動子11の各々の出力信号がそれぞれ2つの受信チャンネルに送られるようマルチプレクサ34を切り換え制御するとともに、遅延時間の組み合わせごとに加算出力が得られるよう加算器33を制御して図4のような2つの信号受信系が形成されるようにする。つまり、この場合、加算器33は、2組の遅延回路群をそれぞれ経た受信信号を、各々加算してそれぞれの加算出力を得る2つの加算器として動作する。これにより、一方側の遅延時間の組み合わせを経て加算された加算出力と、他方側の遅延時間の組み合わせを経て加算された加算出力とを得ることができるようになって、制御回路18によりそれらの遅延時間群を適切に定めることにより、いわゆる2方向同時受信(パラレルスキャン)を行うことができる。   As described above, depending on the depth of focus, the ultrasonic transducer 11 may use only half or less of the total number, and half of the reception channels are not used. Therefore, when the number of transducers 11 to be used becomes half the number of reception channels in this way, the control circuit 18 responds to this by receiving two output signals for each transducer 11 to be used. The multiplexer 34 is controlled so as to be sent to the channel, and the adder 33 is controlled so as to obtain an addition output for each combination of delay times so that two signal receiving systems as shown in FIG. 4 are formed. That is, in this case, the adder 33 operates as two adders that respectively add the received signals that have passed through the two sets of delay circuit groups to obtain respective added outputs. As a result, it is possible to obtain the addition output added through the combination of the delay times on one side and the addition output added through the combination of the delay times on the other side. By appropriately determining the delay time group, so-called two-way simultaneous reception (parallel scan) can be performed.

さらには、使用する超音波振動子11の個数が総数の1/4以下となる場合には、使用する振動子11の各々の出力信号がそれぞれ4つの受信チャンネルに送られるようマルチプレクサ34による信号切換がなされ、かつ加算器33において4組の遅延回路群の各々を経た受信信号の、各群ごとの加算出力が得られるようにし、これによって4方向同時受信ができるようにするなど、2以上の多数方向での同時受信も可能である。   Further, when the number of ultrasonic transducers 11 to be used is ¼ or less of the total number, signal switching by the multiplexer 34 is performed so that the output signals of the transducers 11 to be used are sent to the four reception channels, respectively. In addition, the adder 33 can obtain an addition output for each group of the received signals that have passed through each of the four groups of delay circuits, thereby enabling simultaneous reception in four directions. Simultaneous reception in multiple directions is also possible.

図2はこの発明の第2の実施例にかかる超音波診断装置を示すブロック図である。ここでは、受信回路13は、マルチプレクサ(信号切換器)34と、超音波振動子11の半数の増幅器31からなる増幅器群と、同じく半数の遅延回路32aからなる第1組の遅延回路群と、第1の加算器33aとを備えるとともに、増幅器31からの出力がそれぞれ入力される、同じく半数の遅延回路32bからなる第2組の遅延回路群と、第2の加算器33bとを備える。その他、送信回路12、信号処理回路14、画像処理回路15、表示回路16、画像モニタ装置17、制御回路18、ユーザインターフェイス19などの構成は図1と同様である。   FIG. 2 is a block diagram showing an ultrasonic diagnostic apparatus according to the second embodiment of the present invention. Here, the receiving circuit 13 includes a multiplexer (signal switcher) 34, an amplifier group composed of half the amplifiers 31 of the ultrasonic transducer 11, and a first set of delay circuit groups composed of half delay circuits 32a. In addition to the first adder 33a, the second adder 33b includes a second set of delay circuits, each of which includes the half of the delay circuits 32b to which the output from the amplifier 31 is input. In addition, the configurations of the transmission circuit 12, the signal processing circuit 14, the image processing circuit 15, the display circuit 16, the image monitor device 17, the control circuit 18, the user interface 19, and the like are the same as those in FIG.

この図2の構成において、半数以下の振動子11からの受信信号しか用いない場合には、それら半数以下の振動子11からの受信信号がそれぞれ1個の増幅器31に入力されるよう、制御回路18によってマルチプレクサ34が切り換えられている(第1の信号切換状態)。各増幅器31の出力信号は、遅延回路32aからなる第1組の遅延回路群と、遅延回路32bからなる第2組の遅延回路群に送られ、これら第1組、第2組の遅延回路群をそれぞれ経た受信信号が、それらの組ごとに加算器33a、33bの各々で加算されて、各組ごとの加算出力が得られる。   In the configuration of FIG. 2, when only reception signals from half or less of the vibrators 11 are used, the control circuit is configured so that the reception signals from the half or less of the vibrators 11 are respectively input to one amplifier 31. 18, the multiplexer 34 is switched (first signal switching state). The output signal of each amplifier 31 is sent to a first set of delay circuits comprising a delay circuit 32a and a second set of delay circuits comprising a delay circuit 32b, and these first and second sets of delay circuits. The received signals that have passed through the above are added by each of the adders 33a and 33b for each set, and an addition output for each set is obtained.

この場合、第1、第2組の遅延回路群に属する遅延回路32a、32bの両方について遅延時間制御が行われ、異なる遅延時間の組み合わせによって遅延された受信信号の合成出力が得られるので、いわゆるパラレルスキャンが行われることになる。   In this case, delay time control is performed for both of the delay circuits 32a and 32b belonging to the first and second sets of delay circuit groups, and a combined output of received signals delayed by a combination of different delay times is obtained, so-called Parallel scanning will be performed.

また、全数の半数より多い数の振動子11の出力を用いる場合に、それら振動子11の2つずつの出力を結合してそれぞれ1個の増幅器31に送るように、制御回路18の制御により、マルチプレクサ34における信号切換がなされる(第2の信号切換状態)ようにもできる。   Further, when the outputs of more than half of the total number of transducers 11 are used, the outputs of the two transducers 11 are combined and sent to one amplifier 31 under the control of the control circuit 18. The signal can be switched in the multiplexer 34 (second signal switching state).

そこで、ユーザインターフェイス19を介してフォーカスを浅い位置に設定すると、マルチプレクサ34は第1の信号切換状態となり、パラレルスキャンが行われて、フレームレートが向上する。   Therefore, when the focus is set to a shallow position via the user interface 19, the multiplexer 34 enters the first signal switching state, the parallel scan is performed, and the frame rate is improved.

また、反対に焦点距離を深く(長く)設定した場合は、マルチプレクサ34は第2の信号切換状態となって、受信合成超音波ビームの中心軸に対称な場所に位置する超音波振動子11のペアについてそれらの出力信号が加算され、それぞれ1つの増幅器31に入力される。この場合、各増幅器31の出力は、遅延回路32aからなる第1組の遅延回路群と、遅延回路32bからなる第2組の遅延回路群に送られ、これら第1組、第2組の遅延回路群をそれぞれ経た受信信号が、それらの組ごとに加算器33a、33bの各々で加算されて、各組ごとの加算出力が得られるが、その一方の組の(たとえば遅延回路32aが属する)遅延回路群の遅延時間のみを制御するとともに、その組の遅延回路郡を経た受信信号を加算する加算器(たとえば加算器33a)の出力のみを用いて信号処理回路14に送る。これにより対称性を利用した遅延時間制御によって深い部分までフォーカスできるため、増幅器31の数を超音波振動子11の総数の半分にまで減らすことができ、製造コストを削減できる。   On the other hand, when the focal length is set deep (long), the multiplexer 34 enters the second signal switching state, and the ultrasonic transducer 11 positioned at a location symmetrical to the central axis of the received synthesized ultrasonic beam is set. The output signals of the pairs are added and each input to one amplifier 31. In this case, the output of each amplifier 31 is sent to a first set of delay circuits consisting of a delay circuit 32a and a second set of delay circuits consisting of a delay circuit 32b. The received signals that have passed through the respective circuit groups are added by each of the adders 33a and 33b for each set, and an added output for each set is obtained. One set (for example, the delay circuit 32a belongs). Only the delay time of the delay circuit group is controlled, and the signal is sent to the signal processing circuit 14 using only the output of the adder (for example, the adder 33a) that adds the received signals that have passed through the set of delay circuits. As a result, since a deep portion can be focused by delay time control using symmetry, the number of amplifiers 31 can be reduced to half of the total number of ultrasonic transducers 11, and the manufacturing cost can be reduced.

これら第1、第2の実施例において、ユーザが送信マルチフォーカスを設定した場合、送信合成超音波は広いフォーカス領域を有することになる。そこで、この場合、図1と図2の制御回路18が、浅いフォーカス領域と深いフォーカス領域とに対して異なるスキャン方式となるように制御することができる。浅い送信フォーカス領域が上記のパラレルスキャン可能な条件を満たしていることを制御回路18が判断したとき、図1の構成ではマルチプレクサ34が第2の信号切換状態とされ、図2の構成ではマルチプレクサ34が第1の信号切換状態とされることによってそれぞれパラレルスキャンを行う。他方、深い送信フォーカス領域では、図1の構成ではマルチプレクサ34は第1の信号切換状態とされて通常の電子スキャンが行われ、図2の構成ではマルチプレクサ34は第2の信号切換状態とされて対称性を利用した遅延時間制御が行われて、図1、図2の構成とも、多数の超音波振動子11を用いて受信できるので、深い位置までフォーカスを向上させることができる。   In these first and second embodiments, when the user sets transmission multi-focus, the transmission synthesized ultrasonic wave has a wide focus area. Therefore, in this case, the control circuit 18 shown in FIGS. 1 and 2 can control the shallow focus area and the deep focus area so that different scanning methods are used. When the control circuit 18 determines that the shallow transmission focus area satisfies the above-described conditions for parallel scanning, the multiplexer 34 is switched to the second signal switching state in the configuration of FIG. 1, and the multiplexer 34 in the configuration of FIG. Are switched to the first signal switching state to perform parallel scanning. On the other hand, in the deep transmission focus region, the multiplexer 34 is in the first signal switching state in the configuration of FIG. 1 and normal electronic scanning is performed, and in the configuration of FIG. 2, the multiplexer 34 is in the second signal switching state. Since the delay time control using symmetry is performed and both the configurations of FIGS. 1 and 2 can be received using a large number of ultrasonic transducers 11, the focus can be improved to a deep position.

なお、上記の説明はこの発明の一実施例に関するものであって、この発明の趣旨を逸脱しない範囲で、具体的な構成などは種々に変更できることはいうまでもない。   The above description relates to one embodiment of the present invention, and it goes without saying that specific configurations and the like can be variously changed without departing from the spirit of the present invention.

この発明にかかる超音波診断装置によれば、超音波条件の設定に応じてスキャン方式を最適化することができ、フォーカス深度に応じてパラレルスキャンによってフレームレートを向上させたり、少ない数の増幅手段でコスト削減を図りながらも深い位置までフォーカスを向上させることができる。   According to the ultrasonic diagnostic apparatus according to the present invention, the scanning method can be optimized according to the setting of the ultrasonic condition, the frame rate can be improved by parallel scanning according to the focus depth, or a small number of amplification means The focus can be improved to a deep position while reducing costs.

この発明の第1の実施例にかかる超音波診断装置のブロック図。1 is a block diagram of an ultrasonic diagnostic apparatus according to a first embodiment of the present invention. この発明の第2の実施例にかかる超音波診断装置のブロック図。The block diagram of the ultrasonic diagnosing device concerning 2nd Example of this invention. 従来例のブロック図。The block diagram of a prior art example. パラレルスキャンを行う受信回路のブロック図。The block diagram of the receiving circuit which performs a parallel scan. 対称性を利用した受信超音波ビーム合成を行う受信回路のブロック図。The block diagram of the receiving circuit which performs the reception ultrasonic beam synthesis | combination using a symmetry.

符号の説明Explanation of symbols

11…………超音波振動子
12…………送信回路
13…………受信回路
14…………信号処理回路
15…………画像処理回路
16…………表示回路
17…………画像モニター装置
18…………制御回路
19…………ユーザインターフェイス
21…………パルス発生器
22、32、32a、32b……遅延回路
23…………パルス駆動回路
31…………増幅器
33、33a、33b……加算器
34…………マルチプレクサ
11 ………… Ultrasonic transducer 12 ………… Transmitting circuit 13 ………… Receiving circuit 14 ………… Signal processing circuit 15 ………… Image processing circuit 16 ………… Display circuit 17 ………… Image monitor device 18 Control circuit 19 User interface 21 Pulse generator 22, 32, 32a, 32b Delay circuit 23 Pulse drive circuit 31 Amplifiers 33, 33a, 33b... Adder 34.

Claims (2)

多数の超音波振動子が並べられた振動子アレイと、これら振動子の各々を、それぞれ遅延手段を経た超音波周波数のパルスで駆動する送信手段と、上記の振動子の各々からの受信信号を切り換える信号切換手段、該信号切換手段を経た受信信号の各々を増幅する、上記振動子と同数の増幅手段、該増幅手段を経た受信信号をそれぞれ遅延する、上記振動子と同数の遅延手段および該遅延手段を経た受信信号を加算する信号加算手段を含む受信手段と、該送信手段と受信手段のそれぞれの遅延手段を制御するとともに受信手段の信号切換手段を制御し、上記の各振動子からの受信信号をそれぞれ1系統の増幅手段および遅延手段に通すように切り換える第1の信号切換状態と半数以下の個数の振動子の各々からの受信信号をそれぞれ2系統の増幅手段および遅延手段に通すように切り換える第2の信号切換状態とを選択可能とする制御手段とを備えることを特徴とする超音波診断装置。   A transducer array in which a large number of ultrasonic transducers are arranged, a transmission unit that drives each of these transducers with a pulse of an ultrasonic frequency that has passed through a delay unit, and a reception signal from each of the transducers described above Switching signal switching means, amplifying each of the received signals that have passed through the signal switching means, the same number of amplifying means as the vibrators, delaying the received signals that have passed through the amplifying means, respectively, and delaying means as many as the vibrators, and A receiving means including a signal adding means for adding the received signals that have passed through the delay means, and controlling the delay means of the transmitting means and the receiving means, and controlling the signal switching means of the receiving means, The received signal from each of the first signal switching state and the number of transducers less than half the number of the received signals is increased by two systems. Ultrasonic diagnostic apparatus characterized by comprising a control means for enabling selecting a second signal switching states for switching to pass the means and the delay means. 多数の超音波振動子が並べられた振動子アレイと、これら振動子の各々を、それぞれ遅延手段を経た超音波周波数のパルスで駆動する送信手段と、上記の振動子の各々からの受信信号を切り換える信号切換手段、該信号切換手段を経た受信信号の各々を増幅する、上記振動子の半数の増幅手段、該増幅手段を経た受信信号をそれぞれ遅延する、上記振動子の半数ずつの2組の遅延手段群および該2組の遅延手段群をそれぞれ経た受信信号を各組ごとに加算する2個の信号加算手段を含む受信手段と、該送信手段と受信手段のそれぞれの遅延手段を制御するとともに、受信手段の信号切換手段を制御することによって上記の振動子のうちの半数以下の振動子からの受信信号をそれぞれ1つの増幅手段に入力するように切り換える第1の信号切換状態と受信超音波の中心軸に対して対称な位置となる2つの振動子からの受信信号を結合してそれぞれ1つの増幅手段に入力するように切り換える第2の信号切換状態とを選択可能とする制御手段とを備えることを特徴とする超音波診断装置。   A transducer array in which a large number of ultrasonic transducers are arranged, a transmission unit that drives each of these transducers with a pulse of an ultrasonic frequency that has passed through a delay unit, and a reception signal from each of the transducers described above Signal switching means for switching, amplifying each of the reception signals that have passed through the signal switching means, amplifying means for half of the vibrator, and two sets of half of the vibrator for respectively delaying the reception signal that has passed through the amplification means The receiving means including two signal adding means for adding each of the delay means group and the received signals that have passed through the two sets of delay means groups for each set, and controlling the respective delay means of the transmitting means and the receiving means The first signal switching for switching so that the received signals from less than half of the vibrators are respectively input to one amplifying means by controlling the signal switching means of the receiving means. And a second signal switching state in which received signals from two transducers at symmetrical positions with respect to the central axis of the received ultrasonic wave are combined and switched so as to be input to one amplifying unit, respectively. And an ultrasonic diagnostic apparatus.
JP2005176261A 2005-06-16 2005-06-16 Ultrasonic diagnostic device Withdrawn JP2006346161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005176261A JP2006346161A (en) 2005-06-16 2005-06-16 Ultrasonic diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005176261A JP2006346161A (en) 2005-06-16 2005-06-16 Ultrasonic diagnostic device

Publications (1)

Publication Number Publication Date
JP2006346161A true JP2006346161A (en) 2006-12-28

Family

ID=37642616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005176261A Withdrawn JP2006346161A (en) 2005-06-16 2005-06-16 Ultrasonic diagnostic device

Country Status (1)

Country Link
JP (1) JP2006346161A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091280A1 (en) * 2010-12-27 2012-07-05 서강대학교산학협력단 Method for generating synthetic image and ultrasonic imaging apparatus using same
WO2012173227A1 (en) * 2011-06-15 2012-12-20 株式会社 東芝 Ultrasound probe and ultrasound diagnostic device
JP2014184073A (en) * 2013-03-25 2014-10-02 Canon Inc Subject information acquisition device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091280A1 (en) * 2010-12-27 2012-07-05 서강대학교산학협력단 Method for generating synthetic image and ultrasonic imaging apparatus using same
US10101449B2 (en) 2010-12-27 2018-10-16 Industrial Cooperation Foundation Sogang University Method for generating synthetic image and ultrasonic imaging apparatus using same
WO2012173227A1 (en) * 2011-06-15 2012-12-20 株式会社 東芝 Ultrasound probe and ultrasound diagnostic device
CN103079471A (en) * 2011-06-15 2013-05-01 株式会社东芝 Ultrasound probe and ultrasound diagnostic device
JP5575907B2 (en) * 2011-06-15 2014-08-20 株式会社東芝 Ultrasonic probe and ultrasonic diagnostic apparatus
JPWO2012173227A1 (en) * 2011-06-15 2015-02-23 株式会社東芝 Ultrasonic probe and ultrasonic diagnostic apparatus
US9775585B2 (en) 2011-06-15 2017-10-03 Toshiba Medical Systems Corporation Variable power saving processing scheme for ultrasound beamformer functionality
JP2014184073A (en) * 2013-03-25 2014-10-02 Canon Inc Subject information acquisition device
US9885780B2 (en) 2013-03-25 2018-02-06 Canon Kabushiki Kaisha Object information acquiring apparatus

Similar Documents

Publication Publication Date Title
JP5174010B2 (en) Method and transducer array with integrated beaming
US20100022883A1 (en) Ultrasonic diagnostic apparatus
JP2009240700A (en) Ultrasonic diagnostic device
JP2001245889A (en) Ultrasonic probe and ultrasonic diagnostic device
JP6085614B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP2006025905A (en) Ultrasonic transmitting and receiving apparatus
WO2014021105A1 (en) Ultrasonic diagnostic device
JP2006095151A (en) Ultrasonic diagnostic apparatus
JP2006346161A (en) Ultrasonic diagnostic device
JP6944048B2 (en) Ultrasonic system and control method of ultrasonic system
JP2001276064A (en) Beam former of ultrasonic diagnostic device
US20130072799A1 (en) Ultrasound diagnostic apparatus and ultrasound image generating method
JP6838174B2 (en) Ultrasonic probe and processing method
JP2008167876A (en) Ultrasonic diagnostic apparatus
KR101120691B1 (en) Method of Compounding an Ultrasound Image Using a Spatial Compounding
JP4599408B2 (en) Ultrasonic diagnostic equipment
JP2006192031A (en) Ultrasonic image diagnostic device
JP2010172551A (en) Ultrasonic diagnostic equipment, and control program for the same
JPH0614927A (en) Ultrasonic diagnostic device
JP2007190045A (en) Ultrasonic diagnostic device
JP3851704B2 (en) Ultrasonic diagnostic equipment
JP2597360B2 (en) Ultrasound diagnostic equipment
JPH08266540A (en) Ultrasonic diagnostic system
JP2005334197A (en) Ultrasonic diagnostic equipment
JP2763140B2 (en) Ultrasound diagnostic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100311