JP2006338838A - Method for manufacturing vertical magnetic recording medium - Google Patents

Method for manufacturing vertical magnetic recording medium Download PDF

Info

Publication number
JP2006338838A
JP2006338838A JP2005165249A JP2005165249A JP2006338838A JP 2006338838 A JP2006338838 A JP 2006338838A JP 2005165249 A JP2005165249 A JP 2005165249A JP 2005165249 A JP2005165249 A JP 2005165249A JP 2006338838 A JP2006338838 A JP 2006338838A
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetic recording
soft magnetic
backing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005165249A
Other languages
Japanese (ja)
Other versions
JP4798520B2 (en
Inventor
Naoki Takizawa
直樹 瀧澤
Hiroyuki Uwazumi
洋之 上住
Tadahiro Shimazu
忠弘 嶋津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2005165249A priority Critical patent/JP4798520B2/en
Publication of JP2006338838A publication Critical patent/JP2006338838A/en
Application granted granted Critical
Publication of JP4798520B2 publication Critical patent/JP4798520B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain excellent orientation of magnetic crystal grains on a magnetic recording layer and to obtain a desirable magnetic characteristic and electromagnetic conversion characteristic in a vertical magnetic recording medium. <P>SOLUTION: In the method for manufacturing a vertical magnetic recording medium provided with a non-magnetic substrate, a soft magnetic backing layer and a magnetic recording layer, the soft magnetic backing layer is composed of Co-based amorphous alloy containing at least one element out of Zr, Nb and Ta, and the soft magnetic backing layer is formed by deposition power of ≥0.5 kW and ≤3.0 kW by using a spattering method without requiring a process for heating the non-magnetic substrate prior to the formation of the soft magnetic backing layer. The surface roughness of the soft magnetic backing layer is preferably 0.35 nm and less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固定磁気記録装置(HDD)に搭載される垂直磁気記録媒体の製造方法に関するものである。   The present invention relates to a method for manufacturing a perpendicular magnetic recording medium mounted on a fixed magnetic recording device (HDD).

磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。
特に、情報を記録する役割を担う磁気記録層の下側に、磁気ヘッドから発生する磁束を通しやすい軟磁性裏打ち層と呼ばれる軟磁性膜を付与した二層垂直磁気記録媒体は、磁気ヘッドの発生磁界強度とその磁界勾配を増加させ、記録分解能を向上させるとともに磁気記録層からの漏洩磁束も増加させることから、高密度記録が可能な垂直磁気記録媒体として好適であることが知られている。
しかしながら、所望の記録分解能を実現するために必要な軟磁性裏打ち層は、磁束を効率的に集中するためには厚膜とする必要があり、記録に使用する磁気ヘッドによって最適値は変化するものの、概ね100nm以上の厚膜を形成する必要がある。膜厚を厚くする場合、軟磁性裏打ち層は表面粗さ(Ra)が高くなりやすく、その上に形成する磁気記録層の磁性結晶粒は配向分散が悪化する。この結果、磁気特性及び電磁変換特性の悪化を招く問題へと繋がっている。
As a technique for realizing high density magnetic recording, a perpendicular magnetic recording system is drawing attention in place of the conventional longitudinal magnetic recording system.
In particular, a double-layer perpendicular magnetic recording medium with a soft magnetic film called a soft magnetic backing layer that easily passes the magnetic flux generated from the magnetic head under the magnetic recording layer that plays a role in recording information is generated in the magnetic head. It is known that it is suitable as a perpendicular magnetic recording medium capable of high-density recording because it increases the magnetic field strength and the magnetic field gradient, improves the recording resolution, and increases the magnetic flux leakage from the magnetic recording layer.
However, the soft magnetic underlayer necessary for realizing the desired recording resolution needs to be a thick film in order to concentrate the magnetic flux efficiently, and the optimum value varies depending on the magnetic head used for recording. Therefore, it is necessary to form a thick film of approximately 100 nm or more. When the film thickness is increased, the soft magnetic underlayer tends to have a high surface roughness (Ra), and the orientational dispersion of the magnetic crystal grains of the magnetic recording layer formed thereon deteriorates. As a result, this leads to a problem that causes deterioration of magnetic characteristics and electromagnetic conversion characteristics.

この問題に対処するため、軟磁性裏打層の成膜を多数回に分けて行うことにより表面粗さの増大を抑える方法が提案されている(例えば、特許文献1参照。)。しかしながら、この方法においては、軟磁性裏打層の成膜を行う成膜室を複数準備することから、大規模な装置が必要とされ、装置コストの増大を招くこととなる。
今後要求される磁気記録媒体の性能を実現するためには、磁気記録層の性能をさらに向上することが必要であり、磁気記録層の劣化を招かず、かつ磁気記録ヘッドの磁束を効率的に補足する厚膜の軟磁性層を効率的に形成する方法が望まれている。
特開2004−146015号公報
In order to cope with this problem, a method has been proposed in which the increase in surface roughness is suppressed by forming the soft magnetic underlayer in a number of times (see, for example, Patent Document 1). However, in this method, since a plurality of film forming chambers for forming the soft magnetic backing layer are prepared, a large-scale apparatus is required, resulting in an increase in apparatus cost.
In order to realize the performance of magnetic recording media that will be required in the future, it is necessary to further improve the performance of the magnetic recording layer, without causing deterioration of the magnetic recording layer, and efficiently generating the magnetic flux of the magnetic recording head. A method for efficiently forming a supplemental thick soft magnetic layer is desired.
JP 2004-146015 A

本発明は上述の問題点に鑑みてなされたもので、その目的とするところは、軟磁性裏打層の表面粗さが小さく、その上に形成される磁気記録層の磁性結晶粒の配向に優れ、良好な磁気特性及び電磁変換特性を有する垂直磁気記録媒体の製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is that the soft magnetic backing layer has a small surface roughness and is excellent in the orientation of the magnetic crystal grains of the magnetic recording layer formed thereon. Another object of the present invention is to provide a method for manufacturing a perpendicular magnetic recording medium having good magnetic characteristics and electromagnetic conversion characteristics.

本発明は、このような目的を達成するために、非磁性基体、軟磁性裏打ち層、磁気記録層を備えた垂直磁気記録媒体を製造する方法において、前記軟磁性裏打ち層をZr、Nb、Taの内の少なくとも1元素を含有するCo基非晶質合金とし、前記軟磁性裏打ち層の形成に先立って前記非磁性基体を加熱する工程を設けずに、前記軟磁性裏打ち層を0.5kW以上、3.0kW以下の成膜電力でスパッター法にて形成することを特徴とする。
また、前記軟磁性裏打ち層の表面粗さは0.35nm以下であることが好ましい。
In order to achieve such an object, the present invention provides a method for producing a perpendicular magnetic recording medium comprising a nonmagnetic substrate, a soft magnetic backing layer, and a magnetic recording layer, wherein the soft magnetic backing layer is formed of Zr, Nb, Ta. A Co-based amorphous alloy containing at least one element of the above, and without providing a step of heating the nonmagnetic substrate prior to the formation of the soft magnetic backing layer, the soft magnetic backing layer is 0.5 kW or more The film is formed by a sputtering method with a film forming power of 3.0 kW or less.
The surface roughness of the soft magnetic backing layer is preferably 0.35 nm or less.

垂直磁気記録媒体を上述のように形成することにより、軟磁性裏打ち層の表面粗さを小さく抑えることが可能となり、優れた磁気特性及び電磁変換特性を有する垂直磁気記録媒体を得ることができる。また、軟磁性裏打ち層を形成する際の成膜電力を増加することが可能となり、成膜時間の短縮を通じて効率的な大量生産を可能とし、製造コストの低減を図ることも可能となる。   By forming the perpendicular magnetic recording medium as described above, it is possible to reduce the surface roughness of the soft magnetic underlayer, and a perpendicular magnetic recording medium having excellent magnetic characteristics and electromagnetic conversion characteristics can be obtained. In addition, it is possible to increase the film forming power when forming the soft magnetic underlayer, to enable efficient mass production through shortening the film forming time, and to reduce the manufacturing cost.

以下、図面を参照しながら本発明の実施の形態について詳細に説明する。
図1は本発明を適用する垂直磁気記録媒体の構成例を示す断面模式図である。垂直磁気記録媒体は、非磁性基体1の上に、第1シード層2、配向制御層3、反強磁性層4、軟磁性裏打ち層5、第2シード層6、非磁性下地層7、磁気記録層8、保護層9が順に形成された構造を有しており、更にその上に、液体潤滑剤層10が形成されている。
非磁性基体1としては、通常の磁気記録媒体用に用いられる、NiPメッキを施したAl合金や化学強化ガラス、結晶化ガラス等を用いることができる。また、基板加熱温度を100℃以内に抑える場合は、ポリカーボネイト、ポリオレフィン等の樹脂からなるプラスチック基板を用いることもできる。
軟磁性裏打ち層5としては、Zr、NbまたはTaの内の少なくとも一つの元素とCoとを含有するCo基の非晶質合金を用いる。例えばCoNbZr、CoTaZrなどを用いることにより良好な電磁変換特性を得ることが出来る。軟磁性裏打ち層5の膜厚は、記録に使用する磁気ヘッドの特性によって最適値が変化するが、10nm以上、300nm以下とすることが、生産性との兼ね合いから好ましい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing a configuration example of a perpendicular magnetic recording medium to which the present invention is applied. The perpendicular magnetic recording medium includes a first seed layer 2, an orientation control layer 3, an antiferromagnetic layer 4, a soft magnetic backing layer 5, a second seed layer 6, a nonmagnetic underlayer 7, a magnetic layer on a nonmagnetic substrate 1. A recording layer 8 and a protective layer 9 are formed in this order, and a liquid lubricant layer 10 is further formed thereon.
As the non-magnetic substrate 1, there can be used an Al alloy plated with NiP, chemically strengthened glass, crystallized glass or the like used for a normal magnetic recording medium. When the substrate heating temperature is suppressed to 100 ° C. or less, a plastic substrate made of a resin such as polycarbonate or polyolefin can be used.
As the soft magnetic underlayer 5, a Co-based amorphous alloy containing at least one element of Zr, Nb, or Ta and Co is used. For example, good electromagnetic conversion characteristics can be obtained by using CoNbZr, CoTaZr, or the like. The optimum value of the thickness of the soft magnetic backing layer 5 varies depending on the characteristics of the magnetic head used for recording, but is preferably 10 nm or more and 300 nm or less in view of productivity.

軟磁性裏打ち層5の成膜は、DCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法等のスパッタリング法を用いる。スパッタリングに先立つ非磁性基体の加熱は行わず、室温にてスパッタリングを開始する。スパッタリング成膜の成膜電力は、非磁性基体の片面あたり0.5kW以上、3.0kW以下とすることが好適である。なお、このことは非磁性基体の外径に依存しないことを、外径0.85インチから3.5インチの基体に対して確認している。
軟磁性裏打ち層の表面粗さRaは0.35nm以下が好ましい。
反強磁性層4は、軟磁性裏打ち層5との間に反強磁性交換結合を形成して軟磁性裏打ち層内の磁壁の形成を抑制するために備えることが好ましい層である。反強磁性層4としては、FeMn,CoMn,IrMnなどのMn系合金が好ましく用いられる。反強磁性層4の膜厚は特に制限されないが、適度な交換結合が得られ且つ、大量生産に適するためには2nmないし20nm程度が好ましい。
The soft magnetic backing layer 5 is formed using a sputtering method such as a DC magnetron sputtering method or an RF magnetron sputtering method. The nonmagnetic substrate is not heated prior to sputtering, and sputtering is started at room temperature. The deposition power for sputtering deposition is preferably 0.5 kW or more and 3.0 kW or less per side of the nonmagnetic substrate. It has been confirmed that this does not depend on the outer diameter of the nonmagnetic substrate for substrates having an outer diameter of 0.85 inches to 3.5 inches.
The surface roughness Ra of the soft magnetic backing layer is preferably 0.35 nm or less.
The antiferromagnetic layer 4 is preferably a layer provided to form an antiferromagnetic exchange coupling with the soft magnetic backing layer 5 to suppress the formation of domain walls in the soft magnetic backing layer. As the antiferromagnetic layer 4, a Mn-based alloy such as FeMn, CoMn, IrMn is preferably used. The thickness of the antiferromagnetic layer 4 is not particularly limited, but is preferably about 2 nm to 20 nm in order to obtain appropriate exchange coupling and to be suitable for mass production.

配向制御層3は、反強磁性層の配向性を向上するために備えることが好ましい層である。少なくともNiとFeを含み、かつB、NbまたはSiのうちから選択された元素のうち少なくとも一種類を添加した層とすることにより、反強磁性層4の配向性が向上する。配向制御層3の膜厚としては、十分な結晶成長が得られる5nm以上とすることが好ましい。
第1シード層2は、配向制御層3の結晶性及び配向性を向上するために備えることが好ましい層である。Taから形成することが特に好ましい。Ta膜の膜厚は、非晶質或いは非結晶となる20nm以下が好ましい。
非磁性下地層7は、磁気記録層8の結晶配向性、結晶粒径及び粒界偏析を好適に制御するために用いられる。材料としては、面心立方(fcc)構造あるいは六方最密充填(hcp)構造を有する単金属膜あるいは合金膜が好ましく、Ti、Ru、Pd、Ptやそれらを含む合金膜が好ましいが、それらに限定されない。非磁性下地層7の膜厚としては、磁気記録層8の構造制御を行なうのに必要最小限の膜厚とすることが、記録の面からは必要である。
The orientation control layer 3 is a layer preferably provided for improving the orientation of the antiferromagnetic layer. The orientation of the antiferromagnetic layer 4 is improved by forming a layer containing at least Ni and Fe and adding at least one element selected from B, Nb, and Si. The film thickness of the orientation control layer 3 is preferably 5 nm or more so that sufficient crystal growth can be obtained.
The first seed layer 2 is a layer that is preferably provided in order to improve the crystallinity and orientation of the orientation control layer 3. It is particularly preferable to form from Ta. The thickness of the Ta film is preferably 20 nm or less, which is amorphous or amorphous.
The nonmagnetic underlayer 7 is used for suitably controlling the crystal orientation, crystal grain size, and grain boundary segregation of the magnetic recording layer 8. As a material, a single metal film or an alloy film having a face-centered cubic (fcc) structure or a hexagonal close-packed (hcp) structure is preferable, and Ti, Ru, Pd, Pt and an alloy film containing them are preferable. It is not limited. The film thickness of the nonmagnetic underlayer 7 is required from the viewpoint of recording to be the minimum film thickness necessary for controlling the structure of the magnetic recording layer 8.

第2シード層6は、非磁性下地層7の結晶性及び配向性を向上させるために備えることが好ましい層である。Taから形成することが特に好ましい。
磁気記録層8としては、CoCrPt系合金膜、結晶粒界にSiO2等の非磁性酸化物や窒化物を有するグラニュラー膜、さらに(Co/Pd)等の多層積層膜等を用いる事ができる。
保護層9は、従来より使用されている保護膜を用いることができる。例えば、カーボンを主体とする保護膜を用いることができる。保護層9の膜厚等の条件は、通常の磁気記録媒体で用いられる諸条件をそのまま用いることができる。
また、液体潤滑剤層10も従来より使用されている材料を用いることができる。例えば、パーフルオロポリエーテル系の潤滑剤を用いることができる。液体潤滑剤層10の膜厚等の条件は、通常の磁気記録媒体で用いられる諸条件をそのまま用いることができる。
The second seed layer 6 is a layer preferably provided for improving the crystallinity and orientation of the nonmagnetic underlayer 7. It is particularly preferable to form from Ta.
As the magnetic recording layer 8, a CoCrPt-based alloy film, a granular film having a nonmagnetic oxide or nitride such as SiO2 at the crystal grain boundary, and a multilayer laminated film such as (Co / Pd) n can be used.
The protective layer 9 may be a conventionally used protective film. For example, a protective film mainly composed of carbon can be used. The conditions such as the film thickness of the protective layer 9 can be the same as those used in ordinary magnetic recording media.
The liquid lubricant layer 10 can also be made of a conventionally used material. For example, a perfluoropolyether lubricant can be used. The conditions such as the film thickness of the liquid lubricant layer 10 can be the same as those used in ordinary magnetic recording media.

以下、実施例等を用いながら、より詳細に説明する。
軟磁性裏打ち層の表面粗さは、基板温度ならびに成膜電力により影響を受ける。始めに、軟磁性裏打ち層まで形成して、この影響について検討した結果について説明する。
(実験例1)
非磁性基体1として表面が平滑な外径2.5インチの化学強化ガラス基板(HOYA社製N−5ガラス基板)を用い、これを洗浄後スパッタ装置内に導入し、非磁性基体1の加熱を行うことなくスパッター成膜を開始した。初めに、Taターゲットを用いてTa第1シード層2を膜厚5nmにて成膜し、引き続きNi12Fe3Bターゲット(ここで、数字は引き続く元素の原子%を表し、Feが12原子%、Bが3原子%、残余がNiであることを表す。以下同様である。)を用いてNiFeB配向制御層3を膜厚5nmにて成膜し、引き続きIr80Mnターゲットを用いてIrMn反強磁性層4を膜厚10nmにて成膜した後、Co5Zr8Nbターゲットを用いてCoZrNb軟磁性裏打ち層5を成膜した。成膜電力を0.1kW〜3.0kWまで変化させ、膜厚が150nmとなるように、成膜電力に応じて成膜時間を調整して成膜した。続いてランプヒータを用いて加熱を行い、基板表面温度を250℃まで上昇させた直後、1000Oeの固定磁場中で、150℃まで冷却を行った後、真空装置から取り出して軟磁性裏打ち層まで成膜した実験例1を得た。なお、各層の成膜はすべてArガス圧5mTorr下でDCマグネトロンスパッタリング法により行った。
(実験例2)
非磁性基体1を洗浄後スパッタ装置内に導入した後、Ta第1シード層2の成膜を開始する直前に、ランプヒータを用いて加熱を行い、非磁性基体1の表面温度を100℃まで上昇させたことを除いて、実験例1と同様にして成膜して実験例2を得た。
Hereinafter, it demonstrates in detail, using an Example etc.
The surface roughness of the soft magnetic underlayer is affected by the substrate temperature and the deposition power. First, the results of studying this effect by forming a soft magnetic underlayer will be described.
(Experimental example 1)
A chemically tempered glass substrate (N-5 glass substrate manufactured by HOYA) having a smooth outer surface is used as the non-magnetic substrate 1, and this is washed and introduced into the sputtering apparatus to heat the non-magnetic substrate 1. Sputter film formation was started without performing the steps. First, a Ta first seed layer 2 is formed with a film thickness of 5 nm using a Ta target, followed by a Ni12Fe3B target (where the number represents the atomic% of the subsequent element, Fe is 12 atomic%, and B is 3 The NiFeB orientation control layer 3 is formed at a film thickness of 5 nm using the atomic percent and the balance is Ni. The same applies hereinafter.), And then the IrMn antiferromagnetic layer 4 is formed using the Ir80Mn target. After forming the film at a thickness of 10 nm, the CoZrNb soft magnetic backing layer 5 was formed using a Co5Zr8Nb target. The film formation power was changed from 0.1 kW to 3.0 kW, and the film formation time was adjusted according to the film formation power so that the film thickness was 150 nm. Subsequently, heating was performed using a lamp heater, and immediately after raising the substrate surface temperature to 250 ° C., the substrate was cooled to 150 ° C. in a fixed magnetic field of 1000 Oe, and then taken out from the vacuum apparatus to the soft magnetic backing layer. Experimental Example 1 was obtained. Each layer was formed by DC magnetron sputtering under an Ar gas pressure of 5 mTorr.
(Experimental example 2)
After cleaning the nonmagnetic substrate 1 and introducing it into the sputtering apparatus, immediately before starting the deposition of the Ta first seed layer 2, heating is performed using a lamp heater, and the surface temperature of the nonmagnetic substrate 1 is increased to 100 ° C. Except for the increase, the film was formed in the same manner as in Experimental Example 1 to obtain Experimental Example 2.

実験例1、2にて製作した試料の軟磁性裏打ち層のRaを、原子間力顕微鏡(AFM)にて測定した。
図2に、軟磁性裏打ち層の成膜電力を変化した場合の、軟磁性裏打ち層のRaの変化を示す。
実験例1、2ともに、軟磁性裏打ち層を形成する際の成膜電力の増加にともないRaは低下傾向を示し、成膜電力が0.5kW以上では略一定値を示す。非磁性基体の加熱を行った実験例2は、非加熱の実験例1に比べ高いRaとなり、非磁性基体の温度を上昇することによりRaが増大する。
低いRaを有する軟磁性裏打ち層は、非磁性基体の加熱は行うことなく、軟磁性裏打ち層を形成する際の成膜電力を0.5kW以上にすることにより得られる。成膜電力の上限は、3.0kWまでを確認した。
Ra of the soft magnetic underlayer of the samples manufactured in Experimental Examples 1 and 2 was measured with an atomic force microscope (AFM).
FIG. 2 shows a change in Ra of the soft magnetic backing layer when the film forming power of the soft magnetic backing layer is changed.
In both Experimental Examples 1 and 2, Ra shows a tendency to decrease as the film forming power increases when the soft magnetic underlayer is formed, and shows a substantially constant value when the film forming power is 0.5 kW or more. In Experimental Example 2 in which the nonmagnetic substrate was heated, Ra was higher than that in Nonheated Experimental Example 1, and Ra was increased by increasing the temperature of the nonmagnetic substrate.
The soft magnetic backing layer having a low Ra can be obtained by heating the nonmagnetic substrate without increasing the film forming power for forming the soft magnetic backing layer to 0.5 kW or higher. The upper limit of the deposition power was confirmed up to 3.0 kW.

以下、実施例を用いて、より詳細に説明する。   Hereinafter, it demonstrates in detail using an Example.

非磁性基体1として表面が平滑な外径2.5インチの化学強化ガラス基板(HOYA社製N−5ガラス基板)を用い、これを洗浄後スパッタ装置内に導入し、非磁性基体の加熱を行うことなくTaターゲットを用いTa第1シード層2を膜厚5nmにて成膜し、続いてNi12Fe3Bターゲットを用いてNiFeB配向制御層3を膜厚5nmにて成膜し、引き続きIr80Mnターゲットを用いIrMn反強磁性層4を膜厚10nmにて成膜した後、Co5Zr8Nbターゲットを用いてCoZrNb軟磁性裏打ち層5を成膜した。成膜電力を0.1kW〜3.0kWまで変化させ、膜厚が150nmとなるように、成膜電力に応じて成膜時間を調整して成膜した。比較のため、成膜電力は幅広く変化させている。続いてTaターゲットを用いてTa第2シード層6を膜厚5nmにて成膜し、引き続きRuターゲットを用いてRu非磁性下地層7を膜厚20nmにて成膜し、引き続きSiOを10mol%添加したCo12Cr12Ptターゲットを用いArガス圧10mTorr下で、RFマグネトロンスパッタリング法により磁気記録層8を膜厚15nmにて成膜した。続いてランプヒータを用いて加熱を行い、基板表面温度を250℃まで上昇させた直後、1000Oeの固定磁場中で、150℃まで冷却を行った。引き続き、カーボン保護層9を膜厚5nmにて成膜し、真空装置から取り出した。なお、磁気記録層8以外はArガス圧5mTorr下でDCマグネトロンスパッタリング法により成膜した。引き続き、液体潤滑剤層10を浸漬塗布法にて膜厚1.5nmにて形成して二層垂直磁気記録媒体を得た。
(比較例1)
非磁性基体1を洗浄後スパッタ装置内に導入した後、Ta第1シード層2の成膜を開始する直前に、ランプヒータを用いて加熱を行い、非磁性基体1の表面温度を100℃まで上昇させたことを除いて、実施例1と同様にして成膜して比較例1を得た。
A chemically tempered glass substrate (N-5 glass substrate manufactured by HOYA) having a smooth outer surface is used as the non-magnetic substrate 1 and is introduced into the sputtering apparatus after cleaning, and the non-magnetic substrate is heated. Without using Ta target, Ta first seed layer 2 is formed with a film thickness of 5 nm, Ni12Fe3B target is used to form NiFeB orientation control layer 3 with a film thickness of 5 nm, and Ir80Mn target is subsequently used. After forming the IrMn antiferromagnetic layer 4 with a film thickness of 10 nm, the CoZrNb soft magnetic backing layer 5 was formed using a Co5Zr8Nb target. The film formation power was changed from 0.1 kW to 3.0 kW, and the film formation time was adjusted according to the film formation power so that the film thickness was 150 nm. For comparison, the deposition power is varied widely. Subsequently, a Ta second seed layer 6 is formed with a film thickness of 5 nm using a Ta target, a Ru nonmagnetic underlayer 7 is formed with a film thickness of 20 nm using a Ru target, and 10 mol of SiO 2 is subsequently added. A magnetic recording layer 8 was formed to a thickness of 15 nm by RF magnetron sputtering using Ar-added Co12Cr12Pt target under an Ar gas pressure of 10 mTorr. Subsequently, heating was performed using a lamp heater, and immediately after raising the substrate surface temperature to 250 ° C., cooling was performed to 150 ° C. in a fixed magnetic field of 1000 Oe. Subsequently, the carbon protective layer 9 was formed to a thickness of 5 nm and taken out from the vacuum apparatus. The layers other than the magnetic recording layer 8 were formed by DC magnetron sputtering under an Ar gas pressure of 5 mTorr. Subsequently, a liquid lubricant layer 10 was formed at a film thickness of 1.5 nm by a dip coating method to obtain a two-layer perpendicular magnetic recording medium.
(Comparative Example 1)
After cleaning the nonmagnetic substrate 1 and introducing it into the sputtering apparatus, immediately before starting the deposition of the Ta first seed layer 2, heating is performed using a lamp heater, and the surface temperature of the nonmagnetic substrate 1 is increased to 100 ° C. A comparative example 1 was obtained by forming a film in the same manner as in Example 1 except that the film was raised.

実施例1及び比較例1の試料の保持力(Hc)を、Kerr効果測定装置を用いて測定した。また、信号対雑音比(SNR)は、垂直磁気記録媒体用の単磁極型磁気ヘッドを取付けたスピンスタンドテスターを用いて測定した。
図3に実施例1及び比較例1に関して、軟磁性裏打ち層の成膜電力に対するHcの値の変化を示し、図4に同試料の軟磁性裏打ち層の成膜電力に対するSNRの値の変化を示す。
実施例1及び、比較例1ともに、軟磁性裏打ち層を形成する際の成膜電力の増加にともない、Hc及びSNRともに増加傾向を示し、成膜電力0.5kW以上では略一定値を示す。非磁性基体の加熱を行った比較例1は、非加熱の実施例1に比べ、Hc及びSNRともに低い値を示す。実験例1、2にて確認した軟磁性裏打ち層の表面粗さRaの変化と対応した結果となる。
The holding power (Hc) of the samples of Example 1 and Comparative Example 1 was measured using a Kerr effect measuring device. The signal-to-noise ratio (SNR) was measured using a spin stand tester equipped with a single magnetic pole type magnetic head for a perpendicular magnetic recording medium.
FIG. 3 shows the change in the Hc value with respect to the deposition power of the soft magnetic backing layer in Example 1 and Comparative Example 1, and FIG. 4 shows the change in the SNR value with respect to the deposition power of the soft magnetic backing layer of the same sample. Show.
In both Example 1 and Comparative Example 1, both the Hc and SNR tend to increase with increasing film forming power when the soft magnetic underlayer is formed, and show a substantially constant value when the film forming power is 0.5 kW or more. In Comparative Example 1 in which the nonmagnetic substrate was heated, both Hc and SNR showed lower values than in Non-heated Example 1. The result corresponds to the change in the surface roughness Ra of the soft magnetic underlayer confirmed in Experimental Examples 1 and 2.

高い保磁力且つ高い信号対雑音比を有する垂直磁気記録媒体は、非磁性基体の加熱は行うことなく、軟磁性裏打ち層を形成する際の成膜電力を0.5kW以上にすることにより得ることができる。   A perpendicular magnetic recording medium having a high coercive force and a high signal-to-noise ratio can be obtained by increasing the film forming power to 0.5 kW or more when forming the soft magnetic backing layer without heating the nonmagnetic substrate. Can do.

本発明を適用した垂直磁気記録媒体の構成例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structural example of the perpendicular magnetic recording medium to which this invention is applied. 軟磁性裏打ち層の成膜電力に対する、表面粗さの値の変化を説明するための図である。It is a figure for demonstrating the change of the value of surface roughness with respect to the film-forming power of a soft-magnetic underlayer. 軟磁性裏打ち層の成膜電力に対する、保持力の値の変化を説明するための図である。It is a figure for demonstrating the change of the value of coercive force with respect to the film-forming electric power of a soft-magnetic underlayer. 軟磁性裏打ち層の成膜電力に対する、信号雑音比の値の変化を説明するための図である。It is a figure for demonstrating the change of the value of a signal noise ratio with respect to the film-forming electric power of a soft-magnetic underlayer.

符号の説明Explanation of symbols

1 非磁性基体
2 第1シード層
3 配向制御層
4 反強磁性層
5 軟磁性裏打ち層
6 第2シード層
7 非磁性下地層
8 磁気記録層
9 保護層
10 液体潤滑剤層
DESCRIPTION OF SYMBOLS 1 Nonmagnetic base | substrate 2 1st seed layer 3 Orientation control layer 4 Antiferromagnetic layer 5 Soft magnetic backing layer 6 2nd seed layer 7 Nonmagnetic underlayer 8 Magnetic recording layer 9 Protective layer 10 Liquid lubricant layer

Claims (2)

非磁性基体、軟磁性裏打ち層、磁気記録層を備えた垂直磁気記録媒体において、
前記軟磁性裏打ち層はZr、Nb、Taの内の少なくとも1元素を含有するCo基非晶質合金であり、
前記軟磁性裏打ち層の形成に先立って前記非磁性基体を加熱する工程を設けずに、前記軟磁性裏打ち層を0.5kW以上、3.0kW以下の成膜電力でスパッター法にて形成することを特徴とする垂直磁気記録媒体の製造方法。
In a perpendicular magnetic recording medium comprising a nonmagnetic substrate, a soft magnetic backing layer, and a magnetic recording layer,
The soft magnetic underlayer is a Co-based amorphous alloy containing at least one element of Zr, Nb, and Ta,
The soft magnetic backing layer is formed by a sputtering method at a film forming power of 0.5 kW or more and 3.0 kW or less without providing a step of heating the nonmagnetic substrate prior to the formation of the soft magnetic backing layer. A method of manufacturing a perpendicular magnetic recording medium.
前記軟磁性裏打ち層の表面粗さが0.35nm以下であることを特徴とする請求項1に記載の垂直磁気記録媒体の製造方法。   2. The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the soft magnetic backing layer has a surface roughness of 0.35 nm or less.
JP2005165249A 2005-06-06 2005-06-06 Method for manufacturing perpendicular magnetic recording medium Expired - Fee Related JP4798520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165249A JP4798520B2 (en) 2005-06-06 2005-06-06 Method for manufacturing perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165249A JP4798520B2 (en) 2005-06-06 2005-06-06 Method for manufacturing perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2006338838A true JP2006338838A (en) 2006-12-14
JP4798520B2 JP4798520B2 (en) 2011-10-19

Family

ID=37559245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165249A Expired - Fee Related JP4798520B2 (en) 2005-06-06 2005-06-06 Method for manufacturing perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4798520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10212954B2 (en) 2009-12-18 2019-02-26 Colgate-Palmolive Company Pet food compositions including probiotics and methods of manufacture and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11203654A (en) * 1998-01-09 1999-07-30 Nec Corp Perpendicular magnetic recording medium and manufacture thereof
JP2001189006A (en) * 1999-12-28 2001-07-10 Showa Denko Kk Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JP2002216333A (en) * 2001-01-22 2002-08-02 Hitachi Maxell Ltd Magnetic recording medium and magnetic recording machine
JP2004146015A (en) * 2002-10-28 2004-05-20 Hitachi Ltd Magnetic recording medium and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11203654A (en) * 1998-01-09 1999-07-30 Nec Corp Perpendicular magnetic recording medium and manufacture thereof
JP2001189006A (en) * 1999-12-28 2001-07-10 Showa Denko Kk Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JP2002216333A (en) * 2001-01-22 2002-08-02 Hitachi Maxell Ltd Magnetic recording medium and magnetic recording machine
JP2004146015A (en) * 2002-10-28 2004-05-20 Hitachi Ltd Magnetic recording medium and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10212954B2 (en) 2009-12-18 2019-02-26 Colgate-Palmolive Company Pet food compositions including probiotics and methods of manufacture and use thereof
US11510424B2 (en) 2009-12-18 2022-11-29 Hill's Pet Nutrition, Inc. Pet food compositions including probiotics and methods of manufacture and use thereof

Also Published As

Publication number Publication date
JP4798520B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4019703B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4626840B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4332832B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US6696172B2 (en) Recording medium and method for manufacturing the same
JP2011034603A (en) Vertical magnetic recording medium
JP3988117B2 (en) Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium
JP2004022138A (en) Vertical magnetic recording medium and its manufacturing method
US20060147760A1 (en) Perpendicular magnetic recording medium
JP2005004945A (en) Perpendicular magnetic recording medium and its manufacturing method
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2006277950A (en) Vertical magnetic recording medium
US20080037407A1 (en) Method for Manufacturing Perpendicular Magnetic Recording Medium, Perpendicular Magnetic Recording Medium, and Magnetic Recording/Reproducing Apparatus
JP2006185489A (en) Magnetic recording medium and magnetic storage device
JP2008276859A (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproducing device
JP4798520B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4491768B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP5426409B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2006286103A (en) Vertical magnetic recording medium, manufacturing method of the same, and magnetic storage device
JP2006004527A (en) Perpendicular magnetic recording medium and manufacturing method therefor
JP5345543B2 (en) Method for manufacturing perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP4591806B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2003077121A (en) Magnetic recording medium and manufacturing method therefor
JP2001189006A (en) Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JP4066845B2 (en) Magnetic recording medium and method for manufacturing the same
US6826825B2 (en) Method for manufacturing a magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4798520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees