JP2006343130A - Integrally molded conductive probe and its signal transmission method - Google Patents

Integrally molded conductive probe and its signal transmission method Download PDF

Info

Publication number
JP2006343130A
JP2006343130A JP2005166852A JP2005166852A JP2006343130A JP 2006343130 A JP2006343130 A JP 2006343130A JP 2005166852 A JP2005166852 A JP 2005166852A JP 2005166852 A JP2005166852 A JP 2005166852A JP 2006343130 A JP2006343130 A JP 2006343130A
Authority
JP
Japan
Prior art keywords
probe
signal transmission
integrally formed
conductive
transmission method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005166852A
Other languages
Japanese (ja)
Inventor
Manzen Shu
萬全 周
Iho Han
偉芳 范
Jung-Tsan Liu
榮燦 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005166852A priority Critical patent/JP2006343130A/en
Publication of JP2006343130A publication Critical patent/JP2006343130A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an integrally molded conductive probe and its signal transmission method. <P>SOLUTION: An integrally molded elastic body is used as a probe for transmitting an electronic signal, conductive contact sections where the coil outer diameter varies from small to large and that have a fine elastic force are disposed on the outer periphery between two ends of the probe, an elastic section having an elastic recovery force is formed between the two conductive contact sections, and strings where the coil outer diameter is converted from large to small and from small to large are separately disposed on the outer periphery of a predetermined position of the elastic body. When the probe is applied to electronic signal transmission by this, the coil of the probe is compressed into a high density contact form, the electronic signal is passed by the probe having an integral structure form, the probe manufacturing cost is not only significantly reduced, but also the elastic force of the probe itself increases, the resistive decreases, and the inductance effect is removed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は一種の試験用プローブの技術領域に係り、特に、一体成形導電プローブ及びその信号伝送方法に関する。   The present invention relates to a technical field of a kind of test probe, and more particularly to an integrally formed conductive probe and a signal transmission method thereof.

現在、各種の試験領域、例えばプリント回路板試験、ウエハー試験、ICパッケージ試験、通信製品及び液晶パネル試験等には、プローブが試験媒体として広く応用されている。このほか、現段階におけるプローブは精細な電子装置へと発展しており、プローブサイズ規格がますます精細となり且つ導電性、低抵抗の長所を具備するようになり、このためプローブに高周波信号伝送の機能を賦与すれば、携帯電話等の無線通信製品の送受信用アンテナ及び各種の電子製品の充電器、コネクタの接続接点となすことができる。将来的にプローブは試験機能に用いられるのみならず、電子装置の領域上、不可欠の位置を占めると思われる。   Currently, probes are widely applied as test media in various test areas such as printed circuit board tests, wafer tests, IC package tests, communication products, and liquid crystal panel tests. In addition, probes at this stage have evolved into fine electronic devices, and the probe size standard has become increasingly fine and has the advantages of conductivity and low resistance. If the function is added, it can be used as a connection contact point for a transmission / reception antenna of a wireless communication product such as a mobile phone, a charger and a connector of various electronic products. In the future, probes will not only be used for testing functions, but will occupy an indispensable position in the area of electronic devices.

ただし、現在の試験用プローブの技術領域に関しては、その製品構造には一般に部品組成が複雑で、外形体積が大きく、電気抵抗値が大きいという欠点を有しており、これについて、ここに二つの例を挙げて説明する。   However, with regard to the technical area of the current test probe, the product structure generally has the disadvantages that the component composition is complicated, the outer volume is large, and the electric resistance value is large. An example will be described.

図1は、いわゆる「低抵抗のプローブ構造」とされ、その主要な構成部品は、一端が内縮側、もう一端がストッパ側とされ、該ストッパ側と内縮側の間に位置する作動空間911とを具えた金めっきスリーブ(91)、該金めっきスリーブ91のストッパ側より該作動空間911内に挿入され並びに該金めっきスリーブ91の内縮側より露出する金めっきニードル92、ストッパ側より該作動空間911内に挿入され、並びに該金めっきニードル92に接触する金めっきバネ93、及び底溝を具え錫めっきされた座体94、を包含する。該座体94の底溝に半田が充填され、該座体94は該金めっきスリーブ91のストッパ側より該作動空間911に挿入され、該底溝が該金めっきバネ93と接触し、該底溝の半田の溶融により該座体94が該金めっきバネ93と結合され、座体94にメッキされた錫の溶融により座体94が金めっきスリーブ91と結合され、こうして低抵抗のプローブ構造が構成されている。   FIG. 1 shows a so-called “low resistance probe structure”, and the main components thereof are an operation space in which one end is an inwardly contracted side and the other end is a stoppered side and is located between the stopper side and the inwardly contracted side. From the stopper side of the gold plating sleeve 91, the gold plating needle 92 which is inserted into the working space 911 from the stopper side of the gold plating sleeve 91 and exposed from the inwardly contracted side of the gold plating sleeve 91, from the stopper side A gold-plated spring 93 that is inserted into the working space 911 and contacts the gold-plated needle 92 and a tin-plated seat 94 having a bottom groove are included. The bottom groove of the seat 94 is filled with solder, the seat 94 is inserted into the working space 911 from the stopper side of the gold plating sleeve 91, the bottom groove contacts the gold plating spring 93, and the bottom The seat 94 is joined to the gold plating spring 93 by melting the solder of the groove, and the seat 94 is joined to the gold plating sleeve 91 by melting of the tin plated on the seat 94. Thus, a low resistance probe structure is obtained. It is configured.

上述の周知の構造は、プローブの各構成要件の外層に低抵抗値の貴金属層をめっきするほか、金めっきニードルに凹溝が設けられ、該凹溝内の半田を溶融させて金めっきバネとの結合手段となし、さらに、これら構成部品を結合させ一体となす構造により、低抵抗値の目的を達成している。しかしこのような構造は構成部品が多く、製造組立コストの増加を形成し、また各部品の外側に金属層をメッキし、半田付け方式で結合するため、余分な手間と加工コストがかかり、当然、プローブの外形体積も大きくなり、精密試験には不利となる。さらに、周知の半田付け方式による座体、金めっきスリーブ等の部品の結合は、電気抵抗値を下げる目的を達成できるものの、インダクタンス効果が大きいという欠点を有している。これについては後で説明する。   In the known structure described above, a noble metal layer having a low resistance value is plated on the outer layer of each constituent element of the probe, and a gold-plated needle is provided with a concave groove, and the solder in the concave groove is melted to form a gold-plated spring and The purpose of the low resistance value is achieved by the above-described coupling means and the structure in which these components are coupled together. However, such a structure has many components, which increases the manufacturing and assembly costs. Also, since a metal layer is plated on the outside of each component and joined by soldering, it requires extra labor and processing costs. The outer volume of the probe also increases, which is disadvantageous for precision testing. Further, the coupling of parts such as a seat body and a gold plating sleeve by a well-known soldering method can achieve the purpose of lowering the electric resistance value, but has a drawback that the inductance effect is large. This will be described later.

図2はもう一つの周知の試験用或いは接触用のプローブ構造を示す。それは、二組の、接触端ニードルユニット81を包含し、その具備する同心円状のダブル筒体が、被測定物と接触するか或いは測定接触装置と接続され、末端ニードルユニット82が該接触端ニードルユニット81の反対端に位置し、被試験物との接触或いは測定接触装置との接続に供される。更に、弾性ユニット83を具え、該弾性ユニット83は接触端ニードルユニット81内壁と末端ニードルユニット82の間に位置し、試験時に圧縮してプローブの緩衝に供されると共に、弾力を提供する。そのうち、該プローブはモールド方式で製造される。   FIG. 2 shows another known test or contact probe structure. It includes two sets of contact end needle units 81, the concentric double cylinders of which they are in contact with an object to be measured or connected to a measurement contact device, and a terminal needle unit 82 is connected to the contact end needle. It is located at the opposite end of the unit 81 and is used for contact with a device under test or connection with a measurement contact device. Further, the elastic unit 83 is provided between the inner wall of the contact end needle unit 81 and the end needle unit 82, and is compressed during a test to be used for buffering the probe and to provide elasticity. Among them, the probe is manufactured by a mold method.

図2の構成部品は比較的少なく、応用時に占用する取り付け空間も比較的小さいが、最良の構造設計とはいえない。その構成部品の製造、組立及びめっき等の加工コストは安くなく、且つプローブで電子信号を伝送する時、信号が通過する部品が多過ぎ、電気抵抗値も高くなり、これが図2の技術の欠点である。このほか、図2の構造は使用時にインダクタンス効果が大きい欠点を有する。その原因については後で述べる。   Although the number of components in FIG. 2 is relatively small and the installation space occupied during application is relatively small, it is not the best structural design. The processing cost of manufacturing, assembling and plating of the component parts is not low, and when an electronic signal is transmitted with a probe, there are too many parts through which the signal passes, and the electric resistance value becomes high, which is a drawback of the technique of FIG. It is. In addition, the structure of FIG. 2 has a drawback that the inductance effect is large during use. The cause will be described later.

図3を参照されたい。プローブで試験する過程に、その電子信号は必然的にバネ部品を通過し、一般に、プローブ内のバネ部品が圧縮される時、そのコイル間は弛んだ形態とされ、ゆえに電子信号通過時にはコイルの螺旋構造の経路に沿って流動し、電気抵抗値と経路の長さが正比例を呈するのみならず、インダクタンス効果が大きいために信号の伝送効率と品質に影響が生じ、このため改善の必要がある。   Please refer to FIG. In the process of testing with the probe, the electronic signal inevitably passes through the spring component, and generally, when the spring component in the probe is compressed, the coil is in a loose form, so when passing through the electronic signal the coil It flows along the path of the spiral structure, and the electrical resistance value and the path length are not directly proportional, but the large inductance effect affects the signal transmission efficiency and quality, and therefore needs to be improved .

このことを鑑み、本発明は、上述の周知のプローブ構造を試験に使用する時の欠点を改善するために提供される。   In view of this, the present invention is provided to remedy the disadvantages of using the above-described known probe structures for testing.

本発明の主要な目的は、一種の一体成形導電プローブ及びその信号伝送方法を提供することにあり、それは、試験時に電子信号伝送に用いられるプローブを一体成形方式で製造し、大幅に製造、加工コストを低減し、並びに試験時の取り付け空間を縮減できるようにしたものとする。   The main object of the present invention is to provide a kind of integrally formed conductive probe and its signal transmission method, which manufactures a probe used for electronic signal transmission at the time of testing by an integral molding method, and greatly manufactures and processes it. It shall be possible to reduce the cost and reduce the installation space during the test.

本発明の別の目的は、最も簡単な手段でプローブで試験する時に発生する電気抵抗値を低減し、並びにインダクタンス効果を確実に除去できるようにすることにある。   Another object of the present invention is to reduce the electric resistance value generated when testing with a probe by the simplest means, and to reliably eliminate the inductance effect.

請求項1の発明は、一体成形導電プローブの信号伝送方法において、プローブが電子信号の伝送を必要とするインタフェース機構中に置かれ、該プローブが一体成形された弾性体とされて、複数の螺旋状を呈するコイルを具え、その二端に凸設された導接部が信号始端と信号終端に接触し、電子伝送プロセスが実行される時、該プローブのコイルが圧縮されて密集接触形態を呈し、該プローブが一体式構造形態を以て電子信号の通過に供され、これにより電気抵抗を低減し、更にインダクタンス効果を除去することを特徴とする、一体成形導電プローブの信号伝送方法としている。
請求項2の発明は、請求項1記載の一体成形導電プローブの信号伝送方法において、プローブの二端の導接部がコイルの円径が外端より小から大を呈するように巻かれてなるスピーカ口状の構造を呈し、並びに該導接部が微弾性を具備するものとされたことを特徴とする、一体成形導電プローブの信号伝送方法としている。
請求項3の発明は、請求項1又は請求項2記載の一体成形導電プローブの信号伝送方法において、導接部のコイルの構造が密集接触の形態とされるか、或いは弾性弛緩形態とされたことを特徴とする、一体成形導電プローブの信号伝送方法としている。
請求項4の発明は、請求項1又は請求項2記載の一体成形導電プローブの信号伝送方法において、プローブ中段の所定部分にコイル外径が大から小、小から大に変化する一つ或いは複数のバネ部が設けられ、精密型プローブの弾性不足の欠点を改善することを特徴とする、一体成形導電プローブの信号伝送方法としている。
請求項5の発明は、請求項4記載の一体成形導電プローブの信号伝送方法において、バネ部が密集接触の集結形態、或いは弾性弛緩形態とされたことを特徴とする、一体成形導電プローブの信号伝送方法としている。
請求項6の発明は、一体成形導電プローブにおいて、弾性体を包含し、該弾性体の二つの外端にコイル円径が小から大に変化し略スピーカ状形態を呈し並びに微弾性を有する導接部が形成され、この二つの導接部の間に弾性回復力を有する弾性部が形成さ、該弾性部の所定部分に、別にコイル外径が大から小に、更に小から大に変化するように、一つ或いは複数のバネ部が形成され、これにより一体成形により電子信号伝送に供されるプローブが完成し、大幅にプローブ製造コストが低減され、プローブ自身の弾性力が向上され、電気抵抗が低減され、インダクタンス効果が除去されたことを特徴とする、一体成形導電プローブとしている。
請求項7の発明は、請求項6記載の一体成形導電プローブにおいて、導接部のコイルが、密集接触形態とされるか、弾性を具えた弛緩状形態とされたことを特徴とする、一体成形導電プローブとしている。
請求項8の発明は、請求項6記載の一体成形導電プローブにおいて、バネ部が密集接触する集結形態とされるか、弾性を具えた弛緩状形態とされたことを特徴とする、一体成形導電プローブとしている。
According to a first aspect of the present invention, there is provided a signal transmission method for an integrally formed conductive probe, wherein the probe is placed in an interface mechanism that requires transmission of an electronic signal, and the probe is formed as an integrally molded elastic body, so that a plurality of spirals are formed. The coil of the probe is compressed and exhibits a close contact shape when the electronic transmission process is performed when the conductive connection portion protruding at the two ends contacts the signal start end and the signal end and the electronic transmission process is performed. The signal transmission method for an integrally formed conductive probe is characterized in that the probe is provided for the passage of an electronic signal in the form of an integral structure, thereby reducing the electrical resistance and further eliminating the inductance effect.
According to a second aspect of the present invention, in the signal transmission method for the integrally formed conductive probe according to the first aspect, the conductive connecting portions at the two ends of the probe are wound so that the circular diameter of the coil is smaller than that of the outer end. The signal transmission method of the integrally formed conductive probe is characterized in that it has a speaker mouth-like structure and the conductive contact portion has a slight elasticity.
According to a third aspect of the present invention, in the signal transmission method of the integrally formed conductive probe according to the first or second aspect, the structure of the coil of the conductive contact portion is in the form of close contact or in the form of elastic relaxation. This is a signal transmission method for an integrally formed conductive probe.
According to a fourth aspect of the present invention, in the signal transmission method for the integrally formed conductive probe according to the first or second aspect, one or a plurality of coil outer diameters change from large to small and from small to large in a predetermined portion of the middle stage of the probe. This is a signal transmission method for an integrally formed conductive probe, characterized in that the above-described spring portion is provided to improve the shortage of elasticity of the precision probe.
According to a fifth aspect of the present invention, there is provided a signal transmission method for an integrally formed conductive probe according to claim 4, wherein the spring portion is formed in a dense contact concentration form or an elastic relaxation form. The transmission method.
According to a sixth aspect of the present invention, there is provided an integrally formed conductive probe including an elastic body, wherein a coil circle diameter is changed from small to large at two outer ends of the elastic body to form a substantially speaker-like shape and to have a microelasticity. A contact portion is formed, and an elastic portion having an elastic recovery force is formed between the two conductive contact portions, and the coil outer diameter is changed from a large to a small, and further from a small to a large at a predetermined portion of the elastic portion. Thus, one or a plurality of spring portions are formed, thereby completing a probe for electronic signal transmission by integral molding, greatly reducing the probe manufacturing cost, and improving the elastic force of the probe itself, The integrally formed conductive probe is characterized in that the electrical resistance is reduced and the inductance effect is eliminated.
A seventh aspect of the present invention is the integrally formed conductive probe according to the sixth aspect, wherein the coil of the conductive contact portion is in a close contact form or in a relaxed form having elasticity. A molded conductive probe is used.
According to an eighth aspect of the present invention, in the integrally formed conductive probe according to the sixth aspect of the present invention, the integrally formed conductive film is characterized in that the spring portions are in a concentrated form in close contact with each other or in a relaxed form having elasticity. It is a probe.

本発明の一体成形導電プローブは、大幅にプローブ製造コストを減らし、並びにプローブ自身の弾性力を向上し、また、電気抵抗を低減し、インダクタンス効果を除去する。本発明は完全に伝統的なプローブが複数の部品で構成され、且つ使用時に電気抵抗とインダクタンス効果が比較的大きいか、或いは煩雑な電気めっき加工を必要とする問題を解決し、電気抵抗を減らし、インダクタンス効果を除去し、確実に産業技術を向上する。   The integrally formed conductive probe of the present invention greatly reduces probe manufacturing costs, improves the elasticity of the probe itself, reduces electrical resistance, and eliminates inductance effects. The present invention solves the problem that a completely traditional probe is composed of a plurality of parts and has a relatively large electric resistance and inductance effect when used, or requires complicated electroplating processing, and reduces the electric resistance. , Remove the inductance effect, and improve industrial technology reliably.

図4から図9に示されるように、本発明の一体成形導電プローブ及びその信号伝送方法によると、導電性を具えた金属線材を螺旋状に巻いてなる弾性体10を具え、該弾性体10の二端に導接部11、11’が一体に形成され、該二つの導接部11、11’の螺旋は円径が外端より小から大に変化し、一端にスピーカ状の接続部111が形成され、それが微弾力の機能を具えるか、或いはコイルが等径の構造とされ、各導接部11、11’を巻いて形成する時にコイルが密集接触する構造形態とされるか、或いは弾性を有する弛緩状の構造とされ、その弾性弛緩、或いは密集接触の構造変化は必要により決定される。次に、この二つの導接部11、11’の間に弾性回復力を有する弾性部12が形成され、該弾性部12は、バネ構造とされ、圧縮後に弾性回復力を発生する。   As shown in FIGS. 4 to 9, according to the integrally formed conductive probe and the signal transmission method thereof according to the present invention, the elastic body 10 is formed by spirally winding a metal wire rod having conductivity. Conductive portions 11, 11 'are integrally formed at the two ends, and the spiral of the two conductive portions 11, 11' changes in diameter from small to large from the outer end, and a speaker-like connecting portion at one end 111 is formed, and it has a function of fine elasticity, or the coil has an equal diameter structure, and the coil is in close contact with each other when it is formed by winding each of the conductive connecting portions 11 and 11 ′. Alternatively, the structure is a relaxed structure having elasticity, and the structural change of the elastic relaxation or dense contact is determined as necessary. Next, an elastic portion 12 having an elastic recovery force is formed between the two conductive contact portions 11 and 11 '. The elastic portion 12 has a spring structure and generates an elastic recovery force after compression.

上述のプローブ構造が電子信号の伝送に応用される時、図8に示されるように、プローブが電子信号の伝送を必要とするインタフェース機構、例えばチップ試験用プローブカード等の装置内に置かれ、プローブの二端の導接部11、11’がそれぞれ信号始端21(例えばプローブカードの基板の所定部分)、及び信号終端22(例えばIC基板背面に接合されたソルダバンプ)と接触する。電子信号伝送プロセスが実行される時、弾性体10全体のコイル構造が圧縮後に完全に密集した一体形態を呈し、ゆえに電子信号が迅速に通過し(図9参照)、確実に電気抵抗が低減され、インダクタンス効果を除去する効果が達成され、且つその信号終端22と接触する導接部11はコイル構造であり、該導接部11構造自身もまた微弾力特性を具備するため、ソルダバンプ等の構造部分と接触する時の圧力が緩和並びに軽減され、長時間の高温試験時にソルダバンプに対して形成される不良な影響を減らすことができる。   When the above-described probe structure is applied to electronic signal transmission, as shown in FIG. 8, the probe is placed in an interface mechanism that requires transmission of an electronic signal, such as a chip test probe card, The two connecting portions 11 and 11 'at the two ends of the probe come into contact with a signal start end 21 (for example, a predetermined portion of the probe card substrate) and a signal end point 22 (for example, a solder bump bonded to the back surface of the IC substrate). When the electronic signal transmission process is performed, the coil structure of the entire elastic body 10 has a completely dense integrated form after compression, and thus the electronic signal passes quickly (see FIG. 9), and the electrical resistance is reliably reduced. The effect of eliminating the inductance effect is achieved, and the conductive contact portion 11 that contacts the signal terminal 22 has a coil structure, and the conductive contact portion 11 structure itself also has a fine elasticity characteristic. The pressure at the time of contact with the part is relaxed and reduced, and the bad influence formed on the solder bumps during a long time high temperature test can be reduced.

更に、図10から図14に示されるように、本発明の実施例の構造変化は、使用の必要に応じて適度に改変され、即ち、プローブサイズが比較的大きい時、その弾性部12の提供する弾性回復力は必要を満たし、弾性部12構造は単一長形状とされ、構造上は改変されないが、プローブサイズを小さくし比較的精密で細小なものとする必要があり、その弾性部12の発生する弾性回復力が使用要求に不足する時は、弾性部12間に複数の連結部13、13’が設けられ、該連結部13、13’により微弾力の補助を発生し、プローブの弾性力不足の情況が防止される。いわゆる連結部13、13’はコイル外径が大から小さいに、更に小から大に変化する局部弾性構造体とされ、該連結部13はコイルが密集し接触する構造形態とされるか、或いは弛緩状の構造とされ、その弛緩或いは密集接触の変化は必要により決定され、導接部11、11’、弾性部12、或いは連結部13、13’のいずれも、その形成時の巻数の変化はプローブ使用の場合の圧縮後の総長さにより適宜増減弔し得される。   Further, as shown in FIGS. 10-14, the structural changes of the embodiments of the present invention are appropriately modified as needed for use, i.e. providing the elastic portion 12 when the probe size is relatively large. The elastic recovery force to be satisfied satisfies the need, and the structure of the elastic part 12 is a single long shape and is not modified in structure, but it is necessary to reduce the probe size to be relatively precise and small. When the elastic recovery force generated is insufficient for the usage requirement, a plurality of connecting portions 13 and 13 ′ are provided between the elastic portions 12, and the connecting portions 13 and 13 ′ generate subsistence of a slight elasticity to The situation of insufficient elasticity is prevented. The so-called connecting portions 13 and 13 ′ are local elastic structures in which the outer diameter of the coil changes from large to small and further from small to large, and the connecting portion 13 has a structure in which the coils are densely contacted, or It has a relaxed structure, and the change in relaxation or dense contact is determined as necessary, and the number of turns at the time of formation of any of the connecting parts 11, 11 ′, the elastic part 12, or the connecting parts 13, 13 ′ is changed. Can be appropriately increased or decreased depending on the total length after compression when a probe is used.

周知のプローブの組合せ断面図である。It is combination sectional drawing of a known probe. 周知の別のプローブの組合せ断面図である。It is a combination sectional view of another known probe. 周知のプローブが電子信号伝送を行う時のバネの状態表示図である。It is a state display figure of a spring when a known probe performs electronic signal transmission. 本発明の第1実施例の外観図である。It is an external view of 1st Example of this invention. 本発明の第1実施例の圧縮後の外観図である。It is an external view after compression of the 1st example of the present invention. 本発明の第1実施例から派生した第2実施例の外観図である。It is an external view of 2nd Example derived from 1st Example of this invention. 本発明の第3実施例の製品外観表示図である。It is a product external appearance display figure of 3rd Example of this invention. 本発明を実際にプローブカードに使用した実施例の断面図である。It is sectional drawing of the Example which actually used this invention for the probe card. 本発明の電子信号伝送時の状態表示図である。It is a state display figure at the time of electronic signal transmission of the present invention. 本発明の第4実施例の製品外観図である。It is a product external view of 4th Example of this invention. 本発明の第4実施例より派生した第5実施例の外観図である。It is an external view of 5th Example derived from 4th Example of this invention. 本発明の第5実施例の外観図である。It is an external view of 5th Example of this invention. 本発明の第6実施例の外観図である。It is an external view of 6th Example of this invention. 本発明の第6実施例の圧縮後の外観図である。It is an external view after compression of 6th Example of this invention.

符号の説明Explanation of symbols

1 線材 10 弾性体
11、11’ 導接部 111 接続部
12 弾性部 13、13’ 連結部
21 信号始端 22 信号終端
DESCRIPTION OF SYMBOLS 1 Wire 10 Elastic body 11, 11 'Conduction part 111 Connection part 12 Elastic part 13, 13' Connection part 21 Signal start 22 Signal termination

Claims (8)

一体成形導電プローブの信号伝送方法において、プローブが電子信号の伝送を必要とするインタフェース機構中に置かれ、該プローブが一体成形された弾性体とされて、複数の螺旋状を呈するコイルを具え、その二端に凸設された導接部が信号始端と信号終端に接触し、電子伝送プロセスが実行される時、該プローブのコイルが圧縮されて密集接触形態を呈し、該プローブが一体式構造形態を以て電子信号の通過に供され、これにより電気抵抗を低減し、更にインダクタンス効果を除去することを特徴とする、一体成形導電プローブの信号伝送方法。   In the signal transmission method of the integrally molded conductive probe, the probe is placed in an interface mechanism that requires transmission of an electronic signal, the probe is formed as an integrally molded elastic body, and includes a coil that has a plurality of spiral shapes, When the electronic transmission process is performed when the conductive projecting portions projecting at the two ends are in contact with the signal start end and the signal end, the probe coil is compressed to form a close contact form, and the probe is an integral structure. A signal transmission method for an integrally formed conductive probe, characterized in that it is used for the passage of an electronic signal with a form, thereby reducing the electrical resistance and further eliminating the inductance effect. 請求項1記載の一体成形導電プローブの信号伝送方法において、プローブの二端の導接部がコイルの円径が外端より小から大を呈するように巻かれてなるスピーカ口状の構造を呈し、並びに該導接部が微弾性を具備するものとされたことを特徴とする、一体成形導電プローブの信号伝送方法。   2. The signal transmission method for an integrally formed conductive probe according to claim 1, wherein a speaker mouth-like structure is formed in which the conductive connecting portions at the two ends of the probe are wound so that the circular diameter of the coil is smaller than that of the outer end. A signal transmission method for an integrally formed conductive probe, characterized in that the conductive contact portion has a slight elasticity. 請求項1又は請求項2記載の一体成形導電プローブの信号伝送方法において、導接部のコイルの構造が密集接触の形態とされるか、或いは弾性弛緩形態とされたことを特徴とする、一体成形導電プローブの信号伝送方法。   3. The signal transmission method for an integrally formed conductive probe according to claim 1 or 2, wherein the structure of the coil of the conductive portion is in the form of close contact or in the form of elastic relaxation. Signal transmission method of molded conductive probe. 請求項1又は請求項2記載の一体成形導電プローブの信号伝送方法において、プローブ中段の所定部分にコイル外径が大から小、小から大に変化する一つ或いは複数のバネ部が設けられ、精密型プローブの弾性不足の欠点を改善することを特徴とする、一体成形導電プローブの信号伝送方法。   In the signal transmission method of the integrally formed conductive probe according to claim 1 or 2, one or a plurality of spring portions in which the outer diameter of the coil changes from large to small and small to large are provided in a predetermined portion of the probe middle stage. A signal transmission method for an integrally formed conductive probe, characterized in that the drawback of lack of elasticity of a precision probe is improved. 請求項4記載の一体成形導電プローブの信号伝送方法において、バネ部が密集接触の集結形態、或いは弾性弛緩形態とされたことを特徴とする、一体成形導電プローブの信号伝送方法。   5. The signal transmission method for an integrally formed conductive probe according to claim 4, wherein the spring portion is in a concentrated contact gathering form or an elastic relaxation form. 一体成形導電プローブにおいて、弾性体を包含し、該弾性体の二つの外端にコイル円径が小から大に変化し略スピーカ状形態を呈し並びに微弾性を有する導接部が形成され、この二つの導接部の間に弾性回復力を有する弾性部が形成さ、該弾性部の所定部分に、別にコイル外径が大から小に、更に小から大に変化するように、一つ或いは複数のバネ部が形成され、これにより一体成形により電子信号伝送に供されるプローブが完成し、大幅にプローブ製造コストが低減され、プローブ自身の弾性力が向上され、電気抵抗が低減され、インダクタンス効果が除去されたことを特徴とする、一体成形導電プローブ。   The integrally formed conductive probe includes an elastic body, and the outer diameter of the elastic body changes from a small circle diameter to a large coil diameter to form a substantially speaker-like form, and a conductive portion having a slight elasticity is formed. An elastic part having an elastic recovery force is formed between the two conducting parts, and one or more of the coil outer diameter is changed from a large to a small and further from a small to a large in a predetermined part of the elastic part. A plurality of spring parts are formed, thereby completing a probe for electronic signal transmission by integral molding, greatly reducing the probe manufacturing cost, improving the elasticity of the probe itself, reducing the electrical resistance, and reducing the inductance An integrally formed conductive probe characterized in that the effect is removed. 請求項6記載の一体成形導電プローブにおいて、導接部のコイルが、密集接触形態とされるか、弾性を具えた弛緩状形態とされたことを特徴とする、一体成形導電プローブ。   7. The integrally formed conductive probe according to claim 6, wherein the coil of the conductive contact portion is in a close contact form or in a relaxed form having elasticity. 請求項6記載の一体成形導電プローブにおいて、バネ部が密集接触する集結形態とされるか、弾性を具えた弛緩状形態とされたことを特徴とする、一体成形導電プローブ。
7. The integrally formed conductive probe according to claim 6, wherein the spring part has a concentrated form in which the spring portions are in close contact with each other or a loosely shaped form having elasticity.
JP2005166852A 2005-06-07 2005-06-07 Integrally molded conductive probe and its signal transmission method Pending JP2006343130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166852A JP2006343130A (en) 2005-06-07 2005-06-07 Integrally molded conductive probe and its signal transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166852A JP2006343130A (en) 2005-06-07 2005-06-07 Integrally molded conductive probe and its signal transmission method

Publications (1)

Publication Number Publication Date
JP2006343130A true JP2006343130A (en) 2006-12-21

Family

ID=37640212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166852A Pending JP2006343130A (en) 2005-06-07 2005-06-07 Integrally molded conductive probe and its signal transmission method

Country Status (1)

Country Link
JP (1) JP2006343130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211378A (en) * 2013-04-19 2014-11-13 株式会社宮下スプリング製作所 Spring probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211378A (en) * 2013-04-19 2014-11-13 株式会社宮下スプリング製作所 Spring probe

Similar Documents

Publication Publication Date Title
US8610447B2 (en) Spring structure and test socket using thereof
JP3653131B2 (en) Conductive contact
US9435827B2 (en) Probe-connection-type pogo pin and manufacturing method thereof
KR101415722B1 (en) Contact probe and probe unit
KR100854267B1 (en) Fabrication method of pogo pin and test socket using the same
JP6335385B2 (en) Electrical connection terminal
KR102369430B1 (en) Coil electronic component and board having the same
JP2008180689A (en) Inspection probe device, and socket for inspection using the same
US20120105090A1 (en) Probe device for testing
JP4916719B2 (en) Contact probe and contact probe mounting structure
JP4669651B2 (en) Conductive contact
CN108417339B (en) Chip electronic component and board having the same
KR20160108934A (en) Coil component and and board for mounting the same
US20150061719A1 (en) Vertical probe card for micro-bump probing
KR20160092265A (en) Coil component and and board for mounting the same
KR102029491B1 (en) Coil component and and board for mounting the same
JP4167202B2 (en) Conductive contact
CN108428536B (en) Common mode filter
JP2004333459A (en) Contact probe, and semiconductor and electrical inspection device using the same
JPH09121007A (en) Conductive contact
JP2006343130A (en) Integrally molded conductive probe and its signal transmission method
KR20110093085A (en) Test socket
US20110086558A1 (en) Electrical contact with improved material and method manufacturing the same
US20060261831A1 (en) Integral probe and method of transmitting signal therethrough
TWI279545B (en) Method of signal transmission for integrally-formed conductor probe and product thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060823

A131 Notification of reasons for refusal

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422