JP2006339011A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2006339011A
JP2006339011A JP2005161708A JP2005161708A JP2006339011A JP 2006339011 A JP2006339011 A JP 2006339011A JP 2005161708 A JP2005161708 A JP 2005161708A JP 2005161708 A JP2005161708 A JP 2005161708A JP 2006339011 A JP2006339011 A JP 2006339011A
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
battery
gel electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161708A
Other languages
Japanese (ja)
Inventor
Kazushige Kono
一重 河野
Masahiro Kasai
昌弘 葛西
Shin Nishimura
西村  伸
Norio Iwayasu
紀雄 岩安
Soubun Okumura
壮文 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005161708A priority Critical patent/JP2006339011A/en
Publication of JP2006339011A publication Critical patent/JP2006339011A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable lithium ion secondary battery causing no expansion of the battery by overcharge, and adopting a lightweight aluminum laminate as a case material. <P>SOLUTION: In this lithium ion secondary battery, a battery element formed by laminating or winding a positive electrode, a separator having an electrolyte containing Li salt, and a negative electrode is sealed by an aluminum laminate sheet. The gel electrolyte contains a polymer of a compound expressed by the formula: B[O(C<SB>a</SB>H<SB>2a</SB>O)<SB>b</SB>]<SB>3</SB>Z<SB>3</SB>(1). In the formula, Z is a polymerizable functional group, (a) and (b) are integers of 1-6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルミラミネートシートを外装材として用いるリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery using an aluminum laminate sheet as an exterior material.

リチウムイオン二次電池は、ニッケル水素電池と比較して高エネルギー密度化が可能であることから、携帯電話やモバイルパソコンなどの電子機器の駆動電源として用いられている。   Lithium ion secondary batteries are used as a drive power source for electronic devices such as mobile phones and mobile personal computers because they can achieve higher energy density than nickel metal hydride batteries.

リチウムイオン二次電池では、正極活物質及び負極活物質には、それぞれリチウムを含む化合物等及び炭素系材料等のような、リチウムを可逆的に吸蔵/放出可能な材料が用いられており、それらの両極活物質は電子的に絶縁し電解液を保持するセパレータを介して対向するように配置されて電池素子を構成している。   In lithium ion secondary batteries, materials capable of reversibly occluding / releasing lithium, such as compounds containing lithium and carbon-based materials, are used for the positive electrode active material and the negative electrode active material, respectively. These bipolar active materials are arranged so as to face each other through a separator that electrically insulates and holds the electrolytic solution, thereby constituting a battery element.

近年では、リチウムイオン二次電池は電気自動車等の移動用電源に適応する試みがなされ、重量あたりのエネルギー密度の向上が要求されている。その要求に対して電池材料の軽量化が検討されており、例えば、電池素子を封止する外装材をアルミニウムやステンレス等の金属缶からアルミラミネート材のような軽量な材料へ変更することが試みられている。   In recent years, attempts have been made to adapt lithium ion secondary batteries to mobile power sources such as electric vehicles, and there is a demand for improvement in energy density per weight. In light of this requirement, weight reduction of battery materials has been studied. For example, it is attempted to change the exterior material for sealing battery elements from a metal can such as aluminum or stainless steel to a lightweight material such as an aluminum laminate material. It has been.

ところで、電気自動車等の移動用電源やモバイル電子機器の電源としては、複数個のリチウムイオン二次電池を直列・並列にした組電池として用いるのが一般的であるが、各電池の電圧が不均一であると、充電時に一部の電池が過充電状態になり、Li塩が分解して電池内部でガス発生することがある。また、高温下での使用も想定される。電池の軽量化のために外装材として機械的強度の低いアルミラミネート材を使用している場合、過充電により発生したガスにより電池が膨張したり、高温により電池が変形することがあり、それにより電極間の接触抵抗が増加して電池容量が低下するという問題があった。   By the way, it is common to use a plurality of lithium ion secondary batteries in series and in parallel as a power source for movement of electric vehicles and mobile electronic devices, but the voltage of each battery is inadequate. If it is uniform, some batteries may be overcharged during charging, and the Li salt may decompose to generate gas inside the battery. Moreover, the use under high temperature is also assumed. When an aluminum laminate material with low mechanical strength is used as an exterior material to reduce the weight of the battery, the battery may expand due to gas generated by overcharging, or the battery may be deformed due to high temperature. There was a problem that the contact resistance between the electrodes increased and the battery capacity decreased.

上記のような問題を解決する技術としては、例えば、特開2003−157908号公報に記載のような、組電池を構成する単電池ごとに電圧計測をして充電量を制御し、それにより過充電を防止する機構を備える方法が挙げられる。しかしながら、この方法では制御回路が複雑になる等の問題があった。   As a technique for solving the above problems, for example, as described in Japanese Patent Application Laid-Open No. 2003-157908, voltage measurement is performed for each unit cell constituting the assembled battery to control the charge amount. There is a method including a mechanism for preventing charging. However, this method has problems such as a complicated control circuit.

特開2003−157908号公報JP 2003-157908 A

上記のように、金属缶と比較して機械的強度が低いアルミラミネート材をリチウムイオン二次電池の外装材に用いた場合、過充電状態に発生するガスや高温により、電池が膨張してその性能低下を招く場合があった。   As described above, when an aluminum laminate material, which has a lower mechanical strength than a metal can, is used as an exterior material of a lithium ion secondary battery, the battery expands due to gas generated at an overcharged state or high temperature. In some cases, performance was degraded.

本発明は、過充電や高温による電池の膨張がなく、外装材として軽量なアルミニウムラミネートを採用した信頼性の高いリチウムイオン二次電池を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable lithium ion secondary battery that employs a lightweight aluminum laminate as an exterior material and does not expand the battery due to overcharge or high temperature.

本発明者らは、上記の課題を解決するため鋭意検討した結果、ホウ素を含有するポリアルキレンオキシド系を含むポリマーゲル電解質を用いることが当該課題を解決するために有効であることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that it is effective to use a polymer gel electrolyte containing a polyalkylene oxide system containing boron to solve the problems.

即ち、本発明は以下の発明を包含する。
(1)正極と、Li塩を含むゲル電解質を保持したセパレータと、負極とを積層又は捲回した電池素子をアルミラミネートシートで封止したリチウムイオン二次電池であって、前記ゲル電解質が、式I:
B[O(CaH2aO)b]3Z3 (I)
[式中、Zは重合性官能基であり、a及びbは1〜6の整数である。]
で表される化合物の重合体を含むことを特徴とするリチウムイオン二次電池。
(2)前記ゲル電解質が、式II:
B[{O(CcH2cO)d}R]3 (II)
[式中、c及びdは1〜6の整数であり、RはC1−6アルキル基である。]
で表される化合物をさらに含有することを特徴とする前記(1)記載のリチウムイオン二次電池。
(3)前記ゲル電解質が、式Iの化合物と式IIの化合物とを1:1〜1:3のモル比で含むことを特徴とする前記(2)記載のリチウムイオン二次電池。
(4)前記ゲル電解質が、式(I)で表される化合物の重合体を5重量%〜20重量%で含むことを特徴とする前記(1)〜(3)のいずれかに記載のリチウムイオン二次電池。
(5)前記セパレータが、ポリエチレンであり且つ通気度が100〜600秒/100mlであることを特徴とする前記(1)〜(4)のいずれかに記載のリチウムイオン二次電池。
(6)前記正極が、LiMnxNi1-x-yCoO2(但しx及びyは0.001≦x、y≦0.5の範囲)を含むことを特徴とする前記(1)〜(5)のいずれかに記載のリチウムイオン二次電池。
(7)前記負極が、非晶質炭素を含むことを特徴とする前記(1)〜(6)のいずれかに記載のリチウムイオン二次電池。
(8)正極と、Li塩を含むゲル電解質を保持したセパレータと、負極とを積層又は捲回した電池素子をアルミラミネートシートで封止したリチウムイオン二次電池の製造方法であって、式I:
B[O(CaH2aO)b]3Z3 (I)
[式中、Zは重合性官能基であり、a及びbは1〜6の整数である。]
で表される化合物の溶液をセパレータの空隙に注入し、次いでこれを重合させることを含むリチウムイオン二次電池の製造方法。
That is, the present invention includes the following inventions.
(1) A lithium ion secondary battery in which a battery element obtained by laminating or winding a positive electrode, a separator holding a gel electrolyte containing a Li salt, and a negative electrode is sealed with an aluminum laminate sheet, and the gel electrolyte includes: Formula I:
B [O (C a H 2a O) b ] 3 Z 3 (I)
[Wherein, Z is a polymerizable functional group, and a and b are integers of 1 to 6. ]
The lithium ion secondary battery characterized by including the polymer of the compound represented by these.
(2) The gel electrolyte has the formula II:
B [{O (C c H 2c O) d } R] 3 (II)
[Wherein, c and d are integers of 1 to 6, and R is a C 1-6 alkyl group. ]
The lithium ion secondary battery according to (1), further comprising a compound represented by the formula:
(3) The lithium ion secondary battery according to (2), wherein the gel electrolyte contains a compound of formula I and a compound of formula II in a molar ratio of 1: 1 to 1: 3.
(4) The lithium according to any one of (1) to (3), wherein the gel electrolyte contains a polymer of a compound represented by the formula (I) at 5 wt% to 20 wt%. Ion secondary battery.
(5) The lithium ion secondary battery according to any one of (1) to (4), wherein the separator is made of polyethylene and has an air permeability of 100 to 600 seconds / 100 ml.
(6) The above (1) to (5), wherein the positive electrode contains LiMn x Ni 1-xy Co y O 2 (where x and y are in the range of 0.001 ≦ x, y ≦ 0.5). The lithium ion secondary battery in any one of.
(7) The lithium ion secondary battery according to any one of (1) to (6), wherein the negative electrode contains amorphous carbon.
(8) A method for producing a lithium ion secondary battery in which a battery element obtained by laminating or winding a positive electrode, a separator holding a gel electrolyte containing a Li salt, and a negative electrode is sealed with an aluminum laminate sheet. :
B [O (C a H 2a O) b ] 3 Z 3 (I)
[Wherein, Z is a polymerizable functional group, and a and b are integers of 1 to 6. ]
A method for producing a lithium ion secondary battery, comprising injecting a solution of a compound represented by formula (1) into a void of a separator and then polymerizing the solution.

本発明により、過充電により発生するガスに起因する電池の膨張を防止でき、外装材として軽量なアルミニウムラミネートを採用した長寿命で信頼性の高いリチウムイオン二次電池が提供される。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to prevent a battery from expanding due to a gas generated by overcharging, and to provide a long-life and highly reliable lithium ion secondary battery employing a lightweight aluminum laminate as an exterior material.

本発明のリチウムイオン二次電池は、以下の構成を有する:
正極と、Li塩を含むゲル電解質を保持したセパレータと、負極とを積層又は捲回した電池素子をアルミラミネートシートで封止したリチウムイオン二次電池であって、前記ゲル電解質が、式I:
B[O(CaH2aO)b]3Z3 (I)
[式中、Zは重合性官能基であり、a及びbは1〜6の整数である。]
で表される化合物の重合体を含むことを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery of the present invention has the following configuration:
A lithium ion secondary battery in which a battery element in which a positive electrode, a separator holding a gel electrolyte containing a Li salt, and a negative electrode are laminated or wound is sealed with an aluminum laminate sheet, wherein the gel electrolyte has the formula I:
B [O (C a H 2a O) b ] 3 Z 3 (I)
[Wherein, Z is a polymerizable functional group, and a and b are integers of 1 to 6. ]
The lithium ion secondary battery characterized by including the polymer of the compound represented by these.

正極活物質としては、リチウムイオン二次電池に通常使用されるものであれば特に限定されず、例えば、アモルファス−V2O5、LiMn2O4、MnO2、LiV3O8、V6O13、LiCoO2、LiNiO2、MoS2、TiS2等が挙げられ、LiCoO2、LiNiO2、LiMnxNi1-x-yCoO2(但し、x及びyは、0.001≦x、y≦0.5)、LiMn2O4、LiMnO2が好ましい。この他に、有機化合物正極活物質、例えば、ポリアニリン誘導体、ポリピロール誘導体、ポリチオフェン誘導体等の導電性高分子を用いてもよい。 The positive electrode active material is not particularly limited as long as it is usually used in lithium ion secondary batteries. For example, amorphous-V 2 O 5 , LiMn 2 O 4 , MnO 2 , LiV 3 O 8 , V 6 O 13 , LiCoO 2 , LiNiO 2 , MoS 2 , TiS 2 and the like, LiCoO 2 , LiNiO 2, LiMn x Ni 1-xy Co y O 2 (where x and y are 0.001 ≦ x, y ≦ 0.5), LiMn 2 O 4 and LiMnO 2 are preferred. In addition, an organic compound positive electrode active material, for example, a conductive polymer such as a polyaniline derivative, a polypyrrole derivative, or a polythiophene derivative may be used.

正極集電体としては、リチウムイオン二次電池に通常使用されるものであれば特に限定されず、例えば、銅、ニッケル、アルミニウム等の薄膜又はメッシュを使用することができる。   The positive electrode current collector is not particularly limited as long as it is usually used for a lithium ion secondary battery, and for example, a thin film or mesh such as copper, nickel, or aluminum can be used.

負極活物質としては、リチウムイオン二次電池に通常使用されるものであれば特に限定されず、例えば、黒鉛や非晶質炭素等の炭素材料を含むものが挙げられる。   The negative electrode active material is not particularly limited as long as it is usually used for a lithium ion secondary battery, and examples thereof include those containing a carbon material such as graphite and amorphous carbon.

負極の集電体としては、リチウムイオン二次電池に通常使用されるものであれば特に限定されず、例えば、銅薄膜又はメッシュを用いることができる。   The current collector for the negative electrode is not particularly limited as long as it is normally used for a lithium ion secondary battery, and for example, a copper thin film or a mesh can be used.

正極及び負極は、例えば、上記正極活物質又は負極活物質と導電補助剤とをバインダー(結着剤)とともに適当な溶媒に分散させ、これを正極又は負極集電体上にコーティングし、溶媒を蒸発させることにより製造することができる。   For the positive electrode and the negative electrode, for example, the positive electrode active material or the negative electrode active material and a conductive auxiliary agent are dispersed in a suitable solvent together with a binder (binder), and this is coated on the positive electrode or the negative electrode current collector. It can be produced by evaporation.

導電補助剤としては、アセチレンブラック、カーボンブラック、黒鉛等の炭素微粒子が用いられる。   As the conductive auxiliary agent, carbon fine particles such as acetylene black, carbon black, and graphite are used.

また、正極活物質又は負極活物質を集電体に密着させるために用いるバインダーとしては、テフロン、ポリフルオロビニリデン、ポリエチレン、ポリプロピレンポリフッ化ビニリデン−6フッ化プロピレン共重合体、エチレン−プロピレン共重合体等が挙げられる。バインダーの使用量は、活物質及び導電助剤の固形分比で3〜10重量%程度が望ましい。   Moreover, as a binder used in order to adhere | attach a positive electrode active material or a negative electrode active material to a collector, Teflon, a polyfluoro vinylidene, polyethylene, a polypropylene polyvinylidene fluoride-6 fluoropropylene copolymer, an ethylene propylene copolymer Etc. The amount of the binder used is preferably about 3 to 10% by weight in terms of the solid content ratio of the active material and the conductive aid.

本発明の電池で使用されるセパレータ(多孔質膜、多孔質シート等)にはLi塩を含むゲル電解質が保持されている。   The separator (porous membrane, porous sheet, etc.) used in the battery of the present invention holds a gel electrolyte containing a Li salt.

前記Li塩としては、リチウムイオン二次電池に通常使用されるLi塩電解質であれば特に限定されず、例えば、LiBR4(Rはフェニル基、アルキル基)、LiPF6、LiSbF6、LiAsF6、LiBF4、LiClO4、CF3SO3Li、(CF3SO2)2NLi、(CF3CF2SO2)2NLi等を例示することができ、LiBF4、(CF3CF2SO2)2NLiが好ましい。 The Li salt is not particularly limited as long as it is a Li salt electrolyte usually used in a lithium ion secondary battery. For example, LiBR 4 (R is a phenyl group, an alkyl group), LiPF 6 , LiSbF 6 , LiAsF 6 , LiBF 4 , LiClO 4 , CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (CF 3 CF 2 SO 2 ) 2 NLi etc. can be exemplified, LiBF 4 , (CF 3 CF 2 SO 2 ) 2 NLi is preferred.

セパレータは電解質のイオン移動に対して低抵抗であり、かつ、ゲル電解質の保持性に優れたものが用いられ、例えば、ガラス、ポリエステル、テフロン、ポリエチレン、ポリプロピレンまたはこれらの1種以上の材質から選ばれる多孔質フィルム、不織布及び織布が挙げられる。本発明では、ポリエチレン製セパレータを用いることが好ましい。また、セパレータの通気度は100〜600秒/100mlであることが好ましい。セパレータの厚みは、0.01〜0.04mm程度が望ましい。このようなセパレータを用いることにより、クーロン効率が高くなり、エネルギーの損失が抑制されることがわかった。   The separator has a low resistance to ion migration of the electrolyte and has excellent gel electrolyte retention, and is selected from, for example, glass, polyester, Teflon, polyethylene, polypropylene, or one or more materials thereof. Porous films, non-woven fabrics and woven fabrics. In the present invention, it is preferable to use a polyethylene separator. Further, the air permeability of the separator is preferably 100 to 600 seconds / 100 ml. The thickness of the separator is desirably about 0.01 to 0.04 mm. It has been found that by using such a separator, coulomb efficiency is increased and energy loss is suppressed.

セパレータに保持されるゲル電解質は、下記式I:
B[O(CaH2aO)b]3Z3 (I)
[式中、Zは重合性官能基であり、a及びbは1〜6の整数である。]
で表されるホウ素化合物の重合体を含む。
The gel electrolyte retained in the separator is represented by the following formula I:
B [O (C a H 2a O) b ] 3 Z 3 (I)
[Wherein, Z is a polymerizable functional group, and a and b are integers of 1 to 6. ]
The polymer of the boron compound represented by these is included.

重合性官能基Zとしては、不飽和結合等の重合可能な基や縮合重合が可能な基等を意味し、例えば、メタクリレート基(-CO-C(CH3)=CH2)やアクリレート基(-CO-CH=CH2)等が挙げられる。 The polymerizable functional group Z means a polymerizable group such as an unsaturated bond or a group capable of condensation polymerization, such as a methacrylate group (—CO—C (CH 3 ) ═CH 2 ) or an acrylate group ( -CO-CH = CH 2 ) and the like.

本発明では式Iの化合物としてジエチレングリコールモノメタクリレートが好ましく用いられる。   In the present invention, diethylene glycol monomethacrylate is preferably used as the compound of formula I.

本発明で用いられるゲル電解質は溶媒を含む。溶媒としては、例えば、カーボネート溶媒(プロピレンカーボネ−ト、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等)、アミド溶媒(N−メチルホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N−エチルアセトアミド、N−メチルピロリドン等)、ラクトン溶媒(γ−ブチルラクトン、γ−バレロラクトン、δ−バレロラクトン等)、エーテル溶媒(メチラール、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1−エトキシ−2−ジメトキシエタン等)、ニトリル溶媒(ベンゾニトリル、アセトニトリル、3−メトキシプロピオニトリル等)、フラン溶媒(テトラヒドロフラン、2−メチルテトラヒドロフラン等)、ジオキソラン、ジオキサン、ジクロオエタン等が挙げられ、これらを単独又は混合して用いることができる。   The gel electrolyte used in the present invention contains a solvent. Examples of the solvent include carbonate solvents (propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, etc.), amide solvents (N-methylformamide, N-ethylformamide, N, N- Dimethylformamide, N-methylacetamide, N-ethylacetamide, N-methylpyrrolidone, etc.), lactone solvents (γ-butyllactone, γ-valerolactone, δ-valerolactone, etc.), ether solvents (methylal, 1,2-dimethoxy) Ethane, 1,2-diethoxyethane, 1-ethoxy-2-dimethoxyethane, etc.), nitrile solvents (benzonitrile, acetonitrile, 3-methoxypropionitrile, etc.), furan solvents (tetrahydrofuran, 2-methylteto) Hydrofuran, etc.), dioxolane, dioxane, Jikurooetan and the like, can be used alone or in combination.

本発明で用いられるアルミラミネートシートとしては、リチウムイオン二次電池に通常使用されるものであれば特に限定されず、例えば、心材として0.02〜0.04mm程度の厚みのアルミニウム箔を有するラミネートシートを使用することができる。熱溶着を実施する(電池素子側)面に熱可塑性樹脂(例えば、ポリエチレン、ポリプロピレン等)を配し、熱溶着を実施しない面(外装部位側)にナイロン、ポリエチレンテレフタレート等の樹脂を配してアルミニウムの酸化を防止することができる。   The aluminum laminate sheet used in the present invention is not particularly limited as long as it is usually used for a lithium ion secondary battery. For example, a laminate having an aluminum foil having a thickness of about 0.02 to 0.04 mm as a core material. Sheets can be used. Place a thermoplastic resin (eg, polyethylene, polypropylene, etc.) on the surface (battery element side) where heat welding is performed, and place a resin such as nylon, polyethylene terephthalate on the surface (exterior part side) where heat welding is not performed The oxidation of aluminum can be prevented.

ゲル電解質には、可塑剤として、式II:
B[{O(CcH2cO)d}R]3 (II)
[式中、c及びdは1〜6の整数であり、RはC1−6アルキル基である。]
で表される化合物を添加してもよい。
For gel electrolytes, as a plasticizer, the formula II:
B [{O (C c H 2c O) d } R] 3 (II)
[Wherein, c and d are integers of 1 to 6, and R is a C 1-6 alkyl group. ]
You may add the compound represented by these.

1−6アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基等が挙げられる。
可塑剤としては、トリエチレングリコールモノメチルエーテルが好ましい。
Examples of the C 1-6 alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and an isobutyl group.
As the plasticizer, triethylene glycol monomethyl ether is preferable.

次に、本発明のリチウムイオン二次電池の製造方法について説明する。   Next, the manufacturing method of the lithium ion secondary battery of this invention is demonstrated.

正極及び負極は、例えば、次のようにして製造することができる。正極活物質又は負極活物質と導電助剤とバインダーとを適当な溶媒(例えば、1-メチル-2-ピロリドン)に添加混合してペーストとし、これを集電体の両面に塗布し、乾燥させる。次いで、プレスして乾燥させて正極又は負極を得る。   A positive electrode and a negative electrode can be manufactured as follows, for example. A positive electrode active material or negative electrode active material, a conductive additive and a binder are added to and mixed with a suitable solvent (for example, 1-methyl-2-pyrrolidone) to form a paste, which is applied to both sides of the current collector and dried. . Subsequently, it is pressed and dried to obtain a positive electrode or a negative electrode.

積層型の電池を製造する場合、まずそれぞれの電極及びセパレータを適当な大きさに切り取り、これをセパレータ/負極/セパレータ/正極の順で積層する。これを積層して所望の積層数とし、正極及び負極のタブ部分に電流端子をそれぞれ接合して電池素子を製作する。接合の手法としてはスポット溶接や超音波溶接などで行うことが望ましい。   When manufacturing a laminated battery, first, each electrode and separator are cut into appropriate sizes, and are laminated in the order of separator / negative electrode / separator / positive electrode. This is laminated to obtain a desired number of layers, and current terminals are joined to the tab portions of the positive electrode and the negative electrode, respectively, to manufacture a battery element. As a joining method, it is desirable to perform spot welding or ultrasonic welding.

次に、ゲル電解質の先駆体溶液(即ち、式Iの化合物の溶液)を電池素子に注入/充填し、電子素子をアルミラミネートシート外装材で封止する。アルミラミネートシート外装材としては、例えば、アルミニウム箔の両面をポリプロピレン等で被覆したものを使用することができる。   Next, a precursor solution of gel electrolyte (ie, a solution of the compound of formula I) is injected / filled into the battery element, and the electronic element is sealed with an aluminum laminate sheet exterior material. As the aluminum laminate sheet exterior material, for example, an aluminum foil whose both surfaces are covered with polypropylene or the like can be used.

封止の方法としては、シート外装材の三辺を予め熱溶着して袋状の物を作製しておき、これに電池素子を収納してゲル電解質の先駆体溶液を注入し(シート外装材内部を減圧しながら複数回に分けて注入してもよい)、最後に開口部分の一辺を封止する方法が挙げられる。あるいは、予めアルミラミネートシートを油圧プレス等により電池素子を収納できる凹形状に加工しておき、この凹部に電池素子をはめ込み、この上に無加工のアルミラミネートシート材を蓋として設置して封止する手法などがある。製造の利便性から、後者の手法を用いることが望ましい。   As a sealing method, three sides of the sheet exterior material are preliminarily heat-welded to prepare a bag-like material, a battery element is accommodated in this, and a gel electrolyte precursor solution is injected (sheet exterior material). A method may be mentioned in which the inside of the opening is sealed at the end. Alternatively, an aluminum laminate sheet is processed in advance into a concave shape that can accommodate the battery element by a hydraulic press or the like, and the battery element is fitted into the concave part, and an unprocessed aluminum laminate sheet material is placed on the lid as a lid and sealed. There is a technique to do. It is desirable to use the latter method for the convenience of manufacturing.

上記ゲル電解質の先駆体溶液は、例えば、適当な溶媒(例えば、カーボネート系溶媒)に式Iの化合物(モノマー)と重合開始剤(例えば、パーオキシジカーボネートやパーオキシエステル等の有機過酸化物)とLi塩と、所望により式IIの化合物(可塑剤)とを添加混合することにより得られる。   The precursor solution of the gel electrolyte is, for example, a compound of formula I (monomer) and a polymerization initiator (for example, an organic peroxide such as peroxydicarbonate or peroxyester) in a suitable solvent (for example, a carbonate-based solvent). ) And a Li salt, and optionally a compound of formula II (plasticizer).

次に、ゲル電解質の先駆体溶液がセパレータの空隙に注入された電池素子を収納したアルミラミネートシート外装材の辺縁部を熱溶着装置で熱溶着して封止する。熱溶着による封止の条件は、JIS K7125(JIS規格値)による剥離強度が40N/15mm以上となるような温度条件で実施することが望ましい。   Next, the edge portion of the aluminum laminate sheet exterior material containing the battery element in which the gel electrolyte precursor solution is injected into the gap of the separator is thermally welded and sealed with a heat welding apparatus. The conditions for sealing by thermal welding are preferably carried out under such temperature conditions that the peel strength according to JIS K7125 (JIS standard value) is 40 N / 15 mm or more.

封止後、ゲル電解質の先駆体溶液を硬化(重合)させてゲルを形成させる。この硬化反応は、例えば、恒温槽内に40〜100℃、好ましくは50〜90℃で0.5〜5時間、好ましくは1〜3時間置くことにより行なうことができる。
以上のようにして、本発明のリチウムイオン二次電池を製造することができる。
After sealing, the gel electrolyte precursor solution is cured (polymerized) to form a gel. This curing reaction can be performed, for example, by placing it in a thermostatic bath at 40 to 100 ° C., preferably 50 to 90 ° C. for 0.5 to 5 hours, preferably 1 to 3 hours.
As described above, the lithium ion secondary battery of the present invention can be manufactured.

次に、本発明のリチウムイオン二次電池の具体例について図を用いて説明する。
図1は、リチウムイオン二次電池を水平に置いて上部から見た場合の投影図である。図2は、リチウムイオン二次電池の斜視図である。図3及び図4は、電池素子に対し垂直に断面方向を見た場合の模式図であり、図3は電極を積層したタイプの電池であり、図4は扁平捲回タイプの電池である。図5は、図3の囲み部分の拡大図である。
Next, specific examples of the lithium ion secondary battery of the present invention will be described with reference to the drawings.
FIG. 1 is a projected view of a lithium ion secondary battery placed horizontally and viewed from above. FIG. 2 is a perspective view of a lithium ion secondary battery. 3 and 4 are schematic views when the cross-sectional direction is viewed perpendicular to the battery element. FIG. 3 shows a battery in which electrodes are stacked, and FIG. 4 shows a flat wound battery. FIG. 5 is an enlarged view of the encircled portion of FIG.

図5において、リチウムイオン二次電池は、正極活物質を正極集電体に塗工した正極1と、負極活物質を負極集電体に塗工した負極2とを有する。正極1と負極2との間にセパレータ3を介在させる。正極集電体及び負極集電体のタブ部4及び5には正極活物質及び負極活物質が未塗工である。タブ部4及び5は、図1における外部への集電端子6及び7にそれぞれ接続され、電池素子8を形成する。図1において電池素子8の外周部10はアルミラミネートシートが熱溶着により溶着されており、これにより電池素子が封止される。   In FIG. 5, the lithium ion secondary battery includes a positive electrode 1 in which a positive electrode active material is applied to a positive electrode current collector, and a negative electrode 2 in which a negative electrode active material is applied to a negative electrode current collector. A separator 3 is interposed between the positive electrode 1 and the negative electrode 2. The tab portions 4 and 5 of the positive electrode current collector and the negative electrode current collector are not coated with the positive electrode active material and the negative electrode active material. The tab portions 4 and 5 are connected to the current collecting terminals 6 and 7 to the outside in FIG. In FIG. 1, an aluminum laminate sheet is welded to the outer peripheral portion 10 of the battery element 8 by heat welding, thereby sealing the battery element.

図2は、平面状のアルミラミネートシート上に電池素子8を配置し、その上に箱状部分(凹部)と接着部分とを有するアルミラミネートシート外装材9を、その凹部に電池素子8が嵌るようにかぶせ、接着部分を熱溶着して形成した電池の一例である。その際に、集電端子6及び7は、外装材9から延出するように配置する。なお、集電端子の位置は180度対向位置から延出させて配置してもよい。   In FIG. 2, a battery element 8 is placed on a flat aluminum laminate sheet, an aluminum laminate sheet exterior material 9 having a box-shaped part (concave part) and an adhesive part is placed thereon, and the battery element 8 is fitted in the concave part. It is an example of a battery that is formed by covering and bonding the adhesive part. At that time, the current collecting terminals 6 and 7 are arranged so as to extend from the exterior material 9. In addition, you may arrange | position the position of a current collection terminal extended from the opposing position 180 degree | times.

以下に実施例により本発明を例示により説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be described below by way of examples, but the present invention is not limited to these examples.

(実施例1)ゲル電解質先駆体の製造方法
溶媒として、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの混合溶媒(体積比で1:1:1)を用いた。式Iの化合物(モノマー)としてジエチレングリコールモノメタクリレートのホウ素化合物を用いた。また、式IIの化合物(可塑剤)としてトリエチレングリコールモノメチルエーテルのホウ素化合物を用いた。重合開始剤にはt-ヘキシルペルオキシピバレートを用いた。Li塩としてはビスペンタフルオロエタンスルフォン酸イミドリチウムを用いた。
Example 1 Method for Producing Gel Electrolyte Precursor As a solvent, a mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate (1: 1: 1 by volume) was used. A boron compound of diethylene glycol monomethacrylate was used as the compound of formula I (monomer). Further, a boron compound of triethylene glycol monomethyl ether was used as the compound of formula II (plasticizer). T-Hexyl peroxypivalate was used as the polymerization initiator. As the Li salt, lithium bispentafluoroethane sulfonate imide was used.

上記混合溶媒に、上記モノマー3〜25重量%と可塑剤とを溶解した。該モノマーと可塑剤とのモル比は1:2とした。これにLi塩を濃度が1Mとなるように添加した。次いで、0.4重量%の重合開始剤を添加してゲル電解質先駆体を調製した。   In the mixed solvent, 3 to 25% by weight of the monomer and a plasticizer were dissolved. The molar ratio of the monomer to the plasticizer was 1: 2. Li salt was added to this so that a density | concentration might be set to 1M. Next, a gel electrolyte precursor was prepared by adding 0.4 wt% of a polymerization initiator.

(実施例2)ゲル電解質先駆体の硬化(重合によるゲル化)
実施例1で調製したゲル電解質先駆体を種々の条件下で硬化させた。
所定の量のモノマーを含むゲル電解質先駆体をスクリュー蓋付のテフロン製容器に入れ、60℃又は80℃の恒温槽内で1.5時間放置した。容器を恒温槽から取り出して容器内を確認し、上澄み液が残存していなければ良好な硬化であると判断し、未反応の上澄み液が残存していれば硬化不十分と判断した。その結果を表1に示す。
(Example 2) Curing of gel electrolyte precursor (gelation by polymerization)
The gel electrolyte precursor prepared in Example 1 was cured under various conditions.
A gel electrolyte precursor containing a predetermined amount of monomer was placed in a Teflon container with a screw lid and left in a constant temperature bath at 60 ° C. or 80 ° C. for 1.5 hours. The container was taken out of the thermostat and the inside of the container was confirmed. If the supernatant liquid did not remain, it was determined that the curing was satisfactory, and if the unreacted supernatant liquid remained, it was determined that the curing was insufficient. The results are shown in Table 1.

Figure 2006339011
Figure 2006339011

ゲル電解質中のモノマー濃度(重合体濃度)が3重量%の場合ではゲル化が不十分で上澄み液が残存しており、高温下で電池が膨張する可能性があるが、5〜25重量%の場合では上澄み液は残存しておらずゲル化が良好であった。   When the monomer concentration (polymer concentration) in the gel electrolyte is 3% by weight, gelation is insufficient and the supernatant liquid remains, and the battery may expand at a high temperature. In this case, the supernatant liquid did not remain and gelation was good.

(実施例3)リチウムイオン二次電池の製造
正極活物質であるLiCo1/3Ni1/3Mn1/3を87重量%、導電助剤となる人造黒鉛8.7重量%、ポリフッ化ビニリデン4.3重量%を1-メチル-2-ピロリドンに添加混合してペーストとした。このペーストをアルミ箔に両面塗布し、80℃で3時間大気中で乾燥させた。次いで、プレスして約2.7g/cm程度の密度とし、120℃で3時間真空中で乾燥して正極を得た。
(Example 3) Production of lithium ion secondary battery 87% by weight of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as a positive electrode active material, 8.7% by weight of artificial graphite as a conductive auxiliary agent, polyfluoride 4.3% by weight of vinylidene chloride was added to 1-methyl-2-pyrrolidone and mixed to obtain a paste. This paste was applied on both sides of an aluminum foil and dried in the air at 80 ° C. for 3 hours. Subsequently, it was pressed to a density of about 2.7 g / cm 3 and dried in vacuum at 120 ° C. for 3 hours to obtain a positive electrode.

負極活物質として非晶質炭素を90重量%とポリフッ化ビニリデンを10重量%とを1-メチル-2-ピロリドンに添加し、固形分が45重量%となるように調整した。得られたスラリーを銅箔に両面塗布し、80℃で3時間大気中で乾燥させた。次いで、プレスして約1.0g/cm程度の密度とし、120℃で3時間真空中で乾燥して負極を得た。 As a negative electrode active material, 90% by weight of amorphous carbon and 10% by weight of polyvinylidene fluoride were added to 1-methyl-2-pyrrolidone, and the solid content was adjusted to 45% by weight. The obtained slurry was coated on both sides of a copper foil and dried in the air at 80 ° C. for 3 hours. Subsequently, it was pressed to a density of about 1.0 g / cm 3 and dried in vacuum at 120 ° C. for 3 hours to obtain a negative electrode.

セパレータとしては、ポリエチレン製多孔質膜(厚み:0.02〜0.03mm)を用いた。
ゲル電解質先駆体として、実施例1で調製したものを用いた。
As the separator, a polyethylene porous membrane (thickness: 0.02 to 0.03 mm) was used.
As the gel electrolyte precursor, the one prepared in Example 1 was used.

正極及び負極を幅83mm、高さ115mmに切り出した。その際に、電流端子と接合するタブ(正極又は負極活物質が未塗工である集電体部分)を幅15mm、高さ5mm程度残しておいた。正極のタブ部分にはアルミ製の電流端子を、負極のタブ部分にはニッケル製の電流端子をそれぞれ接合した。セパレータは、短絡を防止するために幅及び高さともに電極より数mm程度大きくカットした。   The positive electrode and the negative electrode were cut into a width of 83 mm and a height of 115 mm. At that time, a tab (current collector portion on which the positive electrode or the negative electrode active material was not coated) to be joined to the current terminal was left about 15 mm in width and about 5 mm in height. An aluminum current terminal was joined to the positive tab portion, and a nickel current terminal was joined to the negative tab portion. The separator was cut about several mm larger than the electrode in both width and height in order to prevent short circuit.

上記の正極、負極及びセパレータを用いて電池素子を構成した。次いで、電池素子及びアルミニウム箔の両面をポリプロピレン等で被覆したアルミラミネートシート外装材を60℃で12時間真空中で予め乾燥しておき、電池素子をゲル電解質先駆体溶液に含浸してアルミラミネートシート外装材で熱溶着して封止した。これを80℃の恒温槽内に1.5時間置いてゲル電解質先駆体溶液をゲル化させてリチウムイオン二次電池を製造した。   A battery element was constructed using the above positive electrode, negative electrode and separator. Next, the aluminum laminate sheet outer packaging material in which both sides of the battery element and the aluminum foil are covered with polypropylene or the like is previously dried in a vacuum at 60 ° C. for 12 hours, and the battery element is impregnated with a gel electrolyte precursor solution to obtain an aluminum laminate sheet. It heat-sealed with the exterior material and sealed. This was placed in a constant temperature bath at 80 ° C. for 1.5 hours to gel the gel electrolyte precursor solution to produce a lithium ion secondary battery.

(実施例4)電池容量試験
実施例3で製造した電池(設計電池容量4.0Ah)を用いて電池容量試験を行なった。
リチウムイオン二次電池を25℃で8時間放置した後に、0.1CA(0.4A)で4.3V充電を定電流・定電圧制御で総充電時間20時間行った。次いで、25℃で14日間保存し、その後0.1CAで3Vまで定電流放電を行って電池容量を測定した。その結果を表2に示す。
(Example 4) Battery capacity test A battery capacity test was conducted using the battery manufactured in Example 3 (designed battery capacity 4.0 Ah).
The lithium ion secondary battery was left at 25 ° C. for 8 hours, and then charged with 4.3 V at 0.1 CA (0.4 A) for 20 hours with a constant current / constant voltage control. Subsequently, it preserve | saved for 14 days at 25 degreeC, Then, the constant current discharge was performed to 3V at 0.1 CA, and the battery capacity was measured. The results are shown in Table 2.

Figure 2006339011
Figure 2006339011

ゲル電解質中のモノマー濃度(重合体濃度)が20%以下である場合、設計どおりの電池容量を有することを確認した。   When the monomer concentration (polymer concentration) in the gel electrolyte was 20% or less, it was confirmed that the battery capacity was as designed.

(実施例5)セパレータの通気度の影響
電池の性能に及ぼすセパレータの通気度の影響を評価した。
セパレータとして通気度が70、100、220、310、580、600、700(sec/100ml)のポリエチレンフィルムを用い、モノマー濃度(重合体濃度)を10重量%、ポリマーと可塑剤とのモルを1:3とした以外は、実施例1及び実施例3と同様にしてリチウムイオン二次電池を製造した。
(Example 5) Influence of separator air permeability The influence of separator air permeability on battery performance was evaluated.
A polyethylene film having an air permeability of 70, 100, 220, 310, 580, 600, 700 (sec / 100 ml) was used as a separator, the monomer concentration (polymer concentration) was 10% by weight, and the mole of polymer and plasticizer was 1 : A lithium ion secondary battery was produced in the same manner as in Example 1 and Example 3 except that it was changed to 3.

評価は次のようにして行なった。
電池を25℃で8時間放置した後に、0.1CA(0.4A)で4.1Vまで充電を定電流・定電圧制御で総充電時間20時間行った。次いで、0.1CA、0.2CA、0.5CA及び1.0CAで放電したときの5秒目の電圧を計測した。電流-電圧プロットの傾きから直流抵抗を算出した。その結果を表3に示す。
Evaluation was performed as follows.
The battery was allowed to stand at 25 ° C. for 8 hours, and then charged at 0.1 CA (0.4 A) to 4.1 V under a constant current / constant voltage control for a total charging time of 20 hours. Subsequently, the voltage of the 5th second when it discharged by 0.1CA, 0.2CA, 0.5CA, and 1.0CA was measured. The DC resistance was calculated from the slope of the current-voltage plot. The results are shown in Table 3.

Figure 2006339011
Figure 2006339011

セパレータ通気度が600(sec/100ml)以下である場合、直流抵抗が低い(4.00mΩ未満)ことが確認された。但し、セパレータ通気度が70(sec/100ml)であるセパレータを用いた電池では5個中2個の割合で短絡が発生し、信頼性の観点からセパレータの通気度は100(sec/100ml)以上であることが望ましい。   When the separator air permeability was 600 (sec / 100 ml) or less, it was confirmed that the DC resistance was low (less than 4.00 mΩ). However, in a battery using a separator having a separator air permeability of 70 (sec / 100 ml), a short circuit occurs at a ratio of 2 out of 5 batteries, and the air permeability of the separator is 100 (sec / 100 ml) or more from the viewpoint of reliability. It is desirable that

(実施例6)過充電試験
電池を過充電状態にしても電池性能が維持されるかどうか評価した。
セパレータとして通気度が310(sec/100ml)のポリエチレンフィルムを用い、モノマー濃度(重合体濃度)を10重量%、ポリマーと可塑剤とのモルを1:1とした以外は、実施例1及び実施例3と同様にしてリチウムイオン二次電池を製造した。使用した電池の設計容量は2.0Ahである。比較例として、モノマーを添加しない以外は実施例1及び3と同様にして製造した、ゲル電解質を含まない電解液系の電池を使用した。
(Example 6) Overcharge test It was evaluated whether the battery performance was maintained even when the battery was overcharged.
Example 1 and Example 1 except that a polyethylene film having an air permeability of 310 (sec / 100 ml) was used as a separator, the monomer concentration (polymer concentration) was 10% by weight, and the molar ratio between the polymer and the plasticizer was 1: 1. A lithium ion secondary battery was produced in the same manner as in Example 3. The design capacity of the battery used is 2.0 Ah. As a comparative example, an electrolyte type battery containing no gel electrolyte produced in the same manner as in Examples 1 and 3 except that no monomer was added was used.

過充電試験は次のようにして行なった。
電池を、25℃で8時間放置した後に、0.1CA(0.2A)で4.1Vまで充電を定電流・定電圧制御で総充電時間20時間行った。0.1CAで3.0Vまで放電したときの電池容量を計測したところ、2Ahの初期容量を示すことを確認した。次いで、0.1CA(0.2A)で4.5Vまで充電を定電流・定電圧制御で総充電時間20時間行って過充電状態を模擬し、0.1CAで2.7Vまで放電した。その後、0.1CA(0.2A)で4.1Vまで充電を定電流・定電圧制御で総充電時間20時間行った。最後に0.1CAで3.0Vまでの放電を行った。これを5サイクル行い、初期電池容量との相対比較で充放電容量維持率を評価した。容量維持率が初期電池容量の90%以上である場合を○、それ未満を×と判定した。その結果を表4に示す。
The overcharge test was conducted as follows.
The battery was allowed to stand at 25 ° C. for 8 hours, and then charged at 0.1 CA (0.2 A) to 4.1 V under a constant current / constant voltage control for a total charging time of 20 hours. When the battery capacity when discharged to 3.0 V at 0.1 CA was measured, it was confirmed that it showed an initial capacity of 2 Ah. Next, charging was performed at 0.1 CA (0.2 A) to 4.5 V under constant current / constant voltage control for a total charging time of 20 hours to simulate an overcharged state, and discharging was performed at 0.1 CA to 2.7 V. Thereafter, charging was performed at 0.1 CA (0.2 A) to 4.1 V under constant current / constant voltage control for a total charging time of 20 hours. Finally, discharge to 3.0 V was performed at 0.1 CA. This was performed for 5 cycles, and the charge / discharge capacity retention rate was evaluated by relative comparison with the initial battery capacity. The case where the capacity maintenance rate was 90% or more of the initial battery capacity was judged as ◯, and the case where it was less than that was judged as x. The results are shown in Table 4.

Figure 2006339011
Figure 2006339011

ゲル電解質を用いた本発明の電池は、過充電を模擬した充電を行った後も充放電容量は90%以上であり、本発明の電池を用いることにより信頼性の高い組電池を構成できる。   The battery of the present invention using the gel electrolyte has a charge / discharge capacity of 90% or more even after charging that simulates overcharging, and a highly reliable assembled battery can be configured by using the battery of the present invention.

(実施例7)高温耐性試験
また、ゲル電解質中のモノマー濃度(重合体濃度)を0〜20重量%で変化させたリチウムイオン二次電池、実施例1及び3に準じて製造した。
(Example 7) High temperature tolerance test Moreover, it manufactured according to the lithium ion secondary battery and Examples 1 and 3 which changed the monomer concentration (polymer concentration) in the gel electrolyte by 0 to 20 weight%.

60℃の恒温槽内に24時間放置して電池厚みの変化を測定した。その結果を表5に示す。60℃の恒温槽内に24時間放置したときの電池厚み変化が5%未満であるものを○、5%以上であるものを×と判定した。   The change in battery thickness was measured by leaving it in a constant temperature bath at 60 ° C. for 24 hours. The results are shown in Table 5. A battery thickness change of less than 5% when left in a constant temperature bath at 60 ° C. for 24 hours was judged as ◯, and a battery thickness change of 5% or more was judged as x.

Figure 2006339011
Figure 2006339011

その結果、本発明のゲル電解質を用いた場合、ガス発生及び高温による変形が抑制されていることがわかった。   As a result, when the gel electrolyte of this invention was used, it turned out that the deformation | transformation by gas generation and high temperature is suppressed.

以上のことより、ホウ素を含有するポリアルキレンオキシド系を含むポリマーゲル電解質を5〜20重量%含むゲル電解質リチウムイオン二次電池を用いることにより、高温保存下や過充電状態においても電池の膨れ等が無く安定した性能を発揮し、電池の信頼性が向上する。ガスの発生や熱による膨れ等がないので外装材として強度が低いアルミラミネートシートを用いることができ、軽量で且つ信頼性の高いリチウムイオン二次電池を提供できる。   From the above, by using a gel electrolyte lithium ion secondary battery containing 5 to 20% by weight of a polymer gel electrolyte containing a boron-containing polyalkylene oxide system, the battery swells even under high temperature storage or in an overcharged state. The battery performance is stable and battery reliability is improved. Since there is no generation of gas or swelling due to heat, an aluminum laminate sheet having low strength can be used as an exterior material, and a lightweight and highly reliable lithium ion secondary battery can be provided.

また、本発明の電池は、充電保護回路等が故障したりして過充電状態に陥った場合においても電池容量の低下がなく、本発明の電池を直列・並列に接続して構成した組電池は、過充電状態となっても安全であり且つその性能が維持され、信頼性の高い組電池が提供される。このため、10年を超えるような寿命と安全性が要求される移動用電源等への適用も可能となる。   In addition, the battery of the present invention does not decrease the battery capacity even when the charge protection circuit or the like breaks down and falls into an overcharged state, and is an assembled battery configured by connecting the batteries of the present invention in series or in parallel. Provides a battery pack that is safe even in an overcharged state, maintains its performance, and has high reliability. For this reason, it can be applied to a mobile power source that requires a life and safety exceeding 10 years.

更に、セパレータとして通気度が600(sec/100ml)以下であるポリエチレン系材料を用いることにより直流抵抗が低くなり、エネルギーの損失が抑制される。   Furthermore, by using a polyethylene material having an air permeability of 600 (sec / 100 ml) or less as a separator, the direct current resistance is lowered, and energy loss is suppressed.

本発明のリチウムイオン二次電池は、ガス発生や高温による電解質の膨れ・変形がないため外装材に強度の低いアルミラミネートを採用することができ、またそのような膨れ・変形がないため電池の信頼性を大幅に向上することができる。   Since the lithium ion secondary battery of the present invention does not swell or deform the electrolyte due to gas generation or high temperature, a low-strength aluminum laminate can be used for the exterior material, and since there is no such swell / deformation, Reliability can be greatly improved.

アルミラミネートを採用したリチウムイオン二次電池は軽量化することが可能であり、携帯電話、モバイルパソコン等の駆動電源や移動用電源として有用である。   A lithium ion secondary battery employing an aluminum laminate can be reduced in weight, and is useful as a driving power source or a moving power source for a mobile phone, a mobile personal computer, or the like.

本発明に係るリチウムイオン二次電池の一例を示す。An example of the lithium ion secondary battery which concerns on this invention is shown. 本発明に係るリチウムイオン二次電池の一例を水平に置いて上部から見た場合の投影図である。It is a projection view at the time of putting an example of the lithium ion secondary battery which concerns on this invention horizontally, and seeing from the upper part. 積層タイプのリチウムイオン電池の断面模式図である。It is a cross-sectional schematic diagram of a laminated type lithium ion battery. 扁平捲回タイプのリチウムイオン電池の断面模式図である。It is a cross-sectional schematic diagram of a flat wound type lithium ion battery. 図3の囲み部分の拡大模式図である。FIG. 4 is an enlarged schematic diagram of an encircled portion in FIG. 3.

符号の説明Explanation of symbols

1:正極
2:負極
3:セパレータ
4:正極タブ
5:負極タブ
6:正極集電端子
7:負極集電端子
8:電池素子
9:外装材
10:封止部
1: Positive electrode 2: Negative electrode 3: Separator 4: Positive electrode tab 5: Negative electrode tab 6: Positive electrode current collector terminal 7: Negative electrode current collector terminal 8: Battery element 9: Exterior material 10: Sealing portion

Claims (8)

正極と、Li塩を含むゲル電解質を保持したセパレータと、負極とを積層又は捲回した電池素子をアルミラミネートシートで封止したリチウムイオン二次電池であって、前記ゲル電解質が、式I:
B[O(CaH2aO)b]3Z3 (I)
[式中、Zは重合性官能基であり、a及びbは1〜6の整数である。]
で表される化合物の重合体を含むことを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery in which a battery element in which a positive electrode, a separator holding a gel electrolyte containing a Li salt, and a negative electrode are laminated or wound is sealed with an aluminum laminate sheet, wherein the gel electrolyte has the formula I:
B [O (C a H 2a O) b ] 3 Z 3 (I)
[Wherein, Z is a polymerizable functional group, and a and b are integers of 1 to 6. ]
The lithium ion secondary battery characterized by including the polymer of the compound represented by these.
前記ゲル電解質が、式II:
B[{O(CcH2cO)d}R]3 (II)
[式中、c及びdは1〜6の整数であり、RはC1−6アルキル基である。]
で表される化合物をさらに含有することを特徴とする請求項1記載のリチウムイオン二次電池。
The gel electrolyte has the formula II:
B [{O (C c H 2c O) d } R] 3 (II)
[Wherein, c and d are integers of 1 to 6, and R is a C 1-6 alkyl group. ]
The lithium ion secondary battery according to claim 1, further comprising:
前記ゲル電解質が、式Iの化合物と式IIの化合物とを1:1〜1:3のモル比で含むことを特徴とする請求項2記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 2, wherein the gel electrolyte contains a compound of formula I and a compound of formula II in a molar ratio of 1: 1 to 1: 3. 前記ゲル電解質が、式(I)で表される化合物の重合体を5重量%〜20重量%で含むことを特徴とする請求項1〜3のいずれか1項記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 3, wherein the gel electrolyte contains a polymer of a compound represented by the formula (I) at 5 wt% to 20 wt%. 前記セパレータが、ポリエチレンであり且つ通気度が100〜600秒/100mlであることを特徴とする請求項1〜4のいずれか1項記載のリチウムイオン二次電池。   5. The lithium ion secondary battery according to claim 1, wherein the separator is made of polyethylene and has an air permeability of 100 to 600 seconds / 100 ml. 前記正極が、LiMnxNi1-x-yCoO2(但しx及びyは0.001≦x、y≦0.5の範囲)を含むことを特徴とする請求項1〜5のいずれか1項記載のリチウムイオン二次電池。 The positive electrode, LiMn x Ni 1-x- y Co y O 2 ( where x and y are 0.001 ≦ x, the range of y ≦ 0.5) according to any one of claims 1 to 5, characterized in that it comprises Lithium ion secondary battery. 前記負極が、非晶質炭素を含むことを特徴とする請求項1〜6のいずれか1項記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the negative electrode contains amorphous carbon. 正極と、Li塩を含むゲル電解質を保持したセパレータと、負極とを積層又は捲回した電池素子をアルミラミネートシートで封止したリチウムイオン二次電池の製造方法であって、式I:
B[O(CaH2aO)b]3Z3 (I)
[式中、Zは重合性官能基であり、a及びbは1〜6の整数である。]
で表される化合物の溶液をセパレータの空隙に注入し、次いでこれを重合させることを含むリチウムイオン二次電池の製造方法。
A method for producing a lithium ion secondary battery in which a battery element obtained by laminating or winding a positive electrode, a separator holding a gel electrolyte containing a Li salt, and a negative electrode is sealed with an aluminum laminate sheet.
B [O (C a H 2a O) b ] 3 Z 3 (I)
[Wherein, Z is a polymerizable functional group, and a and b are integers of 1 to 6. ]
A method for producing a lithium ion secondary battery, comprising injecting a solution of a compound represented by formula (1) into a void of a separator and then polymerizing the solution.
JP2005161708A 2005-06-01 2005-06-01 Lithium ion secondary battery Pending JP2006339011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161708A JP2006339011A (en) 2005-06-01 2005-06-01 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161708A JP2006339011A (en) 2005-06-01 2005-06-01 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2006339011A true JP2006339011A (en) 2006-12-14

Family

ID=37559394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161708A Pending JP2006339011A (en) 2005-06-01 2005-06-01 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2006339011A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067435A (en) * 2008-09-10 2010-03-25 Sumitomo Chemical Co Ltd Nonaqueous electrolyte secondary battery
JP2011091005A (en) * 2009-10-26 2011-05-06 Aoi Electronics Co Ltd Ion-conductive polymer electrolyte secondary battery
JP2011142017A (en) * 2010-01-07 2011-07-21 Nissan Motor Co Ltd Lithium ion secondary battery
JP2013033428A (en) * 2011-07-31 2013-02-14 Gem Kk Signal uninterruptible power supply system having power storage/generation integrated device mounted thereon
CN103427118A (en) * 2012-05-25 2013-12-04 拓志光机电股份有限公司 Electrode assembly and manufacturing method thereof
WO2015141546A1 (en) * 2014-03-17 2015-09-24 日立マクセル株式会社 Non-aqueous secondary battery
US9537173B2 (en) 2010-02-10 2017-01-03 Lg Chem, Ltd. Pouch type lithium secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283673A (en) * 1998-03-31 1999-10-15 Sanyo Electric Co Ltd Polymer solid electrolyte cell and its manufacture
JP2001210380A (en) * 1999-11-19 2001-08-03 Pionics Co Ltd Polymer battery
JP2002033130A (en) * 2000-07-14 2002-01-31 Mitsui Chemicals Inc High polymer solid electrolyte and secondary battery
JP2002184402A (en) * 2000-12-11 2002-06-28 Mitsui Chemicals Inc Positive electrode active material for lithium secondary battery, and battery
JP2003201344A (en) * 2001-09-28 2003-07-18 Nof Corp Method for producing boric ester compound, electrolyte for electrochemical device and secondary battery
JP2004186150A (en) * 2002-11-21 2004-07-02 Hitachi Ltd Lithium secondary battery
JP2004186089A (en) * 2002-12-05 2004-07-02 Tdk Corp Coating liquid for electrode formation, electrode and electrochemical element, and manufacturing method of coating liquid for electrode formation, manufacturing method of electrode and manufacturing method of electrochemical element
JP2004182982A (en) * 2002-11-21 2004-07-02 Hitachi Ltd Boron-containing compound for electrochemical device, ion-conducting polymer and polymer electrolyte

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283673A (en) * 1998-03-31 1999-10-15 Sanyo Electric Co Ltd Polymer solid electrolyte cell and its manufacture
JP2001210380A (en) * 1999-11-19 2001-08-03 Pionics Co Ltd Polymer battery
JP2002033130A (en) * 2000-07-14 2002-01-31 Mitsui Chemicals Inc High polymer solid electrolyte and secondary battery
JP2002184402A (en) * 2000-12-11 2002-06-28 Mitsui Chemicals Inc Positive electrode active material for lithium secondary battery, and battery
JP2003201344A (en) * 2001-09-28 2003-07-18 Nof Corp Method for producing boric ester compound, electrolyte for electrochemical device and secondary battery
JP2004186150A (en) * 2002-11-21 2004-07-02 Hitachi Ltd Lithium secondary battery
JP2004182982A (en) * 2002-11-21 2004-07-02 Hitachi Ltd Boron-containing compound for electrochemical device, ion-conducting polymer and polymer electrolyte
JP2004186089A (en) * 2002-12-05 2004-07-02 Tdk Corp Coating liquid for electrode formation, electrode and electrochemical element, and manufacturing method of coating liquid for electrode formation, manufacturing method of electrode and manufacturing method of electrochemical element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067435A (en) * 2008-09-10 2010-03-25 Sumitomo Chemical Co Ltd Nonaqueous electrolyte secondary battery
JP2011091005A (en) * 2009-10-26 2011-05-06 Aoi Electronics Co Ltd Ion-conductive polymer electrolyte secondary battery
JP2011142017A (en) * 2010-01-07 2011-07-21 Nissan Motor Co Ltd Lithium ion secondary battery
US9537173B2 (en) 2010-02-10 2017-01-03 Lg Chem, Ltd. Pouch type lithium secondary battery
JP2013033428A (en) * 2011-07-31 2013-02-14 Gem Kk Signal uninterruptible power supply system having power storage/generation integrated device mounted thereon
CN103427118A (en) * 2012-05-25 2013-12-04 拓志光机电股份有限公司 Electrode assembly and manufacturing method thereof
WO2015141546A1 (en) * 2014-03-17 2015-09-24 日立マクセル株式会社 Non-aqueous secondary battery

Similar Documents

Publication Publication Date Title
JP4126711B2 (en) Non-aqueous electrolyte battery
JP4830279B2 (en) Nonaqueous electrolyte secondary battery
US20110159382A1 (en) Nonaqueous solvent, and nonaqueous electrolyte solution and nonaqueous secondary battery using the same
JPWO2011027530A1 (en) Non-aqueous solvent, non-aqueous electrolyte and non-aqueous secondary battery using the same
US20120100413A1 (en) Secondary battery and assembled battery
US20040126668A1 (en) Lithium polymer secondary cell
JP2006339011A (en) Lithium ion secondary battery
JP2015125948A (en) Lithium ion secondary battery
JP5181430B2 (en) Secondary battery
CN107026281B (en) Lithium ion secondary battery
JP2010199035A (en) Nonaqueous electrolyte secondary battery
JP2001185213A (en) Nonaqueous electrolyte battery and manufacturing method therefor
JP4887634B2 (en) Battery and its sealing method
JP2001273930A (en) Manufacturing method of polymer battery
JP5401349B2 (en) Lithium secondary battery
JP6818300B2 (en) Lithium secondary battery charging / discharging method
JP2002245994A (en) Accommodation member for lithium secondary battery and secondary battery pack using it
JP2017016905A (en) Charging/discharging method for lithium secondary battery
US20210242489A1 (en) Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP4288863B2 (en) Lithium secondary battery
JP3575308B2 (en) Non-aqueous electrolyte secondary battery
JP4736329B2 (en) Lithium ion secondary battery
JP5448175B2 (en) Non-aqueous electrolyte for electrochemical element and electrochemical element
JP2017152189A (en) Method for charging/discharging lithium secondary battery
JP4800580B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629