JP2006343487A - Electrophotographic photoreceptor and electrophotographic apparatus - Google Patents

Electrophotographic photoreceptor and electrophotographic apparatus Download PDF

Info

Publication number
JP2006343487A
JP2006343487A JP2005168259A JP2005168259A JP2006343487A JP 2006343487 A JP2006343487 A JP 2006343487A JP 2005168259 A JP2005168259 A JP 2005168259A JP 2005168259 A JP2005168259 A JP 2005168259A JP 2006343487 A JP2006343487 A JP 2006343487A
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
group
charging
surface potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005168259A
Other languages
Japanese (ja)
Inventor
Yoshihisa Saito
善久 斉藤
Hidenori Ogawa
英紀 小川
Mayumi Oshiro
真弓 大城
Kumiko Takizawa
久美子 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005168259A priority Critical patent/JP2006343487A/en
Publication of JP2006343487A publication Critical patent/JP2006343487A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor without causing density variation each time repeating a small number of copies. <P>SOLUTION: The electrophotographic photoreceptor is used in an electrophotographic apparatus which includes a charging means charging the electrophotographic photoreceptor by bringing a charging member into contact with it and which has a process speed equal to or more than 220 mm/second. In the electrophotographic photoreceptor including a conductive support, a charge generation layer containing a charge generation material provided on the conductive support, and a hole transport layer containing a hole transport material provided on the charge generation layer, an intermediate layer or the charge generation layer contains a proper electron conveying compound. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複写機、レーザービームプリンタ等に使用される電子写真感光体、及び電子写真装置に関する。   The present invention relates to an electrophotographic photosensitive member and an electrophotographic apparatus used for a copying machine, a laser beam printer, and the like.

従来、電子写真感光体には、セレン、硫化カドミウム、酸化亜鉛等の無機光導電物質が広く用いられていた。一方、有機光導電物質を用いた電子写真感光体としてはポリ−N−ビニルカルバゾールに代表される光導電性ポリマーや2,5−ビス(p−ジエチルアミノフェニル)−1,3,4−オキサジアゾールのような低分子の有機光導電性物質を用いたもの、更には、かかる有機光導電性物質と各種染料や顔料を組み合わせたもの等が知られている。   Conventionally, inorganic photoconductive materials such as selenium, cadmium sulfide, and zinc oxide have been widely used for electrophotographic photoreceptors. On the other hand, as an electrophotographic photosensitive member using an organic photoconductive substance, a photoconductive polymer represented by poly-N-vinylcarbazole and 2,5-bis (p-diethylaminophenyl) -1,3,4-oxadi Those using a low molecular organic photoconductive substance such as azole, and those obtained by combining such organic photoconductive substance with various dyes and pigments are known.

有機導電性物質を用いた電子写真感光体は成膜性が良く、塗工によって生産できるため、極めて生産性が高く、安価な電子写真感光体を提供できる利点を有している。また、使用する染料や顔料等の選択により、感光波長域を自在にコントロールすることができる等の利点を有し、これまで幅広い検討がなされてきた。特に最近では、有機導電性染料や顔料を含有した電荷発生層と、光導電性ポリマーや低分子の有機光導電性物質を含有した電荷輸送層を積層した機能分離型感光体の開発により、従来の有機電子写真感光体の欠点とされていた感度や、耐久性に著しい改善がなされてきており、これが有機電子写真感光体の主流となってきている。   An electrophotographic photosensitive member using an organic conductive material has good film formability and can be produced by coating, and therefore has an advantage of providing an electrophotographic photosensitive member that is extremely high in productivity and inexpensive. Moreover, it has an advantage that the photosensitive wavelength range can be freely controlled by selecting a dye or a pigment to be used, and has been extensively studied so far. In particular, the development of a functionally-separated type photoreceptor in which a charge generation layer containing an organic conductive dye or pigment and a charge transport layer containing a photoconductive polymer or a low-molecular organic photoconductive material are laminated has been developed recently. The sensitivity and durability that have been regarded as disadvantages of the organic electrophotographic photoreceptors have been remarkably improved, and this has become the mainstream of organic electrophotographic photoreceptors.

一方、昨今の複写機やレーザービームプリンタは高速化、低コスト化のために、プロセススピードのアップ、細かなプロセス条件の制御レス(各種センサーや制御用回路の省力)がなされている。また、POD市場に代表される高画質や画質安定性向上も要求されている。これらの電子写真装置に従来の感光体を使用した場合、明部電位の変動が大きいといった問題があった。明部電位が安定していないと、画像濃度が安定せず、感光体が初期のころの画像と、末期のころの画像では濃度が変わってしまうといった欠点があった。   On the other hand, in recent copying machines and laser beam printers, in order to increase the speed and cost, the process speed has been increased and fine process conditions have not been controlled (saving of various sensors and control circuits). In addition, improvement in image quality and image stability represented by the POD market is also required. When conventional photoconductors are used in these electrophotographic apparatuses, there is a problem that the fluctuation of the bright portion potential is large. If the bright part potential is not stable, the image density is not stable, and there is a drawback that the density changes between the image at the initial stage of the photoconductor and the image at the end stage.

これら耐久における明部電位の変動を抑制する方法としていろいろな提案がされている。(例えば、特許文献1参照。)
特開2004−93809号公報(第2頁)
Various proposals have been made as a method for suppressing the fluctuation of the bright portion potential during the durability. (For example, refer to Patent Document 1.)
JP 2004-93809 (2nd page)

しかし、これらの改善された感光体を用いても、高速プロセスかつ低温低湿環境という苛酷な環境下においては初期数十枚の明部電位変動が著しく、初期数十枚で数十ボルトも変動するといった現象が発生し、その結果、初期数十枚のコピー画像において著しい濃度変化が発生するといった問題があった。これは耐久による変動と異なり、画像形成後短い時間で略回復するために、小部数のコピーを繰り返すごとに濃度変化を起こすといった重大な欠点となる。   However, even if these improved photoreceptors are used, in the severe environment such as a high-speed process and a low temperature and low humidity environment, the initial portion of the bright part potential fluctuation is remarkable, and the initial number of tens of sheets varies by several tens of volts. As a result, there has been a problem that a significant density change occurs in the initial dozens of copy images. Unlike fluctuations due to endurance, this is a serious drawback in that the density is changed each time a small number of copies are repeated, since it is almost recovered in a short time after image formation.

本発明は、
電子写真感光体に帯電部材を接触させて帯電させる帯電手段を有し、プロセススピードが220mm/sec以上の電子写真装置に用いられる電子写真感光体であって、導電性支持体、該導電性支持体上に設けられた電荷発生物質を含有する電荷発生層、および、該電荷発生層上に設けられた正孔輸送物質を含有する正孔輸送層を有する電子写真感光体において、
所定の帯電条件C1に設定された帯電手段により該電子写真感光体の表面を帯電しながら該電子写真感光体を5回転させることによって該電子写真感光体の表面電位を−600[V]にし、次いで、表面電位が−600[V]になった該電子写真感光体の表面に所定の光量E1の光を照射することによって該電子写真感光体の表面電位を−150[V]にし、表面電位が−150[V]になった該電子写真感光体の表面を該帯電条件C1に設定された帯電手段により帯電した後の該電子写真感光体の表面電位をVA[V]とし、
所定の帯電条件C2に設定された帯電手段により該電子写真感光体の表面を帯電しながら該電子写真感光体を5回転させることによって該電子写真感光体の表面電位を−150[V]にし、次いで、表面電位が−150[V]になった該電子写真感光体の表面を該帯電条件C1と同条件に設定された帯電手段により帯電した後の該電子写真感光体の表面電位をVB[V]とし、
該正孔輸送層の膜厚をd[μm]としたとき、上記VA、VBおよびdが下記式(I)
The present invention
An electrophotographic photosensitive member for use in an electrophotographic apparatus having a charging means for bringing a charging member into contact with the electrophotographic photosensitive member for charging and having a process speed of 220 mm / sec or more, comprising the conductive support and the conductive support In an electrophotographic photosensitive member having a charge generation layer containing a charge generation material provided on the body, and a hole transport layer containing a hole transport material provided on the charge generation layer,
The surface potential of the electrophotographic photosensitive member is set to −600 [V] by rotating the electrophotographic photosensitive member 5 times while charging the surface of the electrophotographic photosensitive member by the charging means set to the predetermined charging condition C1, Next, the surface potential of the electrophotographic photosensitive member is set to −150 [V] by irradiating the surface of the electrophotographic photosensitive member having a surface potential of −600 [V] with a predetermined amount of light E1. The surface potential of the electrophotographic photosensitive member after charging the surface of the electrophotographic photosensitive member having a value of −150 [V] by the charging means set in the charging condition C1 is VA [V],
The surface potential of the electrophotographic photosensitive member is set to −150 [V] by rotating the electrophotographic photosensitive member 5 times while charging the surface of the electrophotographic photosensitive member by a charging unit set to a predetermined charging condition C2. Next, the surface potential of the electrophotographic photosensitive member after the surface potential of the electrophotographic photosensitive member having a surface potential of −150 [V] is charged by the charging unit set under the same condition as the charging condition C1 is expressed as VB [ V],
When the film thickness of the hole transport layer is d [μm], the VA, VB and d are represented by the following formula (I)

Figure 2006343487
を満足することを特徴とする電子写真感光体である。
Figure 2006343487
Is an electrophotographic photosensitive member characterized by satisfying the above.

また、本発明は、上記電子写真感光体を有するプロセスカートリッジおよび電子写真装置である。   The present invention also provides a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.

本発明の電子写真感光体は、高速プロセスかつ低温低湿環境という苛酷な環境下においてもキャリアトラップの影響が小さく、初期数十枚の明部電位変動を抑制し、初期数十枚のコピー画像において発生する著しい濃度変化を抑制し、優れた画像を継続して形成し得る。   The electrophotographic photosensitive member of the present invention is less affected by carrier traps even under harsh environments such as high-speed processes and low-temperature, low-humidity environments, and suppresses initial tens of light-area potential fluctuations. The remarkable density change which generate | occur | produces can be suppressed and the outstanding image can be formed continuously.

また、該電子写真感光体の効果は、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置においても当然に発揮される。   The effect of the electrophotographic photosensitive member is naturally exhibited also in a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の電子写真感光体の構成について説明する。   The structure of the electrophotographic photosensitive member of the present invention will be described.

本発明に用いられる導電性支持体としてはアルミニウム、ニッケル、銅、金、鉄等の金属または合金、ポリエステル、ポリカーボネート、ポリイミド、ガラス等の絶縁性支持体上にアルミニウム、銀、金等の金属あるいは酸化インジウム、酸化スズ等の導電材料の薄膜を形成したもの、カーボンや導電性フィラーを樹脂中に分散し導電性を付与したもの等が例示できる。これらの支持体表面は電気的特性改善あるいは密着性改善のために、陽極酸化等の電気化学的な処理を行った支持体や、導電性支持体表面をアルカリリン酸塩あるいはリン酸やタンニン酸を主成分とする酸性水溶液に金属塩の化合物またはフッ素化合物の金属塩を溶解してなる溶液で化学処理を施したものを用いることもできる。   As the conductive support used in the present invention, a metal or alloy such as aluminum, nickel, copper, gold, iron, etc., a metal such as aluminum, silver, gold or the like on an insulating support such as polyester, polycarbonate, polyimide, glass or the like Examples thereof include those in which a thin film of a conductive material such as indium oxide and tin oxide is formed, carbon and conductive fillers dispersed in a resin, and conductivity is imparted. These support surfaces were subjected to electrochemical treatment such as anodization to improve electrical characteristics or adhesion, and conductive support surfaces were treated with alkali phosphate, phosphoric acid or tannic acid. It is also possible to use a solution obtained by chemical treatment with a solution obtained by dissolving a metal salt compound or a fluorine compound metal salt in an acidic aqueous solution containing as a main component.

また、単一波長のレーザー光などを用いたプリンターに本感光体を用いる場合には、干渉縞を抑制するために導電性支持体はその表面を適度に荒らしておくことが必要である。具体的には上記支持体表面をホーニング、ブラスト、切削、電界研磨等の処理をした支持体もしくはアルミニウム及びアルミニウム合金上に導電性金属酸化物及び結着樹脂からなる導電性皮膜を有する支持体を用いることが必要である。   Further, when the present photoreceptor is used in a printer using a single wavelength laser beam or the like, the surface of the conductive support needs to be appropriately roughened in order to suppress interference fringes. Specifically, a support having the surface of the support subjected to honing, blasting, cutting, electropolishing, or the like, or a support having a conductive film made of a conductive metal oxide and a binder resin on aluminum and an aluminum alloy is provided. It is necessary to use it.

ホーニング処理としては、乾式及び湿式での処理方法があるがいずれを用いてもよい。湿式ホーニング処理は、水等の液体に粉末状の研磨剤を懸濁させ、高速度で基体表面に吹き付けて粗面化する方法であり、表面粗さは吹き付け圧力、速度、研磨剤の量、種類、形状、大きさ、硬度、比重及び懸濁温度等により制御することができる。同様に、乾式ホーニング処理は、研磨剤をエアーにより、高速度で導電性基体表面に吹き付けて粗面化する方法であり、湿式ホーニング処理と同じように表面粗さを制御することができる。これら湿式または乾式ホーニング処理に用いる研磨剤としては、炭化ケイ素、アルミナ、鉄、ガラスビーズ等の粒子が挙げられる。   As the honing treatment, there are dry and wet treatment methods, and any of them may be used. The wet honing treatment is a method of suspending a powdery abrasive in a liquid such as water and spraying the surface of the substrate at a high speed to roughen the surface. The surface roughness is the spray pressure, speed, amount of abrasive, It can be controlled by the type, shape, size, hardness, specific gravity, suspension temperature and the like. Similarly, the dry honing process is a method in which an abrasive is sprayed onto the surface of a conductive substrate with air at a high speed to roughen the surface, and the surface roughness can be controlled in the same manner as the wet honing process. Examples of the abrasive used for the wet or dry honing treatment include particles of silicon carbide, alumina, iron, glass beads, and the like.

導電性金属酸化物及び結着樹脂からなる導電性皮膜をアルミニウムやアルミニウム合金の支持体に塗布し導電性支持体とする方法では、導電性皮膜中にはフィラーとして、導電性微粒子からなる粉体を含有する。この方法では微粒子を皮膜中に分散させることでレーザー光を乱反射させ干渉縞を防ぐと共に塗布前の支持体の傷や突起などを隠蔽する効果もある。微粒子には酸化チタン、硫酸バリウムなどが用いられ、必要によってはこの微粒子に酸化錫などで導電性被覆層を設けることにより、フィラーとして適切な比抵抗としている。導電性微粒子粉体の比抵抗は0.1〜1000Ωcm、更には1〜1000Ωcmが好ましい。本発明において、粉体比抵抗は三菱油化製の抵抗測定装置ロレスタAP(LorestA Ap)を用いて測定した。測定対象の粉体は、49MPaの圧力で固めてコイン状のサンプルとして上記測定装置に装着した。微粒子の平均粒径は0.05〜1.0μm、更には0.07〜0.7μmが好ましい。本発明において、微粒子の平均粒径は遠心沈降法により測定した値である。フィラーの含有量は、導電性皮膜層に対して1.0〜90質量%、更には5.0〜80質量%が好ましい。被覆層には、必要に応じてフッ素あるいはアンチモンを含有してもよい。   In a method in which a conductive film made of a conductive metal oxide and a binder resin is applied to a support of aluminum or aluminum alloy to form a conductive support, a powder made of conductive fine particles is used as a filler in the conductive film. Containing. In this method, fine particles are dispersed in the film, so that the laser beam is diffusely reflected to prevent interference fringes and to conceal the scratches and protrusions of the support before coating. Titanium oxide, barium sulfate, or the like is used for the fine particles, and if necessary, a conductive coating layer is provided on the fine particles with tin oxide or the like to obtain a specific resistance suitable as a filler. The specific resistance of the conductive fine particle powder is preferably 0.1 to 1000 Ωcm, more preferably 1 to 1000 Ωcm. In the present invention, the powder specific resistance was measured using a resistance measuring apparatus Loresta AP (Lorest A Ap) manufactured by Mitsubishi Oil Corporation. The powder to be measured was hardened at a pressure of 49 MPa and attached to the measuring device as a coin-shaped sample. The average particle size of the fine particles is preferably 0.05 to 1.0 μm, more preferably 0.07 to 0.7 μm. In the present invention, the average particle diameter of the fine particles is a value measured by a centrifugal sedimentation method. The filler content is preferably from 1.0 to 90 mass%, more preferably from 5.0 to 80 mass%, based on the conductive film layer. The coating layer may contain fluorine or antimony as necessary.

本発明の導電性皮膜に用いられる結着樹脂としては、例えばフェノール樹脂、ポリウレタン、ポリアミド、ポリイミド、ポリアミドイミド、ポリアミド酸、ポリビニールアセタール、エポキシ樹脂、アクリル樹脂、メラミン樹脂あるいはポリエステルなどが好ましい。これらの樹脂は単独でも、二種以上を組み合わせて用いてもよい。これらの樹脂は、支持体に対する接着性が良好であると共に、本発明で使用するフィラーの分散性を向上させ、かつ成膜後の耐溶剤性が良好である。上記樹脂の中でも特にフェノール樹脂、ポリウレタン及びポリアミド酸が好ましい。   As the binder resin used for the conductive film of the present invention, for example, phenol resin, polyurethane, polyamide, polyimide, polyamideimide, polyamic acid, polyvinyl acetal, epoxy resin, acrylic resin, melamine resin or polyester is preferable. These resins may be used alone or in combination of two or more. These resins have good adhesion to the support, improve dispersibility of the filler used in the present invention, and have good solvent resistance after film formation. Among the above resins, phenol resin, polyurethane and polyamic acid are particularly preferable.

導電性皮膜は、例えば浸漬コーティング法あるいはマイヤーバー等による溶剤塗布で形成することができる。導電性皮膜の厚みは0.1〜30μm、更には0.5〜20μmが好ましい。また、導電性皮膜の体積抵抗率は1013Ωcm以下、更には1012Ωcm以下10Ωcm以上が好ましい。本発明において、体積抵抗率はアルミニウム板上に測定対象の導電性皮膜を塗布し、更にこの皮膜上に金の薄膜を形成して、アルミニウム板と金薄膜の両電極間を流れる電流値をpAメーターで測定して求めた。導電性皮膜には、被覆層を有する硫酸バリウム微粒子からなる粉体以外に、酸化亜鉛や酸化チタン等の粉体からなるフィラーを含有してもよい。更に、表面性を高めるためにレベリング剤を添加してもよい。 The conductive film can be formed, for example, by dip coating or solvent application using a Meyer bar or the like. The thickness of the conductive film is preferably 0.1 to 30 μm, more preferably 0.5 to 20 μm. The volume resistivity of the conductive film is preferably 10 13 Ωcm or less, more preferably 10 12 Ωcm or less and 10 5 Ωcm or more. In the present invention, the volume resistivity is obtained by applying a conductive film to be measured on an aluminum plate, further forming a gold thin film on the film, and calculating the current value flowing between both electrodes of the aluminum plate and the gold thin film as pA. It was determined by measuring with a meter. The conductive film may contain a filler made of powder such as zinc oxide or titanium oxide in addition to the powder made of barium sulfate fine particles having a coating layer. Furthermore, a leveling agent may be added to enhance the surface property.

導電性支持体の形状は特に制約はなく必要に応じて板状、ドラム状、ベルト状のものが用いられる。   The shape of the conductive support is not particularly limited, and a plate shape, a drum shape, or a belt shape is used as necessary.

本発明に用いられる電荷発生物質としては、(1)モノアゾ、ジスアゾ、トリスアゾ等のアゾ系顔料、(2)金属フタロシアニン、非金属フタロシアニン等のフタロシアニン系顔料、(3)インジゴ、チオインジゴ等のインジゴ系顔料、(4)ペリレン酸無水物、ペリレン酸イミド等のペリレン系顔料、(5)アンスラキノン、ピレンキノン等の多環キノン系顔料、(6)スクワリリウム色素、(7)ピリリウム塩、チアピリリウム塩類、(8)トリフェニルメタン系色素、(9)セレン、セレンーテルル、アモルファスシリコン等の無機物質、(10)キナクリドン顔料、(11)アズレニウム塩顔料、(12)シアニン染料、(13)キサンテン色素、(14)キノンイミン色素、(15)スチリル色素、(16)硫化カドミウム及び(17)酸化亜鉛等が挙げられる。特に、金属フタロシアニン顔料が好ましく、その中でも、オキシチタニウムフタロシアニン結晶、クロロガリウムフタロシアニン結晶、ジクロロスズフタロシアニン結晶、ヒドロキシガリウムフタロシアニン顔料が好ましく、更に、ヒドロキシガリウムフタロシアニン顔料が特に好ましい。オキシチタニウムフタロシアニン顔料としては、CuKαを線源とするX線回折において、ブラッグ角度(2θ±0.2°)の9.0°、14.2°、23.9°及び27.1°に強いピークを有するオキシチタニウムフタロシアニン顔料、ブラッグ角度(2θ±0.2°)の9.5°、9.7°、11.7°、15.0°、23.5°、24.1°及び27.3°に強いピークを有するオキシチタニウムフタロシアニン顔料が好ましい。クロロガリウムフタロシアニン結晶としては、CuKαを線源とするX線回折において、ブラッグ角度(2θ±0.2°)の7.4°、16.6°、25.5及び28.2°に強い回折ピークを有するクロロガリウムフタロシアニン結晶、ブラッグ角度(2θ±0.2°)の6.8°、17.3°、23.6°及び26.9°に強い回折ピークを有するクロロガリウムフタロシアニン結晶、及びブラッグ角度(2θ±0.2°)の8.7〜9.2°、17.6°、24.0°、27.4°及び28.8°に強い回折ピークを有するクロロガリウムフタロシアニン結晶が好ましい。ジクロロスズフタロシアニン結晶としては、CuKαを線源とするX線回折において、ブラッグ角度(2θ±0.2°)の8.3°、12.2°、13.7°、15.9°、18.9°及び28.2°に強い回折ピークを有するジクロロスズフタロシアニン結晶、ブラッグ角度(2θ±0.2°)の8.5、11.2°、14.5°及び27.2°に強い回折ピークを有するジクロロスズフタロシアニン結晶、ブラッグ角度(2θ±0.2°)の8.7°、9.9°、10.9°、13.1°、15.2°、16.3°、17.4°、21.9°及び25.5°に強い回折ピークを有するジクロロスズフタロシアニン結晶、及びブラッグ角度(2θ±0.2°)の9.2°、12.2°、13.4°、14.6°、17.0°及び25.3°に強い回折ピークを有するジクロロスズフタロシアニン結晶が好ましい。ヒドロキシガリウムフタロシアニン結晶としては、CuKαを線源とするX線回折において、ブラッグ角度(2θ±0.2°)の7.3°、24.9°及び28.1°に強い回折ピークを有するヒドロキシガリウムフタロシアニン結晶、ブラッグ角度(2θ±0.2°)の7.5°、9.9°、12.5°、16.3°、18.6°、25.1°及び28.3°に強い回折ピークを有するヒドロキシガリウムフタロシアニン結晶が好ましい。   Examples of the charge generating material used in the present invention include (1) azo pigments such as monoazo, disazo and trisazo, (2) phthalocyanine pigments such as metal phthalocyanine and nonmetal phthalocyanine, and (3) indigo materials such as indigo and thioindigo. Pigments, (4) perylene pigments such as perylene acid anhydride and perylene imide, (5) polycyclic quinone pigments such as anthraquinone and pyrenequinone, (6) squarylium dyes, (7) pyrylium salts, thiapyrylium salts, ( 8) Triphenylmethane dyes, (9) inorganic materials such as selenium, selenium tellurium, amorphous silicon, (10) quinacridone pigments, (11) azulenium salt pigments, (12) cyanine dyes, (13) xanthene dyes, (14) Quinoneimine dyes, (15) styryl dyes, (16) cadmium sulfide and ( 7) zinc oxide. In particular, metal phthalocyanine pigments are preferred, and among them, oxytitanium phthalocyanine crystals, chlorogallium phthalocyanine crystals, dichlorotin phthalocyanine crystals, and hydroxygallium phthalocyanine pigments are preferred, and hydroxygallium phthalocyanine pigments are particularly preferred. As an oxytitanium phthalocyanine pigment, it is strong in Bragg angles (2θ ± 0.2 °) of 9.0 °, 14.2 °, 23.9 ° and 27.1 ° in X-ray diffraction using CuKα as a radiation source. Oxytitanium phthalocyanine pigments with peaks, Bragg angles (2θ ± 0.2 °) of 9.5 °, 9.7 °, 11.7 °, 15.0 °, 23.5 °, 24.1 ° and 27 An oxytitanium phthalocyanine pigment having a strong peak at 3 ° is preferred. As a chlorogallium phthalocyanine crystal, in X-ray diffraction using CuKα as a radiation source, strong diffraction at Bragg angles (2θ ± 0.2 °) of 7.4 °, 16.6 °, 25.5 and 28.2 ° Chlorogallium phthalocyanine crystals having peaks, chlorogallium phthalocyanine crystals having strong diffraction peaks at Bragg angles (2θ ± 0.2 °) of 6.8 °, 17.3 °, 23.6 ° and 26.9 °, and Chlorogallium phthalocyanine crystals having strong diffraction peaks at Bragg angles (2θ ± 0.2 °) of 8.7 to 9.2 °, 17.6 °, 24.0 °, 27.4 ° and 28.8 ° preferable. As the dichlorotin phthalocyanine crystal, in X-ray diffraction using CuKα as a radiation source, Bragg angles (2θ ± 0.2 °) of 8.3 °, 12.2 °, 13.7 °, 15.9 °, 18 Dichlorotin phthalocyanine crystals with strong diffraction peaks at .9 ° and 28.2 °, strong at Bragg angles (2θ ± 0.2 °) of 8.5, 11.2 °, 14.5 ° and 27.2 ° Dichlorotin phthalocyanine crystal having a diffraction peak, Bragg angle (2θ ± 0.2 °) of 8.7 °, 9.9 °, 10.9 °, 13.1 °, 15.2 °, 16.3 °, Dichlorotin phthalocyanine crystals with strong diffraction peaks at 17.4 °, 21.9 ° and 25.5 °, and 9.2 °, 12.2 °, 13.4 with Bragg angles (2θ ± 0.2 °) Strong diffraction peaks at °, 14.6 °, 17.0 ° and 25.3 ° Chloro phthalocyanine crystal is preferable. As the hydroxygallium phthalocyanine crystal, in X-ray diffraction using CuKα as a radiation source, hydroxy having strong diffraction peaks at Bragg angles (2θ ± 0.2 °) of 7.3 °, 24.9 °, and 28.1 °. Gallium phthalocyanine crystals, Bragg angles (2θ ± 0.2 °) of 7.5 °, 9.9 °, 12.5 °, 16.3 °, 18.6 °, 25.1 ° and 28.3 ° A hydroxygallium phthalocyanine crystal having a strong diffraction peak is preferred.

電荷発生層に添加する電子搬送性化合物としては、トリニトロフルオレノン等のフルオレノン系化合物、ピロメリットイミド、ナフチルイミド等のイミド系化合物、ベンゾキノン、ジフェノキノン、ジイミノキノン、ナフトキノン、スチルベンキノン、アントラキノン等のキノン系化合物、フルオレニリデンアニリン、フルオレニリデンマロノニトリル等のフルオレニリデン系化合物、フタル酸無水物等のカルボン酸無水物系化合物、チオピランジオキシド等の環状スルホン系化合物、オキサジアゾール系化合物、トリアゾール系化合物、及びそれらの誘導体などが挙げられるが、これらに限定されるものではない。   Examples of the electron transporting compound added to the charge generation layer include fluorenone compounds such as trinitrofluorenone, imide compounds such as pyromellitic imide and naphthylimide, quinones such as benzoquinone, diphenoquinone, diiminoquinone, naphthoquinone, stilbenequinone, and anthraquinone. Compounds, fluorenylidene compounds such as fluorenylidene aniline, fluorenylidene malononitrile, carboxylic acid anhydride compounds such as phthalic anhydride, cyclic sulfone compounds such as thiopyran dioxide, oxadiazole compounds, triazoles Compounds, derivatives thereof, and the like can be mentioned, but are not limited thereto.

特に下記一般式(1)で表されるナフタレンカルボン酸ジイミド化合物、または下記一般式(2)で表されるフェナントレン化合物、または下記一般式(3)で表されるフェナントロリン化合物、または下記一般式(4)で表されるアセナフトキノン化合物が好ましい。   In particular, a naphthalenecarboxylic acid diimide compound represented by the following general formula (1), a phenanthrene compound represented by the following general formula (2), a phenanthroline compound represented by the following general formula (3), or the following general formula ( The acenaphthoquinone compound represented by 4) is preferred.

Figure 2006343487
(式中、XまたはXはそれぞれ独立に水素原子、ハロゲン基、ニトロ基、置換基を有してもよいアルコキシ基または置換基を有してもよいアルキル基を示し、R及びRはそれぞれ独立にはエーテル基で中断されていてもよいアルキル基、エーテル基で中断されていてもよいアルケニル基、複素環基、アルキル基乃至アルケニル基乃至ニトロ基乃至ハロゲン基乃至ハロゲン置換アルキル基を有してもよいアリール基またはアルキル基乃至アルケニル基乃至ニトロ基乃至ハロゲン基乃至ハロゲン置換アルキル基を有してもよいアラルキル基を示す。)
Figure 2006343487
(In the formula, X 1 and X 2 each independently represent a hydrogen atom, a halogen group, a nitro group, an optionally substituted alkoxy group or an optionally substituted alkyl group, and R 1 and R 2 2 are each independently an alkyl group which may be interrupted by an ether group, an alkenyl group which may be interrupted by an ether group, a heterocyclic group, an alkyl group, an alkenyl group, a nitro group, a halogen group or a halogen-substituted alkyl group. An aryl group which may have an alkyl group, an alkenyl group, a nitro group, a halogen group or a halogen-substituted alkyl group which may have an aralkyl group.

Figure 2006343487
(式中、Z、Zはそれぞれ独立に酸素、C(CN)基、置換基を有しても良いNフェニル基を示し、X、Xはそれぞれ独立に水素原子、ハロゲン基、ニトロ基、置換基を有してもよいアルコキシ基または置換基を有してもよいアルキル基を示す。)
Figure 2006343487
(In the formula, Z 1 and Z 2 each independently represent oxygen, C (CN) 2 group, or N phenyl group which may have a substituent, and X 3 and X 4 each independently represent a hydrogen atom or a halogen group. , A nitro group, an alkoxy group which may have a substituent or an alkyl group which may have a substituent.

Figure 2006343487
(式中、Z、Zはそれぞれ独立に酸素、C(CN)基、置換基を有しても良いNフェニル基を示し、X、Xはそれぞれ独立に水素原子、ハロゲン基、ニトロ基、置換基を有してもよいアルコキシ基または置換基を有してもよいアルキル基を示す。)
Figure 2006343487
(In the formula, Z 3 and Z 4 each independently represent oxygen, C (CN) 2 group, or optionally substituted N phenyl group, and X 5 and X 6 each independently represent a hydrogen atom or a halogen group. , A nitro group, an alkoxy group which may have a substituent or an alkyl group which may have a substituent.

Figure 2006343487
(式中、Z、Z6はそれぞれ独立に酸素、C(CN)基、置換基を有しても良いNフェニル基を示し、X、Xはそれぞれ独立に水素原子、ハロゲン基、ニトロ基、置換基を有してもよいアルコキシ基または置換基を有してもよいアルキル基を示す。)
次に上記一般式(1)〜(4)の化合物例を次の表1〜7に挙げるがこれらに限定されるわけではない。
Figure 2006343487
(In the formula, Z 5 and Z 6 each independently represent oxygen, C (CN) 2 group, or optionally substituted N-phenyl group; X 7 and X 8 each independently represent a hydrogen atom or a halogen group; , A nitro group, an alkoxy group which may have a substituent or an alkyl group which may have a substituent.
Next, although the compound examples of the said General formula (1)-(4) are given to the following Tables 1-7, it is not necessarily limited to these.

Figure 2006343487
一般式(1)の化合物例
Figure 2006343487
Examples of compounds of general formula (1)

Figure 2006343487
一般式(1)の化合物例
Figure 2006343487
Examples of compounds of general formula (1)

Figure 2006343487
一般式(2)の化合物例
Figure 2006343487
Example of compound of general formula (2)

Figure 2006343487
一般式(2)の化合物例
Figure 2006343487
Example of compound of general formula (2)

Figure 2006343487
一般式(3)の化合物例
Figure 2006343487
Example of compound of general formula (3)

Figure 2006343487
一般式(4)の化合物例
Figure 2006343487
Example of compound of general formula (4)

Figure 2006343487
一般式(4)の化合物例
上記一般式(1)で表されるナフタレンカルボン酸ジイミド化合物がよく、溶媒への溶解性の観点から非対称系が更に好ましい。
Figure 2006343487
Compound Example of General Formula (4) The naphthalenecarboxylic acid diimide compound represented by the above general formula (1) is preferable, and an asymmetric system is more preferable from the viewpoint of solubility in a solvent.

電子搬送性化合物、または、電子受容性物質の(飽和カロメロ電極による)還元電位は、0.00〜−0.80Vが好ましく、−0.25〜−0.65Vがより好ましい。電子搬送性化合物、または、電子受容性物質の添加量に関しては、電荷発生材料に対して、10〜60質量%が好ましく、更に21〜40質量%が好ましい。結着樹脂としては、ブチラール樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルメタクリレート樹脂、ポリビニルアクリレート樹脂、ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂、ポリウレタン樹脂、シリコーン樹脂、アルキッド樹脂、エポキシ樹脂、セルロース樹脂、メラミン樹脂など挙げられるが、これらに限定されるものではない。特に、ブチラール樹脂が好ましい。この調合液を下引き層の上に塗布し、乾燥して、電荷発生層が得られる。電荷発生層中の電荷発生材料の分散粒径は、0.5μm以下、更に0.3μm以下が好ましい。0.01〜0.2μmの範囲がより好ましい。電荷発生層の膜厚は、0.01〜2μmが好ましく、更に0.05〜0.3μmがより好ましい。   The reduction potential of the electron-transporting compound or electron-accepting substance (with a saturated calomel electrode) is preferably 0.00 to −0.80 V, more preferably −0.25 to −0.65 V. The amount of the electron transporting compound or the electron accepting substance added is preferably 10 to 60% by mass, and more preferably 21 to 40% by mass with respect to the charge generation material. As binder resins, butyral resin, polyester resin, polycarbonate resin, polyarylate resin, polystyrene resin, polyvinyl methacrylate resin, polyvinyl acrylate resin, polyvinyl acetate resin, polyvinyl chloride resin, polyamide resin, polyurethane resin, silicone resin, alkyd Examples include, but are not limited to, resins, epoxy resins, cellulose resins, and melamine resins. In particular, a butyral resin is preferred. This mixed solution is applied onto the undercoat layer and dried to obtain a charge generation layer. The dispersed particle diameter of the charge generation material in the charge generation layer is preferably 0.5 μm or less, more preferably 0.3 μm or less. A range of 0.01 to 0.2 μm is more preferable. The thickness of the charge generation layer is preferably from 0.01 to 2 μm, more preferably from 0.05 to 0.3 μm.

電荷輸送層は適当な電荷輸送物質、例えばポリ−N−ビニルカルバゾール、ポリスチリルアントラセンなどの複素環や縮合多環芳香族を有する高分子化合物や、ピラゾリン、イミダゾール、オキサゾール、トリアゾール、カルバゾールなどの複素環化合物、トリフェニルメタンなどのトリアリールアルカン誘導体、トリフェニルアミンなどのトリアリールアミン誘導体、フェニレンジアミン誘導体、N−フェニルカルバゾール誘導体、スチルベン誘導体、ヒドラゾン誘導体などの低分子化合物などを適当な結着樹脂(前述の電荷発生層用樹脂の中から選択できる)と共に溶剤に分散/溶解した溶液を前述の公知の方法によって塗布し、乾燥して形成することができる。この場合の電荷輸送物質と結着樹脂の比率は、両者の全質量を100とした場合に電荷輸送物質の質量が好ましくは20〜100、より好ましくは30〜100の範囲である。電荷輸送物質の量がそれより少ないと、電荷輸送能が低下し、感度低下及び残留電位の上昇などの問題点が生ずる。この場合の電荷輸送層の膜厚は好ましくは5〜50μm、より好ましくは8〜36μmの範囲で調整される。   The charge transport layer is formed of a suitable charge transport material, for example, a heterocyclic compound such as poly-N-vinylcarbazole or polystyrylanthracene, or a polymer compound having a condensed polycyclic aromatic group, or a complex such as pyrazoline, imidazole, oxazole, triazole or carbazole. Suitable binder resins such as ring compounds, triarylalkane derivatives such as triphenylmethane, triarylamine derivatives such as triphenylamine, phenylenediamine derivatives, N-phenylcarbazole derivatives, stilbene derivatives, hydrazone derivatives, etc. A solution dispersed / dissolved in a solvent (which can be selected from the aforementioned resin for charge generation layer) can be applied by the above-mentioned known method and dried. In this case, the ratio of the charge transport material to the binder resin is such that the mass of the charge transport material is preferably 20 to 100, more preferably 30 to 100 when the total mass of both is 100. If the amount of the charge transport material is smaller than that, the charge transport ability is lowered, and problems such as a decrease in sensitivity and an increase in residual potential occur. In this case, the thickness of the charge transport layer is preferably adjusted in the range of 5 to 50 μm, more preferably 8 to 36 μm.

更に、電荷輸送層上に表面保護層を形成してもよい。   Furthermore, a surface protective layer may be formed on the charge transport layer.

表面保護層は樹脂単体でもよいし、残留電位を低下する目的で前述したような電荷輸送物質や、導電性粉体などの導電性物質を添加してもよい。導電性粉体としては、アルミニウム、銅、ニッケル、銀等の金属粉体、燐片状金属粉体及び金属短繊維、酸化アンチモン、酸化インジウム、酸化スズ等の導電性金属酸化物、ポリピロール、ポリアニリン、高分子電解質等の高分子導電剤、カーボンブラック、カーボンファイバー、グラファイト粉体、有機及び無機の電解質、またはこれらの導電性物質で表面を被覆した導電性粉体などが挙げられる。   The surface protective layer may be a single resin, or a charge transport material as described above or a conductive material such as conductive powder may be added for the purpose of reducing the residual potential. Examples of the conductive powder include metal powders such as aluminum, copper, nickel and silver, flaky metal powders and short metal fibers, conductive metal oxides such as antimony oxide, indium oxide and tin oxide, polypyrrole and polyaniline. And polymer conductive agents such as polymer electrolytes, carbon black, carbon fiber, graphite powder, organic and inorganic electrolytes, or conductive powders whose surfaces are coated with these conductive substances.

本発明の帯電手段について説明する。   The charging means of the present invention will be described.

電子写真感光体の外周面に帯電部材が接触して、この帯電部材により電子写真感光体は正または負の所定電圧に帯電される。帯電部材には、正または負の直流電圧がかけられている。帯電部材に印加する直流電圧は、1000〜2000Vが好ましい。帯電部材には前記直流電圧に加え、更に交流電圧を重畳して脈流電圧を印加するようにしてもよい。この場合直流電圧は400〜1000Vが好ましく、重畳する交流電圧は、直流電圧の2倍以上のピーク間電位差をもっていることが必要である。また、交流電圧の周波数は300〜2500Hzが好ましい。   A charging member contacts the outer peripheral surface of the electrophotographic photosensitive member, and the electrophotographic photosensitive member is charged to a predetermined positive or negative voltage by the charging member. A positive or negative DC voltage is applied to the charging member. The DC voltage applied to the charging member is preferably 1000 to 2000V. A pulsating voltage may be applied to the charging member by superimposing an AC voltage in addition to the DC voltage. In this case, the DC voltage is preferably 400 to 1000 V, and the AC voltage to be superimposed needs to have a peak-to-peak potential difference that is at least twice the DC voltage. The frequency of the AC voltage is preferably 300 to 2500 Hz.

帯電部材は、感光体と同方向あるいは逆方向に回転するようにしてもよいし、また回転させずに感光体の外周面を摺動するようにしてもよい。   The charging member may be rotated in the same direction as that of the photosensitive member or in the opposite direction, or may be slid on the outer peripheral surface of the photosensitive member without being rotated.

本発明の電子写真プロセスの例について説明する。   An example of the electrophotographic process of the present invention will be described.

図6に本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成例を示す。図において、1はドラム状の本発明の電子写真感光体であり、中心に矢印方向に所定の周速度で回転駆動される。感光体1は、回転過程において、接触帯電手段3によりその周面に正または負の所定電位の均一帯電を受け、次いでスリット露光やレーザービーム走査露光などの像露光手段(不図示)からの画像露光4を受ける。こうして感光体1の周面に静電潜像が順次形成されていく。形成された静電潜像は、次いで現像手段5によりトナー現像され、現像されたトナー現像像は、不図示の給紙部から感光体1と転写手段6との間に感光体1の回転と同期取り出されて給紙された転写材Pに、転写手段6により順次転写されていく。像転写を受けた転写材Pは、感光体面から分離されて像定着手段8へ導入されて像定着を受けることにより複写物(コピー)として装置外へプリントアウトされる。像転写後の感光体1は、必要に応じてクリーニング手段9によって転写残りトナーの除去を受け、必要に応じて前露光等の不図示の除電手段により除電処理された後、繰り返し画像形成に使用される。本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5及びクリーニング手段7などの構成要素のうち、複数のものをプロセスカートリッジとして一体に結合して構成しこのプロセスカートリッジを複写機やレーザービームプリンタなどの電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段3、現像手段5及びクリーニング手段7の少なくとも一つを感光体1と共に一体に支持してカートリッジ化して、図10の装置本体のレールなどの案内手段を用いて装置本体に着脱自在なプロセスカートリッジとすることができる。また、画像露光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいはセンサーで原稿を読みとり、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動及び液晶シャッターアレイの駆動などにより照射される光である。   FIG. 6 shows a schematic configuration example of an electrophotographic apparatus having a process cartridge having the electrophotographic photosensitive member of the present invention. In the figure, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is rotationally driven in the direction of an arrow at a predetermined peripheral speed. In the rotating process, the photoreceptor 1 is uniformly charged with a positive or negative predetermined potential on its peripheral surface by the contact charging unit 3, and then an image from an image exposure unit (not shown) such as slit exposure or laser beam scanning exposure. Exposure 4 is received. In this way, electrostatic latent images are sequentially formed on the peripheral surface of the photoreceptor 1. The formed electrostatic latent image is then developed with toner by the developing unit 5, and the developed toner developed image is rotated between the photosensitive member 1 and the transfer unit 6 from a sheet feeding unit (not shown). The image is sequentially transferred by the transfer means 6 to the transfer material P that is synchronously taken out and fed. The transfer material P that has received the image transfer is separated from the surface of the photosensitive member, introduced into the image fixing means 8, and subjected to image fixing, thereby being printed out as a copy (copy). After the image transfer, the photosensitive member 1 is subjected to removal of residual toner after cleaning by a cleaning unit 9 as necessary, and is subjected to static elimination processing by a neutralizing unit (not shown) such as pre-exposure as necessary, and then repeatedly used for image formation. Is done. In the present invention, a plurality of components such as the electrophotographic photosensitive member 1, the primary charging unit 3, the developing unit 5 and the cleaning unit 7 described above are integrally coupled as a process cartridge. The electrophotographic apparatus main body such as a copying machine or a laser beam printer may be detachable. For example, at least one of the primary charging unit 3, the developing unit 5, and the cleaning unit 7 is integrally supported together with the photoreceptor 1 to form a cartridge, and is attached to and detached from the apparatus main body using guide means such as a rail of the apparatus main body in FIG. A flexible process cartridge can be obtained. Further, when the electrophotographic apparatus is a copying machine or a printer, the image exposure 4 is a reflected light or transmitted light from a document, or a document is read by a sensor and converted into a signal, and a laser beam scanning performed according to this signal is performed. Light emitted by driving the LED array and driving the liquid crystal shutter array.

また、現像手段5は、ジャンピング現像、2成分接触現像、1成分接触現像などが用いられる。   As the developing means 5, jumping development, two-component contact development, one-component contact development, or the like is used.

本発明の電子写真感光体は電子写真複写機に利用するのみならず、レーザービームプリンタ、CRTプリンタ、LEDプリンタ、液晶プリンタ及びレーザー製版などの電子写真応用分野にも広く用いることができる。   The electrophotographic photosensitive member of the present invention can be used not only in electrophotographic copying machines but also widely in electrophotographic application fields such as laser beam printers, CRT printers, LED printers, liquid crystal printers, and laser plate making.

電子写真感光体が、本発明の上記規定を満足するか否かを判定する判定法(以下「本発明の判定法」ともいう。)について説明する。   A determination method for determining whether or not the electrophotographic photosensitive member satisfies the above definition of the present invention (hereinafter also referred to as “determination method of the present invention”) will be described.

本発明の判定法は、常温常湿(23℃、50%RH)環境下で行われる。   The determination method of the present invention is performed in a normal temperature and normal humidity (23 ° C., 50% RH) environment.

図1に、本発明の判定法を実施するための判定装置の概略構成の一例を示す。   In FIG. 1, an example of schematic structure of the determination apparatus for enforcing the determination method of this invention is shown.

図1中、101は判定対象の電子写真感光体であり、103は帯電手段の帯電ローラであり、104はキセノンランプ、モノクロメーターおよびNDフィルターを備える露光装置であり、104Lは光(露光光)であり、105は電子写真感光体の表面電位を測定する(読み取る)ための電位計(電位プローブ)である。電子写真感光体101は矢印方向に回転駆動される。また、図1には、直径が60mmの電子写真感光体を例示している。   In FIG. 1, 101 is an electrophotographic photosensitive member to be determined, 103 is a charging roller of a charging unit, 104 is an exposure apparatus including a xenon lamp, a monochromator, and an ND filter, and 104L is light (exposure light). 105 is an electrometer (potential probe) for measuring (reading) the surface potential of the electrophotographic photosensitive member. The electrophotographic photosensitive member 101 is rotationally driven in the arrow direction. FIG. 1 illustrates an electrophotographic photosensitive member having a diameter of 60 mm.

本発明の判定法において、電子写真感光体の回転速度は、該電子写真感光体の表面の移動速度が30π[mm/s](94.25[mm/s])になる速度に設定される。   In the determination method of the present invention, the rotation speed of the electrophotographic photosensitive member is set to a speed at which the moving speed of the surface of the electrophotographic photosensitive member becomes 30π [mm / s] (94.25 [mm / s]). .

帯電ローラ103による帯電位置、光104Lが照射される位置すなわち露光位置および電位計105による電位測定位置は、帯電と光照射との間の時間が0.25秒かつ光照射と電位測定との間の時間が0.25秒になるように、設定される。   The charging position by the charging roller 103, the position where the light 104L is irradiated, that is, the exposure position and the potential measuring position by the electrometer 105 are 0.25 seconds between charging and light irradiation and between the light irradiation and the potential measurement. Is set to be 0.25 seconds.

図1においては、電子写真感光体101の直径は60mmであるから、
{(30π×0.25)/60π}×360°=45°
より、帯電位置と電子写真感光体中心と露光位置とがなす角度および露光位置と電子写真感光体中心と電位測定位置とがなす角度は、図1に示すとおり、どちらも45°となる。
In FIG. 1, since the electrophotographic photosensitive member 101 has a diameter of 60 mm,
{(30π × 0.25) / 60π} × 360 ° = 45 °
Accordingly, the angle formed between the charging position, the electrophotographic photosensitive member center, and the exposure position, and the angle formed between the exposure position, the electrophotographic photosensitive member center, and the potential measurement position are 45 ° as shown in FIG.

図2に、本発明の判定法を実施するための判定装置の概略構成の別の例を示す。101’は判定対象の電子写真感光体であり、他の符号は図1と同様である。図2には、直径が30mmの電子写真感光体を例示している。以下、本発明の判定法についてより詳細に説明する。   FIG. 2 shows another example of a schematic configuration of a determination apparatus for carrying out the determination method of the present invention. Reference numeral 101 'denotes an electrophotographic photosensitive member to be determined, and other reference numerals are the same as those in FIG. FIG. 2 illustrates an electrophotographic photosensitive member having a diameter of 30 mm. Hereinafter, the determination method of the present invention will be described in more detail.

図3は上記「V」を説明するための図であり、図4は上記「V」を説明するための図である。図3〜4中、C1は帯電条件Cでの帯電、C2は帯電条件Cでの帯電、E1は光量Eの光照射、Dは電位測定を示す。 FIG. 3 is a diagram for explaining the “V A ”, and FIG. 4 is a diagram for explaining the “V B ”. In FIG. 3 to 4, C1 is charged in the charging condition C 1, C2 are charged in the charging condition C 2, E1 is light irradiation amount E 1, D represents a potential measurement.

本発明の判定法において、電子写真感光体の表面を帯電しながら該電子写真感光体を5回転させる(以下「5回転帯電」ともいう。)のは、電子写真感光体に帯電履歴や露光履歴が残存していた場合であっても、それらを消失させるためである。   In the determination method of the present invention, charging the electrophotographic photosensitive member 5 times while charging the surface of the electrophotographic photosensitive member (hereinafter also referred to as “five rotation charging”) This is to eliminate them even if they remain.

以下、上記の帯電条件C、C、ならびに光量Eについて説明する。これら帯電条件および光量は、電子写真感光体が本発明の上記規定を満足するか否かを判定する前に決定しておく。 Hereinafter, the charging conditions C 1 and C 2 and the light amount E 1 will be described. These charging conditions and light quantity are determined before determining whether or not the electrophotographic photosensitive member satisfies the above-mentioned regulations of the present invention.

・帯電条件C
判定対象の電子写真感光体の表面を5回転帯電した結果として、この電子写真感光体の表面電位が−600[V]になるよう、帯電ローラに印加する電圧のうち直流電圧の値を調整する。
・ Charging condition C 1
The DC voltage value of the voltage applied to the charging roller is adjusted so that the surface potential of the electrophotographic photosensitive member becomes −600 [V] as a result of charging the surface of the electrophotographic photosensitive member to be judged five times. .

・光量E
帯電条件Cによって5回転帯電された判定対象の電子写真感光体の表面電位(−600[V])が−150[V]に減衰するよう、光の光量をNDフィルターによって調整する。
・ Light intensity E 1
The amount of light is adjusted by the ND filter so that the surface potential (−600 [V]) of the electrophotographic photosensitive member to be determined that has been charged five times by the charging condition C 1 is attenuated to −150 [V].

・帯電条件C
判定対象の電子写真感光体の表面を5回転帯電した結果として、この電子写真感光体の表面電位が−150[V]になるよう、帯電ローラに印加する電圧のうち直流電圧の値を調整する。
· Charging condition C 2
The value of the DC voltage among the voltages applied to the charging roller is adjusted so that the surface potential of the electrophotographic photosensitive member becomes −150 [V] as a result of charging the surface of the electrophotographic photosensitive member to be judged five times. .

なお、本発明の判定法における「帯電」および「光の照射」は、電子写真感光体の表面の最大画像領域全面に対して行う。   Note that “charging” and “light irradiation” in the determination method of the present invention are performed on the entire surface of the maximum image area on the surface of the electrophotographic photosensitive member.

以上のようにして、電子写真感光体のV、Vが導き出される。 As described above, V A and V B of the electrophotographic photosensitive member are derived.

また、本発明の上記式(I)の規定を満足する電子写真感光体の中でも、さらに、後述のごとく定義されるV、VAXおよびVBX、正孔輸送層の膜厚d[μm]ならびに定数mおよび定数nからなる下記近似式(II)中のmが、−200≦VX≦−120の範囲において、1×10−4〜2×10−3の範囲にある電子写真感光体が好ましい。 Further, among the electrophotographic photoreceptors satisfying the above-mentioned formula (I) of the present invention, V X , V AX and V BX defined as described later, and the thickness d [μm] of the hole transport layer are defined. And an electrophotographic photoreceptor in which m in the following approximate formula (II) consisting of a constant m and a constant n is in the range of 1 × 10 −4 to 2 × 10 −3 in the range of −200 ≦ VX ≦ −120. preferable.

Figure 2006343487
・VおよびVAX
帯電条件Cに設定された帯電手段により電子写真感光体の表面を帯電しながら電子写真感光体を5回転させることによって電子写真感光体の表面電位を−600[V]にし、次いで、表面電位が−600[V]になった電子写真感光体の表面に光を照射することによって電子写真感光体の表面電位をV[V]にし、表面電位がV[V]になった電子写真感光体の表面を帯電条件Cに設定された帯電手段により帯電した後の電子写真感光体の表面電位をVAX[V]とする。
Figure 2006343487
・ V X and V AX
The surface potential of the electrophotographic photosensitive member by 5 rotating the electrophotographic photosensitive member while charging the surface of the electrophotographic photosensitive member by a charging means which is set in charging condition C 1 to -600 [V], then the surface potential The surface potential of the electrophotographic photosensitive member is set to V X [V] by irradiating light on the surface of the electrophotographic photosensitive member having a value of −600 [V], and the electrophotographic photosensitive member is set to V X [V]. Let V AX [V] be the surface potential of the electrophotographic photosensitive member after the surface of the photosensitive member is charged by the charging means set to the charging condition C 1 .

・VおよびVBX
所定の帯電条件C2Xに設定された帯電手段により電子写真感光体の表面を帯電しながら電子写真感光体を5回転させることによって電子写真感光体の表面電位をV[V]にし、次いで、表面電位がV[V]になった電子写真感光体の表面を帯電条件Cと同条件に設定された帯電手段により帯電した後の電子写真感光体の表面電位をVBX[V]とする。
・ V X and V BX
The surface potential of the electrophotographic photosensitive member is set to V X [V] by rotating the electrophotographic photosensitive member 5 times while charging the surface of the electrophotographic photosensitive member by the charging means set to the predetermined charging condition C 2X , The surface potential of the electrophotographic photosensitive member after charging the surface of the electrophotographic photosensitive member having the surface potential of V X [V] by charging means set under the same condition as the charging condition C 1 is expressed as V BX [V]. To do.

なお、上記「VおよびVAX」における「V」と上記「VおよびVBX」における「V」とは同じ値である。 Incidentally, the same value is a "V X" in "V X" and the "V X and V BX" in the above "V X and V AX".

以下、上記の帯電条件C2Xについて説明する。この帯電条件も、電子写真感光体が本発明の上記規定を満足するか否かを判定する前に決定しておく。 Hereinafter, the above charging condition C2X will be described. This charging condition is also determined before determining whether or not the electrophotographic photosensitive member satisfies the above definition of the present invention.

・帯電条件C2X
判定対象の電子写真感光体の表面を5回転帯電した結果として、この電子写真感光体の表面電位がV[V]になるよう、帯電ローラに印加する電圧のうち直流電圧の値を調整する以外は、帯電条件C、Cと同様である。
・ Charging condition C2X
The DC voltage value of the voltage applied to the charging roller is adjusted so that the surface potential of the electrophotographic photosensitive member is V X [V] as a result of charging the surface of the electrophotographic photosensitive member to be judged five times. Other than the above, the charging conditions are the same as C 1 and C 2 .

本評価の帯電ローラは抵抗が低温低湿下(15℃、10%)、常温常湿下(23℃、50%)、高温高湿下のいずれの環境においても長手長さ1cm当たりの抵抗が5×10〜5×10Ωであるものを用いる。抵抗の測定は、それぞれの環境に24時間放置した帯電ローラをアースに接続した金属製のドラムに両端部分にそれぞれ両側で総圧15.69N、片側7.8Nの圧力を持って押し当て、金属ドラムを100mm/sの速度で回転させ(帯電ローラは従動で回転させ)、帯電ローラの芯金の部分に、アースに接続した高圧電源から−500Vの電圧を印加し、計測した抵抗値、計測時のニップ幅及び帯電ローラの厚みから計算することができる。 The charging roller of this evaluation has a resistance of 5 per 1 cm in length in any environment of low temperature and low humidity (15 ° C., 10%), normal temperature and normal humidity (23 ° C., 50%), and high temperature and high humidity. The thing which is * 10 < 3 > -5 * 10 < 4 > (omega | ohm) is used. The resistance was measured by pressing a charging roller left in each environment for 24 hours against a metal drum connected to the ground with a total pressure of 15.69 N on both sides and a pressure of 7.8 N on one side. The drum was rotated at a speed of 100 mm / s (the charging roller was driven to rotate), a voltage of -500 V was applied to the core of the charging roller from a high voltage power source connected to the ground, and the measured resistance value and measurement It can be calculated from the nip width at the time and the thickness of the charging roller.

本評価の高圧電源はACのVppを1800V、周波数870Hzに設定する。   The high voltage power supply of this evaluation sets AC Vpp to 1800 V and frequency 870 Hz.

像露光はキセノンランプを、モノクロメーターを用いて、分光した780nmの単色光を用い、光量の設定はNDフィルターにより調節する。   Image exposure uses a xenon lamp, a monochromator, and monochromatic light of 780 nm which is dispersed, and the setting of the light quantity is adjusted by an ND filter.

我々は鋭意検討の末、帯電部材を接触させて帯電させる帯電手段を有する電子写真装置に用いられる電子写真感光体において、下記式(I)の左辺を調べることによって、   As a result of intensive studies, we investigated the left side of the following formula (I) in an electrophotographic photosensitive member used for an electrophotographic apparatus having a charging means for charging by contacting a charging member.

Figure 2006343487
装置によって大きく異なってしまうが、感光体中の電荷のトラップが原因で生じる影響を推測することが可能となり、式(I)を満足する感光体は、
特に、プロセススピードが速く、低温低湿下でも、初期数十枚の明部電位の変動が改善されることを見出した。
Figure 2006343487
Although it varies greatly depending on the apparatus, it is possible to estimate the influence caused by charge trapping in the photoconductor, and the photoconductor satisfying the formula (I) is:
In particular, it has been found that the fluctuations in the initial portion of the bright part potential can be improved even when the process speed is high and the temperature and humidity are low.

像露光量が大きいほど像露光後の表面電位の絶対値は小さく、すなわち、像露光量が大きいほどVの絶対値が小さい。像露光があたった部分ではホールがCTLに注入しエレクトロンが基盤へ抜けていく際、CGL中、下地中及びCGL/下地界面にエレクトロンが残留し、次帯電に基盤からのホールの注入に対するバリアー性が低下するが、mが1×10−4以上2×10−3以下であると像露光によりCGL中、下地中及びCGL/下地界面のいずれかに残留するエレクトロン量が飽和していて、像露光量を増加させても残留するエレクトロン量があまり増加しないと考えている。明部電位が変動する理由は明らかではないが、像露光量を増加させても残留するエレクトロン量が増加しないことと明部電位の変動になんらかの関係があると推測している。 The larger the image exposure amount, the smaller the absolute value of the surface potential after image exposure, that is, the larger the image exposure amount, the smaller the absolute value of V X. In the part exposed to image exposure, when holes are injected into the CTL and electrons escape to the substrate, electrons remain in the CGL, in the substrate and at the CGL / substrate interface, and the barrier property against the injection of holes from the substrate in the next charging However, if m is 1 × 10 −4 or more and 2 × 10 −3 or less, the amount of electrons remaining in the CGL, the underlayer, and the CGL / underlayer interface is saturated by image exposure, and the image It is considered that the amount of remaining electrons does not increase much even if the exposure amount is increased. The reason why the bright part potential fluctuates is not clear, but it is presumed that there is some relationship between the fact that the amount of remaining electrons does not increase even if the image exposure amount is increased and the fluctuation of the bright part potential.

と(│−600−VAX│−│−600−VBX│)/dとの関係を示すグラフの一例を図5に示す。 FIG. 5 shows an example of a graph showing the relationship between V X and (| −600−V AX | − | −600−V BX |) / d.

傾きmが2×10−3より大きいと初期数十枚の明部電位の変動がみられる場合があり、傾きmが1×10−4未満であると初期も耐久後も初期数十枚の明部電位の変動がみられる場合があった。 May slope m fluctuations in 2 × 10 -3 larger than the initial dozens of light portion potential is seen, the slope m is 1 × 10 is less than -4 initial also initial dozens of after durability There was a case where the fluctuation of the bright part potential was observed.

以下、本発明を実施例により説明する。実施例中、「部」は質量部を表す。   Hereinafter, the present invention will be described with reference to examples. In the examples, “parts” represents parts by mass.

(実施例1)
直径30mmのアルミニウムシリンダーをホーニング処理し、超音波水洗浄したものを導電性支持体とした。
Example 1
An aluminum cylinder having a diameter of 30 mm was subjected to a honing treatment and subjected to ultrasonic water cleaning to obtain a conductive support.

次に、N−メトキシメチル化6ナイロン5部をメタノール95部中に溶解し、下引き層用塗料を調製した。この塗料を前記の導電性支持体上に浸漬コーティング法によって塗布し、100℃で20分間乾燥して、膜厚が0.5μmの下引き層を形成した。   Next, 5 parts of N-methoxymethylated 6 nylon was dissolved in 95 parts of methanol to prepare an undercoat layer coating material. This paint was applied on the conductive support by a dip coating method and dried at 100 ° C. for 20 minutes to form an undercoat layer having a thickness of 0.5 μm.

次に、電荷発生層用塗料として、CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.5°、9.9°、16.3°、18.6°、25.1°及び28.3°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン10部と、下記構造式(2)0.1部及びポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業社製)5部をシクロヘキサノン250部に添加し、直径1mmのガラスビーズを用いたサンドミルで4時間分散し、その後電子搬送性化合物として下記構造式(3)3部を加え溶解し、これに250部の酢酸エチルを加えて希釈した。これを下引き層上に塗布した後、100℃で10分間乾燥して、膜厚が0.16μmの電荷発生層を形成した。   Next, as a coating for the charge generation layer, 7.5 °, 9.9 °, 16.3 °, 18.6 °, 25.1 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction and 10 parts of crystalline hydroxygallium phthalocyanine having a strong peak at 28.3 °, 0.1 part of the following structural formula (2) and 5 parts of polyvinyl butyral resin (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) Is added to 250 parts of cyclohexanone and dispersed in a sand mill using glass beads having a diameter of 1 mm for 4 hours. Then, 3 parts of the following structural formula (3) is added and dissolved as an electron transporting compound, and 250 parts of ethyl acetate is added thereto. Added and diluted. This was coated on the undercoat layer and then dried at 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.16 μm.

Figure 2006343487
Figure 2006343487

Figure 2006343487
次いで下記構造式(4)のスチリル化合物を10部
Figure 2006343487
Next, 10 parts of a styryl compound of the following structural formula (4)

Figure 2006343487
及び下記構造式(5)の繰り返し単位を有するポリカーボネート樹脂10部を
Figure 2006343487
And 10 parts of a polycarbonate resin having a repeating unit of the following structural formula (5)

Figure 2006343487
モノクロロベンゼン50部及びジクロロメタン30部の混合溶媒中に溶解し、電荷輸送層用塗布液を調製した。この塗布液を前記の電荷発生層上に浸漬コーティング法によって塗布し、120℃で1時間乾燥することによって、膜厚が36μmの電荷輸送層を形成した。
Figure 2006343487
A charge transport layer coating solution was prepared by dissolving in a mixed solvent of 50 parts of monochlorobenzene and 30 parts of dichloromethane. This coating solution was applied onto the charge generation layer by dip coating and dried at 120 ° C. for 1 hour to form a charge transport layer having a thickness of 36 μm.

このようにして作製した電子写真感光体を、常温常湿下(23℃、50%)で(|A|−|B|)/d、mを求め、更に低温低湿下(5℃、20%)で、明部電位の変動について評価を行った。   The electrophotographic photoreceptor thus prepared was determined for (| A |-| B |) / d, m under normal temperature and normal humidity (23 ° C, 50%), and further under low temperature and low humidity (5 ° C, 20%). ) To evaluate the fluctuation of the light portion potential.

低温低湿下の明部電位変動の測定について説明する。   The measurement of the bright part potential fluctuation under low temperature and low humidity will be described.

評価は、キヤノン製デジタル複写機GP405を(感光体を任意のスピードで回転させ、一次帯電、像露光、クリーニングのみ行えるように改造した。一次帯電のACの設定は電圧が2000VP−P、周波数は2000Hz一定とした。プロセススピードを180mm/sec〜290mm/secまで任意のスピードで回転可能に改造した。転写紙を通紙しなくても良いように各種センサーをOFF。転写帯電OFF。機内が昇温しないように定着器OFF。像露光光量を任意の光量に調整可能に)改造し、これに本発明の感光体を装着し、低温低湿下(5℃、20%)において感光体の回転スピードを、任意のプロセススピードになるように設定し、そのときの暗部電位が−600V、明部電位が−150Vになるよう一次帯電のDC電圧と像露光量を調整し、A4連続100枚の、べた黒コピーを行い、1枚目の明部電位と100枚目の明部電位を比較した。これらの結果を表8に示す。   Evaluation was made by changing the Canon digital copying machine GP405 (the photoconductor was rotated at an arbitrary speed so that only primary charging, image exposure and cleaning could be performed. The primary charging AC was set to a voltage of 2000 VP-P, and the frequency was 2000 Hz constant, process speed was changed to 180 mm / sec to 290 mm / sec, and the sensor was turned off so that it was not necessary to pass through the transfer paper. The fixing device is turned off so as not to warm up. The image exposure light amount can be adjusted to an arbitrary light amount), and the photoconductor of the present invention is attached to this, and the rotation speed of the photoconductor is low temperature and low humidity (5 ° C., 20%). Is set to an arbitrary process speed, and the primary charging DC is set so that the dark portion potential at that time is −600 V and the light portion potential is −150 V. Adjust the pressure and the image exposure amount, the A4 100 sheets continuously performs solid black copy, comparing the light portion potential and light portion potential of the 100th first sheet. These results are shown in Table 8.

(実施例2)
電荷輸送層の膜厚を30μmとした以外は実施例1と同様に電子写真感光体を作製し評価した。結果を表8に示す。
(Example 2)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the thickness of the charge transport layer was 30 μm. The results are shown in Table 8.

(実施例3) 電子搬送性化合物を中間層にのみ添加した以外は実施例2と同様に電子写真感光体を作製し評価した。結果を表8に示す。   (Example 3) An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2 except that the electron transporting compound was added only to the intermediate layer. The results are shown in Table 8.

(実施例4) 電子搬送性化合物を電荷発生層と中間層の両方に添加した以外は実施例2と同様に電子写真感光体を作製し評価した。結果を表8に示す。   Example 4 An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2 except that the electron transporting compound was added to both the charge generation layer and the intermediate layer. The results are shown in Table 8.

(実施例5) 電子搬送性化合物として、下記構造式の化合物(6)を添加した以外は実施例2と同様に電子写真感光体を作製し評価した。結果を表8に示す。   Example 5 An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2 except that the compound (6) having the following structural formula was added as the electron transporting compound. The results are shown in Table 8.

Figure 2006343487
(実施例6) 電子搬送性化合物として、下記構造式の化合物(7)を添加した以外は実施例2と同様に電子写真感光体を作製し評価した。結果を表8に示す。
Figure 2006343487
Example 6 An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2 except that the compound (7) having the following structural formula was added as the electron transporting compound. The results are shown in Table 8.

Figure 2006343487
(実施例7) 電子搬送性化合物として、下記構造式の化合物(8)を添加した以外は実施例2と同様に電子写真感光体を作製し評価した。結果を表8に示す。
Figure 2006343487
Example 7 An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2 except that the compound (8) having the following structural formula was added as the electron transporting compound. The results are shown in Table 8.

Figure 2006343487
(比較例1) 電荷輸送層の膜厚を24μmとした以外は実施例1と同様に電子写真感光体を作製し評価した。結果を表8に示す。
Figure 2006343487
Comparative Example 1 An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the thickness of the charge transport layer was 24 μm. The results are shown in Table 8.

(比較例2) 電荷輸送層の樹脂を下記構造式(9)を用いた以外は実施例1と同様に電子写真感光体を作製し評価した。結果を表8に示す。   (Comparative Example 2) An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1 except that the resin of the charge transport layer used the following structural formula (9). The results are shown in Table 8.

Figure 2006343487
(比較例3) 電荷発生層の膜厚を0.10μmとした以外は実施例1と同様に電子写真感光体を作製し評価した。結果を表8に示す。
Figure 2006343487
Comparative Example 3 An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the thickness of the charge generation layer was 0.10 μm. The results are shown in Table 8.

(比較例4) 電荷発生層の膜厚を0.26μmとした以外は実施例1と同様に電子写真感光体を作製し評価した。結果を表8に示す。
表8
Comparative Example 4 An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1 except that the thickness of the charge generation layer was 0.26 μm. The results are shown in Table 8.
Table 8

Figure 2006343487
Figure 2006343487

本発明は上記の効果を有するものであり、その効果は、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置においても当然に発揮されることが期待できる。   The present invention has the above-described effects, and the effects can be expected to be naturally exhibited in a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.

本発明の判定法を実施するための判定装置の概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of the determination apparatus for enforcing the determination method of this invention. 本発明の判定法を実施するための判定装置の概略構成の別の例を示す図である。It is a figure which shows another example of schematic structure of the determination apparatus for enforcing the determination method of this invention. 「VA」を説明するための図である。It is a figure for demonstrating "VA". 「VB」を説明するための図である。It is a figure for demonstrating "VB." VXと(│−600−VAX│−│−600−VBX│)/dとの関係を示すグラフの一例を示す図である。It is a figure which shows an example of the graph which shows the relationship between VX and (| -600-VAX | --- 600-VBX |) / d. 本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の一例を示す図である。1 is a diagram illustrating an example of a schematic configuration of an electrophotographic apparatus including a process cartridge having the electrophotographic photosensitive member of the present invention. 評価用の画像パターンである。It is an image pattern for evaluation.

符号の説明Explanation of symbols

1 電子写真感光体
2 軸
3 一次帯電手段
4 画像露光
5 現像手段
6 転写手段
7 クリーニング手段
8 像定着手段
101 電子写真感光体
103 帯電ローラ
104 露光装置
105 電位計
DESCRIPTION OF SYMBOLS 1 Electrophotographic photoreceptor 2 Axis 3 Primary charging means 4 Image exposure 5 Developing means 6 Transfer means 7 Cleaning means 8 Image fixing means 101 Electrophotographic photoreceptor 103 Charging roller 104 Exposure device 105 Electrometer

Claims (6)

電子写真感光体に帯電部材を接触させて帯電させる帯電手段を有し、プロセススピードが220mm/sec以上の電子写真装置に用いられる電子写真感光体であって、導電性支持体、該導電性支持体上に設けられた電荷発生物質を含有する電荷発生層、および、該電荷発生層上に設けられた正孔輸送物質を含有する正孔輸送層を有する電子写真感光体において、
所定の帯電条件Cに設定された帯電手段により該電子写真感光体の表面を帯電しながら該電子写真感光体を5回転させることによって該電子写真感光体の表面電位を−600[V]にし、次いで、表面電位が−600[V]になった該電子写真感光体の表面に所定の光量Eの光を照射することによって該電子写真感光体の表面電位を−150[V]にし、表面電位が−150[V]になった該電子写真感光体の表面を該帯電条件Cに設定された帯電手段により帯電した後の該電子写真感光体の表面電位をV[V]とし、
所定の帯電条件Cに設定された帯電手段により該電子写真感光体の表面を帯電しながら該電子写真感光体を5回転させることによって該電子写真感光体の表面電位を−150[V]にし、次いで、表面電位が−150[V]になった該電子写真感光体の表面を該帯電条件Cと同条件に設定された帯電手段により帯電した後の該電子写真感光体の表面電位をV[V]とし、
該正孔輸送層の膜厚をd[μm]としたとき、上記V、Vおよびdが下記式(I)
Figure 2006343487
を満足することを特徴とする電子写真感光体。
An electrophotographic photosensitive member for use in an electrophotographic apparatus having a charging means for bringing a charging member into contact with the electrophotographic photosensitive member for charging and having a process speed of 220 mm / sec or more, comprising the conductive support and the conductive support In an electrophotographic photosensitive member having a charge generation layer containing a charge generation material provided on the body, and a hole transport layer containing a hole transport material provided on the charge generation layer,
The surface potential of the electrophotographic photosensitive member to -600 [V] by 5 rotating the electrophotographic photosensitive member while charging the surface of the electrophotographic photosensitive member by the set charging means to a predetermined charging condition C 1 , then the surface potential of the electrophotographic photosensitive member to -150 [V] by the surface potential to irradiate a predetermined quantity of light E 1 on the surface of the electrophotographic photosensitive member becomes -600 [V], The surface potential of the electrophotographic photosensitive member after the surface of the electrophotographic photosensitive member having a surface potential of −150 [V] is charged by the charging means set in the charging condition C 1 is defined as V A [V]. ,
The surface potential of the electrophotographic photosensitive member to -150 [V] by 5 rotating the electrophotographic photosensitive member while charging the surface of the electrophotographic photosensitive member by the set charging means to a predetermined charging condition C 2 , then the surface potential of the electrophotographic photosensitive member after charged by the charging means the surface potential is set to the surface of the electrophotographic photosensitive member becomes -150 [V] to the charging condition C 1 under the same conditions V B [V]
When the film thickness of the hole transport layer is d [μm], the V A , V B and d are represented by the following formula (I)
Figure 2006343487
An electrophotographic photoreceptor characterized by satisfying
前記帯電条件Cに設定された帯電手段により前記電子写真感光体の表面を帯電しながら前記電子写真感光体を5回転させることによって前記電子写真感光体の表面電位を−600[V]にし、次いで、表面電位が−600[V]になった前記電子写真感光体の表面に光を照射することによって前記電子写真感光体の表面電位をV[V]にし、表面電位がV[V]になった前記電子写真感光体の表面を前記帯電条件Cに設定された帯電手段により帯電した後の前記電子写真感光体の表面電位をVAX[V]とし、
所定の帯電条件C2Xに設定された帯電手段により前記電子写真感光体の表面を帯電しながら前記電子写真感光体を5回転させることによって前記電子写真感光体の表面電位をV[V]にし、次いで、表面電位がV[V]になった前記電子写真感光体の表面を前記帯電条件Cと同条件に設定された帯電手段により帯電した後の前記電子写真感光体の表面電位をVBX[V]としたとき、
−200≦V≦−120の範囲において、上記V、VAX、VBXおよび前記正孔輸送層の膜厚d[μm]ならびに定数mおよび定数nからなる下記近似式(II)
Figure 2006343487
中のmが1×10−4〜2×10−3の範囲にある請求項1に記載の電子写真感光体。
Wherein the surface potential of the electrophotographic photosensitive member by rotating 5 the electrophotographic photoreceptor while charging the surface of the electrophotographic photosensitive member by the charging condition set charging means C 1 to -600 [V], then, the surface potential of the electrophotographic photosensitive member to V X [V] by applying light to the surface of the electrophotographic photosensitive member surface potential becomes -600 [V], the surface potential V X [V The surface potential of the electrophotographic photosensitive member after charging the surface of the electrophotographic photosensitive member with the charging condition C 1 set to V AX [V],
The surface potential of the electrophotographic photosensitive member is set to V X [V] by rotating the electrophotographic photosensitive member five times while charging the surface of the electrophotographic photosensitive member by charging means set to a predetermined charging condition C 2X. Then, the surface potential of the electrophotographic photosensitive member after the surface of the electrophotographic photosensitive member having a surface potential of V X [V] is charged by the charging means set under the same condition as the charging condition C 1 is obtained. When V BX [V],
In the range of −200 ≦ V X ≦ −120, the following approximate formula (II) consisting of the above-mentioned V X , V AX , V BX and the thickness d [μm] of the hole transport layer and the constant m and the constant n
Figure 2006343487
The electrophotographic photosensitive member according to claim 1, wherein m is in the range of 1 × 10 −4 to 2 × 10 −3 .
該電荷発生層及び/又は中間層が電子搬送性化合物を含有する請求項1〜2のいずれかに記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the charge generation layer and / or the intermediate layer contains an electron transporting compound. 該電子搬送性化合物が下記一般式(1)〜(4)
Figure 2006343487
(式中、XまたはXはそれぞれ独立に水素原子、ハロゲン基、ニトロ基、置換基を有してもよいアルコキシ基または置換基を有してもよいアルキル基を示し、R及びRはそれぞれ独立にはエーテル基で中断されていてもよいアルキル基、エーテル基で中断されていてもよいアルケニル基、複素環基、アルキル基乃至アルケニル基乃至ニトロ基乃至ハロゲン基乃至ハロゲン置換アルキル基を有してもよいアリール基またはアルキル基乃至アルケニル基乃至ニトロ基乃至ハロゲン基乃至ハロゲン置換アルキル基を有してもよいアラルキル基を示す。)
Figure 2006343487
(式中、Z、Zはそれぞれ独立に酸素、C(CN)基、置換基を有しても良いNフェニル基を示し、X、Xはそれぞれ独立に水素原子、ハロゲン基、ニトロ基、置換基を有してもよいアルコキシ基または置換基を有してもよいアルキル基を示す。)
Figure 2006343487
(式中、Z、Zはそれぞれ独立に酸素、C(CN)基、置換基を有しても良いNフェニル基を示し、X、Xはそれぞれ独立に水素原子、ハロゲン基、ニトロ基、置換基を有してもよいアルコキシ基または置換基を有してもよいアルキル基を示す。)
Figure 2006343487
(式中、Z、Zはそれぞれ独立に酸素、C(CN)基、置換基を有しても良いNフェニル基を示し、X、Xはそれぞれ独立に水素原子、ハロゲン基、ニトロ基、置換基を有してもよいアルコキシ基または置換基を有してもよいアルキル基を示す。)
で表される化合物である請求項3に記載の電子写真感光体。
The electron transporting compound is represented by the following general formulas (1) to (4).
Figure 2006343487
(In the formula, X 1 and X 2 each independently represent a hydrogen atom, a halogen group, a nitro group, an optionally substituted alkoxy group or an optionally substituted alkyl group, and R 1 and R 2 2 are each independently an alkyl group which may be interrupted by an ether group, an alkenyl group which may be interrupted by an ether group, a heterocyclic group, an alkyl group, an alkenyl group, a nitro group, a halogen group or a halogen-substituted alkyl group. An aryl group which may have an alkyl group, an alkenyl group, a nitro group, a halogen group or a halogen-substituted alkyl group which may have an aralkyl group.
Figure 2006343487
(In the formula, Z 1 and Z 2 each independently represent oxygen, C (CN) 2 group, or N phenyl group which may have a substituent, and X 3 and X 4 each independently represent a hydrogen atom or a halogen group. , A nitro group, an alkoxy group which may have a substituent or an alkyl group which may have a substituent.
Figure 2006343487
(In the formula, Z 3 and Z 4 each independently represent oxygen, C (CN) 2 group, or optionally substituted N phenyl group, and X 5 and X 6 each independently represent a hydrogen atom or a halogen group. , A nitro group, an alkoxy group which may have a substituent or an alkyl group which may have a substituent.
Figure 2006343487
(In the formula, Z 5 and Z 6 each independently represent oxygen, C (CN) 2 group, or optionally substituted N-phenyl group, and X 7 and X 8 each independently represent a hydrogen atom or a halogen group. , A nitro group, an alkoxy group which may have a substituent or an alkyl group which may have a substituent.
The electrophotographic photosensitive member according to claim 3, which is a compound represented by the formula:
請求項1〜4のいずれかに記載の電子写真感光体を有するプロセスカートリッジ。   A process cartridge having the electrophotographic photosensitive member according to claim 1. 請求項1〜4のいずれかに記載の電子写真感光体を有する電子写真装置。   An electrophotographic apparatus comprising the electrophotographic photosensitive member according to claim 1.
JP2005168259A 2005-06-08 2005-06-08 Electrophotographic photoreceptor and electrophotographic apparatus Withdrawn JP2006343487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005168259A JP2006343487A (en) 2005-06-08 2005-06-08 Electrophotographic photoreceptor and electrophotographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005168259A JP2006343487A (en) 2005-06-08 2005-06-08 Electrophotographic photoreceptor and electrophotographic apparatus

Publications (1)

Publication Number Publication Date
JP2006343487A true JP2006343487A (en) 2006-12-21

Family

ID=37640506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168259A Withdrawn JP2006343487A (en) 2005-06-08 2005-06-08 Electrophotographic photoreceptor and electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JP2006343487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059371A (en) * 2009-09-10 2011-03-24 Ricoh Co Ltd Electrophotographic photoreceptor, electrophotographic method, electrophotographic device, and process cartridge for electrophotographic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059371A (en) * 2009-09-10 2011-03-24 Ricoh Co Ltd Electrophotographic photoreceptor, electrophotographic method, electrophotographic device, and process cartridge for electrophotographic device

Similar Documents

Publication Publication Date Title
JP4405970B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US7129012B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4971764B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2008250082A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge, and electrophotographic equipment
JP5147274B2 (en) Novel imide compound and electrophotographic photosensitive member, process cartridge and electrophotographic apparatus using the same
JP2009169023A (en) Electrophotographic photoreceptor and image forming apparatus
JP5064815B2 (en) Novel imide compound, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4810441B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4411232B2 (en) Method for producing electrophotographic photosensitive member
JP3987040B2 (en) Electrophotographic photoreceptor and image forming apparatus having the same
JP2006251487A5 (en)
JP4804099B2 (en) Electrophotographic photoreceptor, drum cartridge using the photoreceptor, and image forming apparatus
JP4466414B2 (en) Electrophotographic photoreceptor, image forming apparatus using the photoreceptor, and cartridge
JP2006343487A (en) Electrophotographic photoreceptor and electrophotographic apparatus
JP4860948B2 (en) Electrophotographic equipment
JP2009014857A (en) Electrophotographic photoreceptor containing triamine compound and image forming apparatus with the same
JP4402610B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US20210405548A1 (en) Electrophotographic photoconductor, process cartridge, and image forming apparatus
JP2001142237A (en) Electrophotographic photoreceptor
JP2005208620A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2001142238A (en) Electrophotographic photoreceptor
JP3943310B2 (en) Electrophotographic photosensitive member, electrophotographic method, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
WO2020026788A1 (en) Image forming apparatus and image forming method
JP6387649B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2004018600A (en) Method of manufacturing phthalocyanine pigment, phthalocyanine pigment, electrophotographic photoreceptor, processing cartridge and electrophotographic apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902