JP2006341815A - Flight machine - Google Patents

Flight machine Download PDF

Info

Publication number
JP2006341815A
JP2006341815A JP2005171314A JP2005171314A JP2006341815A JP 2006341815 A JP2006341815 A JP 2006341815A JP 2005171314 A JP2005171314 A JP 2005171314A JP 2005171314 A JP2005171314 A JP 2005171314A JP 2006341815 A JP2006341815 A JP 2006341815A
Authority
JP
Japan
Prior art keywords
wing
flying machine
main
main body
fuselage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005171314A
Other languages
Japanese (ja)
Other versions
JP4534018B2 (en
Inventor
Hiroya Iwata
拡也 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005171314A priority Critical patent/JP4534018B2/en
Publication of JP2006341815A publication Critical patent/JP2006341815A/en
Application granted granted Critical
Publication of JP4534018B2 publication Critical patent/JP4534018B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flight machine having a structure and a principle realizing inexpensive design with high general purpose. <P>SOLUTION: The flight machine has a structure that in a light wing capable of slighting the weight in comparison to a body and the body, the body is joined to a lower side of the wing by a power joint at only one point on a line tightening a lift center on the wing and center of gravity. Even if upper and lower parts of the joined one point, i.e., the wing and the body have different characteristics, function of the flight machine is exhibited as a whole by adjustment of the power joint at the joined one point. Further, the center of gravity of the whole is positioned at a body side positioned at a lower part, thereby, stabilization of attitude is realized and the stabilization of the attitude is enabled by only controlling the position of the servo of the power joint. Since the flight machine with the structure is inexpensive because of a simple structure and design/development cost is also inexpensive, high convenience and economic property are realized when it is used in an industry. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、翼と本体である胴体を有し、空中を飛行する機械の構造と設計法、標準化規格化法とその飛行機械を利用した物流システム、交通機関に関するものである。   The present invention relates to a structure and design method of a machine that has a wing and a fuselage that is a main body, and that flies in the air, a standardization method, a logistics system using the flying machine, and a transportation system.

交通機関の公共交通機関からパーソナル交通機関への移行はマイカーの普及として、21世紀に入り国土の狭い日本においても郊外型小売業の展開など住環境構造、社会構造を大きく変化させる要因となっている。しかし、交通機関の公共交通機関からパーソナル交通機関への移行は、まだ陸上交通でのみしか実現していない。これは技術的問題によるもので、十分な技術が整えば、いずれ現在公共交通機関しか存在しない空中交通機関もパーソナル交通機関への移行が確実となる。その技術的問題の解決技術として、特願2003−374911号を出願した。   The transition from public transportation to personal transportation has become a factor in drastically changing the living environment structure and social structure, such as the development of suburban retailing, even in Japan, where the land is small, as the spread of private cars begins in the 21st century. Yes. However, the transition from public transportation to personal transportation has been realized only by land transportation. This is due to a technical problem, and if sufficient technology is in place, air transportation, which currently only has public transportation, will surely shift to personal transportation. As a technique for solving the technical problem, Japanese Patent Application No. 2003-374911 was filed.

上記のような先行技術(特許文献1)の他、特開平07−040897号公報(特許文献2)および特開平09−1099999号公報(特許文献3)には、軽量な翼を持つ航空機が開示されている。しかしながら、主翼は胴体に固定されており、動力関節による制御ができない構造になっているため尾翼が存在している。また、下記に示すような非特許文献も存在する。
特願2003−374911号 特開平07−040897号公報 特開平09−1099999号公報 岩田拡也 著 「空間移動ロボットに関する研究(第1報)」計測自動制御学会 システムインテグレーション部門講演会論文集 2004年 岩田拡也 著 「空間移動ロボットに関する研究(第2報)」日本機械学会 ロボットメカトロニクス部門講演会論文集 2005年
In addition to the above-described prior art (Patent Document 1), Japanese Patent Application Laid-Open No. 07-040897 (Patent Document 2) and Japanese Patent Application Laid-Open No. 09-1099999 (Patent Document 3) disclose aircraft having lightweight wings. Has been. However, since the main wing is fixed to the fuselage and cannot be controlled by a power joint, a tail wing exists. There are also non-patent documents as shown below.
Japanese Patent Application No. 2003-374911 Japanese Patent Application Laid-Open No. 07-040897 JP 09-1099999 A Hiroya Iwata "Study on space mobile robot (1st report)" Proceedings of the Society of Instrument and Control Engineers System Integration Division 2004 Hiroya Iwata "Study on space mobile robot (2nd report)" The Japan Society of Mechanical Engineers Robot Mechatronics Division Proceedings 2005

陸上交通機関において、公共交通機関である鉄道とパーソナル交通機関である自動車が、現代では技術的にかなりかけ離れた物となってしまったのと同様、空中交通機関においても、現在の公共交通機関である航空機と次世代のパーソナル交通機関である前記特願2003−374911号に記載されている空間移動体では技術的に大きくかけ離れたものとなる。   Just as land transportation and railways and personal transportation vehicles have become technically quite different from each other today, aerial transportation is the current public transportation. The space mobile body described in Japanese Patent Application No. 2003-374911, which is a next-generation personal transportation system, is far from the technical point of view.

上記特願2003−374911号に記載されている通り、その技術の一番の特徴は広大な土地を必要とする空港や滑走路を使用せず空中において離発着を行う点である。しかし空中離発着を行うためには、空間移動体である飛行機械にも従来にない性能が要求される。   As described in the above Japanese Patent Application No. 2003-374911, the best feature of the technology is that it takes off and landing in the air without using an airport or runway that requires vast land. However, in order to perform take-off and landing in the air, unprecedented performance is also required for a flying machine that is a space moving body.

従来技術である航空機を空中離発着システムへ応用する際の問題点は、固定翼機の場合では、高い失速速度、安定化のための尾翼などの無駄な構造、高額な開発費を必要とする1形態単位の設計開発などが挙げられる。また、回転翼機の場合でも、回転するメインローターが空中離発着設備に接触するリスク、ローター騒音、尾部ローターなどの無駄な構造、高額な開発費を必要とする1形態単位の設計開発などが挙げられる。   The problems with applying conventional aircraft to airborne landing and landing systems are that, in the case of fixed wing aircraft, high stall speed, useless structures such as tails for stabilization, and high development costs are required.1 For example, design development of morphological units. Even in the case of rotary wing aircraft, there are risks such as the risk of the rotating main rotor coming into contact with the air takeoff and landing equipment, rotor noise, useless structures such as the tail rotor, design development of one form unit that requires expensive development costs, etc. It is done.

これらの問題で航空機は空中離発着が可能にする交通機関への発達に進展せずにいる。特に、高額な開発費を必要とする1形態単位の設計開発の問題は、開発ノウハウの積み上げに多額の費用と年月を要し、ノウハウを有する企業の独占につながるなど本分野の発展に大きな問題となっている。   Because of these problems, the aircraft has not progressed to the development of a transportation system that can take off and land in the air. In particular, the problem of design / development in units of one form, which requires high development costs, requires a large amount of money and time to accumulate development know-how, leading to the monopoly of companies with know-how, and this is a major development for this field. It is a problem.

したがって本発明はこの問題を解決するため、翼と本体を別々に設計製作してもある種の接合を行えば機能する飛行機械を発案したものでもある。
従来の航空機では翼と本体である胴体は一体化されており、その重心位置の決定は極めて重要であり、またその接合境界も流体力学上重要な要素であることから、翼と本体を同時に総合的に設計開発することが常識であった。
Therefore, in order to solve this problem, the present invention has been devised as a flying machine that can function if a certain type of joining is performed even if the wing and the main body are separately designed and manufactured.
In a conventional aircraft, the wing and the fuselage, which are the main body, are integrated, the determination of the center of gravity is extremely important, and the joint boundary is also an important element in hydrodynamics. It was common sense to design and develop in an effort.

これを別々に設計開発することを可能にするのが、本発明の目的の1つである。これにより既に開発された翼や他社の開発した翼を使用することが可能となり高額な開発費が不要となる。   It is one of the objects of the present invention to make it possible to design and develop these separately. This makes it possible to use already developed wings or wings developed by other companies, eliminating the need for expensive development costs.

また、公共交通機関である従来の航空機は大型でコスト削減のため大気密度の低い上空を飛行するため、陸上交通機関のサスペンションに相当するものがないまま進化してきたが、前記特願2003−374911号に記載されているパーソナル交通機関として利用する場合、対気密度が高く低速で飛行するため外界からの外乱やショックを吸収し緩和する必要が生じこれが大きな技術課題となる。   In addition, conventional aircraft that are public transportation systems are large and fly over low air density in order to reduce costs, and thus have evolved without the equivalent of suspensions for land transportation. However, the Japanese Patent Application No. 2003-374911 When it is used as a personal transportation system described in the issue, it is necessary to absorb and mitigate disturbances and shocks from the outside world because it has high air density and travels at low speed, which is a major technical problem.

本発明は、翼と本体を1点の動力関節と伸縮軸で接合する構造の飛行機械を考案することで、外界からの外乱やショックの吸収緩和を可能にし、ひいては翼と本体を別々に設計製作してもある種の接合を行えば機能するシステムを発案したものである。このための手段として、翼の揚力中心と重心を結ぶ線上の1点のみで本体である胴体と接合する接合法を用い、かつその接合に動力関節と伸縮軸を用いることにより翼と本体のあらゆる組み合わせに対する調整を自動で行う機能を有した構造を発案した。   The present invention devised a flying machine with a structure in which the wing and the main body are joined by a single power joint and telescopic shaft, thereby making it possible to mitigate external disturbances and shock absorption, and the wing and the main body are designed separately. Even if it was manufactured, it was invented a system that would function if some kind of bonding was performed. As a means for this purpose, a joining method in which the body, which is the main body, is joined at only one point on the line connecting the center of lift and the center of gravity of the wing, and a power joint and a telescopic shaft are used for the joining, so that any wing and body can be joined. A structure with the function of automatically adjusting the combination was proposed.

本発明に係る飛行機械についてより具体的には、主翼と本体である胴体を1点の動力関節と伸縮軸で結合し、該結合部でサスペンションを構成し、飛行中における外界からのショックを前記サスペンションで吸収することを特徴とする。   More specifically for the flying machine according to the present invention, the main wing and the body, which is the main body, are coupled by a single power joint and a telescopic shaft, a suspension is formed by the coupling portion, and the shock from the outside during flight is described above. Absorbed by suspension.

本発明に係る他の飛行機械は、本体重量の50%以下の軽量翼と本体である胴体を1点の動力関節と伸縮軸で結合し、該結合部でサスペンションを構成し、飛行中における外界からのショックを前記サスペンションで吸収することを特徴とする。   Another flight machine according to the present invention combines a lightweight wing having a body weight of 50% or less and a fuselage, which is a main body, with a single power joint and a telescopic shaft, and a suspension is formed by the connecting portion, so that the outside world in flight The shock is absorbed by the suspension.

本発明に係る他の飛行機械は、本体重量の50%以下の軽量翼と本体である胴体を、軽量翼の重心と揚力中心を結ぶ線上の1点の動力関節と伸縮軸で結合し、該結合部でサスペンションを構成し、空中を飛行中に外界からのショックを前記サスペンションで吸収することを特徴とする飛行機械。   In another flying machine according to the present invention, a lightweight wing having a weight of 50% or less of a main body weight and a fuselage that is a main body are coupled by a power joint and a telescopic shaft at one point on a line connecting the center of gravity of the lightweight wing and the center of lift. A flying machine characterized in that a suspension is constituted by a coupling portion, and a shock from the outside is absorbed by the suspension during flight in the air.

本発明に係る他の飛行機械は、本体重量の50%以下の軽量翼と本体である胴体を、軽量翼の重心と揚力中心を結ぶ線上の1点の動力駆動3自由度関節と伸縮軸で結合し、該結合部でサスペンションを構成し、飛行中に外界からのショックを前記サスペンションで吸収することを特徴とする飛行機械。   Another flying machine according to the present invention has a lightweight wing of 50% or less of the main body weight and a fuselage which is a main body with a power-driven three-degree-of-freedom joint and a telescopic shaft on a line connecting the center of gravity and the lift center of the lightweight wing. A flying machine characterized in that a suspension is constituted by the coupling portion and a shock from the outside is absorbed by the suspension during flight.

本発明に係る他の飛行機械は、前記飛行機械において、前記主翼と胴体の結合部で分離可能とし、前記主翼を他の胴体に、または前記胴体を他の主翼に選択的に用いることを特徴とする飛行機械。   Another flying machine according to the present invention is characterized in that, in the flying machine, the main wing can be separated at a connecting portion of the main wing and the fuselage, and the main wing is selectively used as another fuselage or the fuselage is selectively used as another main wing. A flying machine.

本発明に係る他の飛行機械は、前記飛行機械において、前記主翼と胴体の結合部を複数の主翼と複数の胴体で共通規格の構造とし、各主翼と各胴体を任意に選択結合可能としたことを特徴とする請求項5記載の飛行機械。   Another flying machine according to the present invention is such that, in the flying machine, a joint part of the main wing and the fuselage has a structure of a common standard for the plurality of main wings and the plurality of fuselage, and the main wings and the fuselage can be arbitrarily selectively coupled. The flying machine according to claim 5.

本発明に係る他の飛行機械は、前記飛行機械において、前記主翼を折り畳み翼としたことを特徴とする。   Another flying machine according to the present invention is characterized in that, in the flying machine, the main wing is a folded wing.

本発明に係る他の飛行機械は、前記飛行機械において、翼に燃料タンクを設けず、他の構造体に燃料タンクを設けたことを特徴とする。   Another flying machine according to the present invention is characterized in that, in the flying machine, a fuel tank is not provided in a wing and a fuel tank is provided in another structure.

本発明に係る他の飛行機械は、前記飛行機械において、前記飛行機械を物流システムまたは交通機関に用いることを特徴とする。   Another flying machine according to the present invention is characterized in that, in the flying machine, the flying machine is used for a distribution system or a transportation system.

本発明により、自動車のサスペンションと同様、空中で作用するサスペンションを装備した飛行機械が実現するため、低空、低速で安定に乗り心地のよい飛行機械を提供することが可能となる。   According to the present invention, a flying machine equipped with a suspension that operates in the air as well as a suspension of an automobile is realized. Therefore, it is possible to provide a flying machine that is stable at low speed, low speed, and comfortable to ride.

また、翼と本体を別々に設計開発が可能となるため、既に風洞実験や飛行特性が明らかな翼を使用して飛行機械の設計開発が可能なり、風洞実験や実際の飛行試験にかかる多額の開発費を不要とする効果がある。これは製造業の分担によるコスト削減効果と翼と本体の組み合わせの多様化による多品種化の市場効果が大きくなる。   In addition, since the wing and the main body can be designed and developed separately, it is possible to design and develop a flying machine using wings that have already been clearly identified with wind tunnel experiments and flight characteristics. This has the effect of eliminating development costs. This increases the cost reduction effect due to the sharing of the manufacturing industry and the market effect of multi-variety due to the diversification of combinations of wings and main bodies.

更に、翼に燃料タンクなどの構造を設けることがないので翼が軽量化し、安価で構造の単純な翼が使用可能であり、また折畳翼の使用により地上収納時のスペース効率が格段に高まる効果がある。   Furthermore, since the wings are not provided with a fuel tank or the like, the wings are lighter and can be used at low cost and with simple structures. The use of folding wings greatly increases the space efficiency during storage on the ground. effective.

翼と本体は1点でのみ接合され動力の燃料タンクが本体側にあるため、燃料の減少に伴う重心位置の変化が翼に影響しない、または動力関節の調整により自動的に調整が可能である利点が生じる。   Since the wing and the main body are joined at only one point and the power fuel tank is on the main body side, the change in the center of gravity due to the decrease in fuel does not affect the wing, or it can be adjusted automatically by adjusting the power joint Benefits arise.

動力関節による翼の制御による操舵により翼のエルロンやフラップなどの機構を省略し軽量な折畳翼とすることが可能となる効果もある。   Steering by control of the wing by the power joint also has an effect that the mechanism such as the aileron and the flap of the wing can be omitted and a lightweight folding wing can be obtained.

推力を発生する動力の搭載位置は自由であるが、特に本体に搭載する場合重心位置や推力線の多少のずれは動力関節の動作により調整が可能であることから著しく設計自由度を上げる効果がある。   The mounting position of the power generating the thrust is free, but especially when mounted on the main body, the position of the center of gravity and the slight deviation of the thrust line can be adjusted by the operation of the power joint, which has the effect of significantly increasing the design freedom. is there.

飛行機械の機体を翼と本体に分割し、重量の多くを本体が占めるよう翼から燃料タンクなどの装備を本体に移し軽量化すると同時に、翼の重心と揚力中心を結ぶ線上の一点のみにおいて3自由度の動力関節と伸縮軸により本体と接合することにより、空中で作用するサスペンションを形成する構造を持つ飛行機械を、別々に設計された翼と本体を組み合わせることにより安価で迅速な製作が可能となる。   The aircraft body of the flying machine is divided into a wing and a main body, and equipment such as a fuel tank is transferred from the wing to the main body so that the main body occupies much of the weight, and at the same time, only at one point on the line connecting the center of gravity of the wing and the center of lift. By joining the main body with a power joint and a telescopic shaft with a degree of freedom, a flying machine with a structure that forms a suspension that works in the air can be manufactured inexpensively and quickly by combining separately designed wings and the main body. It becomes.

従来の航空機の例を図1に示す。図1は最も普及している低翼機の模式図であり、多くの場合燃料タンクを有しかつ面積の多い翼付近に重心が位置し、低重心で安定している構造である。図2は高翼機の模式図であり、翼の位置が高くなったことにより重心位置も高くなっている。図3では更に翼の位置を高くし、超高翼機の状態を示している。これだけでは図2と同様重心位置が高く不安定である。   An example of a conventional aircraft is shown in FIG. Fig. 1 is a schematic diagram of the most popular low-wing aircraft. In many cases, it has a fuel tank and has a center of gravity located near the wing with a large area and is stable at a low center of gravity. FIG. 2 is a schematic diagram of a high-wing aircraft, and the position of the center of gravity is also increased due to the increased position of the wing. In FIG. 3, the position of the wing is further increased to show the state of the ultra-high wing aircraft. With this alone, the center of gravity is high and unstable as in FIG.

このため図4のように燃料タンクを本体に格納するなど軽量化した翼1で重心位置を低い位置に維持させる。従来のこれらの技術については、特開平07−040897号公報および特開平09−109999等に軽量な翼を持つ航空機の発明として開示されている。図4では本体と翼を結ぶ構造体が垂直尾翼の役割を果たすために、垂直尾翼が不要となる。   For this reason, as shown in FIG. 4, the center of gravity is maintained at a low position by the blade 1 which is lightened such as by storing the fuel tank in the main body. These conventional techniques are disclosed as inventions of aircraft having lightweight wings in Japanese Patent Application Laid-Open No. 07-040897 and Japanese Patent Application Laid-Open No. 09-109999. In FIG. 4, the structure connecting the main body and the wing plays the role of a vertical wing, so that the vertical wing is not required.

更に図5のように軽量翼を動かす動力関節を、翼と本体を接合する1点において用いると、翼の迎角が動力関節2によって制御されるため、水平尾翼が不要となる。また動力関節2はロール方向、ピッチ方向、ヨー方向の3軸の制御が可能であるため、ピッチ制御用の水平尾翼は前述の通り不要となり本体に付加すべき空気力学的装置は一切排除され、本体の設計自由度が著しく向上する。したがって本願発明はこのような考え方により、基本的に図5に示す態様を採用する。   Further, when the power joint that moves the lightweight wing as shown in FIG. 5 is used at one point where the wing and the main body are joined, the angle of attack of the wing is controlled by the power joint 2, so that the horizontal tail is not required. Since the power joint 2 can control three axes in the roll direction, the pitch direction, and the yaw direction, the horizontal tail for pitch control is unnecessary as described above, and any aerodynamic device to be added to the main body is eliminated. The design freedom of the main body is remarkably improved. Therefore, the present invention basically adopts the mode shown in FIG. 5 based on such a concept.

次に、外界からの外乱及びショックを吸収緩和する機構について述べる。この技術が最も発達している自動車を例にとると、図6に示すように、外界からの外乱及びショックを吸収緩和する機構はサスペンションが主にその役割を担っている。陸上の2次元平面を移動する自動車の場合、外界からの外乱及びショックは、並進回転の合計6軸のうち、上下並進軸、ピッチ軸、ロール軸の3自由度に大きく影響し、それをアームとバネとダンパーで構成されるサスペンション構造で吸収緩和する。   Next, a mechanism for absorbing and mitigating external disturbances and shocks will be described. Taking an automobile in which this technology is most developed as an example, as shown in FIG. 6, a suspension mainly plays a role in a mechanism for absorbing and mitigating external disturbances and shocks. In the case of an automobile that moves on a two-dimensional plane on land, disturbances and shocks from the outside world greatly affect the three degrees of freedom of the vertical translation axis, pitch axis, and roll axis out of the total six axes of translational rotation. Absorbs and relaxes with a suspension structure consisting of a spring and a damper.

これに対して空中という3次元空間を移動する飛行機械の場合は、外界からの外乱及びショックは、並進回転の合計6軸全ての軸に印加される。航空機の場合も前記自動車と同様に大部分の外界からの外乱を受ける主翼からのショックをバネとダンパーで、例えば図7のように吸収緩和するサスペンションを採用したとすると、尾翼をもちいた姿勢制御動作まで吸収緩和されてしまう。このことからわかるように、従来の航空機では通常のサスペンション構造の導入は極めて困難であった。   On the other hand, in the case of a flying machine that moves in a three-dimensional space in the air, external disturbances and shocks are applied to all six axes of translational rotation. In the case of an aircraft, if a suspension that absorbs and relaxes shocks from the main wing that receives disturbances from the outside world with springs and dampers, as in the case of the automobile, for example, as shown in FIG. 7, the attitude control using the tail is used. Absorption is eased until operation. As can be seen from the above, it has been extremely difficult to introduce a normal suspension structure in a conventional aircraft.

これに対して、前記図5に示すような構造の飛行機械であれば、これに例えば図8のように伸縮軸3を追加することで並進と回転の各3軸で合計6軸全ての軸方向からの外乱を吸収緩和するサスペンションが完成する。図8にはこの飛行機械に外乱4が生じたときの合成運動を、ロール運動と上下並進運動に分解し、それぞれ動力関節と伸縮軸で吸収緩和する様子を示した。   On the other hand, if the flying machine has the structure as shown in FIG. 5, for example, the telescopic shaft 3 is added to the flying machine as shown in FIG. A suspension that absorbs and reduces disturbance from the direction is completed. FIG. 8 shows how the combined motion when disturbance 4 occurs in this flying machine is broken down into roll motion and vertical translation motion, and absorbed and relaxed by the power joint and the telescopic shaft, respectively.

図9は、動力関節により翼と本体が1点で接合されることを特徴とする本発明の実施例であり、実際に試作した飛行機械の概略図である。1は、前述の通り飛行機械の揚力を発生するための折畳式軽量翼である。2は、本発明の特徴である飛行機械が姿勢を保つために折畳式軽量翼を制御する動力関節を示している。5は、空力的にロール姿勢制御を行うためのエルロンである。3は折畳式軽量翼と本体を連結する伸縮軸であるスイングロッド(Swing rod)を示しており、6は伸縮軸の伸縮を制御するアクチュエータと力センサを示しており、7は噴流式のエンジンを示している。実証実験ではこのエンジンにターボジェットエンジンを用いているが、電動ファンでも、圧縮空気タービンでも本システムは実現可能である。8は離発着用の車輪である。   FIG. 9 is an example of the present invention characterized in that the wing and the main body are joined at a single point by a power joint, and is a schematic diagram of an actually manufactured flying machine. Reference numeral 1 denotes a folding lightweight wing for generating lift of the flying machine as described above. Reference numeral 2 denotes a power joint that controls the folding lightweight wing in order to maintain the posture of the flying machine that is a feature of the present invention. Reference numeral 5 denotes an aileron for performing aerodynamic roll posture control. Reference numeral 3 denotes a swing rod that is a telescopic shaft for connecting the folding lightweight wing and the main body, 6 denotes an actuator and a force sensor for controlling expansion and contraction of the telescopic shaft, and 7 denotes a jet type. Shows the engine. In the demonstration experiment, a turbojet engine is used for this engine, but this system can be realized with an electric fan or a compressed air turbine. 8 is a wheel for taking off.

図10は、本発明の実施例として実際に試作した飛行機械の内部構造の説明図である。本発明の特徴である飛行機械が姿勢保持や操舵のために折畳式軽量翼を制御する動力関節2は、本実施例では精密な角度検出が可能なロータリエンコーダを搭載した電動サーボとなっており、それぞれ9、10の位置に搭載されている。折畳式軽量翼1と伸縮軸3との接点に折畳式軽量翼1のロール角とピッチ角を検出する角速度センサ(ジャイロセンサ)と3軸加速度センサ搭載したセンサユニット11があり、その11からの情報をもとに翼と本体の姿勢制御を電子制御により行うマイクロコンピュータユニット12が図10に示されている。12は各種センサからの情報をもとに飛行機械の姿勢制御に関する信号処理を行う回路とプログラム格納型マイクロプロセッサ、出力ドライバ回路、遠隔指令用受信機、受信信号処理回路から構成されている。13はバッテリで実施例では48Vで120Wの2軸制御用モータを動作させている。14はターボジェットエンジン用燃料タンクで、7に示した2基のエンジン用に独立した2つのタンクを装備している。15は、自律制御動作を行うための位置制御用RTK-GPS受信機、無線通信によるマンマシンインターフェイスを処理するマイクロプロセッサである。   FIG. 10 is an explanatory diagram of the internal structure of a flying machine actually produced as an example of the present invention. In this embodiment, the power joint 2 that controls the folding lightweight wing for posture maintenance and steering is a motorized servo equipped with a rotary encoder capable of precise angle detection. Are mounted at positions 9, 10 respectively. There is an angular velocity sensor (gyro sensor) for detecting the roll angle and pitch angle of the folding lightweight blade 1 and a sensor unit 11 equipped with a three-axis acceleration sensor at the contact point between the folding lightweight blade 1 and the telescopic shaft 3. FIG. 10 shows a microcomputer unit 12 for performing attitude control of the wing and the main body by electronic control based on the information from the above. Reference numeral 12 includes a circuit for performing signal processing relating to attitude control of the flying machine based on information from various sensors, a program storage type microprocessor, an output driver circuit, a remote command receiver, and a received signal processing circuit. Reference numeral 13 denotes a battery that operates a two-axis control motor of 48 W and 120 W in the embodiment. Reference numeral 14 denotes a turbojet engine fuel tank, which is equipped with two independent tanks for the two engines shown in FIG. Reference numeral 15 denotes an RTK-GPS receiver for position control for performing an autonomous control operation, and a microprocessor for processing a man-machine interface by wireless communication.

図11は、図9、10の1に示す折畳式軽量翼の特徴である折畳機構の説明である。折畳式軽量翼は、16の炭素繊維複合材(CFRP)でできた骨格と17に高張力合成繊維でできた表皮材によって構成される。折り畳むことが可能なため、地上での保管、運搬、メンテナンスが容易で安価な利点がある。また、本体と動力関節で接続する構造を持つため、本体と翼が分離した構造であり、翼と本体との境界層による流体の乱れがなく、重心のある翼の中央付近で最大揚力を発生する利点がある。   FIG. 11 is an illustration of a folding mechanism that is a feature of the folding lightweight wing shown in 1 of FIGS. The foldable lightweight wing is composed of a skeleton made of 16 carbon fiber composites (CFRP) and a skin material made of 17 high tensile synthetic fibers. Since it can be folded, it has the advantage of being inexpensive and easy to store, transport and maintain on the ground. In addition, the main body and the wing are separated because the main body and the power joint are connected, so there is no fluid disturbance due to the boundary layer between the wing and the main body, and maximum lift is generated near the center of the wing with the center of gravity. There are advantages to doing.

翼を含めて機体と称する従来型航空機では、翼の重量が重く翼面積を大きく採ると重心が翼近傍に位置するようになるが、本実施例の図11のような翼であると翼面荷重を軽減することが可能となり失速速度が大幅に低減する。また、翼の迎角を変化させるために本体の姿勢を変化させる必要がない利点と、翼の中央に本体がないため最大揚力を発生する中心がもっとも遅い速度で失速する利点がある。   In a conventional aircraft called a fuselage including a wing, if the weight of the wing is heavy and a large wing area is taken, the center of gravity will be positioned near the wing. However, if the wing is as shown in FIG. The load can be reduced, and the stall speed is greatly reduced. In addition, there is an advantage that the posture of the main body does not need to be changed in order to change the angle of attack of the wing, and there is an advantage that the center that generates the maximum lift is stalled at the slowest speed because there is no main body at the center of the wing.

翼のロール制御は流体力学的動作を用いない重心の位置制御による飛行安定制御を行う。図10に示すように、飛行機械の姿勢制御用2軸関節2の駆動源であるロール制御用サーボモータ9は、翼と本体を結合するスイングロッドの翼側の根元に取り付けられ、その動力は一段減速歯車を介してスイングロッドに伝えられる。センサとしては、モータ軸にロータリエンコーダ、レートジャイロが存在する。   The wing roll control performs flight stability control by controlling the position of the center of gravity without using hydrodynamic operation. As shown in FIG. 10, a servo motor 9 for roll control, which is a drive source for the biaxial joint 2 for attitude control of a flying machine, is attached to the root of the wing side of the swing rod that joins the wing and the main body, and its power is one step. It is transmitted to the swing rod through the reduction gear. As sensors, there are a rotary encoder and a rate gyro on the motor shaft.

図12は、折畳式軽量翼を本体が動力関節により姿勢制御を行うメカニズムをロール軸についてモデル化したものである。基本的には振子の運動方程式に振子の支点が大きな空気抵抗を持つ物体により移動することを考慮することとなる。図12では飛行体が外乱Tzを受け水平面とθの角度で姿勢が傾き、その姿勢を修正するためにサーボモータが働いた場合を示している。 FIG. 12 shows a model of a roll shaft that is a mechanism for controlling the posture of a folding lightweight wing using a power joint. Basically, it is considered that the pendulum fulcrum is moved by an object having a large air resistance in the motion equation of the pendulum. FIG. 12 shows a case where the flying object receives a disturbance T z and its attitude is inclined at an angle θ 1 with respect to the horizontal plane, and the servo motor is operated to correct the attitude.

このロール姿勢制御モデルにおいて、機体のロール方向を反時計回りが正となるように方向を定めたときの運動方程式は、図12及び表1の記号を用いて、[数式1][数式2]のようになる。表1には数式の各物理量の実施例における実際の値を示す。

Figure 2006341815
・・・・[数式1]
Figure 2006341815
・・・・[数式2] In this roll attitude control model, the equation of motion when the roll direction of the airframe is determined so that the counterclockwise direction is positive is shown in [Formula 1] and [Formula 2] using the symbols in FIG. become that way. Table 1 shows actual values in the examples of the physical quantities of the mathematical formula.

Figure 2006341815
... [Formula 1]
Figure 2006341815
... [Formula 2]

Figure 2006341815
Figure 2006341815

姿勢制御中の機体は翼がほぼ水平でswing rodが垂直に直立した状態となる。実際の機体の傾きは、表1に示した翼と本体の慣性モーメント J1, J2の比較によりθ1で近似できる。また実際の外乱Tzは、通常の場合平均風速2〜5m/s程度とシステムに対して相対的に小さい。このとき、θ1は0近傍の値しかとらないため、θ1=0, sinθ11, cosθ1=1 とおくことにより線形化することが可能となる。そこで、線形制御理論におけるシステム表現をすると、[数式3]のようになる。 The aircraft under attitude control is in a state where the wings are almost horizontal and the swing rod is vertically upright. The actual inclination of the aircraft can be approximated by θ 1 by comparing the inertia moments J 1 and J 2 of the wing and the main body shown in Table 1. Further, the actual disturbance T z is usually relatively small with respect to the system, with an average wind speed of about 2 to 5 m / s. At this time, since θ 1 takes only a value near 0, linearization can be achieved by setting θ 1 = 0, sin θ 1 = θ 1 , and cos θ 1 = 1. Therefore, the system expression in the linear control theory is expressed as [Formula 3].

Figure 2006341815
・・・・[数式3]
但し、
Figure 2006341815

要素a1a3, b1, b2 は以下のように求められる。
Figure 2006341815
... [Formula 3]
However,
Figure 2006341815

Elements a1 to a3, b1, and b2 are obtained as follows.

運動方程式[数式1、2]において、次の[数式4]のように表すことができる。

Figure 2006341815
・・・・[数式4]
但し、
Figure 2006341815
In the equation of motion [Equations 1 and 2], it can be expressed as [Equation 4] below.
Figure 2006341815
.... [Formula 4]
However,
Figure 2006341815

翼の空気抗力が非線形なためθ12=0 の近似により線形制御を行うと、数式4は次の[数式5]に変形できる。

Figure 2006341815
・・・・[数式5]
Figure 2006341815
Figure 2006341815
Since the air drag force of the wing is non-linear, if linear control is performed by approximation of θ 1 = θ 2 = 0, Equation 4 can be transformed into the following [Equation 5].
Figure 2006341815
.... [Formula 5]
Figure 2006341815
Figure 2006341815

以上のような線形近似を用いると本システムは可制御であり、4つの状態変数が全てセンシングできるため、状態フィードバックによって安定化することが可能となる。   When the linear approximation as described above is used, the system is controllable, and all four state variables can be sensed, so that it can be stabilized by state feedback.

実際に前記のような飛行機械を試作して初めて分かったことであるが、動力関節のサーボモータをエンコーダによる位置制御により動作する設計としておくと本体の重量により自動的に翼が水平を保ち、かつ回転軸方向のバネ&ダンパーの機能も受け持つ。これは本体重量と比較して翼の重量が小さいことと動力関節の位置制御の2点により実現した本発明の特長である。   Actually, it was discovered for the first time after actually making a prototype of such a flying machine, but if the servo motor of the power joint was designed to operate by position control with an encoder, the wings automatically kept horizontal due to the weight of the main body, It also functions as a spring and damper in the direction of the rotation axis. This is a feature of the present invention realized by two points, that is, the weight of the blade is smaller than the weight of the main body and the position control of the power joint.

従来の航空機の設計とは異なり、本発明の飛行機械の設計は、翼と本体を別々に設計することが可能である。本体の推進用エンジンの出力を一定とした場合、翼の性能により飛行機械の特性が決定される。本実施例の場合、図9、10のように2基のターボジェットエンジンの推力を、静止推力において合計400Nとした。以下の実施例ではこの出力から安全マージンを取った推力値が計算に採用されている。この推力の速度依存性と折畳式軽量翼の揚力抗力比の速度依存性から必要推力曲線が算出される。
計算で使用する以下の3種類の折畳式軽量翼を用いた結果を示す。
F195型 (運用速度範囲24-60km/h)
US147型 (運用速度範囲28-80km/h)
EXT160型 (運用速度範囲30-110km/h)
Unlike conventional aircraft designs, the flight machine design of the present invention allows the wing and body to be designed separately. When the output of the main propulsion engine is constant, the characteristics of the flying machine are determined by the performance of the wing. In the case of the present embodiment, the thrusts of the two turbojet engines are set to 400 N in total in the static thrust as shown in FIGS. In the following embodiment, a thrust value obtained by taking a safety margin from this output is adopted in the calculation. The necessary thrust curve is calculated from the speed dependence of this thrust and the speed dependence of the lift drag ratio of the folding lightweight wing.
The result using the following three types of folding lightweight wings used in the calculation is shown.
F195 type (operating speed range 24-60km / h)
US147 type (operating speed range 28-80km / h)
EXT160 type (operating speed range 30-110km / h)

それぞれの折畳式軽量翼の必要推力曲線を図13に示す。必要推力曲線は、以下のように求められる。
揚力、抗力、水平飛行に必要な推力、重力をそれぞれL、D、T、Wとすると、
D=CD(1/2)ρV2S=Tr ・・・・[数式6]

L=CL(1/2)ρV2S=W ・・・・[数式7]

の関係が成り立つ。ρは大気密度、Vは対気速度、Sは翼面積、CDは抗力係数、CLは揚力係数である。 上記[数式6、7]より、Tr =W/(CL / CD)の関係が成り立ち、実測の揚力抗力比曲線から図13の飛行機械の特性が得られる。
FIG. 13 shows the required thrust curve of each folding lightweight wing. The required thrust curve is obtained as follows.
Lift, drag, thrust required for level flight, and gravity are L, D, T, W respectively.
D = C D (1/2) ρV 2 S = T r ... [Formula 6]

L = C L (1/2) ρV 2 S = W (Equation 7)

The relationship holds. ρ is the atmospheric density, V is the airspeed, S is the wing area, CD is the drag coefficient, and CL is the lift coefficient. From the above [Formulas 6 and 7], the relationship of T r = W / (C L / C D ) is established, and the characteristics of the flying machine in FIG. 13 are obtained from the actually measured lift drag ratio curve.

このようにある本体に別の翼を装着しても容易にその特性が算出可能な要因は、翼と本体が調整可能な動力関節一点で接合されている本発明の特長によるものである。
現実には最適化された翼の方が数少ないため、限られた種類の翼の中から本体に合う翼を選択し接合する方法が採られる。本実施例の場合も、上記の3種類の翼から選択し本体の設計を行った。
The reason why the characteristic can be easily calculated even when another wing is mounted on a certain main body is due to the feature of the present invention in which the wing and the main body are joined at one adjustable power joint.
In reality, there are fewer optimized wings, so a method of selecting and joining wings that match the main body from a limited number of types of wings is adopted. Also in this example, the main body was designed by selecting from the above three types of wings.

本発明者が先に提案している特願2005−109330号に示すように、これまでの回転翼機(ヘリコプター)の使用によりのみ可能であった空中吊り上げ作業を、本発明の飛行機械を利用することにより安価で信頼性も高く、コンパクトで陸上では場所をとらない空間移送システムを構築することが可能となる。また建築、建設などの空中吊り上げ作業や物資の移送のみならず、運輸、運搬、配送、交通など様々な産業ニーズに応える用途に適用できる。   As shown in Japanese Patent Application No. 2005-109330 previously proposed by the present inventor, the flying machine of the present invention is used for the lifting work that has been possible only through the use of a conventional rotary wing aircraft (helicopter). By doing so, it is possible to construct a space transfer system that is inexpensive and highly reliable, compact and does not take up space on land. Moreover, it can be applied not only to aerial lifting work such as construction and construction and transportation of goods, but also to applications that meet various industrial needs such as transportation, transportation, delivery, and transportation.

従来航空機構造(低翼機)を示した説明図である。It is explanatory drawing which showed the conventional aircraft structure (low wing machine). 従来航空機構造(高翼機)を示した説明図である。It is explanatory drawing which showed the conventional aircraft structure (high wing machine). 超高翼1点関節接合の概念を示した説明図である。It is explanatory drawing which showed the concept of the super high wing 1-point articulation. 超高翼1点関節接合により垂直尾翼の不要を示した説明図である。It is explanatory drawing which showed the necessity of a vertical tail by super-high-wing 1-point articulation. 超高翼1点関節接合により水平尾翼の不要を示した説明図である。It is explanatory drawing which showed the necessity of a horizontal tail by super-high-wing 1-point articulation. 陸上におけるサスペンションの作用構造を示した説明図である。It is explanatory drawing which showed the effect | action structure of the suspension on land. 従来航空機構造にサスペンションの概念を導入した説明図である。It is explanatory drawing which introduced the concept of the suspension into the conventional aircraft structure. 本実施例にサスペンションを導入した説明図である。It is explanatory drawing which introduced the suspension into the present Example. 試作した飛行機械の概略図である。It is a schematic diagram of a prototype flying machine. 試作した飛行機械の内部構造の説明図である。It is explanatory drawing of the internal structure of the experimental flight machine. 折畳式軽量翼の格納動作を示した図である。It is the figure which showed the storing operation | movement of a folding-type lightweight wing | blade. 超高翼1点関節接合による姿勢制御を示した説明図である。FIG. 6 is an explanatory view showing posture control by ultra-high wing one-point articulation. 本実施例の飛行機械の飛行特性を示した図である。It is the figure which showed the flight characteristic of the flying machine of a present Example.

符号の説明Explanation of symbols

1 軽量翼(折畳式)
2 動力関節
3 翼と本体を結ぶ伸縮軸(バネ&ダンパー)
4 外界からの外乱
5 エルロン
6 伸縮を制御するアクチュエータと力センサ
7 推進用動力
8 車輪
9 ロール制御用サーボモータ
10 ピッチ制御用サーボモータ
11 ジャイロセンサ、加速度センサ等のセンサユニット
12 姿勢制御用マイクロコンピュータユニット
13 バッテリ
14 燃料タンク
15 自律制御動作用マイクロプロセッサ
16 炭素繊維複合材
17 高張力合成繊維
1 Lightweight wing (foldable)
2 Power joint 3 Telescopic shaft connecting the wing and the body (spring and damper)
4 Disturbance from the outside world 5 Aileron 6 Actuator and force sensor to control expansion and contraction 7 Propulsion power 8 Wheel 9 Servo motor for roll control
10 Servo motor for pitch control
11 Sensor units such as gyro sensors and acceleration sensors
12 Attitude control microcomputer unit
13 battery
14 Fuel tank
15 Microprocessor for autonomous control operation
16 Carbon fiber composite material
17 High tensile synthetic fiber

Claims (9)

主翼と本体である胴体を1点の動力関節と伸縮軸で結合し、該結合部でサスペンションを構成し、飛行中における外界からのショックを前記サスペンションで吸収することを特徴とする飛行機械。   A flying machine characterized in that a main wing and a body, which is a main body, are coupled by a single power joint and a telescopic shaft, a suspension is formed by the coupling portion, and a shock from the outside during flight is absorbed by the suspension. 本体重量の50%以下の軽量翼と本体である胴体を1点の動力関節と伸縮軸で結合し、該結合部でサスペンションを構成し、飛行中における外界からのショックを前記サスペンションで吸収することを特徴とする飛行機械。   A lightweight wing of 50% or less of the body weight and the body body are connected by a single power joint and telescopic shaft to form a suspension, and shocks from outside during flight are absorbed by the suspension. Featuring a flying machine. 本体重量の50%以下の軽量翼と本体である胴体を、軽量翼の重心と揚力中心を結ぶ線上の1点の動力関節と伸縮軸で結合し、該結合部でサスペンションを構成し、空中を飛行中に外界からのショックを前記サスペンションで吸収することを特徴とする飛行機械。   A lightweight wing that is 50% or less of the body weight and the fuselage, which is the main body, are connected by a single power joint on the line connecting the center of gravity of the lightweight wing and the center of lift and the telescopic shaft. A flying machine that absorbs a shock from the outside world with the suspension during flight. 本体重量の50%以下の軽量翼と本体である胴体を、軽量翼の重心と揚力中心を結ぶ線上の1点の動力駆動3自由度関節と伸縮軸で結合し、該結合部でサスペンションを構成し、飛行中に外界からのショックを前記サスペンションで吸収することを特徴とする飛行機械。   A lightweight wing that is 50% or less of the weight of the main body and the fuselage, which is the main body, are connected by a single-power-driven three-degree-of-freedom joint and a telescopic shaft on the line connecting the center of gravity and the lift center of the lightweight wing. A flying machine that absorbs shocks from the outside world during the flight by the suspension. 前記主翼と胴体の結合部で分離可能とし、前記主翼を他の胴体に、または前記胴体を他の主翼に選択的に用いることを特徴とする請求項1記載の飛行機械。   2. The flying machine according to claim 1, wherein the main wing is separable at a joint between the main wing and the fuselage, and the main wing is selectively used as another fuselage or the fuselage is selectively used as another main wing. 前記主翼と胴体の結合部を複数の主翼と複数の胴体で共通規格の構造とし、各主翼と各胴体を任意に選択結合可能としたことを特徴とする請求項5記載の飛行機械。   6. The flying machine according to claim 5, wherein the joint portion of the main wing and the fuselage has a structure of a common standard for the plurality of main wings and the plurality of fuselages, and the main wings and the fuselage can be arbitrarily selectively coupled. 前記主翼を折り畳み翼としたことを特徴とする請求項1記載の飛行機械。   The flying machine according to claim 1, wherein the main wing is a folded wing. 翼に燃料タンクを設けず、他の構造体に燃料タンクを設けたことを特徴とする請求項1記載の飛行機械。   2. The flying machine according to claim 1, wherein a fuel tank is not provided on the wing and a fuel tank is provided on another structure. 前記飛行機械を物流システムまたは交通機関に用いることを特徴とする請求項1記載の飛行機械。   The flying machine according to claim 1, wherein the flying machine is used in a logistics system or transportation.
JP2005171314A 2005-06-10 2005-06-10 Flying machine Expired - Fee Related JP4534018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005171314A JP4534018B2 (en) 2005-06-10 2005-06-10 Flying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005171314A JP4534018B2 (en) 2005-06-10 2005-06-10 Flying machine

Publications (2)

Publication Number Publication Date
JP2006341815A true JP2006341815A (en) 2006-12-21
JP4534018B2 JP4534018B2 (en) 2010-09-01

Family

ID=37639084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005171314A Expired - Fee Related JP4534018B2 (en) 2005-06-10 2005-06-10 Flying machine

Country Status (1)

Country Link
JP (1) JP4534018B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166585A (en) * 2008-01-15 2009-07-30 National Institute Of Advanced Industrial & Technology Automatic take-off system of flight machine
JP2009298287A (en) * 2008-06-13 2009-12-24 National Institute Of Advanced Industrial & Technology Telescopic shaft flight stable flight machine
JP2009298290A (en) * 2008-06-13 2009-12-24 National Institute Of Advanced Industrial & Technology Drift flight stabilization flight machine
JP2010111216A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Flying object
JP2016068692A (en) * 2014-09-29 2016-05-09 国立研究開発法人産業技術総合研究所 Multi-rotor craft posture stabilization control device
WO2016135554A1 (en) * 2015-02-27 2016-09-01 Kuerzi Ralf Unmanned/manned aerial vehicle with self-governing wing
JP2021079905A (en) * 2019-11-22 2021-05-27 株式会社豊田中央研究所 Air vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258228A (en) * 1964-05-04 1966-06-28 Norman L Crook Aircraft with coupled flight and payload units
JPH0740897A (en) * 1993-04-21 1995-02-10 Okabe Kazuo Radio control aircraft
JPH09109999A (en) * 1995-10-18 1997-04-28 Sky Rimooto:Kk Radio controlled bi-plane
JPH101097A (en) * 1996-06-14 1998-01-06 Mitsubishi Heavy Ind Ltd Indoor hang glider suspension
JP2005138641A (en) * 2003-11-04 2005-06-02 National Institute Of Advanced Industrial & Technology Transportation facilities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258228A (en) * 1964-05-04 1966-06-28 Norman L Crook Aircraft with coupled flight and payload units
JPH0740897A (en) * 1993-04-21 1995-02-10 Okabe Kazuo Radio control aircraft
JPH09109999A (en) * 1995-10-18 1997-04-28 Sky Rimooto:Kk Radio controlled bi-plane
JPH101097A (en) * 1996-06-14 1998-01-06 Mitsubishi Heavy Ind Ltd Indoor hang glider suspension
JP2005138641A (en) * 2003-11-04 2005-06-02 National Institute Of Advanced Industrial & Technology Transportation facilities

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166585A (en) * 2008-01-15 2009-07-30 National Institute Of Advanced Industrial & Technology Automatic take-off system of flight machine
JP2009298287A (en) * 2008-06-13 2009-12-24 National Institute Of Advanced Industrial & Technology Telescopic shaft flight stable flight machine
JP2009298290A (en) * 2008-06-13 2009-12-24 National Institute Of Advanced Industrial & Technology Drift flight stabilization flight machine
JP2010111216A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Flying object
JP2016068692A (en) * 2014-09-29 2016-05-09 国立研究開発法人産業技術総合研究所 Multi-rotor craft posture stabilization control device
WO2016135554A1 (en) * 2015-02-27 2016-09-01 Kuerzi Ralf Unmanned/manned aerial vehicle with self-governing wing
JP2021079905A (en) * 2019-11-22 2021-05-27 株式会社豊田中央研究所 Air vehicle
JP7280809B2 (en) 2019-11-22 2023-05-24 株式会社豊田中央研究所 flying object

Also Published As

Publication number Publication date
JP4534018B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US7770839B2 (en) Flight machinery
CA3050961C (en) Combination flight and ground apparatus for a vehicle
Çetinsoy et al. Design and construction of a novel quad tilt-wing UAV
US10414484B2 (en) Aircraft
CN101549754B (en) A composite rotating fixed-wing aircraft and its design method
JP5421503B2 (en) Private aircraft
US9387929B2 (en) Vertical takeoff and landing (“VTOL”) aircraft
US20160244159A1 (en) Controlled Take-Off And Flight System Using Thrust Differentials
JP4534018B2 (en) Flying machine
CN104085532B (en) A kind of control method of tilting rotor transport plane
CN103979104B (en) One can variant X-type wing vertical landing minute vehicle
US20150151830A1 (en) Morphing wing for an aircraft
RU2446078C2 (en) Convertiplane (versions)
US20190176981A1 (en) Vertical Takeoff and Landing (&#34;VTOL&#34;) Aircraft
CN201376669Y (en) Spinning-fixed-wing composite aircraft
JP2021518310A (en) Aircraft structures and aircraft containing structures
CN110834722A (en) Self-adaptive landing device for multi-rotor unmanned aerial vehicle
Yayli et al. Design optimization of a fixed wing aircraft
JP5057472B2 (en) Telescopic axis stable flight machine
CN110116802A (en) A kind of big loading small-sized unmanned aircraft of high universalizable
JP4911411B2 (en) Flight machine automatic take-off system
CN110678388A (en) Device and method for interacting with a fluid
Harasani Design, build and test an unmanned air vehicle
US11814162B2 (en) Rotatable winglets for a rotary wing aircraft
US20210371097A1 (en) Rotatable thruster aircraft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4534018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees