JP2006339529A - Plasma treatment chamber, electrical potential control device, electrical potential control method, program and storage medium - Google Patents

Plasma treatment chamber, electrical potential control device, electrical potential control method, program and storage medium Download PDF

Info

Publication number
JP2006339529A
JP2006339529A JP2005164535A JP2005164535A JP2006339529A JP 2006339529 A JP2006339529 A JP 2006339529A JP 2005164535 A JP2005164535 A JP 2005164535A JP 2005164535 A JP2005164535 A JP 2005164535A JP 2006339529 A JP2006339529 A JP 2006339529A
Authority
JP
Japan
Prior art keywords
processing chamber
potential
plasma
container
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005164535A
Other languages
Japanese (ja)
Other versions
JP4628874B2 (en
Inventor
Masanobu Honda
昌伸 本田
Toshiyasu Hayamizu
利泰 速水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2005164535A priority Critical patent/JP4628874B2/en
Priority to CNB2006100826318A priority patent/CN100401471C/en
Priority to US11/442,287 priority patent/US8157952B2/en
Publication of JP2006339529A publication Critical patent/JP2006339529A/en
Application granted granted Critical
Publication of JP4628874B2 publication Critical patent/JP4628874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment chamber in which the amount of attached polymer is easily controlled with a simple constitution. <P>SOLUTION: The plasma treatment chamber 10 has a cylindrical side wall member 45 covering an inner peripheral surface of a vessel 11. An electrical potential control device 46 is provided with a grounded conducting member 47 which moves up and down in contact to or in noncontact to the side wall member 45. In an RIE process, by moving the conducting member 47 down to bring into contact to the side wall member 45, an electric potential of the side wall member 45 is set at a ground potential. In an ashing process, by moving the conducting member 47 up to leave the wide wall member 45, the electric potential of the side wall member 45 is set at a floating potential. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プラズマ処理室、電位制御装置、電位制御方法、プログラム及び記憶媒体に関し、特に、プラズマに暴露される構成部品を有するプラズマ処理室に関する。   The present invention relates to a plasma processing chamber, a potential control device, a potential control method, a program, and a storage medium, and more particularly to a plasma processing chamber having components exposed to plasma.

従来より、円筒状の容器と、該容器内に配置され且つ高周波電源に接続された電極とを備えるプラズマ処理室が知られている。このプラズマ処理室では、容器内には処理ガスが導入され、電極は容器内の空間に高周波電力を印加する。また、基板としての半導体ウエハを容器内に収容したときに、導入された処理ガスを高周波電力によってプラズマにし、イオン等を発生させ、該イオン等によって半導体ウエハにプラズマ処理、例えば、エッチング処理を施す。   Conventionally, there has been known a plasma processing chamber including a cylindrical container and an electrode disposed in the container and connected to a high-frequency power source. In this plasma processing chamber, processing gas is introduced into the container, and the electrode applies high-frequency power to the space in the container. Further, when a semiconductor wafer as a substrate is accommodated in a container, the introduced processing gas is converted into plasma by high frequency power to generate ions and the like, and the semiconductor wafer is subjected to plasma processing, for example, etching processing by the ions and the like. .

上述したプラズマ処理室において、処理ガスとして反応性ガス、例えば、Cガスとアルゴン(Ar)ガスとの混合ガスを用いた場合、該反応性ガスから生じた中性の活性種(ラジカル)が容器の側部内壁(以下、単に「側壁」という。)にポリマーとして付着する。ポリマーの付着量が多すぎる場合、半導体ウエハにプラズマ処理を施すときに、該ポリマーが側壁より剥離して半導体ウエハの表面にデポとして付着することがあるため、側壁に付着したポリマーを除去する必要がある。 In the above-described plasma processing chamber, when a reactive gas, for example, a mixed gas of C 4 F 8 gas and argon (Ar) gas is used as a processing gas, neutral active species (radicals) generated from the reactive gas are used. ) Adheres as a polymer to the inner side wall of the container (hereinafter simply referred to as “side wall”). If the amount of polymer attached is too large, when the plasma treatment is performed on the semiconductor wafer, the polymer may peel from the side wall and adhere to the surface of the semiconductor wafer as a deposit, so it is necessary to remove the polymer attached to the side wall. There is.

側壁に付着したポリマーは、処理ガスがプラズマとなったときに発生する陽イオンを側壁に衝突させて除去するのが好ましく、陽イオンの側壁への衝突数は側壁の電位(ポテンシャル)によって左右される。具体的には、側壁の電位が低く、側壁と処理ガスがプラズマとなる空間との電位差が大きいとき、陽イオンの側壁への衝突数が増加し、ポリマーの付着量は減少する。   The polymer adhering to the side wall is preferably removed by colliding the cations generated when the processing gas becomes plasma with the side wall, and the number of cations colliding with the side wall depends on the potential of the side wall. The Specifically, when the potential of the side wall is low and the potential difference between the side wall and the space where the processing gas becomes plasma is large, the number of cations colliding with the side wall increases, and the amount of polymer attached decreases.

ところが、側壁の電位は電極及び側壁の形状に左右されるアノード/カソード比や、半導体ウエハに対する所望のプラズマ処理の結果を得るために設定される高周波電力の大きさによって決定されるため、側壁の電位を制御するのは困難である。したがって、ポリマーの除去の制御は容易ではなく、側壁にポリマーが付着して半導体ウエハの表面にデポが付着し易いデポプロセスを繰り返し行えば、ポリマーの付着量が過大となるため、側壁のクリーニング頻度を上げる必要があり、その結果、プラズマ処理室の稼働率が低下する。   However, since the potential of the side wall is determined by the anode / cathode ratio that depends on the shape of the electrode and the side wall and the magnitude of the high-frequency power that is set to obtain a desired plasma processing result for the semiconductor wafer, It is difficult to control the potential. Therefore, it is not easy to control the removal of the polymer, and if the deposition process where the polymer adheres to the sidewall and the deposit easily adheres to the surface of the semiconductor wafer is repeated, the amount of polymer attached becomes excessive, and therefore the frequency of cleaning the sidewall is increased. As a result, the operating rate of the plasma processing chamber decreases.

そこで、近年、積極的に側壁の電位を制御して側壁のポリマーを除去する処理室、例えば、稼働時間が所定値に達すると、側壁を接地又は高周波電源に選択的に接続し、側壁に付着したポリマーを除去する際には、側壁を高周波電源と接続して側壁の電位を負電位にし、これにより、陽イオンを側壁に衝突させて側壁のポリマーを除去する処理室が開発されている(例えば、特許文献1参照。)。
特開平1−231322号公報
Therefore, in recent years, a processing chamber that actively controls the potential of the sidewall to remove the polymer on the sidewall, for example, when the operation time reaches a predetermined value, the sidewall is selectively connected to the ground or a high-frequency power source and attached to the sidewall. When removing the polymer, a processing chamber has been developed in which the side wall is connected to a high-frequency power source so that the potential of the side wall becomes a negative potential, so that cations collide with the side wall to remove the polymer on the side wall ( For example, see Patent Document 1.)
JP-A-1-231322

しかしながら、特許文献1に係る処理室は、電極用の高周波電源の他に、側壁用の高周波電源、すなわち、電極以外の処理室構成部品用の高周波電源を必要とするため、処理室の構成が複雑になるという問題がある。   However, the processing chamber according to Patent Document 1 requires a high-frequency power source for sidewalls, that is, a high-frequency power source for processing chamber components other than electrodes, in addition to the high-frequency power source for electrodes. There is a problem of complexity.

また、特許文献1に係る処理室は、稼働時間が所定値に達したときに、側壁を高周波電源と接続して側壁のポリマーを除去するのみであるため、ポリマーの付着量の制御が困難であり、その結果、1つのプラズマ処理室において、上記デポプロセスと、処理ガスとしてOガスを用いるような、中性の活性種が生じず、側壁にポリマーが付着することがなく、半導体ウエハの表面にデポが付着しないデポレスプロセスとを繰り返し行う場合、側壁のポリマーが完全に除去されていれば、陽イオンがポリマーでなく側壁に直接衝突して側壁が消耗し、その結果、プラズマ処理室の稼働率が低下するという問題もある。 Moreover, since the processing chamber according to Patent Document 1 only removes the polymer on the side wall by connecting the side wall to a high-frequency power source when the operation time reaches a predetermined value, it is difficult to control the amount of polymer adhesion. As a result, in one plasma processing chamber, neutral active species such as the above-described deposition process and O 2 gas used as a processing gas are not generated, and no polymer adheres to the side wall. When repeatedly performing a deposition process where no deposits adhere to the surface, if the polymer on the side wall is completely removed, the cations directly collide with the side wall, not the polymer, and the side wall is consumed. There is also a problem that the operating rate of the system decreases.

本発明の目的は、簡素な構成でポリマーの付着量の制御を容易に行うことができるプラズマ処理室、電位制御装置、電位制御方法、プログラム及び記憶媒体を提供することにある。   An object of the present invention is to provide a plasma processing chamber, a potential control device, a potential control method, a program, and a storage medium that can easily control the amount of polymer adhered with a simple configuration.

上記目的を達成するために、請求項1記載のプラズマ処理室は、基板を収容する容器と、該容器内に配置され且つ高周波電源に接続された電極とを備え、前記容器内に導入された処理ガスをプラズマにして少なくとも2種類のプラズマ処理を前記基板に施すことが可能なプラズマ処理室において、前記容器内に配置され且つ前記プラズマに暴露される処理室構成部品と、該処理室構成部品の電位を、前記少なくとも2種類のプラズマ処理のそれぞれに応じて浮遊電位と接地電位のいずれかに設定する電位制御装置とを備えることを特徴とする。   In order to achieve the above object, a plasma processing chamber according to claim 1 is provided with a container containing a substrate and an electrode disposed in the container and connected to a high-frequency power source, and introduced into the container. A plasma processing chamber in which at least two types of plasma processing can be performed on the substrate by using a processing gas as plasma, and a processing chamber component disposed in the container and exposed to the plasma, and the processing chamber component And a potential control device that sets the potential to either a floating potential or a ground potential according to each of the at least two types of plasma treatments.

請求項2記載のプラズマ処理室は、請求項1記載のプラズマ処理室において、前記少なくとも2種類のプラズマ処理は、前記処理室構成部品に付着物が付着するデポプロセス及び前記処理室構成部品に付着物が付着しないデポレスプロセスであり、前記電位制御装置は、デポプロセスにおいて前記処理室構成部品の電位を接地電位に設定し、デポレスプロセスにおいて前記処理室構成部品の電位を浮遊電位に設定することを特徴とする。   The plasma processing chamber according to claim 2 is the plasma processing chamber according to claim 1, wherein the at least two types of plasma processing are applied to a deposition process in which deposits adhere to the processing chamber components and the processing chamber components. It is a depositionless process in which no kimono adheres, and the potential control device sets the potential of the processing chamber component to the ground potential in the deposition process, and sets the potential of the processing chamber component to the floating potential in the deposition process. It is characterized by that.

請求項3記載のプラズマ処理室は、請求項1又は2記載のプラズマ処理室において、前記処理室構成部品は電気的に浮遊し、前記電位制御装置は電気的に接地された構成部品接触部材を有し、該構成部品接触部材は前記処理室構成部品と接触自在であることを特徴とする。   According to a third aspect of the present invention, there is provided the plasma processing chamber according to the first or second aspect, wherein the processing chamber component is electrically floated, and the potential control device includes an electrically grounded component contact member. And the component contact member is freely contactable with the processing chamber component.

請求項4記載のプラズマ処理室は、請求項3記載のプラズマ処理室において、前記処理室構成部品は凹状穴を有し、前記構成部品接触部材は前記凹状穴と嵌合自在な凸状部を有することを特徴とする。   The plasma processing chamber according to claim 4 is the plasma processing chamber according to claim 3, wherein the processing chamber component has a concave hole, and the component contact member has a convex portion that can be fitted in the concave hole. It is characterized by having.

請求項5記載のプラズマ処理室は、請求項4記載のプラズマ処理室において、前記凹状穴は狭小部を有し、該狭小部及び前記凸状部の少なくとも1つは弾性部材からなることを特徴とする。   The plasma processing chamber according to claim 5 is the plasma processing chamber according to claim 4, wherein the concave hole has a narrow portion, and at least one of the narrow portion and the convex portion is made of an elastic member. And

請求項6記載のプラズマ処理室は、請求項4又は5記載のプラズマ処理室において、前記容器は円筒形状を呈し、前記処理室構成部品は前記容器の内周面を覆う円筒状部材であり、複数の前記凹状穴が前記円筒状部材の円周に沿って配置され、複数の前記構成部品接触部材の凸状部が前記複数の凹状穴のそれぞれと自在に嵌合することを特徴とする。   The plasma processing chamber according to claim 6 is the plasma processing chamber according to claim 4 or 5, wherein the container has a cylindrical shape, and the processing chamber component is a cylindrical member that covers an inner peripheral surface of the container, The plurality of concave holes are arranged along the circumference of the cylindrical member, and the convex portions of the plurality of component contact members are freely fitted to the plurality of concave holes, respectively.

請求項7記載のプラズマ処理室は、請求項3記載のプラズマ処理室において、前記容器は円筒形状を呈し、前記処理室構成部品は前記容器の内周面を覆う円筒状部材であり、前記円筒状部材は端部において該円筒状部材の円周に沿って形成された溝を有し、前記構成部品接触部材は網状形状を呈し、前記溝と嵌合自在であることを特徴とする。   The plasma processing chamber according to claim 7 is the plasma processing chamber according to claim 3, wherein the container has a cylindrical shape, and the processing chamber component is a cylindrical member that covers an inner peripheral surface of the container. The member has a groove formed at the end portion along the circumference of the cylindrical member, and the component contact member has a mesh shape and can be fitted into the groove.

請求項8記載のプラズマ処理室は、請求項1又は2記載のプラズマ処理室において、前記処理室構成部品は電気的に浮遊し、前記電位制御装置は、前記処理室構成部品を接地する接地線と、該接地線の途中に配置され且つ前記接地線の切断及び接続を切り替える切り替え装置とを有することを特徴とする。   The plasma processing chamber according to claim 8 is the plasma processing chamber according to claim 1 or 2, wherein the processing chamber component is electrically floated, and the potential control device is configured to ground the processing chamber component. And a switching device that is arranged in the middle of the ground line and switches between disconnection and connection of the ground line.

請求項9記載のプラズマ処理室は、請求項8記載のプラズマ処理室において、前記電位制御装置は、前記接地線の途中に配置された可変インピーダンス素子を有することを特徴とする。   The plasma processing chamber according to claim 9 is the plasma processing chamber according to claim 8, wherein the potential control device includes a variable impedance element arranged in the middle of the ground line.

請求項10記載のプラズマ処理室は、請求項9記載のプラズマ処理室において、前記可変インピーダンス素子は、前記処理室構成部品に付着する付着物の量に応じてインピーダンスを変更することを特徴とする。   The plasma processing chamber according to claim 10 is characterized in that, in the plasma processing chamber according to claim 9, the variable impedance element changes impedance according to the amount of deposits adhering to the processing chamber components. .

請求項11記載のプラズマ処理室は、請求項9又は10記載のプラズマ処理室において、前記可変インピーダンス素子は、前記高周波電源の周波数に同期してインピーダンスを変更することを特徴とする。   The plasma processing chamber according to claim 11 is the plasma processing chamber according to claim 9 or 10, characterized in that the variable impedance element changes impedance in synchronization with the frequency of the high-frequency power source.

請求項12記載のプラズマ処理室は、請求項9乃至11のいずれか1項に記載のプラズマ処理室において、前記可変インピーダンス素子は、可変インダクタンス又は可変コンデンサであることを特徴とする。   The plasma processing chamber according to claim 12 is the plasma processing chamber according to any one of claims 9 to 11, wherein the variable impedance element is a variable inductance or a variable capacitor.

上記目的を達成するために、請求項13記載の電位制御装置は、基板を収容する容器と、該容器内に配置され且つ高周波電源に接続された電極とを備え、前記容器内に導入された処理ガスをプラズマにして少なくとも2種類のプラズマ処理を前記基板に施すことが可能なプラズマ処理室の前記容器内に配置され且つ前記プラズマに暴露される処理室構成部品の電位を、前記少なくとも2種類のプラズマ処理のそれぞれに応じて浮遊電位と接地電位のいずれかに設定することを特徴とする。   In order to achieve the above object, a potential control device according to claim 13 is provided with a container that accommodates a substrate, and an electrode that is disposed in the container and connected to a high-frequency power source, and is introduced into the container. The at least two types of potentials of the processing chamber components disposed in the container of the plasma processing chamber capable of performing at least two types of plasma processing on the substrate using a processing gas as a plasma and exposed to the plasma are used. It is characterized in that either a floating potential or a ground potential is set according to each of the plasma treatments.

請求項14記載の電位制御装置は、請求項13記載の電位制御装置において、前記少なくとも2種類のプラズマ処理は、前記処理室構成部品に付着物が付着するデポプロセス及び前記処理室構成部品に付着物が付着しないデポレスプロセスであり、デポプロセスにおいて前記処理室構成部品の電位を接地電位に設定し、デポレスプロセスにおいて前記処理室構成部品の電位を浮遊電位に設定することを特徴とする。   A potential control apparatus according to a fourteenth aspect is the potential control apparatus according to the thirteenth aspect, wherein the at least two kinds of plasma treatments are applied to a deposition process in which deposits adhere to the processing chamber components and the processing chamber components. It is a deposition process in which no kimono adheres, and the potential of the processing chamber component is set to a ground potential in the deposition process, and the potential of the processing chamber component is set to a floating potential in the deposition process.

請求項15記載の電位制御装置は、請求項13又は14記載の電位制御装置において、前記処理室構成部品は電気的に浮遊し、電気的に接地された構成部品接触部材を有し、該構成部品接触部材は前記処理室構成部品と接触自在であることを特徴とする。   The potential control device according to claim 15 is the potential control device according to claim 13 or 14, wherein the processing chamber component has a component contact member that is electrically floating and is electrically grounded. The component contact member is freely contactable with the processing chamber components.

請求項16記載の電位制御装置は、請求項13又は14記載の電位制御装置において、前記処理室構成部品は電気的に浮遊し、前記処理室構成部品を接地する接地線と、該接地線の途中に配置され且つ前記接地線の切断及び接続を切り替える切り替え装置とを有することを特徴とする。   A potential control device according to a sixteenth aspect is the potential control device according to the thirteenth or fourteenth aspect, wherein the process chamber component is electrically floated, and a ground wire for grounding the process chamber component is formed. And a switching device that is arranged in the middle and switches between disconnection and connection of the ground wire.

上記目的を達成するために、請求項17記載の電位制御方法は、基板を収容する容器と、該容器内に配置され且つ高周波電源に接続された電極とを備え、前記容器内に導入された処理ガスをプラズマにして少なくとも2種類のプラズマ処理を前記基板に施すことが可能なプラズマ処理室の前記容器内に配置され且つ前記プラズマに暴露される処理室構成部品の電位制御方法であって、前記少なくとも2種類のプラズマ処理のそれぞれに応じて、前記処理室構成部品の電位を浮遊電位と接地電位のいずれかに設定する電位設定ステップを有することを特徴とする。   In order to achieve the above object, a potential control method according to claim 17 is provided with a container that accommodates a substrate, and an electrode that is disposed in the container and connected to a high-frequency power source, and is introduced into the container. A potential control method for processing chamber components disposed in the container of the plasma processing chamber capable of performing at least two types of plasma processing on the substrate by using a processing gas as a plasma and exposed to the plasma, In accordance with each of the at least two types of plasma processing, a potential setting step of setting a potential of the processing chamber component to either a floating potential or a ground potential is provided.

請求項18記載の電位制御方法は、請求項17記載の電位制御方法において、前記少なくとも2種類のプラズマ処理は、前記処理室構成部品に付着物が付着するデポプロセス及び前記処理室構成部品に付着物が付着しないデポレスプロセスであり、前記電位設定ステップは、デポプロセスにおいて前記処理室構成部品の電位を接地電位に設定し、デポレスプロセスにおいて前記処理室構成部品の電位を浮遊電位に設定することを特徴とする。   The potential control method according to claim 18 is the potential control method according to claim 17, wherein the at least two types of plasma treatment are applied to a deposition process in which deposits adhere to the processing chamber components and the processing chamber components. In the deposition process where no kimono adheres, the potential setting step sets the potential of the processing chamber component to the ground potential in the deposition process, and sets the potential of the processing chamber component to the floating potential in the deposition process. It is characterized by that.

上記目的を達成するために、請求項19記載のプログラムは、基板を収容する容器と、該容器内に配置され且つ高周波電源に接続された電極とを備え、前記容器内に導入された処理ガスをプラズマにして少なくとも2種類のプラズマ処理を前記基板に施すことが可能なプラズマ処理室の前記容器内に配置され且つ前記プラズマに暴露される処理室構成部品の電位制御方法をコンピュータに実行させるプログラムであって、前記少なくとも2種類のプラズマ処理のそれぞれに応じて、前記処理室構成部品の電位を浮遊電位と接地電位のいずれかに設定する電位設定モジュールを有することを特徴とする。   In order to achieve the above object, a program according to claim 19 is provided with a processing gas introduced into a container including a container for accommodating a substrate and an electrode disposed in the container and connected to a high-frequency power source. A program for causing a computer to execute a method for controlling the potential of processing chamber components that are disposed in the container of a plasma processing chamber capable of performing at least two types of plasma processing on the substrate and are exposed to the plasma. In addition, according to each of the at least two types of plasma treatments, there is provided a potential setting module for setting the potential of the processing chamber component to either a floating potential or a ground potential.

上記目的を達成するために、請求項20記載の記憶媒体は、基板を収容する容器と、該容器内に配置され且つ高周波電源に接続された電極とを備え、前記容器内に導入された処理ガスをプラズマにして少なくとも2種類のプラズマ処理を前記基板に施すことが可能なプラズマ処理室の前記容器内に配置され且つ前記プラズマに暴露される処理室構成部品の電位制御方法をコンピュータに実行させるプログラムを格納するコンピュータ読み取り可能な記憶媒体であって、前記プログラムは、前記少なくとも2種類のプラズマ処理のそれぞれに応じて、前記処理室構成部品の電位を浮遊電位と接地電位のいずれかに設定する電位設定モジュールを有することを特徴とする。   In order to achieve the above object, a storage medium according to claim 20 includes a container that accommodates a substrate, and an electrode that is disposed in the container and connected to a high-frequency power source, and is introduced into the container. A computer executes a potential control method of a processing chamber component that is disposed in the container of a plasma processing chamber capable of performing at least two kinds of plasma processing on the substrate by using a gas as a plasma and is exposed to the plasma. A computer-readable storage medium storing a program, wherein the program sets the potential of the processing chamber component to either a floating potential or a ground potential according to each of the at least two types of plasma processing. It has a potential setting module.

請求項1記載のプラズマ処理室、請求項13記載の電位制御装置、請求項17記載の電位制御方法、請求項19記載のプログラム及び請求項20記載の記憶媒体によれば、容器内に配置され且つプラズマに暴露される処理室構成部品の電位が、少なくとも2種類のプラズマ処理のそれぞれに応じて浮遊電位と接地電位のいずれかに設定されるので、処理室構成部品用の高周波電源が不要となると共に、処理室構成部品への付着物の付着量の制御を各プラズマ処理に応じて行うことができ、もって、簡素な構成で付着物の付着量の制御を容易に行うことができる。   According to the plasma processing chamber according to claim 1, the potential control device according to claim 13, the potential control method according to claim 17, the program according to claim 19, and the storage medium according to claim 20, they are arranged in a container. In addition, since the potential of the processing chamber component exposed to the plasma is set to either a floating potential or a ground potential according to each of at least two types of plasma processing, a high-frequency power source for the processing chamber component is unnecessary. In addition, the amount of deposits attached to the processing chamber components can be controlled in accordance with each plasma process, and the amount of deposits attached can be easily controlled with a simple configuration.

請求項2記載のプラズマ処理室、請求項14記載の電位制御装置及び請求項18記載の電位制御方法によれば、少なくとも2種類のプラズマ処理は、処理室構成部品に付着物が付着するデポプロセス及び処理室構成部品に付着物が付着しないデポレスプロセスであり、デポプロセスにおいて処理室構成部品の電位が接地電位に設定され、デポレスプロセスにおいて処理室構成部品の電位が浮遊電位に設定されるので、デポプロセスにおいて処理室構成部品へ付着物が過剰に付着するのを防止できると共に、デポレスプロセスにおいて処理室構成部品が消耗するのを防止でき、もって、プラズマ処理室の稼働率が低下するのを防止することができる。   According to the plasma processing chamber according to claim 2, the potential control apparatus according to claim 14, and the potential control method according to claim 18, at least two types of plasma processing are performed by a deposition process in which deposits adhere to processing chamber components. In addition, the depositor is a depositless process in which deposits do not adhere to the process chamber components, and the potential of the process chamber components is set to the ground potential in the depot process, and the potential of the process chamber components is set to the floating potential in the depot process Therefore, it is possible to prevent excessive deposits from adhering to the processing chamber components in the depot process, and to prevent the processing chamber components from being consumed in the depotless process, thereby reducing the operating rate of the plasma processing chamber. Can be prevented.

請求項3記載のプラズマ処理室及び請求項15記載の電位制御装置によれば、処理室構成部品は電気的に浮遊し、電気的に接地された構成部品接触部材は、処理室構成部品と接触自在であるので、処理室構成部品の電位の浮遊電位又は接地電位への切り替えを確実に行うことができる。   According to the plasma processing chamber of claim 3 and the potential control apparatus of claim 15, the processing chamber component is electrically floating, and the electrically grounded component contact member is in contact with the processing chamber component. Therefore, the potential of the processing chamber components can be switched to the floating potential or the ground potential with certainty.

請求項4記載のプラズマ処理室によれば、処理室構成部品は凹状穴を有し、構成部品接触部材は凹状穴と嵌合自在な凸状部を有するので、簡素な構造で処理室構成部品の電位の浮遊電位又は接地電位への切り替えを行うことができる。   According to the plasma processing chamber of claim 4, since the processing chamber component has a concave hole and the component contact member has a convex portion that can be fitted into the concave hole, the processing chamber component has a simple structure. Can be switched to a floating potential or a ground potential.

請求項5記載のプラズマ処理室によれば、処理室構成部品の凹状穴は狭小部を有し、該狭小部及び構成部品接触部材の凸状部の少なくとも1つは弾性部材からなるので、処理室構成部品及び構成部品接触部材の接触を確実に行うことができる。   According to the plasma processing chamber of claim 5, the concave hole of the processing chamber component has a narrow portion, and at least one of the narrow portion and the convex portion of the component contact member is made of an elastic member. The chamber component and the component contact member can be reliably contacted.

請求項6記載のプラズマ処理室によれば、容器は円筒形状を呈し、処理室構成部品は容器の内周面を覆う円筒状部材であり、複数の凹状穴が円筒状部材の円周に沿って配置され、複数の構成部品接触部材の凸状部が複数の凹状穴のそれぞれと自在に嵌合するので、処理室構成部品及び構成部品接触部材が接触したときに、処理室構成部品における電位の偏在の発生を防止することができ、付着物の付着量を均一に制御することができる。   According to the plasma processing chamber of claim 6, the container has a cylindrical shape, the processing chamber component is a cylindrical member that covers the inner peripheral surface of the container, and the plurality of concave holes extend along the circumference of the cylindrical member. Since the convex portions of the plurality of component contact members are freely fitted into the plurality of concave holes, when the process chamber component and the component contact member contact each other, the potential in the process chamber component Can be prevented from being unevenly distributed, and the amount of deposits can be uniformly controlled.

請求項7記載のプラズマ処理室によれば、容器は円筒形状を呈し、処理室構成部品は容器の内周面を覆う円筒状部材であり、円筒状部材は端部において該円筒状部材の円周に沿って形成された溝を有し、構成部品接触部材は網状形状を呈し、溝と嵌合自在であるので、処理室構成部品及び構成部品接触部材が接触したときに、処理室構成部品における電位の偏在の発生を確実に防止することができ、付着物の付着量をより均一に制御することができる。   According to the plasma processing chamber of claim 7, the container has a cylindrical shape, the processing chamber component is a cylindrical member that covers the inner peripheral surface of the container, and the cylindrical member is a circle of the cylindrical member at the end. Since the component contact member has a mesh shape and can be freely fitted to the groove, the process chamber component and the component contact member come into contact with each other. It is possible to reliably prevent the occurrence of uneven electric potential in the case, and to control the amount of deposits more uniformly.

請求項8記載のプラズマ処理室及び請求項16記載の電位制御装置によれば、処理室構成部品は電気的に浮遊し、電位制御装置は、処理室構成部品を接地する接地線と、該接地線の途中に配置され且つ接地線の切断及び接続を切り替える切り替え装置とを有するので、簡素な構造で処理室構成部品の電位の浮遊電位又は接地電位への切り替えを行うことができる。   According to the plasma processing chamber of claim 8 and the potential control apparatus of claim 16, the processing chamber components are electrically floated, and the potential control device includes a ground wire for grounding the processing chamber components, and the ground Since the switching device is arranged in the middle of the line and switches the disconnection and connection of the ground line, the potential of the processing chamber components can be switched to the floating potential or the ground potential with a simple structure.

請求項9記載のプラズマ処理室によれば、電位制御装置は、接地線の途中に配置された可変インピーダンス素子を有するので、処理室構成部品の電位の変化速度を制御することができ、もって、付着物の付着量をより細かく制御することができる。   According to the plasma processing chamber of claim 9, since the potential control device has the variable impedance element arranged in the middle of the ground line, the potential change speed of the processing chamber components can be controlled. The amount of deposits can be controlled more finely.

請求項10記載のプラズマ処理室によれば、可変インピーダンス素子は、処理室構成部品に付着する付着物の量に応じてインピーダンスを変更するので、付着物の量に応じて処理室構成部品の電位を制御することができ、もって、付着物の付着量をさらに細かく制御することができる。   According to the plasma processing chamber of claim 10, since the variable impedance element changes the impedance according to the amount of deposits attached to the processing chamber components, the potential of the processing chamber components according to the amount of deposits. Therefore, the amount of deposit can be controlled more finely.

請求項11記載のプラズマ処理室によれば、可変インピーダンス素子は、高周波電源の周波数に同期してインピーダンスを変更するので、プラズマ処理中の付着物の付着量の変動を抑制することができる。   According to the plasma processing chamber of the eleventh aspect, since the variable impedance element changes the impedance in synchronization with the frequency of the high frequency power source, it is possible to suppress fluctuations in the amount of deposits during the plasma processing.

請求項12記載のプラズマ処理室によれば、可変インピーダンス素子は、可変インダクタンス又は可変コンデンサであるので、より簡素な構成で付着物の付着量をさらに細かく制御することができる。   According to the plasma processing chamber of the twelfth aspect, since the variable impedance element is a variable inductance or a variable capacitor, the adhesion amount of the deposit can be controlled more finely with a simpler configuration.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、本発明の第1の実施の形態に係るプラズマ処理室について説明する。   First, the plasma processing chamber according to the first embodiment of the present invention will be described.

図1は、本実施の形態に係るプラズマ処理室の概略構成を示す断面図である。このプラズマ処理室は基板としての半導体ウエハWにRIE(Reactive Ion Etching)処理やアッシング処理を施すように構成されている。   FIG. 1 is a cross-sectional view showing a schematic configuration of a plasma processing chamber according to the present embodiment. This plasma processing chamber is configured to perform RIE (Reactive Ion Etching) processing or ashing processing on a semiconductor wafer W as a substrate.

図1において、プラズマ処理室10は円筒形状の容器11を有し、該容器11内には、例えば、直径が300mmの半導体ウエハW(以下、単に「ウエハW」という。)を載置する載置台としての円柱状のサセプタ12が配置されている。   In FIG. 1, the plasma processing chamber 10 has a cylindrical container 11 in which, for example, a semiconductor wafer W having a diameter of 300 mm (hereinafter simply referred to as “wafer W”) is placed. A columnar susceptor 12 is arranged as a mounting table.

プラズマ処理室10では、容器11の内側壁とサセプタ12の側面とによって、サセプタ12上方の気体分子を容器11の外へ排出する流路として機能する排気路13が形成される。この排気路13の途中にはプラズマの漏洩を防止する環状のバッフル板14が配置される。また、排気路13におけるバッフル板14より下流の空間は、サセプタ12の下方へ回り込み、可変式バタフライバルブである自動圧力制御弁(Automatic Pressure Control Valve)(以下、「APCバルブ」という。)15に連通する。APCバルブ15は、アイソレータ(Isolator)16を介して真空引き用の排気ポンプであるターボ分子ポンプ(Turbo Molecular Pump)(以下、「TMP」という。)17に接続され、TMP17は、バルブV1を介して排気ポンプであるドライポンプ(以下、「DP」という。)18に接続されている。APCバルブ15、アイソレータ16、TMP17、バルブV1及びDP18によって構成される排気流路(以下、「本排気ライン」という。)は、APCバルブ15によって容器11内の圧力制御を行い、さらにTMP17及びDP18によって容器11内をほぼ真空状態になるまで減圧する。   In the plasma processing chamber 10, an exhaust path 13 that functions as a flow path for discharging gas molecules above the susceptor 12 to the outside of the container 11 is formed by the inner wall of the container 11 and the side surface of the susceptor 12. An annular baffle plate 14 is disposed in the middle of the exhaust passage 13 to prevent plasma leakage. In addition, the space downstream of the baffle plate 14 in the exhaust passage 13 wraps around below the susceptor 12 and enters an automatic pressure control valve (hereinafter referred to as “APC valve”) 15 that is a variable butterfly valve. Communicate. The APC valve 15 is connected to a turbo molecular pump (hereinafter referred to as “TMP”) 17 which is an exhaust pump for evacuation through an isolator 16, and the TMP 17 is connected to the valve V 1. Are connected to a dry pump (hereinafter referred to as “DP”) 18 which is an exhaust pump. An exhaust passage (hereinafter referred to as “main exhaust line”) constituted by the APC valve 15, the isolator 16, TMP17, the valve V1 and the DP18 performs pressure control in the container 11 by the APC valve 15, and further, TMP17 and DP18. The pressure inside the container 11 is reduced to a substantially vacuum state.

また、配管19がアイソレータ16及びTMP17の間からバルブV2を介してDP18に接続されている。配管19及びバルブV2(以下、「バイパスライン」という。)は、TMP17をバイパスして、DP18によって容器11内を粗引きする。   A pipe 19 is connected between the isolator 16 and the TMP 17 to the DP 18 via the valve V2. The pipe 19 and the valve V <b> 2 (hereinafter referred to as “bypass line”) bypass the TMP 17 and roughen the container 11 by the DP 18.

サセプタ12には下部電極用の高周波電源20が給電棒21及び整合器(Matcher)22を介して接続されており、該下部電極用の高周波電源20は、所定の高周波電力をサセプタ12に供給する。これにより、サセプタ12は下部電極として機能する。また、整合器22は、サセプタ12からの高周波電力の反射を低減して高周波電力のサセプタ12への供給効率を最大にする。   A high frequency power source 20 for the lower electrode is connected to the susceptor 12 via a feeding rod 21 and a matcher 22, and the high frequency power source 20 for the lower electrode supplies predetermined high frequency power to the susceptor 12. . Thereby, the susceptor 12 functions as a lower electrode. The matching unit 22 reduces the reflection of the high frequency power from the susceptor 12 to maximize the supply efficiency of the high frequency power to the susceptor 12.

サセプタ12の内部上方には、導電膜からなる円板状のESC電極板23が配置されている。ESC電極板23には直流電源24が電気的に接続されている。ウエハWは、直流電源24からESC電極板23に印加された直流電圧により発生するクーロン力又はジョンソン・ラーベック(Johnsen-Rahbek)力によってサセプタ12の上面に吸着保持される。また、サセプタ12の上方には、サセプタ12の上面に吸着保持されたウエハWの周りを囲うように円環状のフォーカスリング25が配設される。このフォーカスリング25は、後述する空間Sに露出し、該空間SにおいてプラズマをウエハWの表面に向けて収束し、RIE処理やアッシング処理の効率を向上させる。   A disc-shaped ESC electrode plate 23 made of a conductive film is disposed above the susceptor 12. A DC power supply 24 is electrically connected to the ESC electrode plate 23. The wafer W is attracted and held on the upper surface of the susceptor 12 by a Coulomb force or a Johnson-Rahbek force generated by a DC voltage applied from the DC power source 24 to the ESC electrode plate 23. Further, an annular focus ring 25 is disposed above the susceptor 12 so as to surround the periphery of the wafer W sucked and held on the upper surface of the susceptor 12. The focus ring 25 is exposed to a space S to be described later, and the plasma is converged toward the surface of the wafer W in the space S to improve the efficiency of the RIE process and the ashing process.

また、サセプタ12の内部には、例えば、円周方向に延在する環状の冷媒室26が設けられる。この冷媒室26には、チラーユニット(図示せず)から冷媒用配管27を介して所定温度の冷媒、例えば、冷却水が循環供給され、当該冷媒の温度によってサセプタ12上面に吸着保持されたウエハWの処理温度が制御される。   Further, for example, an annular refrigerant chamber 26 extending in the circumferential direction is provided inside the susceptor 12. A coolant having a predetermined temperature, for example, cooling water, is circulated and supplied from a chiller unit (not shown) to the coolant chamber 26 via a coolant pipe 27, and the wafer is adsorbed and held on the upper surface of the susceptor 12 by the coolant temperature. The processing temperature of W is controlled.

サセプタ12の上面のウエハWが吸着保持される部分(以下、「吸着面」という。)には、複数の伝熱ガス供給孔28が開口している。   A plurality of heat transfer gas supply holes 28 are opened in a portion of the upper surface of the susceptor 12 where the wafer W is adsorbed and held (hereinafter referred to as “adsorption surface”).

これら複数の周縁伝熱ガス供給孔28は、サセプタ12内部に配置された伝熱ガス供給ライン30を介して伝熱ガス供給部32に接続され、該伝熱ガス供給部32は伝熱ガスとしてのヘリウムガスを、伝熱ガス供給孔28を介して吸着面及びウエハWの裏面の間隙に供給する。   The plurality of peripheral heat transfer gas supply holes 28 are connected to a heat transfer gas supply unit 32 via a heat transfer gas supply line 30 disposed inside the susceptor 12, and the heat transfer gas supply unit 32 serves as a heat transfer gas. The helium gas is supplied to the gap between the adsorption surface and the back surface of the wafer W through the heat transfer gas supply hole 28.

また、サセプタ12の吸着面には、サセプタ12の上面から突出自在なリフトピンとしての複数のプッシャーピン33が配置されている。これらのプッシャーピン33は、モータ(図示せず)とボールねじ(図示せず)を介して接続され、ボールねじによって直線運動に変換されたモータの回転運動に起因して吸着面から自在に突出する。ウエハWにRIE処理やアッシング処理を施すためにウエハWを吸着面に吸着保持するときには、プッシャーピン33はサセプタ12に収容され、RIE処理やアッシング処理が施されたウエハWを容器11から搬出するときには、プッシャーピン33はサセプタ12の上面から突出してウエハWをサセプタ12から離間させて上方へ持ち上げる。   A plurality of pusher pins 33 as lift pins that can protrude from the upper surface of the susceptor 12 are arranged on the suction surface of the susceptor 12. These pusher pins 33 are connected via a motor (not shown) and a ball screw (not shown), and freely protrude from the suction surface due to the rotational motion of the motor converted into a linear motion by the ball screw. To do. When the wafer W is sucked and held on the suction surface in order to perform the RIE process or the ashing process on the wafer W, the pusher pin 33 is accommodated in the susceptor 12 and the wafer W subjected to the RIE process or the ashing process is unloaded from the container 11. Sometimes, the pusher pin 33 protrudes from the upper surface of the susceptor 12 to lift the wafer W away from the susceptor 12 and lift it upward.

容器11の天井部には、サセプタ12と対向するようにガス導入シャワーヘッド34が配置されている。ガス導入シャワーヘッド34には整合器35を介して上部電極用の高周波電源36が接続されており、上部電極用の高周波電源36は所定の高周波電力をガス導入シャワーヘッド34に供給するので、ガス導入シャワーヘッド34は上部電極として機能する。なお、整合器35の機能は上述した整合器22の機能と同じである。   A gas introduction shower head 34 is arranged on the ceiling of the container 11 so as to face the susceptor 12. A high-frequency power source 36 for the upper electrode is connected to the gas introduction shower head 34 via a matching unit 35, and the high-frequency power source 36 for the upper electrode supplies predetermined high-frequency power to the gas introduction shower head 34. The introduction shower head 34 functions as an upper electrode. The function of the matching unit 35 is the same as the function of the matching unit 22 described above.

ガス導入シャワーヘッド34は、多数のガス穴37を有する天井電極板38と、該天井電極板38を着脱可能に支持する電極支持体39とを有する。また、該電極支持体39の内部にはバッファ室40が設けられ、このバッファ室40には処理ガス供給部(図示せず)からの処理ガス導入管41が接続されている。この処理ガス導入管41の途中には配管インシュレータ42が配置されている。この配管インシュレータ42は絶縁体からなり、ガス導入シャワーヘッド34へ供給された高周波電力が処理ガス導入管41によって処理ガス供給部へリークするのを防止する。ガス導入シャワーヘッド34は、処理ガス導入管41からバッファ室40へ供給された処理ガスをガス穴37を経由して容器11内へ供給する。   The gas introduction shower head 34 has a ceiling electrode plate 38 having a large number of gas holes 37 and an electrode support 39 that detachably supports the ceiling electrode plate 38. A buffer chamber 40 is provided inside the electrode support 39, and a processing gas introduction pipe 41 from a processing gas supply unit (not shown) is connected to the buffer chamber 40. A pipe insulator 42 is disposed in the middle of the processing gas introduction pipe 41. The pipe insulator 42 is made of an insulator and prevents the high-frequency power supplied to the gas introduction shower head 34 from leaking to the process gas supply section through the process gas introduction pipe 41. The gas introduction shower head 34 supplies the processing gas supplied from the processing gas introduction pipe 41 to the buffer chamber 40 into the container 11 through the gas hole 37.

また、容器11の側壁には、プッシャーピン33によってサセプタ12から上方へ持ち上げられたウエハWの高さに対応する位置にウエハWの搬出入口43が設けられ、搬出入口43には、該搬出入口43を開閉するゲートバルブ44が取り付けられている。   Further, on the side wall of the container 11, a wafer W loading / unloading port 43 is provided at a position corresponding to the height of the wafer W lifted upward from the susceptor 12 by the pusher pin 33, and the loading / unloading port 43 includes the loading / unloading port 43. A gate valve 44 for opening and closing 43 is attached.

このプラズマ処理室10の容器11内では、上述したように、サセプタ12及びガス導入シャワーヘッド34に高周波電力を供給して、サセプタ12及びガス導入シャワーヘッド34の間の空間Sに高周波電力を印加することにより、該空間Sにおいてガス導入シャワーヘッド34から供給された処理ガスから高密度のプラズマを発生させ、該プラズマによってウエハWにRIE処理やアッシング処理を施す。   In the container 11 of the plasma processing chamber 10, as described above, high frequency power is supplied to the susceptor 12 and the gas introduction shower head 34, and high frequency power is applied to the space S between the susceptor 12 and the gas introduction shower head 34. Thus, high-density plasma is generated from the processing gas supplied from the gas introduction shower head 34 in the space S, and the wafer W is subjected to RIE processing or ashing processing by the plasma.

具体的には、このプラズマ処理室10では、ウエハWにRIE処理やアッシング処理を施す際、先ずゲートバルブ44を開弁し、加工対象のウエハWを容器11内に搬入し、さらに、直流電圧をESC電極板23に印加することにより、搬入されたウエハWをサセプタ12の吸着面に吸着保持する。また、ガス導入シャワーヘッド34より処理ガスを所定の流量および流量比で容器11内に供給すると共に、APCバルブ15等により容器11内の圧力を所定値に制御する。さらに、サセプタ12及びガス導入シャワーヘッド34により容器11内の空間Sに高周波電力を印加する。これにより、ガス導入シャワーヘッド34より導入された処理ガスを空間Sにおいてプラズマにし、該プラズマをフォーカスリング25によってウエハWの表面に収束し、ウエハWの表面を物理的又は化学的にエッチングする。   Specifically, in the plasma processing chamber 10, when the RIE process or the ashing process is performed on the wafer W, the gate valve 44 is first opened, and the wafer W to be processed is loaded into the container 11. Is applied to the ESC electrode plate 23, and the loaded wafer W is sucked and held on the suction surface of the susceptor 12. Further, the processing gas is supplied from the gas introduction shower head 34 into the container 11 at a predetermined flow rate and flow ratio, and the pressure in the container 11 is controlled to a predetermined value by the APC valve 15 or the like. Further, high frequency power is applied to the space S in the container 11 by the susceptor 12 and the gas introduction shower head 34. As a result, the processing gas introduced from the gas introduction shower head 34 is converted into plasma in the space S, and the plasma is converged on the surface of the wafer W by the focus ring 25 to physically or chemically etch the surface of the wafer W.

なお、上述したプラズマ処理室10の各構成部品の動作は、プラズマ処理室10が備える制御部(図示しない)のCPUがRIE処理やアッシング処理に対応するプログラムに応じて制御する。   The operation of each component of the plasma processing chamber 10 described above is controlled by a CPU of a control unit (not shown) provided in the plasma processing chamber 10 according to a program corresponding to RIE processing and ashing processing.

また、プラズマ処理室10は、円筒形状の容器11の内周面を覆う円筒状の側壁部材45(処理室構成部品)を有する。この側壁部材45は容器11の内周面を覆うので、空間Sと対向し、空間Sにおいて発生するプラズマに暴露される。また、側壁部材45はアルミニウムからなり、空間Sに対向する面はアルマイトでコーティングされている。側壁部材45は電気的に浮遊(フローティング)し、サセプタ12及び側壁部材45の形状に左右されるアノード/カソード比や、ウエハWに対する所望のRIE処理やアッシング処理の結果を得るために設定される、プロセスパラメータとしての高周波電力の大きさに応じて電位が側壁部材45に発生するが、該発生した電位は以下に説明する電位制御装置46によって制御される。   Further, the plasma processing chamber 10 has a cylindrical side wall member 45 (processing chamber component) that covers the inner peripheral surface of the cylindrical container 11. Since the side wall member 45 covers the inner peripheral surface of the container 11, the side wall member 45 faces the space S and is exposed to plasma generated in the space S. The side wall member 45 is made of aluminum, and the surface facing the space S is coated with alumite. The side wall member 45 is electrically floating (floating), and is set to obtain an anode / cathode ratio that depends on the shapes of the susceptor 12 and the side wall member 45 and a result of a desired RIE process or ashing process on the wafer W. A potential is generated in the side wall member 45 in accordance with the magnitude of the high frequency power as a process parameter, and the generated potential is controlled by a potential control device 46 described below.

電位制御装置46は、丸棒状の導通部材47(構成部品接触部材)と、図中上下方向に延設されたガイド棒48を有し、電気的に接地される基部49と、該導通部材47を保持すると共に、ガイド棒48に沿って昇降して導通部材47を昇降させる昇降部50とを有する。導通部材47、基部49及び昇降部50は導体からなるので、導通部材47は基部49及び昇降部50を介して電気的に接地される。   The potential control device 46 includes a round bar-like conduction member 47 (component contact member), a guide bar 48 extending in the vertical direction in the figure, a base 49 that is electrically grounded, and the conduction member 47. And an elevating part 50 that elevates and lowers the conducting member 47 along the guide rod 48. Since the conducting member 47, the base 49 and the elevating part 50 are made of a conductor, the conducting member 47 is electrically grounded via the base 49 and the elevating part 50.

図2は、図1における導通部材及び側壁部材の接触・非接触を説明するための図である。   FIG. 2 is a view for explaining contact / non-contact between the conduction member and the side wall member in FIG. 1.

図2において、円筒状である側壁部材45は、図中上方の円周状の端部51において、該端部51の円周に沿って配置された複数の凹状の導通部材収容穴52を有し、各導通部材収容穴52に対向するように、複数の導通部材47が図中上下方向に沿って配置されている。   In FIG. 2, the cylindrical side wall member 45 has a plurality of concave conductive member receiving holes 52 arranged along the circumference of the end portion 51 at the upper circumferential end portion 51 in the drawing. In addition, a plurality of conducting members 47 are arranged in the vertical direction in the drawing so as to face each conducting member accommodation hole 52.

導通部材収容穴52の直径は導通部材47の直径より僅かに大きく、図3(A)に示すように、導通部材収容穴52は端部51より所定の距離だけ図中下方に下がった場所において狭小部52aを有する。狭小部52aの直径は導通部材47の直径より小さい。また、狭小部52a及び導通部材47の少なくとも1つは弾性部材、例えば、アルミニウムや銅からなる。したがって、昇降部50が導通部材47の先端(凸状部)を狭小部52aまで下降させたとき、図3(B)に示すように、導通部材47の先端及び狭小部52aは嵌合し、これにより、導通部材47及び側壁部材45は接触し、側壁部材45は電位制御装置46を介して電気的に接地される。また、昇降部50が導通部材47を狭小部52aより上方に上昇させたとき、導通部材47と狭小部52aは接触することがないので、導通部材47及び側壁部材45は非接触となり、側壁部材45は電気的に浮遊する。すなわち、複数の導通部材47の先端は複数の導通部材収容穴52のそれぞれと自在に嵌合する。   The diameter of the conducting member receiving hole 52 is slightly larger than the diameter of the conducting member 47. As shown in FIG. 3A, the conducting member receiving hole 52 is lowered downward from the end 51 by a predetermined distance in the drawing. It has a narrow portion 52a. The diameter of the narrow portion 52 a is smaller than the diameter of the conducting member 47. Further, at least one of the narrow portion 52a and the conductive member 47 is made of an elastic member, for example, aluminum or copper. Therefore, when the elevating part 50 lowers the tip (convex part) of the conduction member 47 to the narrow part 52a, the tip of the conduction member 47 and the narrow part 52a are fitted, as shown in FIG. Thereby, the conducting member 47 and the side wall member 45 are in contact with each other, and the side wall member 45 is electrically grounded via the potential control device 46. Further, when the elevating part 50 raises the conducting member 47 above the narrow part 52a, the conducting member 47 and the narrow part 52a are not in contact with each other, so that the conducting member 47 and the side wall member 45 are not in contact with each other. 45 is electrically floating. That is, the tips of the plurality of conducting members 47 are freely fitted into the plurality of conducting member receiving holes 52, respectively.

ところで、本発明者は本発明に先立って、上述した電位制御装置46を備えない従来のプラズマ処理室において、プラズマに暴露される構成部品に付着するポリマー等の付着物(以下、「デポ」という。)の付着速度(以下、「デポレート」という。)や、各構成部品とプラズマが発生する空間との電位差を測定し、その結果を図4及び図5に示すグラフに纏めたところ、以下の知見を得た。   By the way, prior to the present invention, the present inventor, in a conventional plasma processing chamber that does not include the above-described potential control device 46, adhered matter such as polymer (hereinafter referred to as “depot”) that adheres to components exposed to plasma. )) And the potential difference between each component and the space where plasma is generated, and the results are summarized in the graphs shown in FIG. 4 and FIG. Obtained knowledge.

図4において、電気的に浮遊している構成部品(以下、「フローティングパーツ」という。)のデポレート(図4(A))は、電気的に接地している構成部品(以下、「グラウンドパーツ」という。)のデポレート(図4(B))より大きく、フローティングパーツはグラウンドパーツよりデポが付着しやすいことが分かった。これは、図5に示すように、グラウンドパーツの電位差がフローティングパーツの電位差よりも大きいため、処理ガスがプラズマとなったときに発生するイオンが、グラウンドパーツにフローティングパーツより多く衝突し、その結果、付着したデポがイオンによるエッチングによって除去されたためと推察された。   In FIG. 4, the depot (FIG. 4A) of the electrically floating component (hereinafter referred to as “floating part”) is the electrically grounded component (hereinafter referred to as “ground part”). It was found that the floating part is more easily attached to the floating part than the ground part. As shown in FIG. 5, since the potential difference of the ground part is larger than the potential difference of the floating part, the ions generated when the processing gas becomes plasma collide with the ground part more than the floating part. It was assumed that the deposited deposit was removed by etching with ions.

また、図4において、上部電極の高周波電力を2200Wに固定し、下部電極の高周波電力を0/1000/3800Wの3水準に設定したところ、フローティングパーツでは下部電極の高周波電力が大きくなるほどデポが付着しやすく、グラウンドパーツでは下部電極の高周波電力が大きくなるほどデポが付着しにくいことが分かった。特に、グラウンドパーツでは、下部電極の高周波電力を大きくすることによってデポレートをほぼ0にすることができるのが分かった。すなわち、構成部品用の高周波電源を用いることなく、構成部品の電位を接地電位にすることによって構成部品に付着するデポを殆ど除去できることが分かった。   Further, in FIG. 4, when the high frequency power of the upper electrode is fixed at 2200 W and the high frequency power of the lower electrode is set to three levels of 0/1000/3800 W, in the floating parts, the deposit is attached as the high frequency power of the lower electrode increases. It was found that the deposit is less likely to adhere to the ground part as the high frequency power of the lower electrode increases. In particular, in the ground part, it has been found that the deposition rate can be made substantially zero by increasing the high frequency power of the lower electrode. That is, it has been found that the deposit attached to the component can be almost eliminated by setting the potential of the component to the ground potential without using the high-frequency power source for the component.

これら得られた知見に基づいて、本発明では、構成部品にデポが付着するデポプロセスにおいて構成部品からデポを除去するときは、構成部品の電位を接地電位に設定し、構成部品にデポが付着しないデポレスプロセスにおいて構成部品からデポを除去しないときは、構成部品の電位を浮遊電位に設定する。   Based on these findings, in the present invention, when removing a depot from a component in a depot process where the depot adheres to the component, the potential of the component is set to the ground potential, and the depot adheres to the component. When the deposit is not removed from the component in the depotless process, the potential of the component is set to the floating potential.

以下、プラズマ処理室10において実行される電位制御方法について説明する。ここで、プラズマ処理室10では、RIE処理とアッシング処理の2種類の処理が行われる。また、この電位制御方法は、該方法に対応するプログラムに応じて制御部のCPUが実行する。   Hereinafter, a potential control method executed in the plasma processing chamber 10 will be described. Here, in the plasma processing chamber 10, two types of processing, RIE processing and ashing processing, are performed. This potential control method is executed by the CPU of the control unit in accordance with a program corresponding to the method.

まず、RIE処理では、ウエハWのSiO層上に形成され、該SiO層の一部を所定の配線パターンに従って空間Sに暴露させるレジスト膜に向けて、処理ガスをプラズマにして発生させたイオンを引き込む。引き込まれたイオンは空間Sに暴露されたSiO層に衝突し、該SiO層を所定の配線パターンに従ってエッチングする。 First, in the RIE process, a processing gas is generated as plasma toward a resist film formed on the SiO 2 layer of the wafer W and exposing a part of the SiO 2 layer to the space S according to a predetermined wiring pattern. Draw ions. The drawn ions collide with the SiO 2 layer exposed to the space S, and the SiO 2 layer is etched according to a predetermined wiring pattern.

RIE処理では、処理ガスとしてCガスとアルゴンガスの混合ガスが用いられるが、この混合ガスはプラズマとなったとき、多量の中性の活性種を発生し、該活性種はデポとして側壁部材45に付着するため、RIE処理はデポプロセスである。このRIE処理において、電位制御装置46は、昇降部50によって導通部材47を下降させて導通部材47と側壁部材45とを接触させることにより、側壁部材45の電位を接地電位に設定し、側壁部材45に付着したデポをイオンによるエッチングによって除去する。 In the RIE process, a mixed gas of C 4 F 8 gas and argon gas is used as a processing gas. When this mixed gas becomes plasma, a large amount of neutral active species is generated, and the active species is used as a depot. The RIE process is a deposition process because it adheres to the side wall member 45. In this RIE process, the potential control device 46 sets the potential of the side wall member 45 to the ground potential by lowering the conductive member 47 by the elevating unit 50 and bringing the conductive member 47 and the side wall member 45 into contact with each other. The deposit attached to 45 is removed by ion etching.

続くアッシング処理では、処理ガスをプラズマにして発生させたイオンをウエハWに引き込むことにより、ウエハW上のレジスト膜を除去する。レジスト膜は有機系であるため、処理ガスとしてOガスを用いる。Oガスは上述したような中性の活性種を生じることがなく、デポが側壁部材45の表面に付着することはないため、アッシング処理はデポレスプロセスである。 In the subsequent ashing process, the resist film on the wafer W is removed by drawing ions generated by using the processing gas as plasma into the wafer W. Since the resist film is organic, O 2 gas is used as a processing gas. Since the O 2 gas does not generate the neutral active species as described above, and the deposit does not adhere to the surface of the side wall member 45, the ashing process is a depositless process.

上述したRIE処理において側壁部材45からデポが殆ど除去されていると、Oガスがプラズマとなったときに生じるイオンが側壁部材45に付着したデポを除去し、該デポが除去された後には、側壁部材45が露出し、該露出した側壁部材45をイオンがエッチングして消耗させることがある。これに対応して、アッシング処理において、電位制御装置46は、昇降部50によって導通部材47を上昇させて導通部材47と側壁部材45とを非接触にし、側壁部材45の電位を浮遊電位に設定し、側壁部材45に付着したデポを除去しない。これにより、側壁部材45が露出するのを防止する。 When the deposit is almost removed from the side wall member 45 in the RIE process described above, ions generated when the O 2 gas becomes plasma removes the deposit attached to the side wall member 45, and after the deposit is removed, The side wall member 45 may be exposed, and the exposed side wall member 45 may be consumed by the etching of ions. Correspondingly, in the ashing process, the potential controller 46 raises the conducting member 47 by the elevating unit 50 to bring the conducting member 47 and the sidewall member 45 into non-contact, and sets the potential of the sidewall member 45 to a floating potential. In addition, the deposit attached to the side wall member 45 is not removed. This prevents the side wall member 45 from being exposed.

本実施の形態に係るプラズマ処理室及び電位制御方法によれば、容器11内に配置され且つプラズマに暴露される側壁部材45の電位が、RIE処理では接地電位に設定され、アッシング処理では浮遊電位に設定されるので、側壁部材45用の高周波電源を用いることなく、側壁部材45に付着するデポを殆ど除去できる。したがって、簡素な構成でデポの付着量の制御を容易に行うことができる。また、デポプロセスであるRIE処理において側壁部材45へデポが過剰に付着するのを防止できると共に、デポレスプロセスであるアッシング処理において側壁部材45が消耗するのを防止でき、側壁部材45のクリーニング頻度を低下させると共に、側壁部材45の消耗を防止してプラズマ処理室10の稼働率が低下するのを防止することができる。   According to the plasma processing chamber and the potential control method according to the present embodiment, the potential of the side wall member 45 disposed in the container 11 and exposed to the plasma is set to the ground potential in the RIE process, and the floating potential in the ashing process. Therefore, almost no deposit attached to the side wall member 45 can be removed without using a high-frequency power source for the side wall member 45. Therefore, it is possible to easily control the deposit amount with a simple configuration. Further, it is possible to prevent deposits from being excessively attached to the side wall member 45 in the RIE process which is a deposition process, and to prevent the side wall member 45 from being consumed in the ashing process which is a depotless process. In addition, the consumption of the side wall member 45 can be prevented and the operating rate of the plasma processing chamber 10 can be prevented from decreasing.

また、側壁部材45へのデポの付着量の制御を的確に行うことが容易となり、アッシング処理中における側壁部材45からのデポの剥離を抑制することができ、剥離したデポに起因するメモリー効果の発生を防止することができる。   In addition, it becomes easy to accurately control the amount of deposits on the side wall member 45, and it is possible to suppress the peeling of the deposits from the side wall member 45 during the ashing process. Occurrence can be prevented.

上述した本実施の形態に係るプラズマ処理室によれば、側壁部材45は電気的に浮遊し、電気的に接地された導通部材47は、側壁部材45と接触自在であるので、側壁部材45の電位の浮遊電位又は接地電位への切り替えを確実に行うことができる。   According to the above-described plasma processing chamber according to the present embodiment, the side wall member 45 is electrically floating, and the electrically grounded conductive member 47 is freely contactable with the side wall member 45. It is possible to reliably switch the potential to the floating potential or the ground potential.

また、上述した本実施の形態に係るプラズマ処理室によれば、円筒状である側壁部材45は、凹状の導通部材収容穴52を有し、導通部材47は導通部材収容穴52と嵌合自在な丸棒状の部材であり、側壁部材45の導通部材収容穴52は狭小部52aを有し、該狭小部52a及び導通部材47の少なくとも1つは弾性部材からなるので、導通部材47の先端を狭小部52aと嵌合させ、または、導通部材47を狭小部52aから脱離させることによって側壁部材45の電位を浮遊電位又は接地電位への切り替えることができ、もって簡素な構造で側壁部材45の電位の切り替えを確実に行うことができる。   Further, according to the plasma processing chamber according to the present embodiment described above, the cylindrical side wall member 45 has the concave conductive member accommodation hole 52, and the conduction member 47 can be fitted into the conduction member accommodation hole 52. The conducting member receiving hole 52 of the side wall member 45 has a narrow portion 52a, and at least one of the narrow portion 52a and the conducting member 47 is made of an elastic member. The potential of the side wall member 45 can be switched to the floating potential or the ground potential by fitting with the narrow portion 52a or by detaching the conductive member 47 from the narrow portion 52a. The potential can be switched reliably.

さらに、上述した本実施の形態に係るプラズマ処理室によれば、側壁部材45は円筒状部材であり、複数の導通部材収容穴52が円周状の端部51において該端部51の円周に沿って配置され、複数の導通部材47の先端が複数の導通部材収容穴52のそれぞれと自在に嵌合するので、側壁部材45及び導通部材47が接触したときに、側壁部材45における円周方向に沿った電位の偏在の発生を防止することができ、側壁部材45へのデポの付着量を均一に制御することができる。   Furthermore, according to the plasma processing chamber according to the present embodiment described above, the side wall member 45 is a cylindrical member, and the plurality of conducting member accommodation holes 52 are arranged at the circumferential end portion 51 at the circumference of the end portion 51. Since the tips of the plurality of conducting members 47 are freely fitted in the plurality of conducting member receiving holes 52, when the side wall member 45 and the conducting member 47 come into contact with each other, the circumference of the side wall member 45 is Occurrence of the uneven distribution of the potential along the direction can be prevented, and the deposition amount of the deposit on the side wall member 45 can be controlled uniformly.

上述した本実施の形態に係るプラズマ処理室では、側壁部材45の複数の導通部材収容穴52に複数の丸棒状の導通部材47の先端が嵌合することによって側壁部材45と導通部材47とが接触したが、導通部材47は丸棒状に限らず、導通部材収容穴52に嵌合可能な凸状部を有する形状であればよい。   In the plasma processing chamber according to the above-described embodiment, the side wall member 45 and the conduction member 47 are connected to each other by fitting the tips of the plurality of round bar-like conduction members 47 into the plurality of conduction member accommodation holes 52 of the side wall member 45. Although contacted, the conducting member 47 is not limited to a round bar shape, and may be any shape having a convex portion that can be fitted into the conducting member accommodation hole 52.

また、図6に示すように、側壁部材45が、円周状の端部51において、該端部51の円周に沿って形成された溝53を有し、電位制御装置46は、導通部材47の代わりに、溝53と同じ直径を有し且つ同一中心軸上に配置された2つのリング54a,54bと、該2つのリング54a,54bを連結する複数の棒状の連結部材55とからなる網状の嵌合部材56(構成部品接触部材)を有していてもよい。この嵌合部材56は該嵌合部材56を昇降させる昇降装置(図示しない)を介して接地される。また、嵌合部材56は、溝53と嵌合して側壁部材45と接触し、側壁部材45を電気的に接地させ、または、溝53から脱離して側壁部材45と非接触となり、側壁部材45を電気的に浮遊させる。なお、リング54a,54bの幅は溝53より小さく、溝53は狭小部(図示しない)を有し、該狭小部の幅はリング54a,54bの幅より小さいことは言うまでもない。   Further, as shown in FIG. 6, the side wall member 45 has a groove 53 formed along the circumference of the end portion 51 at the circumferential end portion 51, and the potential control device 46 includes a conduction member. Instead of 47, it comprises two rings 54a, 54b having the same diameter as the groove 53 and disposed on the same central axis, and a plurality of rod-like connecting members 55 that connect the two rings 54a, 54b. You may have the net-like fitting member 56 (component contact member). The fitting member 56 is grounded via an elevating device (not shown) that moves the fitting member 56 up and down. Further, the fitting member 56 engages with the groove 53 and comes into contact with the side wall member 45 to electrically ground the side wall member 45, or is detached from the groove 53 to be out of contact with the side wall member 45. 45 is electrically floated. Needless to say, the width of the rings 54a and 54b is smaller than the groove 53, and the groove 53 has a narrow portion (not shown), and the width of the narrow portion is smaller than the width of the rings 54a and 54b.

嵌合部材56が側壁部材45と嵌合した場合、嵌合部材56は側壁部材45と円周全域に亘って接触するので、側壁部材45における円周方向に沿った電位の偏在の発生を確実に防止することができ、側壁部材45へのデポの付着量をより均一に制御することができる。   When the fitting member 56 is fitted to the side wall member 45, the fitting member 56 contacts the side wall member 45 over the entire circumference, so that the occurrence of potential unevenness in the circumferential direction in the side wall member 45 is ensured. Therefore, it is possible to more uniformly control the deposition amount of the deposit on the side wall member 45.

上述した本実施の形態に係るプラズマ処理室は、下部電極及び上部電極を有し、それぞれの電極に高周波電源が接続されるが、上部電極に高周波電源が接続されなくてもよい。この場合、天井板としての天井電極板38は電気的に浮遊し、デポプロセスにおいて天井電極板38にデポが付着するため、電位制御装置46と同様の構成を有する天井板用の電位制御装置を設け、該天井板用の電位制御装置の導通部材と天井電極板38との接触・非接触を制御することにより、天井電極板38の電位を接地電位又は浮遊電位に設定し、天井電極板38へのデポの付着量を制御するのが好ましい。   The plasma processing chamber according to the present embodiment described above includes a lower electrode and an upper electrode, and a high frequency power source is connected to each electrode, but a high frequency power source may not be connected to the upper electrode. In this case, since the ceiling electrode plate 38 as a ceiling plate is electrically floating and the deposit adheres to the ceiling electrode plate 38 in the deposition process, a potential control device for a ceiling plate having the same configuration as the potential control device 46 is provided. The potential of the ceiling electrode plate 38 is set to the ground potential or the floating potential by controlling the contact / non-contact between the conductive member of the potential control device for the ceiling plate and the ceiling electrode plate 38, and the ceiling electrode plate 38 It is preferable to control the amount of deposits on the surface.

また、上部電極に高周波電源が接続されない場合、側壁部材45及び天井板が一体化されていてもよい。このとき、電位制御装置46の導通部材47は側壁部材45及び天井板のいずれか一方に接触すればよい。   Further, when the high frequency power source is not connected to the upper electrode, the side wall member 45 and the ceiling plate may be integrated. At this time, the conducting member 47 of the potential control device 46 may be in contact with either the side wall member 45 or the ceiling plate.

なお、上部電極に高周波電源が接続されている場合であっても、天井板用の電位制御装置を設けてもよい。これにより、上部電極に高周波電力を供給しないプラズマ処理において、天井電極板38の電位を制御して天井電極板38へのデポの付着量を制御することができる。   Even when a high-frequency power source is connected to the upper electrode, a potential control device for a ceiling panel may be provided. As a result, in the plasma processing in which high frequency power is not supplied to the upper electrode, the potential of the ceiling electrode plate 38 can be controlled to control the deposition amount of the deposit on the ceiling electrode plate 38.

次に、本発明の第2の実施の形態に係るプラズマ処理室について説明する。   Next, a plasma processing chamber according to a second embodiment of the present invention will be described.

本実施の形態は、その構成や作用が上述した第1の実施の形態と基本的に同じであり、昇降する導通部材47を有する電位制御装置46ではなく、電気回路からなる電位制御装置によって側壁部材45の電位を制御する点で上述した第1の実施の形態と異なるのみである。したがって、同様の構成については説明を省略し、以下に第1の実施の形態と異なる作用についてのみ説明を行う。   This embodiment is basically the same in configuration and operation as the first embodiment described above, and is not a potential control device 46 having a conducting member 47 that moves up and down. The only difference from the first embodiment is that the potential of the member 45 is controlled. Therefore, the description of the same configuration is omitted, and only the operation different from that of the first embodiment will be described below.

図7は、本実施の形態に係るプラズマ処理室の概略構成を示す断面図である。このプラズマ処理室も、図1のプラズマ処理室10と同様に、半導体ウエハWにRIE処理やアッシング処理を施すように構成されている。   FIG. 7 is a cross-sectional view showing a schematic configuration of the plasma processing chamber according to the present embodiment. This plasma processing chamber is also configured to perform RIE processing and ashing processing on the semiconductor wafer W, similarly to the plasma processing chamber 10 of FIG.

図7において、プラズマ処理室70における側壁部材45に発生した電位は以下に説明する電位制御装置71によって制御される。   In FIG. 7, the potential generated in the side wall member 45 in the plasma processing chamber 70 is controlled by a potential control device 71 described below.

電位制御装置71は、側壁部材45に接続され、該側壁部材45を接地する接地線72と、該接地線72の途中に配置されて接地線72の切断及び接続を切り替えるスイッチ73(切り替え装置)とを有する。また、電位制御装置71は、スイッチ73によって接地線72を切断することによって側壁部材45の電位を浮遊電位に設定し、接地線72を接続することによって側壁部材45の電位を接地電位に設定する。   The potential control device 71 is connected to the side wall member 45, a ground wire 72 that grounds the side wall member 45, and a switch 73 (switching device) that is arranged in the middle of the ground wire 72 and switches between disconnection and connection of the ground wire 72. And have. Further, the potential control device 71 sets the potential of the side wall member 45 to a floating potential by cutting the ground line 72 with the switch 73, and sets the potential of the side wall member 45 to the ground potential by connecting the ground line 72. .

以下、プラズマ処理室70において実行される電位制御方法について説明する。上述したように、プラズマ処理室70ではRIE処理とアッシング処理の2種類の処理が行われる。また、この電位制御方法は、該方法に対応するプログラムに応じて制御部のCPUが実行する。   Hereinafter, a potential control method executed in the plasma processing chamber 70 will be described. As described above, in the plasma processing chamber 70, two types of processing, RIE processing and ashing processing, are performed. This potential control method is executed by the CPU of the control unit in accordance with a program corresponding to the method.

まず、デポプロセスであるRIE処理では、電位制御装置71は、スイッチ73によって接地線72を接続することにより、側壁部材45の電位を接地電位に設定し、側壁部材45に付着したデポをイオンによるエッチングによって除去する。   First, in the RIE process that is a deposition process, the potential control device 71 connects the ground line 72 by the switch 73 to set the potential of the side wall member 45 to the ground potential, and the depot adhering to the side wall member 45 is ionized. Remove by etching.

続く、デポレスプロセスであるアッシング処理では、電位制御装置71は、スイッチ73によって接地線72を切断することにより、側壁部材45の電位を浮遊電位に設定し、側壁部材45に付着したデポを除去しない。これにより、側壁部材45が露出するのを防止する。   In the ashing process that is a subsequent deposition process, the potential control device 71 sets the potential of the side wall member 45 to the floating potential by cutting the ground line 72 by the switch 73, and removes the deposit attached to the side wall member 45. do not do. This prevents the side wall member 45 from being exposed.

本実施の形態に係るプラズマ処理室及び電位制御方法によれば、側壁部材45を接地する接地線72、及び該接地線72の途中に配置され且つ接地線72の切断及び接続を切り替えるスイッチ73からなる電位制御装置71によって、側壁部材45の電位が、RIE処理では接地電位に設定され、アッシング処理では浮遊電位に設定されるので、簡素な構造で側壁部材45の電位の浮遊電位又は接地電位への切り替えを行うことができ、もって、デポの付着量の制御を容易に行うことができる。   According to the plasma processing chamber and the potential control method according to the present embodiment, the ground wire 72 that grounds the side wall member 45, and the switch 73 that is arranged in the middle of the ground wire 72 and that switches between disconnection and connection of the ground wire 72 are used. Since the potential of the side wall member 45 is set to the ground potential in the RIE process and is set to the floating potential in the ashing process by the potential control device 71, the potential of the side wall member 45 is set to the floating potential or the ground potential with a simple structure. Therefore, it is possible to easily control the deposit amount.

上述した本実施の形態に係るプラズマ処理室における電位制御装置71は、接地線72及びスイッチ73からなるが、電位制御装置71が、接地線72の途中に配置された可変インピーダンス素子、例えば、可変インダクタンスや可変コンデンサを備えていてもよい。これにより、側壁部材45の電位の変化速度を制御することができ、もって、デポの付着量をより細かく制御することができる。   The potential control device 71 in the plasma processing chamber according to the present embodiment described above includes the ground line 72 and the switch 73. The potential control device 71 is a variable impedance element disposed in the middle of the ground line 72, for example, a variable An inductance or a variable capacitor may be provided. Thereby, the change rate of the potential of the side wall member 45 can be controlled, so that the deposition amount of the deposit can be controlled more finely.

また、可変インピーダンス素子が、側壁部材45に付着するデポの量に応じてインピーダンスを変更してもよく。これにより、付着するデポの量に応じて側壁部材45の電位を制御することができ、もって、デポの付着量をさらに細かく制御することができる。さらに、可変インピーダンス素子が、高周波電源20が供給する電力の周波数に同期してインピーダンスを変更してもよく。これにより、電力の変動に起因するデポの付着量の変動を抑制することができる。   In addition, the variable impedance element may change the impedance according to the amount of deposit attached to the side wall member 45. As a result, the potential of the side wall member 45 can be controlled in accordance with the amount of deposited deposit, so that the deposited amount of deposit can be controlled more finely. Furthermore, the variable impedance element may change the impedance in synchronization with the frequency of the power supplied from the high frequency power supply 20. Thereby, the fluctuation | variation of the deposition amount of the deposit resulting from the fluctuation | variation of electric power can be suppressed.

上述した各実施の形態に係るプラズマ処理室における電位制御装置は、機械的構成(電位制御装置46)及び電気回路的構成(電位制御装置71)のいずれか一方を備えるが、電位制御装置が機械的構成及び電気回路的構成を備えていてもよい。具体的には、電位制御装置46の基部49がスイッチを介して電気的に接地されるような構成を有するのがよい。この場合、側壁部材45の電位を急速に変化させる必要があるときは、導通部材47の昇降を行う一方、側壁部材45の電位を微調整する必要があるときは、スイッチ73による接地線の切断・接続を行う。これにより、プラズマ処理内容の変化に応じて側壁部材45の電位を最適な電位に設定することができ、もってデポの付着量を最適な量に制御することができる。   The potential control device in the plasma processing chamber according to each of the embodiments described above includes one of a mechanical configuration (potential control device 46) and an electrical circuit configuration (potential control device 71). A general configuration and an electrical circuit configuration may be provided. Specifically, it is preferable to have a configuration in which the base 49 of the potential control device 46 is electrically grounded via a switch. In this case, when the potential of the side wall member 45 needs to be rapidly changed, the conducting member 47 is raised and lowered, while when the potential of the side wall member 45 needs to be finely adjusted, the ground line is disconnected by the switch 73. -Connect. As a result, the potential of the side wall member 45 can be set to an optimum potential in accordance with the change in the plasma processing content, and the deposition amount of the deposit can be controlled to the optimum amount.

上述した各実施の形態に係るプラズマ処理室では、処理される基板が半導体ウエハであったが、処理される基板はこれに限られず、例えば、LCD(Liquid Crystal Display)やFPD(Flat Panel Display)等のガラス基板であってもよい。   In the plasma processing chamber according to each of the above-described embodiments, the substrate to be processed is a semiconductor wafer. However, the substrate to be processed is not limited to this, for example, an LCD (Liquid Crystal Display) or an FPD (Flat Panel Display). It may be a glass substrate such as.

本発明の目的は、上述した各実施の形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、プラズマ処理室に接続されたコンピュータや上述した制御部(以下、「コンピュータ等」という。)に供給し、コンピュータ等のCPUが記憶媒体に格納されたプログラムコードを読み出して実行することによっても達成される。   It is an object of the present invention to refer to a storage medium storing software program codes for realizing the functions of the above-described embodiments as a computer connected to the plasma processing chamber or the above-described control unit (hereinafter referred to as “computer or the like”). And the program code stored in the storage medium is read and executed by a CPU such as a computer.

この場合、記憶媒体から読み出されたプログラムコード自体が上述した各実施の形態の機能を実現することになり、プログラムコード及びそのプログラムコードを記憶した記憶媒体は本発明を構成することになる。   In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code and the storage medium storing the program code constitute the present invention.

また、プログラムコードを供給するための記憶媒体としては、例えば、RAM、NV−RAM、フロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、CD−RW、DVD(DVD−ROM、DVD−RAM、DVD−RW、DVD+RW)、磁気テープ、不揮発性のメモリカード、他のROM等の上記プログラムコードを記憶できるものであればよい。或いは、上記プログラムコードは、インターネット、商用ネットワーク、若しくはローカルエリアネットワーク等に接続される不図示の他のコンピュータやデータベース等からダウンロードすることによりコンピュータ等に供給されてもよい。   Examples of the storage medium for supplying the program code include RAM, NV-RAM, floppy (registered trademark) disk, hard disk, optical disk, magneto-optical disk, CD-ROM, CD-R, CD-RW, and DVD. (DVD-ROM, DVD-RAM, DVD-RW, DVD + RW), magnetic tape, non-volatile memory card, other ROM, etc. may be used as long as they can store the program code. Alternatively, the program code may be supplied to a computer or the like by downloading from another computer or database (not shown) connected to the Internet, a commercial network, a local area network, or the like.

また、CPUが読み出したプログラムコードを実行することにより、上記各実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、CPU上で稼動しているOS(オペレーティングシステム)等が実際の処理の一部又は全部を行い、その処理によって上述した各実施の形態の機能が実現される場合も含まれる。   Further, by executing the program code read by the CPU, not only the functions of the above-described embodiments are realized, but also an OS (operating system) running on the CPU based on the instruction of the program code. Includes a case where part or all of the actual processing is performed and the functions of the above-described embodiments are realized by the processing.

更に、記憶媒体から読み出されたプログラムコードが、コンピュータ等に挿入された機能拡張ボードやコンピュータ等に接続された機能拡張ユニットに備わるメモリに書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部又は全部を行い、その処理によって上述した各実施の形態の機能が実現される場合も含まれる。  Further, after the program code read from the storage medium is written in a memory provided in a function expansion board inserted in a computer or the like or a function expansion unit connected to the computer or the like, the program code is read based on the instruction of the program code. A case where the CPU of the function expansion board or the function expansion unit performs part or all of the actual processing and the functions of the above-described embodiments are realized by the processing is also included.

上記プログラムコードの形態は、オブジェクトコード、インタプリタにより実行されるプログラムコード、OSに供給されるスクリプトデータ等の形態から成ってもよい。   The form of the program code may be in the form of object code, program code executed by an interpreter, script data supplied to the OS, and the like.

本発明の第1の実施の形態に係るプラズマ処理室の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the plasma processing chamber which concerns on the 1st Embodiment of this invention. 図1における導通部材及び側壁部材の接触・非接触を説明するための図である。It is a figure for demonstrating the contact and non-contact of the conduction | electrical_connection member and side wall member in FIG. 図2における導通部材の先端及び導通部材収容穴の嵌合状態を説明するための図であり、(A)は導通部材の先端及び導通部材収容穴が嵌合する前の状態を示す図であり、(B)は導通部材の先端及び導通部材収容穴が嵌合したときの状態を示す図である。It is a figure for demonstrating the fitting state of the front-end | tip of a conduction member in FIG. 2, and a conduction-member accommodation hole, (A) is a figure which shows the state before the front-end | tip of a conduction member and a conduction member accommodation hole are fitted. (B) is a figure which shows a state when the front-end | tip of a conduction member and the conduction member accommodation hole fit. 従来のプラズマ処理室における構成部品のデポレートを示すグラフであり、(A)はフローティングパーツのデポレートを示すグラフであり、(B)はグラウンドパーツのデポレートを示すグラフである。It is a graph which shows the deposition of the component in the conventional plasma processing chamber, (A) is a graph which shows the deposition of a floating part, (B) is a graph which shows the deposition of a ground part. 従来のプラズマ処理室における構成部品とプラズマが発生する空間との電位差を示すグラフである。It is a graph which shows the electrical potential difference of the component in the conventional plasma processing chamber, and the space where plasma generate | occur | produces. 図1における電位制御装置の変形例における嵌合部材及び側壁部材の接触・非接触を説明するための図である。It is a figure for demonstrating the contact / non-contact of the fitting member and side wall member in the modification of the electric potential control apparatus in FIG. 本発明の第2の実施の形態に係るプラズマ処理室の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the plasma processing chamber which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

W ウエハ
10,70 プラズマ処理室
11 容器
12 サセプタ
20 下部電極用の高周波電源
34 ガス導入シャワーヘッド
36 上部電極用の高周波電源
38 天井電極板
45 側壁部材
46,71 電位制御装置
47 導通部材
48 ガイド棒
49 基部
50 昇降部
51 端部
52 導通部材収容穴
52a 狭小部
53 溝
54a,54b リング
55 連結部材
56 嵌合部材
72 接地線
73 スイッチ
W Wafer 10, 70 Plasma processing chamber 11 Container 12 Susceptor 20 High frequency power supply 34 for lower electrode Gas introduction shower head 36 High frequency power supply 38 for upper electrode Ceiling electrode plate 45 Side wall member 46, 71 Potential control device 47 Conducting member 48 Guide rod 49 Base 50 Lifting Unit 51 End 52 Conducting Member Housing Hole 52a Narrow Part 53 Groove 54a, 54b Ring 55 Connecting Member 56 Fitting Member 72 Grounding Wire 73 Switch

Claims (20)

基板を収容する容器と、該容器内に配置され且つ高周波電源に接続された電極とを備え、前記容器内に導入された処理ガスをプラズマにして少なくとも2種類のプラズマ処理を前記基板に施すことが可能なプラズマ処理室において、
前記容器内に配置され且つ前記プラズマに暴露される処理室構成部品と、
該処理室構成部品の電位を、前記少なくとも2種類のプラズマ処理のそれぞれに応じて浮遊電位と接地電位のいずれかに設定する電位制御装置とを備えることを特徴とするプラズマ処理室。
A container containing a substrate; and an electrode disposed in the container and connected to a high-frequency power source, and subjecting the substrate to at least two types of plasma treatment using a processing gas introduced into the container as a plasma. In a plasma processing chamber where
Process chamber components disposed within the vessel and exposed to the plasma;
A plasma processing chamber, comprising: a potential control device that sets a potential of the processing chamber components to either a floating potential or a ground potential according to each of the at least two types of plasma processing.
前記少なくとも2種類のプラズマ処理は、前記処理室構成部品に付着物が付着するデポプロセス及び前記処理室構成部品に付着物が付着しないデポレスプロセスであり、前記電位制御装置は、デポプロセスにおいて前記処理室構成部品の電位を接地電位に設定し、デポレスプロセスにおいて前記処理室構成部品の電位を浮遊電位に設定することを特徴とする請求項1記載のプラズマ処理室。   The at least two types of plasma treatments are a deposition process in which deposits adhere to the processing chamber components and a depositless process in which deposits do not adhere to the processing chamber components, and the potential control device includes 2. The plasma processing chamber according to claim 1, wherein the potential of the processing chamber component is set to a ground potential, and the potential of the processing chamber component is set to a floating potential in a deposition process. 前記処理室構成部品は電気的に浮遊し、前記電位制御装置は電気的に接地された構成部品接触部材を有し、該構成部品接触部材は前記処理室構成部品と接触自在であることを特徴とする請求項1又は2記載のプラズマ処理室。   The process chamber component is electrically floating, and the potential control device has an electrically grounded component contact member, and the component contact member is freely contactable with the process chamber component. The plasma processing chamber according to claim 1 or 2. 前記処理室構成部品は凹状穴を有し、前記構成部品接触部材は前記凹状穴と嵌合自在な凸状部を有することを特徴とする請求項3記載のプラズマ処理室。   The plasma processing chamber according to claim 3, wherein the processing chamber component has a concave hole, and the component contact member has a convex portion that can be fitted into the concave hole. 前記凹状穴は狭小部を有し、該狭小部及び前記凸状部の少なくとも1つは弾性部材からなることを特徴とする請求項4記載のプラズマ処理室。   The plasma processing chamber according to claim 4, wherein the concave hole has a narrow portion, and at least one of the narrow portion and the convex portion is made of an elastic member. 前記容器は円筒形状を呈し、前記処理室構成部品は前記容器の内周面を覆う円筒状部材であり、複数の前記凹状穴が前記円筒状部材の円周に沿って配置され、複数の前記構成部品接触部材の凸状部が前記複数の凹状穴のそれぞれと自在に嵌合することを特徴とする請求項4又は5記載のプラズマ処理室。   The container has a cylindrical shape, and the processing chamber component is a cylindrical member that covers an inner peripheral surface of the container, and a plurality of the concave holes are arranged along a circumference of the cylindrical member, 6. The plasma processing chamber according to claim 4, wherein the convex portion of the component contact member is freely fitted to each of the plurality of concave holes. 前記容器は円筒形状を呈し、前記処理室構成部品は前記容器の内周面を覆う円筒状部材であり、前記円筒状部材は端部において該円筒状部材の円周に沿って形成された溝を有し、前記構成部品接触部材は網状形状を呈し、前記溝と嵌合自在であることを特徴とする請求項3記載のプラズマ処理室。   The container has a cylindrical shape, and the processing chamber component is a cylindrical member that covers the inner peripheral surface of the container, and the cylindrical member is a groove formed along the circumference of the cylindrical member at the end. The plasma processing chamber according to claim 3, wherein the component contact member has a mesh shape and can be fitted into the groove. 前記処理室構成部品は電気的に浮遊し、前記電位制御装置は、前記処理室構成部品を接地する接地線と、該接地線の途中に配置され且つ前記接地線の切断及び接続を切り替える切り替え装置とを有することを特徴とする請求項1又は2記載のプラズマ処理室。   The processing chamber component is electrically floating, and the potential control device is a grounding wire that grounds the processing chamber component, and a switching device that is disposed in the middle of the grounding wire and switches between disconnection and connection of the grounding wire. The plasma processing chamber according to claim 1 or 2, characterized by comprising: 前記電位制御装置は、前記接地線の途中に配置された可変インピーダンス素子を有することを特徴とする請求項8記載のプラズマ処理室。   The plasma processing chamber according to claim 8, wherein the potential control device includes a variable impedance element disposed in the middle of the ground line. 前記可変インピーダンス素子は、前記処理室構成部品に付着する付着物の量に応じてインピーダンスを変更することを特徴とする請求項9記載のプラズマ処理室。   The plasma processing chamber according to claim 9, wherein the variable impedance element changes impedance according to an amount of deposits attached to the processing chamber components. 前記可変インピーダンス素子は、前記高周波電源の周波数に同期してインピーダンスを変更することを特徴とする請求項9又は10記載のプラズマ処理室。   The plasma processing chamber according to claim 9 or 10, wherein the variable impedance element changes impedance in synchronization with a frequency of the high frequency power source. 前記可変インピーダンス素子は、可変インダクタンス又は可変コンデンサであることを特徴とする請求項9乃至11のいずれか1項に記載のプラズマ処理室。   The plasma processing chamber according to any one of claims 9 to 11, wherein the variable impedance element is a variable inductance or a variable capacitor. 基板を収容する容器と、該容器内に配置され且つ高周波電源に接続された電極とを備え、前記容器内に導入された処理ガスをプラズマにして少なくとも2種類のプラズマ処理を前記基板に施すことが可能なプラズマ処理室の前記容器内に配置され且つ前記プラズマに暴露される処理室構成部品の電位を、前記少なくとも2種類のプラズマ処理のそれぞれに応じて浮遊電位と接地電位のいずれかに設定することを特徴とする電位制御装置。   A container containing a substrate; and an electrode disposed in the container and connected to a high-frequency power source, and subjecting the substrate to at least two types of plasma treatment using a processing gas introduced into the container as a plasma. The potential of the processing chamber components disposed in the vessel of the plasma processing chamber capable of being exposed to and exposed to the plasma is set to either a floating potential or a ground potential according to each of the at least two types of plasma processing A potential control device characterized by: 前記少なくとも2種類のプラズマ処理は、前記処理室構成部品に付着物が付着するデポプロセス及び前記処理室構成部品に付着物が付着しないデポレスプロセスであり、デポプロセスにおいて前記処理室構成部品の電位を接地電位に設定し、デポレスプロセスにおいて前記処理室構成部品の電位を浮遊電位に設定することを特徴とする請求項13記載の電位制御装置。   The at least two types of plasma treatments are a deposition process in which deposits adhere to the processing chamber components and a deposition process in which deposits do not adhere to the processing chamber components, and the potential of the processing chamber components in the deposition process. 14. The potential control apparatus according to claim 13, wherein the potential of the processing chamber component is set to a floating potential in a depotless process. 前記処理室構成部品は電気的に浮遊し、電気的に接地された構成部品接触部材を有し、該構成部品接触部材は前記処理室構成部品と接触自在であることを特徴とする請求項13又は14記載の電位制御装置。   14. The process chamber component has a component contact member that is electrically floating and electrically grounded, and the component contact member is freely contactable with the process chamber component. Or the electric potential control apparatus of 14. 前記処理室構成部品は電気的に浮遊し、前記処理室構成部品を接地する接地線と、該接地線の途中に配置され且つ前記接地線の切断及び接続を切り替える切り替え装置とを有することを特徴とする請求項13又は14記載の電位制御装置。   The process chamber component is electrically floating, and has a ground line for grounding the process chamber component, and a switching device that is arranged in the middle of the ground line and switches between disconnection and connection of the ground line. The potential control device according to claim 13 or 14. 基板を収容する容器と、該容器内に配置され且つ高周波電源に接続された電極とを備え、前記容器内に導入された処理ガスをプラズマにして少なくとも2種類のプラズマ処理を前記基板に施すことが可能なプラズマ処理室の前記容器内に配置され且つ前記プラズマに暴露される処理室構成部品の電位制御方法であって、
前記少なくとも2種類のプラズマ処理のそれぞれに応じて、前記処理室構成部品の電位を浮遊電位と接地電位のいずれかに設定する電位設定ステップを有することを特徴とする電位制御方法。
A container containing a substrate; and an electrode disposed in the container and connected to a high-frequency power source, and subjecting the substrate to at least two types of plasma treatment using a processing gas introduced into the container as a plasma. A potential control method for a processing chamber component that is disposed in the vessel of the plasma processing chamber and is exposed to the plasma,
A potential control method comprising a potential setting step of setting a potential of the processing chamber component to either a floating potential or a ground potential according to each of the at least two types of plasma processing.
前記少なくとも2種類のプラズマ処理は、前記処理室構成部品に付着物が付着するデポプロセス及び前記処理室構成部品に付着物が付着しないデポレスプロセスであり、前記電位設定ステップは、デポプロセスにおいて前記処理室構成部品の電位を接地電位に設定し、デポレスプロセスにおいて前記処理室構成部品の電位を浮遊電位に設定することを特徴とする請求項17記載の電位制御方法。   The at least two types of plasma treatments are a deposition process in which deposits adhere to the processing chamber components and a deposition process in which deposits do not adhere to the processing chamber components, and the potential setting step includes 18. The potential control method according to claim 17, wherein the potential of the processing chamber component is set to a ground potential, and the potential of the processing chamber component is set to a floating potential in a depotless process. 基板を収容する容器と、該容器内に配置され且つ高周波電源に接続された電極とを備え、前記容器内に導入された処理ガスをプラズマにして少なくとも2種類のプラズマ処理を前記基板に施すことが可能なプラズマ処理室の前記容器内に配置され且つ前記プラズマに暴露される処理室構成部品の電位制御方法をコンピュータに実行させるプログラムであって、
前記少なくとも2種類のプラズマ処理のそれぞれに応じて、前記処理室構成部品の電位を浮遊電位と接地電位のいずれかに設定する電位設定モジュールを有することを特徴とするプログラム。
A container containing a substrate; and an electrode disposed in the container and connected to a high-frequency power source, and subjecting the substrate to at least two types of plasma treatment using a processing gas introduced into the container as a plasma. A program for causing a computer to execute a potential control method for a processing chamber component that is disposed in the container of a plasma processing chamber capable of being exposed to the plasma,
A program comprising a potential setting module for setting a potential of the processing chamber component to either a floating potential or a ground potential in accordance with each of the at least two types of plasma processing.
基板を収容する容器と、該容器内に配置され且つ高周波電源に接続された電極とを備え、前記容器内に導入された処理ガスをプラズマにして少なくとも2種類のプラズマ処理を前記基板に施すことが可能なプラズマ処理室の前記容器内に配置され且つ前記プラズマに暴露される処理室構成部品の電位制御方法をコンピュータに実行させるプログラムを格納するコンピュータ読み取り可能な記憶媒体であって、前記プログラムは、
前記少なくとも2種類のプラズマ処理のそれぞれに応じて、前記処理室構成部品の電位を浮遊電位と接地電位のいずれかに設定する電位設定モジュールを有することを特徴とする記憶媒体。
A container containing a substrate; and an electrode disposed in the container and connected to a high-frequency power source, and subjecting the substrate to at least two types of plasma treatment using a processing gas introduced into the container as a plasma. A computer-readable storage medium storing a program arranged in the container of a plasma processing chamber capable of performing and causing a computer to execute a potential control method for processing chamber components exposed to the plasma. ,
A storage medium comprising a potential setting module that sets a potential of the processing chamber component to either a floating potential or a ground potential in accordance with each of the at least two types of plasma processing.
JP2005164535A 2005-06-03 2005-06-03 Plasma processing apparatus and potential control apparatus Expired - Fee Related JP4628874B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005164535A JP4628874B2 (en) 2005-06-03 2005-06-03 Plasma processing apparatus and potential control apparatus
CNB2006100826318A CN100401471C (en) 2005-06-03 2006-05-19 Plasma processing chamber, potential controlling apparatus, method, program and storage medium
US11/442,287 US8157952B2 (en) 2005-06-03 2006-05-30 Plasma processing chamber, potential controlling apparatus, potential controlling method, program for implementing the method, and storage medium storing the program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005164535A JP4628874B2 (en) 2005-06-03 2005-06-03 Plasma processing apparatus and potential control apparatus

Publications (2)

Publication Number Publication Date
JP2006339529A true JP2006339529A (en) 2006-12-14
JP4628874B2 JP4628874B2 (en) 2011-02-09

Family

ID=37484308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005164535A Expired - Fee Related JP4628874B2 (en) 2005-06-03 2005-06-03 Plasma processing apparatus and potential control apparatus

Country Status (2)

Country Link
JP (1) JP4628874B2 (en)
CN (1) CN100401471C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518635A (en) * 2007-02-08 2010-05-27 ラム リサーチ コーポレーション Bevel cleaning equipment
JP2011228694A (en) * 2010-03-31 2011-11-10 Tokyo Electron Ltd Plasma processing method and plasma processing apparatus
JP2012186224A (en) * 2011-03-03 2012-09-27 Tokyo Electron Ltd Plasma processing apparatus
KR101784387B1 (en) * 2015-08-31 2017-10-13 주식회사 인포비온 Plasma chamber being capable of controlling the homogenization of plasma potential distribution for a charged particle beam output apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5154124B2 (en) * 2007-03-29 2013-02-27 東京エレクトロン株式会社 Plasma processing equipment
JP5571996B2 (en) * 2010-03-31 2014-08-13 東京エレクトロン株式会社 Plasma processing method and plasma processing apparatus
CN105118767B (en) * 2015-07-27 2017-04-12 郑州大学 Plasma etching equipment
CN109037020A (en) * 2018-07-26 2018-12-18 德淮半导体有限公司 Plasma device and its working method
JP7203593B2 (en) * 2018-12-25 2023-01-13 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562936A (en) * 1991-09-03 1993-03-12 Mitsubishi Electric Corp Plasma processor and plasma cleaning method
JPH06333879A (en) * 1993-05-24 1994-12-02 Tokyo Electron Ltd Plasma processing device
JPH1096082A (en) * 1996-06-14 1998-04-14 Applied Materials Inc Use of carbon-based film for prolonging life of substrate treating system constituting member
JP2003155569A (en) * 2001-11-16 2003-05-30 Nec Kagoshima Ltd Plasma cvd system and cleaning method therefor
JP2005101289A (en) * 2003-09-25 2005-04-14 Tokyo Electron Ltd Plasma ashing method
JP2006511059A (en) * 2002-12-20 2006-03-30 ラム リサーチ コーポレーション Semiconductor chamber and method for controlling plasma in plasma processing chamber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865896A (en) * 1993-08-27 1999-02-02 Applied Materials, Inc. High density plasma CVD reactor with combined inductive and capacitive coupling
US6048435A (en) * 1996-07-03 2000-04-11 Tegal Corporation Plasma etch reactor and method for emerging films
US6828241B2 (en) * 2002-01-07 2004-12-07 Applied Materials, Inc. Efficient cleaning by secondary in-situ activation of etch precursor from remote plasma source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562936A (en) * 1991-09-03 1993-03-12 Mitsubishi Electric Corp Plasma processor and plasma cleaning method
JPH06333879A (en) * 1993-05-24 1994-12-02 Tokyo Electron Ltd Plasma processing device
JPH1096082A (en) * 1996-06-14 1998-04-14 Applied Materials Inc Use of carbon-based film for prolonging life of substrate treating system constituting member
JP2003155569A (en) * 2001-11-16 2003-05-30 Nec Kagoshima Ltd Plasma cvd system and cleaning method therefor
JP2006511059A (en) * 2002-12-20 2006-03-30 ラム リサーチ コーポレーション Semiconductor chamber and method for controlling plasma in plasma processing chamber
JP2005101289A (en) * 2003-09-25 2005-04-14 Tokyo Electron Ltd Plasma ashing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518635A (en) * 2007-02-08 2010-05-27 ラム リサーチ コーポレーション Bevel cleaning equipment
JP2013145884A (en) * 2007-02-08 2013-07-25 Lam Research Corporation Bevel clean device and method
KR101423359B1 (en) * 2007-02-08 2014-07-24 램 리써치 코포레이션 Bevel clean device
JP2011228694A (en) * 2010-03-31 2011-11-10 Tokyo Electron Ltd Plasma processing method and plasma processing apparatus
JP2012186224A (en) * 2011-03-03 2012-09-27 Tokyo Electron Ltd Plasma processing apparatus
US9011635B2 (en) 2011-03-03 2015-04-21 Tokyo Electron Limited Plasma processing apparatus
KR101850355B1 (en) * 2011-03-03 2018-04-19 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus
KR101784387B1 (en) * 2015-08-31 2017-10-13 주식회사 인포비온 Plasma chamber being capable of controlling the homogenization of plasma potential distribution for a charged particle beam output apparatus

Also Published As

Publication number Publication date
CN1873911A (en) 2006-12-06
CN100401471C (en) 2008-07-09
JP4628874B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4628874B2 (en) Plasma processing apparatus and potential control apparatus
US10825709B2 (en) Electrostatic chucking method and substrate processing apparatus
JP5654297B2 (en) Plasma processing apparatus and plasma processing method
KR101720670B1 (en) Substrate processing apparatus, cleaning method thereof and storage medium storing program
US11264260B2 (en) Cleaning method and substrate processing apparatus
US9460896B2 (en) Plasma processing method and plasma processing apparatus
JP2010040822A (en) Destaticization method for electrostatic absorption device, substrate treatment device and storage medium
KR20070098674A (en) Substrate transferring apparatus, substrate processing apparatus, and substrate processing method
JP2018186179A (en) Substrate processing apparatus and substrate removal method
JP5127147B2 (en) Substrate adsorption / desorption method
JP6965205B2 (en) Etching device and etching method
US20190244791A1 (en) Raising-and-lowering mechanism, stage and plasma processing apparatus
JP5461759B2 (en) Plasma processing apparatus, plasma processing method, and storage medium
US8141514B2 (en) Plasma processing apparatus, plasma processing method, and storage medium
US8157952B2 (en) Plasma processing chamber, potential controlling apparatus, potential controlling method, program for implementing the method, and storage medium storing the program
JP2019216176A (en) Mounting table, substrate processing device, and edge ring
US11804368B2 (en) Cleaning method and plasma processing apparatus
JP2014232884A (en) Plasma processing apparatus, plasma processing method, and storage medium for storing program for execution thereof
JP4885586B2 (en) Plasma processing equipment
JP2020177959A (en) Cleaning treatment method and plasma processing device
KR20190098918A (en) Apparatus for placing an object to be processed and processing apparatus
TW202139252A (en) Stage, substrate processing apparatus, and heat transfer gas supply method
JP4885585B2 (en) Plasma processing apparatus, plasma processing method, and storage medium
WO2023120679A1 (en) Plasma treatment device
JP5596082B2 (en) Substrate adsorption / desorption method and substrate processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4628874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees