JP2006343175A - Magnetic field measuring device - Google Patents

Magnetic field measuring device Download PDF

Info

Publication number
JP2006343175A
JP2006343175A JP2005167940A JP2005167940A JP2006343175A JP 2006343175 A JP2006343175 A JP 2006343175A JP 2005167940 A JP2005167940 A JP 2005167940A JP 2005167940 A JP2005167940 A JP 2005167940A JP 2006343175 A JP2006343175 A JP 2006343175A
Authority
JP
Japan
Prior art keywords
magnetic field
converter
effective value
rms
digital data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005167940A
Other languages
Japanese (ja)
Inventor
Kazutaka Minemura
和孝 峯村
Atsushi Nakayama
淳 中山
Hiroki Nagasawa
広輝 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2005167940A priority Critical patent/JP2006343175A/en
Publication of JP2006343175A publication Critical patent/JP2006343175A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field measuring device which requires a small-scaled circuit configuration because high speed sampling is unnecessary, and comprises an effective value operation means requiring only a small consumption current. <P>SOLUTION: The magnetic field measuring device contains a magnetic sensor (for example, a coil) 11 for outputting a voltage proportional to the flux density of the magnetic field to be measured, an A/D converter 14 for converting the output voltage of the magnetic field sensor 11 into digital data, and an operation control means 15 calculating the effective value of specific parameters of the field to be measured, based on the digital data. In the prestage of the A/D converter 14, an RMS/DC converter 13 for converting the output voltage of the field sensor 11 to the effective value converted voltage is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、送電系や家電機器などから放射される磁界を測定する磁界測定装置に関し、さらに詳しく言えば、検出された磁束密度や曝露量などの実効値を演算する実効値演算手段に関するものである。   The present invention relates to a magnetic field measurement device that measures a magnetic field radiated from a power transmission system, home appliances, and the like, and more specifically, relates to an effective value calculation unit that calculates an effective value such as a detected magnetic flux density and an exposure amount. is there.

送電線やトランス、それに人体が日常的に接する電子レンジ,パソコンのディスプレイなどの家電機器からも、きわめて広い周波数帯域の磁界(電磁界)が不特定方向に放射されており、近年、これら磁界の人体に対する悪影響が懸念されている。   Magnetic fields (electromagnetic fields) in an extremely wide frequency band are radiated in unspecified directions from household electrical appliances such as power lines, transformers, microwave ovens, and personal computer displays that are in daily contact with the human body. There are concerns about adverse effects on the human body.

そこで、国際非電離放射線防護委員会(International Commission on Non−Ionizing Radiation Protection;略称ICNIRP)から、1998年4月に「時間変化する電界,磁界及び電磁界による曝露を制限するためのガイドライン(300GHzまで)」が示され、このガイドラインには、職業的曝露と公衆の曝露の各曝露モードについての参考レベルが記載されている。   Therefore, the International Commission on Non-Ionizing Radiation Protection (International Commission on Non-Ionizing Radiation Protection; abbreviation ICNIRP) announced in April 1998 that “Guidelines for limiting exposure to time-varying electric and magnetic fields and electromagnetic fields (up to 300 GHz). ) ”, And the guideline provides reference levels for each mode of occupational and public exposure.

なお、低周波領域の磁界の参考レベルは、周波数により限度値が大きく変わるため、電気機器が発生する磁界周波数が広帯域の場合、測定値をそのまま参考レベルと照合することができない。そのため、参考レベルと照合ができるようにするため、周波数に対する重み付け関数により、測定磁界を例えば50Hzもしくは60Hzなどの基準周波数に正規化する方法を標準の評価方法として規定し、これを時間領域評価(Time domain evalution)と呼んでいる。   Note that since the reference value of the magnetic field in the low frequency region varies greatly depending on the frequency, when the magnetic field frequency generated by the electrical device is a wide band, the measured value cannot be directly compared with the reference level. Therefore, in order to be able to collate with the reference level, a method for normalizing the measurement magnetic field to a reference frequency such as 50 Hz or 60 Hz, for example, by a weighting function for the frequency is defined as a standard evaluation method. It is called Time domain evaluation).

また、スエーデンの雇用者連盟所有のTCO Developmentが管轄するオフィス機器の安全性や人間工学(エルゴノミクス),電磁界放射,省エネルギー,環境に関する国際的な総合規格であるTCO(最新版TCO ’03FPD)のA4エミッション;A4.3の交流磁界測定には、モニタ画面に対する要求事項として、
(低域):5Hz〜2kHz;正面30/50cm,≦200nT
(高域):2kHz〜400kHz;正面30cm及び周囲50cm,≦25nT
と規定されている(単位はテスラで、1テスラ(T)=10ガウス(G))。
In addition, TCO (the latest version of TCO '03FPD), an international integrated standard for the safety, ergonomics, electromagnetic radiation, energy saving, and environment of office equipment under the jurisdiction of TCO Development owned by the Swedish Employers' Federation. A4 emissions; A4.3 AC magnetic field measurement, as a requirement for the monitor screen,
(Low frequency): 5 Hz to 2 kHz; front 30/50 cm, ≦ 200 nT
(High region): 2 kHz to 400 kHz; 30 cm in front and 50 cm in circumference, ≦ 25 nT
Is defined as (units of Tesla, 1 Tesla (T) = 10 4 gauss (G)).

このうち、上記ICNIRPのガイドラインに示されている参考レベル(以下、ICNIRPの参考レベルという。)に基づいて、被測定磁界の曝露量を測定する曝露量測定装置が特許文献1に記載されている。   Among these, Patent Document 1 discloses an exposure amount measuring apparatus that measures the exposure amount of a magnetic field to be measured based on a reference level (hereinafter referred to as an ICNIRP reference level) indicated in the ICNIRP guidelines. .

ICNIRPの参考レベルでは、一例として、周波数10Hz以上,400kHz以下の周波数帯域について、磁束密度B(曝露量)が低周波数域および高周波数域では周波数に反比例して低くなり、その中間周波数域では周波数にかかわらずほぼ一定となるように規定されている。   At the reference level of ICNIRP, as an example, the magnetic flux density B (exposure amount) is low in the low frequency range and the high frequency range in the frequency range of 10 Hz to 400 kHz, and is low in the intermediate frequency range. Regardless of whether it is specified to be almost constant.

そのため、特許文献1に記載の曝露量測定装置では、ICNIRPの参考レベルの逆数からなる評価フィルタを用いる。すなわち、磁界検出手段で検出したX軸成分,Y軸成分,Z軸成分の磁界強度に比例した振幅の検出信号を上記評価フィルタにとおすことにより、磁界の周波数にかかわらずほぼ一定振幅の出力信号を得、この出力信号をA/D変換したデジタルデータにより曝露量を算出するようにしている。   Therefore, the exposure amount measuring apparatus described in Patent Document 1 uses an evaluation filter composed of the reciprocal of the reference level of ICNIRP. That is, an output signal having a substantially constant amplitude regardless of the frequency of the magnetic field is obtained by passing a detection signal having an amplitude proportional to the magnetic field strength of the X-axis component, the Y-axis component, and the Z-axis component detected by the magnetic field detection means. The exposure amount is calculated from digital data obtained by A / D converting the output signal.

特開2001−235496号公報JP 2001-235396 A

ところで、磁界は時間により変化するため、磁界測定においては、通常、測定値を実効値で表示し、また、実効値で所定の閾値と比較するようにしている。ちなみに、ICNIRPの参考レベルの値は実効値で規定されている。   By the way, since the magnetic field changes with time, in the magnetic field measurement, the measured value is usually displayed as an effective value and compared with a predetermined threshold value by the effective value. Incidentally, the value of the reference level of ICNIRP is defined by the effective value.

そのため、従来では、X軸成分,Y軸成分,Z軸成分の各々について高速サンプリングして瞬時値を得、それら瞬時値のサンプリングデータから各軸成分の実効値を求め、さらに各軸成分の実効値から合成実効値を求めるようにしている。   Therefore, conventionally, an X-axis component, a Y-axis component, and a Z-axis component are sampled at high speeds to obtain instantaneous values, the effective values of the respective axis components are obtained from the sampling data of the instantaneous values, and the effective values of the respective axis components are further determined. The composite effective value is obtained from the value.

例えば、X軸成分の瞬時値をXn1,Xn2,…XnNとすると、その実効値XnRMSは次式(1)により求められる。

Figure 2006343175
For example, assuming that the instantaneous value of the X-axis component is X n1 , X n2 ,... X nN , the effective value X nRMS is obtained by the following equation (1).
Figure 2006343175

同様にして求められるY軸成分およびZ軸成分の各実効値をYnRMS,ZnRMSとすると、X軸,Y軸,Z軸の合成実効値R(t)RMSは次式(2)により求められる。

Figure 2006343175
If the effective values of the Y-axis component and Z-axis component obtained in the same manner are Y nRMS and Z nRMS , the combined effective value R (t) RMS of the X-axis, Y-axis, and Z-axis is obtained by the following equation (2). It is done.
Figure 2006343175

しかしながら、この実効値演算には、例えば1MHz程度の高速サンプリングが必要とされ、また、瞬時値X,Y,Zを得る際に3軸(X軸,Y軸,Z軸)のサンプリングの同時性が重要とされる。したがって、回路構成が大規模になり、また、消費電流も大きい。磁界測定装置の多くは、可搬式で電源を電池に求めているため、消費電流が大きいことは好ましくない。 However, this effective value calculation requires high-speed sampling of, for example, about 1 MHz, and sampling of three axes (X axis, Y axis, Z axis) when obtaining instantaneous values X n , Y n , Z n. Is important. Therefore, the circuit configuration becomes large and the current consumption is large. Many of the magnetic field measuring devices require a portable power source for the battery, so that it is not preferable that the current consumption be large.

したがって、本発明の課題は、高速サンプリングが不要であるため、回路構成が小規模でよく、また、消費電流も少なくて済む実効値演算手段を備えた磁界測定装置を提供することにある。   Accordingly, an object of the present invention is to provide a magnetic field measuring apparatus provided with an effective value calculating means that requires a high-speed sampling and that requires a small circuit configuration and that consumes less current.

上記課題を解決するため、請求項1に記載の発明は、被測定磁界の磁束密度に比例した電圧を出力する磁界センサと、上記磁界センサの出力電圧をデジタルデータに変換するA/D変換器と、上記デジタルデータに基づいて上記被測定磁界の所定パラメータの実効値を演算する演算制御手段とを含む磁界測定装置において、上記A/D変換器の前段に、上記磁界センサの出力電圧を実効値換算電圧に変換するRMS/DCコンバータを備えることを特徴としている。   In order to solve the above-mentioned problems, a first aspect of the present invention provides a magnetic field sensor that outputs a voltage proportional to the magnetic flux density of a magnetic field to be measured, and an A / D converter that converts the output voltage of the magnetic field sensor into digital data. And a calculation control means for calculating an effective value of a predetermined parameter of the magnetic field to be measured based on the digital data, the output voltage of the magnetic field sensor is effectively output before the A / D converter. An RMS / DC converter for converting to a value converted voltage is provided.

請求項2に記載の発明は、上記請求項1において、上記RMS/DCコンバータに固有の積分時間Tbが、上記実効値の演算に必要な積分時間Taよりも短い場合において、上記演算制御手段は、上記積分時間Taに達するまで、上記RMS/DCコンバータから出力される上記実効値換算電圧のデジタルデータを取り込み、その後に実効値を算出することを特徴としている。   According to a second aspect of the present invention, in the first aspect, when the integration time Tb inherent to the RMS / DC converter is shorter than the integration time Ta required for the calculation of the effective value, the calculation control means Until the integration time Ta is reached, the effective value converted voltage digital data output from the RMS / DC converter is taken in, and then the effective value is calculated.

請求項3に記載の発明は、上記請求項1または2において、上記磁界センサにはX軸コイル,Y軸コイル,Z軸コイルの3つのコイルが含まれ、その各々の測定系に上記RMS/DCコンバータが含まれ、上記各コイルの出力電圧が上記RMS/DCコンバータにより実効値換算電圧に変換されるとともに、上記A/D変換器によりデジタルデータに変換され、上記演算制御手段は、上記各コイルのデジタルデータの2乗平均の平方根により、上記被測定磁界の合成実効値を算出することを特徴としている。   According to a third aspect of the present invention, in the first or second aspect, the magnetic field sensor includes three coils of an X-axis coil, a Y-axis coil, and a Z-axis coil, and the RMS / A DC converter is included, and the output voltage of each coil is converted into an effective value converted voltage by the RMS / DC converter and converted into digital data by the A / D converter. The combined effective value of the magnetic field to be measured is calculated from the square root of the root mean square of the digital data of the coil.

請求項4に記載の発明は、上記請求項1ないし3のいずれか1項において、上記被測定磁界の所定パラメータが、磁束密度および/または評価フィルタを経た曝露量であることを特徴としている。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the predetermined parameter of the magnetic field to be measured is a magnetic flux density and / or an exposure amount that has passed through an evaluation filter.

請求項1に記載の発明によれば、磁界センサの出力電圧がRMS/DCコンバータにより実効値換算電圧に変換されるため、サンプリング回数が上記従来例に比べて1/Nで済むことになる。このように、高速サンプリングが不要であるため、回路構成は小規模となり、また、消費電流も少なくなる。   According to the first aspect of the present invention, since the output voltage of the magnetic field sensor is converted into an effective value converted voltage by the RMS / DC converter, the number of samplings can be reduced to 1 / N compared to the conventional example. Thus, since high-speed sampling is not required, the circuit configuration becomes small and current consumption is reduced.

RMS/DCコンバータは固有の積分時間(積分区間)Tbを有する。その積分時間Tbが実効値の演算に必要な積分時間Ta(通常は1秒間)よりも短い場合、演算制御手段は、積分時間Taに達するまでRMS/DCコンバータから出力される実効値換算電圧のデジタルデータを取り込み、その後に実効値を算出するようにした請求項2に記載の発明によれば、RMS/DCコンバータ固有の積分時間Tbを定数倍で任意に設定することができる。したがって、RMS/DCコンバータを支障なく実効値演算に適用することができる。   The RMS / DC converter has a unique integration time (integration interval) Tb. When the integration time Tb is shorter than the integration time Ta (usually 1 second) necessary for the calculation of the effective value, the operation control means determines the effective value converted voltage output from the RMS / DC converter until the integration time Ta is reached. According to the second aspect of the present invention in which digital data is taken in and an effective value is calculated thereafter, the integration time Tb unique to the RMS / DC converter can be arbitrarily set by a constant multiple. Therefore, the RMS / DC converter can be applied to the effective value calculation without any trouble.

磁界センサにはX軸コイル,Y軸コイル,Z軸コイルの3つのコイルが含まれ、その各々の測定系にRMS/DCコンバータを備え、各コイルの出力電圧がRMS/DCコンバータにより実効値換算電圧に変換されるとともに、A/D変換器によりデジタルデータに変換され、演算制御手段は、各コイルのデジタルデータの2乗平均の平方根により、被測定磁界の合成実効値を算出する請求項3に記載の発明によれば、大量のデータを処理することなく、被測定磁界の合成実効値を求めることができる。   The magnetic field sensor includes three coils, an X-axis coil, a Y-axis coil, and a Z-axis coil, each of which has an RMS / DC converter, and the output voltage of each coil is converted into an effective value by the RMS / DC converter. 4. The voltage is converted into digital data by an A / D converter, and the arithmetic control means calculates a combined effective value of the magnetic field to be measured based on the square root of the root mean square of the digital data of each coil. According to the invention described in (1), the combined effective value of the magnetic field to be measured can be obtained without processing a large amount of data.

また、請求項4に記載の発明によれば、被測定磁界の所定パラメータが磁束密度および/または評価フィルタを経た曝露量であることにより、TCO規格による磁束密度測定およびICNIRPのガイドラインに沿った曝露量測定を行うことができる。   According to the invention described in claim 4, since the predetermined parameter of the magnetic field to be measured is the magnetic flux density and / or the exposure amount that has passed through the evaluation filter, the magnetic flux density measurement according to the TCO standard and the exposure according to the ICNIRP guidelines Quantity measurements can be made.

次に、図1および図2により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。図1は本発明による磁界測定装置の回路構成を模式的に示すブロック図,図2は実効値演算のステップを示すフローチャートである。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited to this. FIG. 1 is a block diagram schematically showing a circuit configuration of a magnetic field measuring apparatus according to the present invention, and FIG. 2 is a flowchart showing steps of effective value calculation.

図1に示すように、この磁界測定装置10は、磁界センサとして磁界検出用のコイル11を備える。この例では、コイル11には、X軸コイル11x,Y軸コイル11y,Z軸コイル11zの3つのコイルが含まれる。これら3つのコイル11x,11y,11zは、図示しない球形状のセンサ筐体内に、好ましくは中心点を共有して相互に直交する平面内に配置される。以下の説明において、特に軸が問われない場合には単にコイル11という。なお、コイルに代えてホール素子などの磁電変換素子が用いられてもよい。   As shown in FIG. 1, the magnetic field measuring apparatus 10 includes a magnetic field detection coil 11 as a magnetic field sensor. In this example, the coil 11 includes three coils: an X-axis coil 11x, a Y-axis coil 11y, and a Z-axis coil 11z. These three coils 11x, 11y, and 11z are arranged in a spherical sensor casing (not shown), preferably in a plane orthogonal to each other sharing a central point. In the following description, the coil 11 is simply referred to when the axis is not particularly questioned. A magnetoelectric conversion element such as a Hall element may be used instead of the coil.

X,Y,Zの各軸の測定系ごとに、積分器12x,12y,12z(特に軸が問われない場合には単に積分器12という),RMS/DCコンバータ13x,13y,13z(特に軸が問われない場合には単にRMS/DCコンバータ13という)およびA/D変換器14x,14y,14z(特に軸が問われない場合には単にA/D変換器14という)を備え、コイル11の出力電圧は、積分器12,RMS/DCコンバータ13およびA/D変換器14を介して例えばマイクロコンピュータからなる演算制御手段15に与えられる。   For each measurement system of the X, Y, and Z axes, integrators 12x, 12y, and 12z (in particular, simply referred to as integrator 12 if the axis is not specified), RMS / DC converters 13x, 13y, and 13z (particularly axes) And the A / D converters 14x, 14y and 14z (simply referred to as the A / D converter 14 when the axis is not particularly questioned), and the coil 11 Is supplied to the arithmetic control means 15 comprising a microcomputer, for example, via the integrator 12, the RMS / DC converter 13, and the A / D converter 14.

ここで、コイル11の出力電圧V1は、
V1=k・B・N・f(kは定数,Bは磁束密度,Nは巻数,fは周波数)
によって表され、ピークの磁束密度Bが一定の場合であっても、周波数fに比例して大きくなるという微分特性を有する。
Here, the output voltage V1 of the coil 11 is
V1 = k · B · N · f (k is a constant, B is a magnetic flux density, N is the number of turns, and f is a frequency)
Even when the peak magnetic flux density B is constant, it has a differential characteristic of increasing in proportion to the frequency f.

積分器(CR積分器)21は、コイル11の出力電圧V1を平坦化するために用いられる。すなわち、積分器21の出力電圧V2は、
V2=1/CR∫V1dt(CRは積分定数)
で表され、周波数とともに出力が低下するため、コイル11の出力電圧V1は積分器21の周波数効果により平坦化され、磁束密度に比例した電圧が得られる。
The integrator (CR integrator) 21 is used to flatten the output voltage V1 of the coil 11. That is, the output voltage V2 of the integrator 21 is
V2 = 1 / CR∫V1dt (CR is an integral constant)
Since the output decreases with frequency, the output voltage V1 of the coil 11 is flattened by the frequency effect of the integrator 21, and a voltage proportional to the magnetic flux density is obtained.

RMS/DCコンバータ(Root Mean Squared value to Direct Current converter)13は、積分器21の出力電圧V2を2乗して、その平均値をとり、さらに平方根をとった値に等しい実効値換算電圧を出力する。   An RMS / DC converter (Root Mean Squared to Direct Current converter) 13 squares the output voltage V2 of the integrator 21, takes an average value thereof, and outputs an effective value conversion voltage equal to a value obtained by taking the square root. To do.

X軸を例にして、そのRMS/DCコンバータ13xから出力される実効値換算電圧を説明する。時刻tでの瞬時値をX(t),実効値(実効値換算電圧)をX(t)RMSとすると、実効値X(t)RMSは次式(3)で示される(なお、TbはRMS/DCコンバータ固有の積分時間(積分区間)で、nはサンプリング回数の変数である)。

Figure 2006343175
The effective value converted voltage output from the RMS / DC converter 13x will be described by taking the X axis as an example. When the instantaneous value at time t is X (t) and the effective value (effective value converted voltage) is X (t) RMS , the effective value X (t) RMS is expressed by the following equation (3) (where Tb is The integration time (integration interval) inherent to the RMS / DC converter, where n is a variable of the number of samplings).
Figure 2006343175

Y軸,Z軸についても、同様にしてRMS/DCコンバータ13y,13zから実効値Y(t)RMS,Z(t)RMSが出力され、これらの各実効値X(t)RMS,Y(t)RMS,Z(t)RMSがそれぞれA/D変換器14x,14y,14zにてデジタルデータに変換され演算制御手段15に与えられる。 For the Y-axis and the Z-axis, RMS values DC (t) RMS and Z (t) RMS are output from the RMS / DC converters 13y and 13z in the same manner, and these RMS values X (t) RMS and Y (t RMS , Z (t) RMS is converted into digital data by A / D converters 14x, 14y, 14z, respectively, and is supplied to the arithmetic control means 15.

演算制御手段15は、各実効値X(t)RMS,Y(t)RMS,Z(t)RMS(デジタル値)により、√{(X(t)RMS+(Y(t)RMS+(Z(t)RMS}なる演算を行って合成実効値R(t)RMSを算出する。そして、図示しない操作部からの表示指示にしたがって、合成実効値R(t)RMS,各実効値X(t)RMS,Y(t)RMS,Z(t)RMSなどを表示部16に表示する。 The arithmetic control unit 15 calculates √ {(X (t) RMS ) 2 + (Y (t) RMS ) according to each effective value X (t) RMS , Y (t) RMS , Z (t) RMS (digital value). The combined effective value R (t) RMS is calculated by performing an operation of 2 + (Z (t) RMS ) 2 }. Then, in accordance with a display instruction from an operation unit (not shown), the composite effective value R (t) RMS , each effective value X (t) RMS , Y (t) RMS , Z (t) RMS and the like are displayed on the display unit 16. .

このように、本発明によれば、コイル11から出力される測定電圧をRMS/DCコンバータ13にて実効値に換算しているため、上記従来例のように高速サンプリングが不要であり、そのサンプリング回数は上記従来例に比べて1/N回で済む。したがって、回路構成が小規模でよく、また、消費電流も少なくすることができる。さらには、演算制御手段15は、合成実効値R(t)RMSのみを算出すればよく、計算回数も少なくなる。 Thus, according to the present invention, since the measured voltage output from the coil 11 is converted into an effective value by the RMS / DC converter 13, high-speed sampling is not required as in the conventional example, and the sampling is performed. The number of times is only 1 / N compared to the conventional example. Therefore, the circuit configuration may be small and current consumption can be reduced. Furthermore, the calculation control means 15 only needs to calculate the combined effective value R (t) RMS , and the number of calculations is reduced.

なお、例えば積分器12とRMS/DCコンバータ13との間に、ICNIRPの参考レベルの逆数からなる時間領域評価法による評価フィルタを入れることにより、ICNIRPのガイドラインに沿った曝露量測定を行うことができる。   For example, by inserting an evaluation filter based on the time domain evaluation method consisting of the reciprocal of the reference level of ICNIRP between the integrator 12 and the RMS / DC converter 13, the exposure amount can be measured according to the ICNIRP guidelines. it can.

また、例えば積分器12とRMS/DCコンバータ13との間に、ハイパスフィルタとローパスフィルタを並列的に入れることにより、TCO磁束密度測定で規定されている5Hz〜2kHz帯の低域測定と、2kHz〜400kHz帯の高域測定とを行うことができる。   Further, for example, by inserting a high-pass filter and a low-pass filter in parallel between the integrator 12 and the RMS / DC converter 13, a low-frequency measurement in the 5 Hz to 2 kHz band defined by the TCO magnetic flux density measurement, and a 2 kHz It is possible to perform high-frequency measurement in a ~ 400 kHz band.

ところで、磁界測定で実効値を算出する場合、通常、その積分時間(Taとする)は1秒間とされているが、RMS/DCコンバータ13は固有の積分時間(積分区間)を有し、その積分時間Tbは任意に変えることができない。   By the way, when the effective value is calculated by the magnetic field measurement, the integration time (Ta) is normally set to 1 second, but the RMS / DC converter 13 has a specific integration time (integration section), and The integration time Tb cannot be changed arbitrarily.

一般的に、RMS/DCコンバータ13の積分時間Tbは、実効値の算出に要する積分時間Taよりも短い。そこで、本発明では、次のようにしてRMS/DCコンバータ13の積分時間Tbを定数倍で任意に設定できるようにしている。   Generally, the integration time Tb of the RMS / DC converter 13 is shorter than the integration time Ta required for calculating the effective value. Therefore, in the present invention, the integration time Tb of the RMS / DC converter 13 can be arbitrarily set by a constant multiple as follows.

X軸の測定系を例にして説明する。まず、RMS/DCコンバータ13に入力される時刻tにおける瞬時値をX(t),RMS/DCコンバータ13にて変換された実効値をXnRMSとする。また、実際にサンプリングを行う回数をN,その変数をn(ただし、1≦n≦N)とすると、実効値をXnRMSは次式(4)で表される。

Figure 2006343175
A description will be given by taking an X-axis measurement system as an example. First, an instantaneous value at time t input to the RMS / DC converter 13 is X (t), and an effective value converted by the RMS / DC converter 13 is XnRMS . Further, the number of actually performing sampling N, the variable n (provided that, 1 ≦ n ≦ N) When, X nRMS effective value is expressed by the following equation (4).
Figure 2006343175

式(4)の平方根を開くと、式(4)を次式(5)に変換することができる。

Figure 2006343175
If the square root of Formula (4) is opened, Formula (4) can be converted into following Formula (5).
Figure 2006343175

式(5)の積分方程式は、{XnRMSを1〜Nまで順次加算していくことを意味しているため、式(5)を次式(6)に書き直すことができる。

Figure 2006343175
Since the integral equation of equation (5) means that {X nRMS } 2 is sequentially added from 1 to N, equation (5) can be rewritten into the following equation (6).
Figure 2006343175

次に、式(6)の両辺に1/N・Tbを乗じると、次式(7)が得られる。

Figure 2006343175
Next, when both sides of the equation (6) are multiplied by 1 / N · Tb, the following equation (7) is obtained.
Figure 2006343175

これにより、[t−NTb]の区間での実効値X(t)RMSは、次式(8)で表される。

Figure 2006343175
Accordingly, the effective value X (t) RMS in the interval [t-NTb] is expressed by the following equation (8).
Figure 2006343175

式(8)からわかるように、RMS/DCコンバータ13の実際の積分時間はN×Tbとなり、N倍長くなる。一例として、RMS/DCコンバータ13の1回あたりのサンプリング時間が2.5mSであるとすると、そのサンプリング回数(N)を400回とすることにより、実効値の算出に要する積分時間の1Sとすることができる。   As can be seen from equation (8), the actual integration time of the RMS / DC converter 13 is N × Tb, which is N times longer. As an example, if the sampling time per time of the RMS / DC converter 13 is 2.5 mS, the sampling time (N) is set to 400 times, so that the integration time required for calculating the effective value is 1S. be able to.

Y軸,Z軸についても同様であり、瞬時値ごとの合成実効値RnRMSは次式(9)により求められ、積分時間(N×Tb)にわたる合成実効値R(t)RMSは次式(10)により求められる。

Figure 2006343175

Figure 2006343175
The same applies to the Y-axis and Z-axis, and the combined effective value R nRMS for each instantaneous value is obtained by the following equation (9), and the combined effective value R (t) RMS over the integration time (N × Tb) is expressed by the following equation (9) 10).
Figure 2006343175

Figure 2006343175

実際の実効値演算は、演算制御手段15により行われ、その演算処理の概略的なフローチャートを図2に示す。これについて簡単に説明を加えると、X軸,Y軸,Z軸の3軸について、RMS/DCコンバータ13にて実効値に換算され、A/D変換器14にてA/D変換されたデータを2乗し、その2乗値を実効値の算出に要する積分時間(例えば1S)に達するまで加算して2乗和を得る。しかるのち、その2乗和から各軸(X軸,Y軸,Z軸)の実効値を算出し、さらに各軸の実効値から合成実効値を求める。   The actual effective value calculation is performed by the calculation control means 15, and a schematic flowchart of the calculation process is shown in FIG. This will be briefly described. Data obtained by converting the three axes of the X axis, the Y axis, and the Z axis into effective values by the RMS / DC converter 13 and A / D conversion by the A / D converter 14. Is squared, and the square value is added until the integration time (for example, 1S) required for calculating the effective value is reached to obtain the sum of squares. Thereafter, the effective value of each axis (X-axis, Y-axis, Z-axis) is calculated from the square sum, and the combined effective value is obtained from the effective value of each axis.

本発明による磁界測定装置の回路構成を模式的に示すブロック図。The block diagram which shows typically the circuit structure of the magnetic field measuring apparatus by this invention. 本発明での実効値演算のステップを示すフローチャート。The flowchart which shows the step of the effective value calculation in this invention.

符号の説明Explanation of symbols

11(11x,11y,11z) コイル
12(12x,12y,12z) 積分器
13(13x,13y,13z) RMS/DCコンバータ
14(14x,14y,14z) A/D変換器
15 演算制御手段
16 表示器
11 (11x, 11y, 11z) Coil 12 (12x, 12y, 12z) Integrator 13 (13x, 13y, 13z) RMS / DC converter 14 (14x, 14y, 14z) A / D converter 15 Arithmetic control means 16 Display vessel

Claims (4)

被測定磁界の磁束密度に比例した電圧を出力する磁界センサと、上記磁界センサの出力電圧をデジタルデータに変換するA/D変換器と、上記デジタルデータに基づいて上記被測定磁界の所定パラメータの実効値を演算する演算制御手段とを含む磁界測定装置において、
上記A/D変換器の前段に、上記磁界センサの出力電圧を実効値換算電圧に変換するRMS/DCコンバータを備えることを特徴とする磁界測定装置。
A magnetic field sensor that outputs a voltage proportional to the magnetic flux density of the magnetic field to be measured, an A / D converter that converts the output voltage of the magnetic field sensor into digital data, and a predetermined parameter of the magnetic field to be measured based on the digital data In a magnetic field measuring apparatus including a calculation control means for calculating an effective value,
A magnetic field measuring apparatus comprising an RMS / DC converter for converting an output voltage of the magnetic field sensor into an effective value converted voltage in a preceding stage of the A / D converter.
上記RMS/DCコンバータに固有の積分時間Tbが、上記実効値の演算に必要な積分時間Taよりも短い場合において、上記演算制御手段は、上記積分時間Taに達するまで、上記RMS/DCコンバータから出力される上記実効値換算電圧のデジタルデータを取り込み、その後に実効値を算出することを特徴とする請求項1に記載の磁界測定装置。   When the integration time Tb inherent to the RMS / DC converter is shorter than the integration time Ta necessary for the calculation of the effective value, the calculation control means is configured to start from the RMS / DC converter until the integration time Ta is reached. The magnetic field measuring apparatus according to claim 1, wherein the digital data of the effective value converted voltage to be output is taken, and then the effective value is calculated. 上記磁界センサにはX軸コイル,Y軸コイル,Z軸コイルの3つのコイルが含まれ、その各々の測定系に上記RMS/DCコンバータを備え、上記各コイルの出力電圧が上記RMS/DCコンバータにより実効値換算電圧に変換されるとともに、上記A/D変換器によりデジタルデータに変換され、上記演算制御手段は、上記各コイルのデジタルデータの2乗平均の平方根により、上記被測定磁界の合成実効値を算出することを特徴とする請求項1または2に記載の磁界測定装置。   The magnetic field sensor includes three coils, an X-axis coil, a Y-axis coil, and a Z-axis coil, each of which includes the RMS / DC converter, and the output voltage of each coil is the RMS / DC converter. Is converted into an effective value converted voltage and converted into digital data by the A / D converter, and the arithmetic control means synthesizes the magnetic field to be measured based on the square root of the root mean square of the digital data of the coils. The magnetic field measuring apparatus according to claim 1, wherein an effective value is calculated. 上記被測定磁界の所定パラメータが、磁束密度および/または評価フィルタを経た曝露量であることを特徴とする請求項1ないし3のいずれか1項に記載の磁界測定装置。
The magnetic field measuring apparatus according to claim 1, wherein the predetermined parameter of the magnetic field to be measured is a magnetic flux density and / or an exposure amount that has passed through an evaluation filter.
JP2005167940A 2005-06-08 2005-06-08 Magnetic field measuring device Pending JP2006343175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167940A JP2006343175A (en) 2005-06-08 2005-06-08 Magnetic field measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167940A JP2006343175A (en) 2005-06-08 2005-06-08 Magnetic field measuring device

Publications (1)

Publication Number Publication Date
JP2006343175A true JP2006343175A (en) 2006-12-21

Family

ID=37640248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167940A Pending JP2006343175A (en) 2005-06-08 2005-06-08 Magnetic field measuring device

Country Status (1)

Country Link
JP (1) JP2006343175A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926184B1 (en) 2007-11-09 2009-11-10 한국전기연구원 Method for Estimating the Human Body Effects for Magnetic Fields with Harmonics
CN111166311A (en) * 2018-11-13 2020-05-19 三星电子株式会社 Electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587838A (en) * 1991-09-27 1993-04-06 Sanwa Denki Seisakusho:Kk Digital multimeter
JPH05264682A (en) * 1991-12-24 1993-10-12 Central Res Inst Of Electric Power Ind Magnetic field exposure gauge
JPH08334554A (en) * 1995-06-09 1996-12-17 Furukawa Electric Co Ltd:The Measuring apparatus for ac magnetic field
JP2001235496A (en) * 2000-01-10 2001-08-31 Narda Safety Test Solutions Gmbh Method and apparatus for evaluation of radiation inside low-frequency electric field or magnetic field according to standard
JP2003194862A (en) * 2001-12-27 2003-07-09 Ig Tech Res Inc Compact electromagnetic wave detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587838A (en) * 1991-09-27 1993-04-06 Sanwa Denki Seisakusho:Kk Digital multimeter
JPH05264682A (en) * 1991-12-24 1993-10-12 Central Res Inst Of Electric Power Ind Magnetic field exposure gauge
JPH08334554A (en) * 1995-06-09 1996-12-17 Furukawa Electric Co Ltd:The Measuring apparatus for ac magnetic field
JP2001235496A (en) * 2000-01-10 2001-08-31 Narda Safety Test Solutions Gmbh Method and apparatus for evaluation of radiation inside low-frequency electric field or magnetic field according to standard
JP2003194862A (en) * 2001-12-27 2003-07-09 Ig Tech Res Inc Compact electromagnetic wave detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926184B1 (en) 2007-11-09 2009-11-10 한국전기연구원 Method for Estimating the Human Body Effects for Magnetic Fields with Harmonics
CN111166311A (en) * 2018-11-13 2020-05-19 三星电子株式会社 Electronic device

Similar Documents

Publication Publication Date Title
JP2010118553A (en) Phase correction type active magnetic shield device
Kaczmarek A practical approach to evaluation of accuracy of inductive current transformer for transformation of distorted current higher harmonics
Shafiee et al. Numerical analysis of the beam position monitor pickup for the Iranian light source facility
JP2006343175A (en) Magnetic field measuring device
JP5144399B2 (en) Coil current sensor circuit
Sunohara et al. Induced field and SAR in human body model due to wireless power transfer system with induction coupling
Yamazaki et al. Equivalent dipole moment method to characterize magnetic fields generated by electric appliances: extension to intermediate frequencies of up to 100 kHz
JP5054926B2 (en) Magnetic field measuring device
Scorretti et al. Modeling of induced current into the human body by low-frequency magnetic field from experimental data
JP2006343181A (en) Magnetic field measurement apparatus
David et al. MONITORING OF ENVIRONMENTAL LOW FREQUENCY MAGNETIC FIELDS.
Reticcioli et al. An automated scanning system for the acquisition of nonuniform time-varying magnetic fields
US10895612B2 (en) Test and measurement instrument with a hysteresis loop mask
CN113358922A (en) Fundamental wave, harmonic wave and inter-harmonic wave electric energy power measurement method of unsteady state power grid signal
CN205450122U (en) Electromagnetic radiation monitor with weighted function
Wilén et al. Modification of pulse sequences reduces occupational exposure from MRI switched gradient fields: Preliminary results
Hanna et al. Measurement evaluations of static and low frequency magnetic fields in the near field region
JP6606654B1 (en) Permeability measuring device
Solcanu et al. Modeling of the Dispersion Magnetic Fields for the Single-Phase Transformers
KR100926184B1 (en) Method for Estimating the Human Body Effects for Magnetic Fields with Harmonics
Muramatsu et al. Effect of eddy currents on method for evaluating shielding performance of magnetically shielded rooms using exciting coil
JP5606402B2 (en) Calculation method of magnetization curve
de Sousa Oliveira et al. Implementation of a Rogowski coil prototype for the measurement of alternating electric current
JP2006346234A (en) Magnetic resonance imaging apparatus
Kandia et al. A smart measurement and evaluation system for the magnetic-field generated by multiple field sources in complex 3-D arrangements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Effective date: 20110202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110706