JP2006345147A - Electronic camera with generating function for pixel-shifted image and imaging method - Google Patents

Electronic camera with generating function for pixel-shifted image and imaging method Download PDF

Info

Publication number
JP2006345147A
JP2006345147A JP2005168031A JP2005168031A JP2006345147A JP 2006345147 A JP2006345147 A JP 2006345147A JP 2005168031 A JP2005168031 A JP 2005168031A JP 2005168031 A JP2005168031 A JP 2005168031A JP 2006345147 A JP2006345147 A JP 2006345147A
Authority
JP
Japan
Prior art keywords
image
imaging
electronic camera
subject image
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005168031A
Other languages
Japanese (ja)
Other versions
JP4529804B2 (en
Inventor
Keiichi Nitta
啓一 新田
Maki Suzuki
真樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005168031A priority Critical patent/JP4529804B2/en
Publication of JP2006345147A publication Critical patent/JP2006345147A/en
Application granted granted Critical
Publication of JP4529804B2 publication Critical patent/JP4529804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To generate a pixel-shifted image including two-dimensional resolution information in a well-balanced state. <P>SOLUTION: An electronic camera according to the present invention has an imaging section, a direction detection section, a driving section, and an imaging control section. The imaging section photoelectrically converts a subject image formed through a taking lens on an imaging surface to generate image data. The direction detection section detects the movement direction of the subject image. The driving section determines a driving direction according to the detected movement direction so that orthogonal direction components of the movement direction are included and relatively moves the subject image on the imaging surface in the driving direction. The imaging control section performs photoelectric conversion a plurality of times by driving the imaging section as the subject image is relatively moved to acquire a plurality of image data (pixel-shifted image). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、画素ずらし画像の生成機能を有する電子カメラおよび撮像方法に関する。   The present invention relates to an electronic camera having a pixel shifted image generation function and an imaging method.

下記の特許文献1には、画像入力装置を手動走査することによって、画素ずらしされた複数画像を生成する技術が開示されている。これらの画素ずらし画像は、画素のサンプリング位置が少しずつずれる。そのため、画像入力装置の解像限界を超えた微細な解像情報を得ることができる。そこで、これら複数の画素ずらし画像を合成することによって、解像限界を超えた高解像度の画像(以下『超解像度画像』という)を得ることができる。
特開平10-69537号公報
Japanese Patent Application Laid-Open Publication No. 2004-228561 discloses a technique for generating a plurality of pixels-shifted images by manually scanning an image input device. In these pixel-shifted images, the pixel sampling positions are shifted little by little. Therefore, fine resolution information exceeding the resolution limit of the image input device can be obtained. Therefore, a high-resolution image exceeding the resolution limit (hereinafter referred to as “super-resolution image”) can be obtained by combining the plurality of pixel-shifted images.
Japanese Patent Laid-Open No. 10-69537

ところで、上述した従来技術では、移動の方向に起因して、超解像度画像の解像限界が2次元方向で異なるという問題点があった。
例えば、縦横画素配列の画像入力装置を用いて、横方向に移動しながら撮像すると、横方向のみ画素ずらしが実施される。この場合、横方向については解像限界が高くなるが、縦方向については実質的な解像限界を高くすることはできない。
By the way, the above-described conventional technique has a problem that the resolution limit of the super-resolution image differs in the two-dimensional direction due to the direction of movement.
For example, when an image is input while moving in the horizontal direction using an image input device having a vertical and horizontal pixel arrangement, pixel shifting is performed only in the horizontal direction. In this case, the resolution limit is increased in the horizontal direction, but the substantial resolution limit cannot be increased in the vertical direction.

このように2次元方向で解像限界が異なると、画像中の輪郭線の太さが縦横で異なるなどのひずみが生じるため、不自然な印象の画像になりやすい。また、解像限界の低い方向は、その方向のみ平滑化されたように見えるために、方向均一性のない不自然な画像になりやすい。   When the resolution limit is different in the two-dimensional direction in this way, distortion such as the difference in the thickness of the contour line in the image between the vertical and horizontal directions occurs, so that an image with an unnatural impression tends to occur. In addition, since the direction with a low resolution limit seems to be smoothed only in that direction, it tends to be an unnatural image with no direction uniformity.

なお、横方向の1次元移動であっても、縦方向への緩やかな移動を期待することができる。しかし、特に移動量が少ない場合には、この緩やかな縦移動から更なる縦方向の解像情報を得るために、画素ずらし画像の撮像枚数を何倍にも増やす必要があるなど別の問題が生じる。   In addition, even in the case of horizontal one-dimensional movement, a gentle movement in the vertical direction can be expected. However, especially when the amount of movement is small, there are other problems, such as the need to increase the number of pixels shifted to multiple times in order to obtain further vertical resolution information from this gentle vertical movement. Arise.

そこで、本発明では、2次元方向の解像情報をバランス良く含んだ画素ずらし画像を生成することを目的とする。   Therefore, an object of the present invention is to generate a pixel-shifted image including resolution information in a two-dimensional direction with a good balance.

《1》 本発明の電子カメラは、撮像部、方向検出部、駆動部、および撮像制御部を備える。
撮像部は、撮影レンズを通して形成された被写体像を撮像面で光電変換し、画像データを生成する。
方向検出部は、被写体像の動き方向を検出する。
駆動部は、検出された動き方向に応じて、動き方向の直交方向成分を含むように駆動方向を決定し、撮像面に対してその駆動方向に被写体像を相対移動させる。
撮像制御部は、被写体像の相対移動に伴って、撮像部を駆動して複数回の光電変換を実施し、複数の画像データ(画素ずらし画像)を取得する。
<< 1 >> The electronic camera of the present invention includes an imaging unit, a direction detection unit, a drive unit, and an imaging control unit.
The imaging unit photoelectrically converts the subject image formed through the photographing lens on the imaging surface to generate image data.
The direction detection unit detects the movement direction of the subject image.
The driving unit determines a driving direction so as to include a component orthogonal to the moving direction according to the detected moving direction, and relatively moves the subject image in the driving direction with respect to the imaging surface.
The imaging control unit drives the imaging unit with a relative movement of the subject image, performs a plurality of photoelectric conversions, and acquires a plurality of image data (pixel shifted images).

《2》 また好ましくは、方向検出部は、電子カメラまたは撮影レンズの振れを検出するセンサーの出力から動き方向を検出する。 << 2 >> Also preferably, the direction detection unit detects the direction of movement from the output of a sensor that detects the shake of the electronic camera or the photographing lens.

《3》 なお好ましくは、方向検出部は、画像データを動き解析して、動き方向を検出する。 << 3 >> Preferably, the direction detection unit detects the movement direction by analyzing the movement of the image data.

《4》 また好ましくは、複数の画素ずらし画像から得られる解像情報に基づいて、撮像部の2次元解像度よりも高解像度の超解像度画像を生成するデータ処理部を備えたことを特徴とする。 << 4 >> Preferably, a data processing unit is provided that generates a super-resolution image having a resolution higher than the two-dimensional resolution of the imaging unit based on resolution information obtained from a plurality of pixel-shifted images. .

《5》 なお好ましくは、駆動部は、電子カメラまたは撮影レンズが搭載する光学的手振れ補正用の機構を制御駆動することにより、被写体像を移動させることを特徴とする。 << 5 >> Preferably, the driving unit moves the subject image by controlling and driving an optical camera shake correction mechanism mounted on the electronic camera or the photographing lens.

《6》 また好ましくは、光学的手振れ補正用の機構は、撮像面の露光期間中は手振れ補正によって撮像面に被写体像をほぼ静止させ、露光期間と露光期間の間に被写体像を撮像面に対して駆動方向に相対移動させる。 <6> Preferably, the optical camera shake correction mechanism causes the subject image to be substantially stationary on the imaging surface by camera shake correction during the exposure period of the imaging surface, and the subject image is placed on the imaging surface between the exposure period and the exposure period. The relative movement is made in the driving direction.

《7》 本発明の撮像方法は、撮影レンズを通して形成された被写体像を撮像面で光電変換して、画像データを生成する撮像部を使用する撮像方法であって、次の動作ステップを実行する。
(ステップ1)被写体像の動き方向を検出する。
(ステップ2)検出された動き方向に応じて、動き方向の直交方向成分を含むように駆動方向を決定し、撮像面に対して駆動方向に被写体像を相対移動させる。
(ステップ3)被写体像の相対移動に伴って、撮像部を駆動して複数回の光電変換を実施し、複数の画像データ(画素ずらし画像)を取得する。
<< 7 >> The imaging method of the present invention is an imaging method that uses an imaging unit that photoelectrically converts an object image formed through a photographic lens on an imaging surface to generate image data, and executes the following operation steps. .
(Step 1) The movement direction of the subject image is detected.
(Step 2) The drive direction is determined so as to include the orthogonal component of the motion direction according to the detected motion direction, and the subject image is moved relative to the imaging surface in the drive direction.
(Step 3) Along with the relative movement of the subject image, the imaging unit is driven to perform photoelectric conversion a plurality of times to obtain a plurality of image data (pixel shifted images).

本発明では、被写体像の動き方向を検出し、動き方向の直交方向を含む方向へ被写体像を相対移動させる。その結果、被写体像は撮像面に対して2次元軌跡を描くように相対移動する。この状態で、複数の画像撮影を行うことにより、2次元方向の解像情報をバランス良く含んだ画素ずらし画像を得ることができる。   In the present invention, the movement direction of the subject image is detected, and the subject image is relatively moved in a direction including a direction orthogonal to the movement direction. As a result, the subject image moves relative to the imaging surface so as to draw a two-dimensional locus. In this state, by taking a plurality of images, it is possible to obtain a pixel-shifted image that includes resolution information in a two-dimensional direction with a good balance.

《実施形態の構成説明》
図1は、電子カメラ11の構成を示すブロック図である。
図1において、電子カメラ11には撮影レンズ12が装着される。撮影レンズ12の光学系には、手振れ補正光学系12aが設けられる。この手振れ補正光学系12aは、ブレ補正部12bによって2軸方向に駆動される。この駆動動作により、撮影レンズ12が生成する被写体像は上下左右の2次元方向に移動する。この被写体像の結像位置には、撮像素子13の撮像面が配置される。撮像素子13は、撮像制御部13aによって駆動され、画像データを出力する。出力された画像データは、信号処理部14、画像メモリ14a、およびデータ処理部15を介して処理される。処理された画像データは、モニタ表示部16、および圧縮/復号部17へ出力される。モニタ表示部16は、画像データのモニタ表示を行う。また、圧縮/復号部17は、画像データを圧縮して記録媒体18に保存する。
<< Configuration Description of Embodiment >>
FIG. 1 is a block diagram showing a configuration of the electronic camera 11.
In FIG. 1, a photographing lens 12 is attached to an electronic camera 11. The optical system of the photographing lens 12 is provided with a camera shake correction optical system 12a. The camera shake correction optical system 12a is driven in the biaxial direction by the shake correction unit 12b. By this driving operation, the subject image generated by the photographic lens 12 moves up and down, left and right in a two-dimensional direction. The imaging surface of the imaging device 13 is disposed at the imaging position of the subject image. The imaging element 13 is driven by the imaging control unit 13a and outputs image data. The output image data is processed through the signal processing unit 14, the image memory 14a, and the data processing unit 15. The processed image data is output to the monitor display unit 16 and the compression / decoding unit 17. The monitor display unit 16 performs monitor display of image data. The compression / decoding unit 17 compresses the image data and stores it in the recording medium 18.

また、電子カメラ11または撮影レンズ12には動きセンサー24が配置され、2軸方向の動き(角速度、角加速度、加速度など)を検出する。また、電子カメラ11には、レリーズ釦やメニュー釦などからなる操作部材25が設けられる。
なお、電子カメラ11には制御部21が設けられる。この制御部21は、動きセンサー24や操作部材25からの信号を処理し、かつブレ補正部12b、撮像制御部13a、データ処理部15などの動作をコントロールする。
In addition, a motion sensor 24 is disposed in the electronic camera 11 or the photographing lens 12, and detects biaxial movement (angular velocity, angular acceleration, acceleration, etc.). Further, the electronic camera 11 is provided with an operation member 25 including a release button, a menu button, and the like.
The electronic camera 11 is provided with a control unit 21. The control unit 21 processes signals from the motion sensor 24 and the operation member 25 and controls operations of the shake correction unit 12b, the imaging control unit 13a, the data processing unit 15, and the like.

《実施形態の動作説明》
上述した電子カメラ11は、通常の撮影モードに加えて、超解像度撮影モードを選択可能に有する。
図2は、この超解像度撮影モードを説明する流れ図である。以下、図2に示すステップ番号に沿って、この超解像度撮影モードの動作を説明する。
<< Description of Operation of Embodiment >>
The electronic camera 11 described above has a super-resolution shooting mode selectable in addition to the normal shooting mode.
FIG. 2 is a flowchart for explaining the super-resolution photographing mode. Hereinafter, the operation in the super-resolution imaging mode will be described along the step numbers shown in FIG.

ステップS11: 制御部21は、ユーザーからのレリーズ操作を待機する。制御部21は、操作部材25を介してレリーズ操作を検出すると、ステップS12に動作を移行する。 Step S11: The control unit 21 waits for a release operation from the user. When the control unit 21 detects a release operation through the operation member 25, the control unit 21 proceeds to step S12.

ステップS12: 制御部21は、撮像制御部13aに対して連続撮影(連写)の開始を指示する。撮像制御部13aは、撮影レンズ12内の絞り制御や、機械シャッタ(不図示)の開閉制御や電子シャッタ制御を実施して、撮像素子13の撮像面に被写体像を露光する。
なお、この露光期間中、ブレ補正部12bは、露光時の像位置(ステップS15で変位済みの像位置)に被写体像が静止するよう、手振れ補正光学系12aを用いてブレ補正制御を行うことが好ましい。
この露光期間の終了後、撮像制御部13aは、撮像素子13に読み出しパルスを出力して、生成された画像データを読み出す。この画像データは、信号処理部14を介してデジタル化などの処理がされた後、画像メモリ14aに記憶される。
なお、撮像制御部13aは、後述するステップS18までの期間、この撮像動作を所定の連写速度(フレームレート)で繰り返す。この連写動作により、複数の画像データが画像メモリ14a内に蓄積される。
Step S12: The control unit 21 instructs the imaging control unit 13a to start continuous shooting (continuous shooting). The imaging control unit 13a exposes a subject image on the imaging surface of the imaging element 13 by performing aperture control in the imaging lens 12, opening / closing control of a mechanical shutter (not shown), and electronic shutter control.
Note that during this exposure period, the shake correction unit 12b performs shake correction control using the camera shake correction optical system 12a so that the subject image remains at the image position at the time of exposure (the image position that has been displaced in step S15). Is preferred.
After the exposure period ends, the imaging control unit 13a outputs a readout pulse to the imaging element 13 and reads out the generated image data. The image data is subjected to processing such as digitization via the signal processing unit 14, and then stored in the image memory 14a.
The imaging control unit 13a repeats this imaging operation at a predetermined continuous shooting speed (frame rate) for a period up to step S18 described later. By this continuous shooting operation, a plurality of image data is accumulated in the image memory 14a.

ステップS13: 制御部21は、動きセンサー24から出力される2軸の角加速度に基づいて、撮像面に対する被写体像の動き方向を検出する。なお、制御部21は、連写撮影される画像データの動き解析(ブロックマッチング処理など)により、この動き方向を検出してもよい。
なお、ここでの動き方向は、瞬間的な動き方向でもよいし、また、瞬間的な動き方向の移動平均を取った平均的な動き方向でもよい。また、過去の被写体像の軌跡を外延して、次回露光時における被写体像の動き方向を予測で求めてもよい。
Step S13: Based on the biaxial angular acceleration output from the motion sensor 24, the control unit 21 detects the movement direction of the subject image with respect to the imaging surface. Note that the control unit 21 may detect this movement direction by analyzing the motion of image data that is continuously shot (block matching processing or the like).
The movement direction here may be an instantaneous movement direction or an average movement direction obtained by taking a moving average of the instantaneous movement directions. Alternatively, the trajectory of the past subject image may be extended to obtain the motion direction of the subject image at the next exposure by prediction.

ステップS14: 制御部21は、ステップS13で求めた動き方向に対して直交方向成分を含むように、被写体像の駆動方向を決定する。例えば、動き方向に対して直交する方向を、そのまま駆動方向としてもよい。また例えば、上下方向、左右方向、右斜め方向、左斜め方向などの予め設定した方向から、動き方向に直交する方向に近い方向を選択してもよい。 Step S14: The control unit 21 determines the driving direction of the subject image so as to include an orthogonal direction component with respect to the movement direction obtained in step S13. For example, the direction orthogonal to the movement direction may be used as the driving direction as it is. Further, for example, a direction close to a direction orthogonal to the movement direction may be selected from preset directions such as an up / down direction, a left / right direction, a right diagonal direction, and a left diagonal direction.

ステップS15: 制御部21は、ブレ補正部12bを介して、手振れ補正光学系12aを駆動し、被写体像を駆動方向に振る。この動作により、被写体像は動き方向のみではなく、その直交方向にも変位する。なお、変位幅については、画素間隔以下でもよいし、画素間隔を超えてもよい。具体的には、複数の画素ずらし画像において、画素位置が重ならないように設定すればよい。
なお、この被写体像を振る動作(撮像面上の被写体像を変位させる動作)は、ステップS12で説明した露光期間を除く期間(露光完了から次回の露光開始までの期間)に実施することが、撮像ブレを防ぐ観点から好ましい。
また、この被写体像の駆動は往復運動(振動運動、例えば上下の振動運動)でもよい。また、一方向のみ(例えば上方向のみ)に駆動する運動でもよい。
Step S15: The control unit 21 drives the camera shake correction optical system 12a via the shake correction unit 12b to shake the subject image in the driving direction. By this operation, the subject image is displaced not only in the moving direction but also in the orthogonal direction. The displacement width may be equal to or less than the pixel interval or may exceed the pixel interval. Specifically, the pixel positions may be set so as not to overlap in a plurality of pixel shifted images.
The operation of shaking the subject image (the operation of displacing the subject image on the imaging surface) is performed in a period (period from the completion of exposure to the start of the next exposure) excluding the exposure period described in step S12. This is preferable from the viewpoint of preventing imaging blur.
Further, the driving of the subject image may be a reciprocating motion (vibration motion, for example, vertical vibration motion). Further, the movement may be driven only in one direction (for example, only upward).

ステップS16: 制御部21は、レリーズ操作の解除を検出すると、ステップS18に動作を移行する。一方、レリーズ操作が継続している場合、制御部21はステップS17に動作を移行する。 Step S16: When the controller 21 detects release of the release operation, the operation proceeds to step S18. On the other hand, when the release operation is continued, the control unit 21 shifts the operation to step S17.

ステップS17: 電子カメラ11に連写の予定枚数が予めカスタム設定されている場合、制御部21は、予定枚数の撮像を完了したか否かを判定する。
ここで、予定枚数に満たない場合、制御部21は、ステップS12に動作を戻す。
一方、予定枚数に達した場合、制御部21は、ステップS18に動作を移行する。
Step S17: If the scheduled number of continuous shots is custom-set in advance in the electronic camera 11, the control unit 21 determines whether or not the scheduled number of images has been captured.
If the planned number is not reached, the controller 21 returns the operation to step S12.
On the other hand, when the planned number is reached, the control unit 21 shifts the operation to step S18.

ステップS18: 制御部21は、撮像制御部13aに連写動作の終了を指示する。上述した一連の動作により、複数の画素ずらし画像が画像メモリ14aに蓄積される。
ちなみに、解像情報を2次元方向にバランス良く得るためには、3つ以上の画素ずらし画像の全てについて、撮像時の像位置が一直線上に並ばないことが好ましい。なお、2次元軌跡の像移動に伴って3回以上の撮像動作を実施すれば、よほどの偶然が働かない限り、像位置の全ては一直線上に並ばない
Step S18: The control unit 21 instructs the imaging control unit 13a to end the continuous shooting operation. Through the series of operations described above, a plurality of pixel-shifted images are accumulated in the image memory 14a.
Incidentally, in order to obtain the resolution information in a two-dimensional direction with good balance, it is preferable that the image positions at the time of imaging are not aligned on all three or more pixel-shifted images. Note that if the imaging operation is performed three or more times along with the movement of the image of the two-dimensional locus, all of the image positions will not line up unless a coincidence occurs.

ステップS19: 制御部21は、データ処理部15に画像合成を指示する。データ処理部15は、画像メモリ14a内の複数の画素ずらし画像を読み出し、被写体像の絵柄の位置が一致するように、撮像素子13の画素間隔より細かな精度で位置合わせを行う。
この位置合わせは、画像マッチングのような画像解析処理によって実施してもよい。この場合には、位置合わせの各結果を既知の撮像位置の移動軌跡上に載るようにフィッティングを行うことで、撮像素子13の画素間隔よりも細かな位置合わせ精度を実現することが好ましい。また、画素ずらし画像を予め補間した上で画像マッチングを行うことで、画素間隔より細かな位置合わせ精度を実現してもよい。
また、画素ずらし画像ごとに、露光期間における被写体像の像位置(動き方向と駆動方向の合成など)を求めておき、この像位置に応じて、画素ずらし画像の位置合わせを行ってもよい。
Step S19: The control unit 21 instructs the data processing unit 15 to perform image composition. The data processing unit 15 reads out a plurality of pixel-shifted images in the image memory 14a, and performs alignment with finer accuracy than the pixel interval of the image sensor 13 so that the positions of the pattern of the subject image coincide.
This alignment may be performed by image analysis processing such as image matching. In this case, it is preferable to realize alignment accuracy finer than the pixel interval of the image sensor 13 by performing fitting so that each result of alignment is placed on the movement trajectory of the known imaging position. Further, by performing image matching after interpolating the pixel-shifted image in advance, a finer alignment accuracy than the pixel interval may be realized.
In addition, for each pixel-shifted image, the image position of the subject image (such as the combination of the movement direction and the drive direction) during the exposure period may be obtained, and the pixel-shifted image may be aligned according to this image position.

ステップS20: 複数の画素ずらし画像の位置合わせにより、図4,図6,図7などに示すような、2次元方向に細かく分散した多数の画素を得ることができる。データ処理部15は、これらの細かく分散した画素を再サンプリング(補間)し、例えばサンプル点構造が正方格子化された超解像度画像を得る。ここでの再サンプリングの画素密度は、細かく分散した画素の平均画素密度に近い値に設定することが好ましい。なお、再サンプリング時の補間処理としては、公知の補間処理(例えば、バイリニア法、バイキュービック法、ニアレストネイバー法、線形補間法など)が使用可能である。 Step S20: By aligning a plurality of pixel-shifted images, a large number of pixels finely dispersed in the two-dimensional direction as shown in FIGS. 4, 6, and 7 can be obtained. The data processing unit 15 resamples (interpolates) these finely dispersed pixels to obtain, for example, a super-resolution image in which the sample point structure is formed into a square lattice. The pixel density for resampling here is preferably set to a value close to the average pixel density of finely dispersed pixels. In addition, as an interpolation process at the time of resampling, a well-known interpolation process (For example, a bilinear method, a bicubic method, a nearest neighbor method, a linear interpolation method etc.) can be used.

以上説明した一連の処理により、撮像素子13の撮像限界を超え、かつ2次元方向の解像感のバランスに優れた超解像度画像を生成することが可能になる。   With the series of processes described above, it is possible to generate a super-resolution image that exceeds the imaging limit of the imaging device 13 and has an excellent balance of resolution in the two-dimensional direction.

《実施形態の効果など》
以下、本実施形態の効果を、図3〜図7を用いて説明する。これら図3〜図7において、図中に示す丸数字は、画素ずらし画像のコマ番号を示す。また、丸数字の各位置は、これら画素ずらし画像の画素位置を示す。
<< Effects of the embodiment >>
Hereinafter, the effect of this embodiment will be described with reference to FIGS. 3 to 7, the circled numbers shown in the drawings indicate the frame numbers of the pixel shifted images. Further, each position of a circled number indicates a pixel position of these pixel shifted images.

まず、図3は、画面のほぼ横方向に被写体像が動いている状況で、縦方向への像駆動(ステップS15)を行わなかったケースである。このケースでは、画面横方向については画素密度が高く、細かな解像情報を得ることができる。しかし、画面縦方向については、画素密度は殆ど増えないため、解像能力は向上しない。そのため、これらの画素ずらし画像からは、縦横に不均等な解像情報しか得られず、不自然な解像感の超解像度画像が作成されてしまう。   First, FIG. 3 shows a case where image driving in the vertical direction (step S15) is not performed in a situation in which the subject image is moving substantially in the horizontal direction of the screen. In this case, the pixel density is high in the horizontal direction of the screen, and fine resolution information can be obtained. However, since the pixel density hardly increases in the vertical direction of the screen, the resolution ability is not improved. Therefore, from these pixel-shifted images, only unequal resolution information can be obtained in the vertical and horizontal directions, and a super-resolution image with an unnatural resolution is created.

一方、図4は、図3と同じ状況で、縦方向の像駆動(ステップS15)を実施したケースである。このケースでは、画素位置が2次元方向に分散し、2次元方向に解像情報をバランス良く含んだ画素ずらし画像が得られる。その結果、2次元方向に解像感がほぼ均等な超解像度画像を得ることができる。   On the other hand, FIG. 4 shows a case where image driving in the vertical direction (step S15) is performed in the same situation as FIG. In this case, pixel positions are dispersed in a two-dimensional direction, and a pixel-shifted image including resolution information in a two-dimensional direction with good balance can be obtained. As a result, it is possible to obtain a super-resolution image with almost uniform resolution in the two-dimensional direction.

また、図5は、斜めの右下がり方向に被写体像が動いている状況で、駆動方向の駆動(ステップS15)を行わなかったケースである。このケースでは、右下がり方向については画素密度が高く、細かな解像情報を得ることができる。しかし、直交する右上がり方向については画素密度が増えず、解像能力は向上しない。そのため、これらの画素ずらし画像からは、2次元的に不均等な解像情報しか得られず、不自然な解像感の超解像度画像が作成されてしまう。   FIG. 5 shows a case where driving in the driving direction (step S15) is not performed in a situation where the subject image is moving in an obliquely downward right direction. In this case, the pixel density is high in the lower right direction, and fine resolution information can be obtained. However, the pixel density does not increase in the orthogonal upward direction, and the resolution is not improved. Therefore, only two-dimensionally non-uniform resolution information can be obtained from these pixel-shifted images, and a super-resolution image with an unnatural resolution is created.

一方、図6は、図5と同じ状況で、右上がりの駆動方向の駆動(ステップS15)を実施したケースである。このケースでは、画素位置が2次元方向に分散し、2次元方向に解像情報をバランス良く含んだ画素ずらし画像が得られる。その結果、2次元方向に解像感がほぼ均等な超解像度画像を得ることが可能になる。   On the other hand, FIG. 6 shows a case in which driving in the upward driving direction (step S15) is performed in the same situation as FIG. In this case, pixel positions are dispersed in a two-dimensional direction, and a pixel-shifted image including resolution information in a two-dimensional direction with good balance can be obtained. As a result, it is possible to obtain a super-resolution image with almost uniform resolution in the two-dimensional direction.

また、図7は、図4と同じ状況で、被写体像の動きが連写速度に対して速く、撮像素子13の画素間隔を超えて画素ずらしが行われたケースである。この場合も、複数の画素ずらし画像の重複範囲については、2次元方向に解像情報をバランス良く含んだ画素ずらし画像が得られる。その結果、2次元方向に解像感がほぼ均等な超解像度画像を得ることが可能になる。   FIG. 7 shows a case where the movement of the subject image is faster than the continuous shooting speed and the pixel shift is performed beyond the pixel interval of the image sensor 13 in the same situation as FIG. Also in this case, with respect to the overlapping range of the plurality of pixel shifted images, a pixel shifted image including resolution information in a two-dimensional direction with a good balance can be obtained. As a result, it is possible to obtain a super-resolution image with almost uniform resolution in the two-dimensional direction.

さらに、本実施形態では、撮影レンズ12の手振れ補正光学系を使用して、被写体像を像移動させる。したがって、像移動のための別機構を新たに設ける必要がない。そのため、超解像度画像の撮像機能を簡易に実現することが可能になる。   Further, in the present embodiment, the subject image is moved using the camera shake correction optical system of the photographing lens 12. Therefore, it is not necessary to newly provide another mechanism for moving the image. Therefore, it is possible to easily realize the super-resolution image imaging function.

また、本実施形態では、動きセンサー24を用いて、被写体像の動き方向を検出する。この動きセンサー24も、手振れ補正用に搭載される動きセンサーを流用することが好ましい。この場合、撮像面に対する被写体像の動き方向を検出するための別センサーを新たに設ける必要がなくなり、超解像度画像の撮像機能を簡易に実現できる。   In the present embodiment, the movement direction of the subject image is detected using the movement sensor 24. The motion sensor 24 is also preferably a motion sensor mounted for correcting camera shake. In this case, it is not necessary to newly provide another sensor for detecting the moving direction of the subject image with respect to the imaging surface, and the super-resolution image imaging function can be easily realized.

さらに、本実施形態では、撮像素子13の露光期間中は手振れ補正を実施し、露光期間を除く期間中に被写体像の相対移動を実現する。その結果、画素ずらし画像に対する像ブレを低減し、より鮮明な画素ずらし画像を得ることができる。したがって、超解像度画像の鮮明さを一段と高めることができる。   Further, in the present embodiment, camera shake correction is performed during the exposure period of the image sensor 13, and relative movement of the subject image is realized during the period excluding the exposure period. As a result, image blurring with respect to the pixel shifted image can be reduced, and a clearer pixel shifted image can be obtained. Therefore, the sharpness of the super-resolution image can be further enhanced.

また、本実施形態では、被写体移動や手振れや手動走査(撮像範囲の手動による移動)による被写体像の動きと、その直交方向への像移動とを組み合わせることによって、様々な超解像度画像を生成することができる。例えば、手動走査の走査範囲を広げることによって、ワイド画面やパノラマ画面の超解像度画像を生成することができる。   In the present embodiment, various super-resolution images are generated by combining the movement of the subject image due to subject movement, camera shake, or manual scanning (manual movement of the imaging range) and image movement in the orthogonal direction. be able to. For example, by expanding the scanning range of manual scanning, it is possible to generate a super-resolution image of a wide screen or a panoramic screen.

《実施形態の補足事項》
なお、上述した実施形態では、撮像面上の被写体像を光学的に像移動させている。しかしながら、実施形態はこれに限定されるものではない。例えば、撮像素子13の撮像面を面方向に駆動することによって、撮像面に対する被写体像の相対移動を実現してもよい。
<< Additional items of embodiment >>
In the above-described embodiment, the subject image on the imaging surface is optically moved. However, the embodiment is not limited to this. For example, the relative movement of the subject image relative to the imaging surface may be realized by driving the imaging surface of the imaging element 13 in the surface direction.

さらに、上述した実施形態では、連写撮像動作によって得られた画像から超解像度画像を生成する例について説明した。しかし、動画像撮像動作によって得られた動画像からも、同様の手法により超解像度画像を生成することができる。   Furthermore, in the above-described embodiment, the example in which the super-resolution image is generated from the image obtained by the continuous shooting operation has been described. However, a super-resolution image can be generated from the moving image obtained by the moving image capturing operation by the same method.

また、上述した実施形態では、被写体像の動き方向を検出して、その直交方向を含む駆動方向に被写体像を像移動させることによって、2次元軌跡状の像移動を実現している。しかしながら、実施形態はこれに限定されるものではない。例えば、撮像面に対して被写体像を2次元軌跡状に相対移動させてもよい。この場合、上述したような波動状の軌跡以外にも、図8[A][B]に示すような比較的自由な軌跡を設定することができる。このような動作により、被写体像に手振れや手動走査などの動きが無い場合にも、2次元的に解像情報をバランス良く含んだ画素ずらし画像を得ることが可能になる。   In the above-described embodiment, the movement direction of the subject image is detected, and the subject image is moved in the driving direction including the orthogonal direction, thereby realizing a two-dimensional locus-like image movement. However, the embodiment is not limited to this. For example, the subject image may be moved relative to the imaging surface in a two-dimensional locus. In this case, in addition to the wave-like locus as described above, a relatively free locus as shown in FIGS. 8A and 8B can be set. Such an operation makes it possible to obtain a pixel-shifted image that two-dimensionally includes resolution information in a well-balanced manner even when there is no movement such as camera shake or manual scanning in the subject image.

なお、上述した実施形態では、電子カメラ11において超解像度画像を生成している。しかしながら、実施形態はこれに限定されるものではない。例えば、電子カメラ11側では複数の画素ずらし画像の生成までを実施し、コンピュータなどの後処理で超解像度画像を生成してもよい。   In the above-described embodiment, the electronic camera 11 generates a super resolution image. However, the embodiment is not limited to this. For example, on the electronic camera 11 side, a plurality of pixel-shifted images may be generated and a super-resolution image may be generated by post-processing such as a computer.

以上説明したように、本発明は、複数の画素ずらし画像を生成する電子カメラなどに利用可能な技術である。   As described above, the present invention is a technique that can be used for an electronic camera that generates a plurality of pixel-shifted images.

電子カメラ11の構成を示すブロック図である。2 is a block diagram illustrating a configuration of an electronic camera 11. FIG. 電子カメラ11の超解像度撮影モードを説明する流れ図である。4 is a flowchart illustrating a super-resolution shooting mode of the electronic camera 11. 駆動方向に像駆動しない場合の画素ずらし状態を説明する図である。It is a figure explaining the pixel shift state when not driving an image in the driving direction. 駆動方向に像駆動した場合の画素ずらし状態を説明する図である。It is a figure explaining the pixel shift state at the time of image driving in the drive direction. 駆動方向に像駆動しない場合の画素ずらし状態を説明する図である。It is a figure explaining the pixel shift state when not driving an image in the driving direction. 駆動方向に像駆動した場合の画素ずらし状態を説明する図である。It is a figure explaining the pixel shift state at the time of image driving in the drive direction. 被写体像の動きが速い場合の画素ずらし状態を説明する図である。It is a figure explaining the pixel shift state when a subject image moves quickly. 2次元軌跡状に画素ずらしを行う場合の説明図である。It is explanatory drawing at the time of performing pixel shift in the shape of a two-dimensional locus.

符号の説明Explanation of symbols

11…電子カメラ,12…撮影レンズ,12a…手振れ補正光学系,12b…ブレ補正部,13…撮像素子,13a…撮像制御部,14…信号処理部,14a…画像メモリ,15…データ処理部,16…モニタ表示部,21…制御部,24…動きセンサー
DESCRIPTION OF SYMBOLS 11 ... Electronic camera, 12 ... Shooting lens, 12a ... Camera shake correction optical system, 12b ... Shake correction part, 13 ... Imaging device, 13a ... Imaging control part, 14 ... Signal processing part, 14a ... Image memory, 15 ... Data processing part , 16 ... Monitor display part, 21 ... Control part, 24 ... Motion sensor

Claims (7)

撮影レンズを通して形成された被写体像を撮像面で光電変換し、画像データを生成する撮像部と、
前記被写体像の動き方向を検出する方向検出部と、
検出された前記動き方向に応じて、前記動き方向の直交方向成分を含むように駆動方向を決定し、前記撮像面に対して前記駆動方向に前記被写体像を相対移動させる駆動部と、
前記被写体像の相対移動に伴って、前記撮像部を駆動して複数回の光電変換を実施し、複数の画像データ(画素ずらし画像)を取得する撮像制御部と
を備えたことを特徴とすることを特徴とする電子カメラ。
An imaging unit that photoelectrically converts an object image formed through the imaging lens on an imaging surface and generates image data;
A direction detection unit for detecting a movement direction of the subject image;
A driving unit that determines a driving direction so as to include an orthogonal direction component of the moving direction according to the detected moving direction, and relatively moves the subject image in the driving direction with respect to the imaging surface;
An imaging control unit that drives the imaging unit to perform a plurality of photoelectric conversions and acquires a plurality of image data (pixel-shifted images) in association with the relative movement of the subject image. An electronic camera characterized by that.
請求項1に記載の電子カメラにおいて、
前記方向検出部は、前記電子カメラまたは前記撮影レンズの振れを検出するセンサーの出力から前記動き方向を検出する手段である
ことを特徴とする電子カメラ。
The electronic camera according to claim 1,
The said direction detection part is a means to detect the said movement direction from the output of the sensor which detects the shake of the said electronic camera or the said imaging lens. The electronic camera characterized by the above-mentioned.
請求項1に記載の電子カメラにおいて、
前記方向検出部は、前記画像データを動き解析して前記動き方向を検出する手段である
ことを特徴とする電子カメラ。
The electronic camera according to claim 1,
The electronic camera according to claim 1, wherein the direction detection unit is means for analyzing the movement of the image data to detect the movement direction.
請求項1ないし請求項3のいずれか1項に記載の電子カメラにおいて、
複数の画素ずらし画像から得られる解像情報に基づいて、前記撮像部の2次元解像度よりも高解像度の超解像度画像を生成するデータ処理部を備えた
ことを特徴とする電子カメラ。
The electronic camera according to any one of claims 1 to 3,
An electronic camera comprising: a data processing unit that generates a super-resolution image having a resolution higher than the two-dimensional resolution of the imaging unit based on resolution information obtained from a plurality of pixel-shifted images.
請求項1ないし請求項4のいずれか1項に記載の電子カメラにおいて、
前記駆動部は、前記電子カメラまたは前記撮影レンズが搭載する光学的手振れ補正用の機構を制御駆動することにより、前記被写体像を移動させる
ことを特徴とする電子カメラ。
The electronic camera according to any one of claims 1 to 4,
The electronic camera characterized in that the drive unit moves the subject image by controlling and driving an optical camera shake correction mechanism mounted on the electronic camera or the photographing lens.
請求項5に記載の電子カメラにおいて、
前記光学的手振れ補正用の機構は、前記撮像面の露光期間中は手振れ補正によって前記撮像面に前記被写体像をほぼ静止させ、前記露光期間と前記露光期間の間に前記被写体像を前記撮像面に対して前記駆動方向に相対移動させる
ことを特徴とする電子カメラ。
The electronic camera according to claim 5,
The optical camera shake correction mechanism causes the subject image to be substantially stationary on the imaging surface by camera shake correction during an exposure period of the imaging surface, and the subject image is captured between the exposure period and the exposure period. An electronic camera, wherein the electronic camera is moved relative to the driving direction.
撮影レンズを通して形成された被写体像を撮像面で光電変換して、画像データを生成する撮像部を使用する撮像方法であって、
前記被写体像の動き方向を検出するステップと、
検出された前記動き方向に応じて、前記動き方向の直交方向成分を含むように駆動方向を決定し、前記撮像面に対して前記駆動方向に前記被写体像を相対移動させるステップと、
前記被写体像の相対移動に伴って、前記撮像部を駆動して複数回の光電変換を実施し、複数の画像データ(画素ずらし画像)を取得するステップと
を備えたことを特徴とすることを特徴とする撮像方法。
An imaging method using an imaging unit that photoelectrically converts an object image formed through a photographic lens on an imaging surface to generate image data,
Detecting a movement direction of the subject image;
Determining a driving direction according to the detected moving direction so as to include an orthogonal direction component of the moving direction, and relatively moving the subject image in the driving direction with respect to the imaging surface;
A step of driving the imaging unit to perform a plurality of photoelectric conversions in accordance with relative movement of the subject image, and acquiring a plurality of image data (pixel shifted images). A characteristic imaging method.
JP2005168031A 2005-06-08 2005-06-08 Electronic camera having pixel shifted image generation function and imaging method Expired - Fee Related JP4529804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005168031A JP4529804B2 (en) 2005-06-08 2005-06-08 Electronic camera having pixel shifted image generation function and imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005168031A JP4529804B2 (en) 2005-06-08 2005-06-08 Electronic camera having pixel shifted image generation function and imaging method

Publications (2)

Publication Number Publication Date
JP2006345147A true JP2006345147A (en) 2006-12-21
JP4529804B2 JP4529804B2 (en) 2010-08-25

Family

ID=37641780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168031A Expired - Fee Related JP4529804B2 (en) 2005-06-08 2005-06-08 Electronic camera having pixel shifted image generation function and imaging method

Country Status (1)

Country Link
JP (1) JP4529804B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171599A (en) * 2009-03-17 2009-07-30 Sharp Corp Imaging controller, imaging processor, control method of imaging controller, imaging controller controlling program, and computer readable recording medium recording program thereof
JP2010073035A (en) * 2008-09-19 2010-04-02 Sharp Corp Image generation apparatus, image generation method, image generation program, and computer readable recording medium recording the program
JP2011146873A (en) * 2010-01-13 2011-07-28 Sharp Corp Captured image processing system, method for controlling captured image processing system, program, and recording medium
JP2014092755A (en) * 2012-11-06 2014-05-19 Canon Inc Image shake correcting device, optical equipment comprising the same, imaging device, and control method of image shake correcting device
JP5893712B1 (en) * 2014-11-04 2016-03-23 オリンパス株式会社 Imaging apparatus, imaging method, and processing program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172568A (en) * 1994-12-20 1996-07-02 Sharp Corp Image pickup device
JPH10191136A (en) * 1996-12-27 1998-07-21 Canon Inc Image pickup device and image synthesizer
JP2001223932A (en) * 2000-02-14 2001-08-17 Ricoh Co Ltd Image pickup device and digital camera

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172568A (en) * 1994-12-20 1996-07-02 Sharp Corp Image pickup device
JPH10191136A (en) * 1996-12-27 1998-07-21 Canon Inc Image pickup device and image synthesizer
JP2001223932A (en) * 2000-02-14 2001-08-17 Ricoh Co Ltd Image pickup device and digital camera

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073035A (en) * 2008-09-19 2010-04-02 Sharp Corp Image generation apparatus, image generation method, image generation program, and computer readable recording medium recording the program
JP2009171599A (en) * 2009-03-17 2009-07-30 Sharp Corp Imaging controller, imaging processor, control method of imaging controller, imaging controller controlling program, and computer readable recording medium recording program thereof
JP2011146873A (en) * 2010-01-13 2011-07-28 Sharp Corp Captured image processing system, method for controlling captured image processing system, program, and recording medium
JP2014092755A (en) * 2012-11-06 2014-05-19 Canon Inc Image shake correcting device, optical equipment comprising the same, imaging device, and control method of image shake correcting device
JP5893712B1 (en) * 2014-11-04 2016-03-23 オリンパス株式会社 Imaging apparatus, imaging method, and processing program
WO2016072102A1 (en) * 2014-11-04 2016-05-12 オリンパス株式会社 Imaging device, imaging method and processing program
US10187594B2 (en) 2014-11-04 2019-01-22 Olympus Corporation Image pickup apparatus, image pickup method, and non-transitory computer-readable medium storing computer program

Also Published As

Publication number Publication date
JP4529804B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US8004570B2 (en) Image processing apparatus, image-pickup apparatus, and image processing method
US7593037B2 (en) Imaging device and method for capturing image
JP5126261B2 (en) camera
JP2005311789A (en) Digital camera
US8379096B2 (en) Information processing apparatus and method for synthesizing corrected image data
JP5548552B2 (en) Imaging device
JP5931619B2 (en) Imaging device
JP2008271240A (en) Imaging apparatus, image processing apparatus, imaging method, and image processing method
JP4022595B2 (en) Imaging device
JP2009284394A (en) Imaging apparatus and imaging method
JP2008092297A (en) Image processor, image processing program, image manufacturing method, and recording medium
JP2016058876A (en) Imaging apparatus, control method thereof, and imaging system
JP4529804B2 (en) Electronic camera having pixel shifted image generation function and imaging method
JP2009003334A (en) Image pick-up device, and imaging control method
JP5212046B2 (en) Digital camera, image processing apparatus, and image processing program
JP2006067452A (en) Video recording apparatus, and electronic camera
JP6752685B2 (en) Imaging equipment, imaging methods and programs
JP2013046296A (en) Compound-eye image pickup device
JP5105844B2 (en) Imaging apparatus and method
JP2006080844A (en) Electronic camera
JP2007214620A (en) Image processing apparatus, image processing method, and program
JP4064001B2 (en) camera
JP5195663B2 (en) Imaging apparatus, focusing method, and program
JP4888829B2 (en) Movie processing device, movie shooting device, and movie shooting program
JP4985716B2 (en) Imaging apparatus, method for setting focus evaluation area, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Ref document number: 4529804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees