JP2006337226A - Residual charge measuring method for cv cable - Google Patents

Residual charge measuring method for cv cable Download PDF

Info

Publication number
JP2006337226A
JP2006337226A JP2005163517A JP2005163517A JP2006337226A JP 2006337226 A JP2006337226 A JP 2006337226A JP 2005163517 A JP2005163517 A JP 2005163517A JP 2005163517 A JP2005163517 A JP 2005163517A JP 2006337226 A JP2006337226 A JP 2006337226A
Authority
JP
Japan
Prior art keywords
voltage
residual charge
cable
boost
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005163517A
Other languages
Japanese (ja)
Other versions
JP4676255B2 (en
Inventor
Hiroyuki Kon
博之 今
Noboru Ishii
登 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Fujikura Ltd
Viscas Corp
Original Assignee
Furukawa Electric Co Ltd
Fujikura Ltd
Viscas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Fujikura Ltd, Viscas Corp filed Critical Furukawa Electric Co Ltd
Priority to JP2005163517A priority Critical patent/JP4676255B2/en
Publication of JP2006337226A publication Critical patent/JP2006337226A/en
Application granted granted Critical
Publication of JP4676255B2 publication Critical patent/JP4676255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce noise caused by a circuit response in residual charge measurement and hereby improve the resolution of the residual charge measurement. <P>SOLUTION: A DC high voltage is applied across a conductor and a shield of a cable 3 by a DC high voltage generator 1. The cable conductor is grounded through a resistor R and is then directly grounded. An AC voltage is then applied across the cable conductor and the shield by a test transformer 2 to measure the residual charge signal. When the AC voltage is applied, the output voltage of the test transformer 2 increases with a boosting pattern output by a boosting pattern generator 2a. The boosting pattern has a waveform of which the rate of change continuously changes in an area from a zero voltage as a boost starting point of the waveform to a predetermined voltage value and an area from before a boost terminating point to a constant voltage value as a boost terminating point. Changes in the vicinity of the boost starting point and the boost terminating point are smoothed, thereby reducing noise caused by the circuit response. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は水トリー劣化したCVケーブルの絶縁性能を診断するための残留電荷測定方法に関する。   The present invention relates to a residual charge measurement method for diagnosing the insulation performance of a CV cable having a water tree deteriorated.

水トリー劣化したCVケーブルの絶縁劣化診断法として、残留電荷測定方法が知られている(例えば、特許文献1、特許文献2等参照)。残留電荷測定方法は、直流電圧を課電することによりCVケーブルの水トリーに蓄積した電荷を測定し、ケーブル絶縁体の残存性能を非破壊的に診断するものであり、CVケーブルの劣化診断方法として注目されている。
残留電荷測定においては、当該ケーブルに所定の直流電圧を課電し、一旦接地をした後に交流電圧を課電する。水トリーがケーブル絶縁体中に存在している場合には、直流電圧を課電することにより、水トリー部に電荷が蓄積する。
この種の電荷は、接地をしてケーブル導体・遮蔽間を閉回路とした際にも容易に放出されるものではない。しかしながら、その後に交流電圧を課電することにより、これらの電荷は容易に放出される。これら放出された電荷を、ローパスフィルタを用いることにより、直流電流成分として検出する。
特開平5−307060号公報 特開平8−62280号公報
A residual charge measurement method is known as a method for diagnosing insulation deterioration of a CV cable with water tree deterioration (see, for example, Patent Document 1, Patent Document 2, etc.). The residual charge measuring method measures the charge accumulated in the water tree of the CV cable by imposing a DC voltage, and diagnoses the residual performance of the cable insulator in a non-destructive manner. It is attracting attention as.
In the residual charge measurement, a predetermined DC voltage is applied to the cable, and after being grounded, an AC voltage is applied. When the water tree is present in the cable insulator, charges are accumulated in the water tree portion by applying a DC voltage.
This type of charge is not easily released even when grounding and a closed circuit between the cable conductor and the shield. However, these charges are easily released by applying an alternating voltage thereafter. These emitted charges are detected as a direct current component by using a low-pass filter.
JP-A-5-307060 JP-A-8-62280

残留電荷法においては、直流電圧課電により水トリー部に蓄積した電荷に対して、交流電圧を用いて放出させる。
交流電圧の昇圧方法に関しては特にこれまで規定されてはいない。しかしながら、交流電圧を零電圧から急激に変化させ、一定の昇圧レートにより所定の交流電圧値まで、直線状に昇圧する方法の場合、残留電荷測定における測定系においては、電圧の立ち上がり部分および電圧が昇圧中から一定値へ移行する領域におい直流成分が発生し、これがノイズ成分となってしまう。
これらのノイズ性信号は、交流電圧を課電の際の回路応答に起因し、残留電荷信号はこれらのノイズに重畳して存在している。
In the residual charge method, the charge accumulated in the water tree portion by direct voltage application is discharged using an alternating voltage.
The method for boosting the AC voltage has not been specified so far. However, in the case of a method in which the AC voltage is rapidly changed from zero voltage and linearly boosted up to a predetermined AC voltage value at a constant boosting rate, in the measurement system for residual charge measurement, the voltage rising portion and the voltage are A direct current component is generated in a region where the voltage is increased to a constant value during boosting, and this becomes a noise component.
These noise signals are caused by a circuit response when an AC voltage is applied, and a residual charge signal is superimposed on these noises.

一方、所定の電圧で放出される残留電荷は、所定の交流電圧を1回課電することにより放出されることから、1回目の交流電圧課電時に得られる信号は、回路応答に起因したノイズ性信号と残留電荷信号の和であり、2回目の交流電圧課電時に得られる信号は、回路応答に起因したノイズ性信号のみとなる。よって、原理的には、同じ課電パターンにて交流電圧を2回課電して、1回目の交流電圧課電時の信号から2回目の交流電圧課電時の信号を差し引くことにより、残留電荷信号のみを獲得することが可能である。
しかしなから、実際には、1回目の交流電圧課電時に生じるノイズ性信号と2回目の交流電圧課電時に生じるノイズ性信号は全く同一のものではなく、これらの差分には、残留成分が存在することになり、残留電荷測定における分解能に影響を及ぼす。よって、残留電荷測定において分解能を向上させるためには、回路応答に起因したノイズは極力低減させることが望ましい。
本発明は上記事情に鑑みなされたものであって、残留電荷測定において回路応答に起因するノイズを低減化し、残留電荷測定の分解能が向上させることを目的とする。
On the other hand, since the residual charge released at a predetermined voltage is released by applying a predetermined AC voltage once, the signal obtained at the first AC voltage application is noise caused by circuit response. The signal obtained at the time of the second AC voltage application is only a noise signal resulting from the circuit response. Therefore, in principle, the AC voltage is applied twice with the same voltage pattern, and the residual voltage is subtracted from the signal at the first AC voltage application by subtracting the signal at the second AC voltage application. Only the charge signal can be acquired.
However, in reality, the noise signal generated during the first AC voltage application and the noise signal generated during the second AC voltage application are not exactly the same, and there is a residual component in these differences. Will exist and affect the resolution in residual charge measurement. Therefore, in order to improve the resolution in residual charge measurement, it is desirable to reduce the noise caused by the circuit response as much as possible.
The present invention has been made in view of the above circumstances, and an object thereof is to reduce noise caused by circuit response in residual charge measurement and to improve the resolution of residual charge measurement.

交流電圧を直線状に昇圧する場合には、交流電圧が零電圧から昇圧に移行する点、および昇圧から一定値に移行する点においては、その両者が特異点となる。
交流電圧課電に伴う直流成分のノイズ性信号が発生する原因は、これらの特異点の存在にあると考えられる。従って、両点付近で電圧を連続的に変化させ、これらの特異点を解消することにより、上記課題を解決することができる。すなわち、交流電圧を零電圧から徐々に昇圧していき、昇圧領域から一定値への移行も徐々に行うことにより、当該ノイズ性信号を除去することができる。
上記に基づき本発明においては、残留電荷測定において、交流電圧を、交流電圧が零電圧から所定の値になるまでの領域において、その変化率が徐々に大きくなるように連続的に上昇させ、また、昇圧終了前の所定の電圧から一定値に達するまでの領域において、その変化率が徐々に小さくなるように連続的に上昇させ、残留電荷を放出させる。
When the AC voltage is boosted linearly, both become singular points at the point where the AC voltage shifts from zero voltage to boost and when the AC voltage shifts from boost to a constant value.
It is considered that these singularities are responsible for the generation of the noise component signal of the DC component accompanying the AC voltage application. Therefore, the above-mentioned problem can be solved by changing the voltage continuously in the vicinity of both points and eliminating these singular points. That is, the noise signal can be removed by gradually boosting the AC voltage from zero voltage and gradually shifting from the boosting region to a constant value.
Based on the above, in the present invention, in the residual charge measurement, the AC voltage is continuously increased so that the rate of change gradually increases in the region from the zero voltage to the predetermined value. In the region from the predetermined voltage before the end of boosting until reaching a certain value, the rate of change is continuously increased so as to gradually decrease, and the residual charges are released.

本発明においては、残留電荷測定において、交流電圧を課電する際の昇圧パターンを直線状ではなく、特異点を有しない波形で昇圧するようにしたので、交流電圧課電時に発生する回路応答に起因したノイズ性信号を低減せることができ、残留電荷測定の分解能を向上させることができる。   In the present invention, in the residual charge measurement, the boosting pattern when applying the AC voltage is boosted with a waveform that does not have a singular point instead of a linear shape. The resulting noise signal can be reduced, and the resolution of residual charge measurement can be improved.

本発明の実施例の残留電荷測定装置の構成を図1に示す。
図1に示すように、課電装置は、水トリーに電荷を蓄積させるための直流高電圧発生装置1、測定時に交流電圧を課電する試験用変圧器2と、切換えスイッチSWから構成される。直流高電圧発生装置1は、直流電圧もしくは直流電圧に相当した代替波形の電圧を出力する。
試験用変圧器2の低圧側には、電力増幅器2bの出力が接続され電力増幅器2bには昇圧パターン発生器2aの出力が接続される。交流電圧課電時、電力増幅器2bは昇圧パターン発生器2aの出力を増幅して、試験用変圧器2の低圧側に与え、試験用変圧器2の出力電圧は昇圧パターン発生器2aが出力する昇圧パターンで上昇する。
FIG. 1 shows the configuration of a residual charge measuring apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the power application device is composed of a DC high voltage generator 1 for accumulating electric charges in a water tree, a test transformer 2 for applying an AC voltage during measurement, and a changeover switch SW. . The DC high voltage generator 1 outputs a DC voltage or a voltage having an alternative waveform corresponding to the DC voltage.
The output of the power amplifier 2b is connected to the low voltage side of the test transformer 2, and the output of the boost pattern generator 2a is connected to the power amplifier 2b. At the time of AC voltage application, the power amplifier 2b amplifies the output of the boost pattern generator 2a and applies it to the low voltage side of the test transformer 2, and the output voltage of the test transformer 2 is output by the boost pattern generator 2a. It rises with a boost pattern.

昇圧パターン発生器2aの出力は直線状ではなく、例えば交流電圧が零電圧から所定の値になるまでの領域において、その変化率が徐々に大きくなるように連続的に上昇し、また、昇圧終了前の所定の電圧から一定値に達するまでの領域において、その変化率が徐々に小さくなるように連続的に上昇するパターンである。昇圧パターンとしては特異点を有しない波形であればどのような波形でもよく、例えば正弦波のn乗的に変化するパターン等を用いることができる。
切換えスイッチSWの端子(a)は測定対象のCVケーブル3のケーブル導体に接続され、また、端子(b)は上記直流高電圧発生装置1の電圧出力端子に接続され、端子(c)は上記試験用変圧器2の交流電圧出力端子に接続され、端子(d)は接地され、端子(e)は抵抗Rを介して接地されている。
The output of the step-up pattern generator 2a is not linear, and for example, in the region where the AC voltage changes from zero voltage to a predetermined value, it continuously rises so that the rate of change gradually increases, and the boost end In this region, the rate of change gradually increases so that the rate of change gradually decreases in the region from the previous predetermined voltage until it reaches a certain value. As the boost pattern, any waveform may be used as long as it does not have a singular point. For example, a pattern that changes in the nth power of a sine wave can be used.
The terminal (a) of the changeover switch SW is connected to the cable conductor of the CV cable 3 to be measured, the terminal (b) is connected to the voltage output terminal of the DC high voltage generator 1, and the terminal (c) is the above The AC voltage output terminal of the test transformer 2 is connected, the terminal (d) is grounded, and the terminal (e) is grounded via a resistor R.

図1において、残留電荷の測定は次のように行われる。、
初めに、切換えスイッチSWの端子(a)と(b)を接続して直流高電圧発生装置1よりケーブル3の導体−遮蔽間に直流高電圧を課電する。
ついで、端子(a)を端子(e)へ接続して課電終了後、ケーブル導体を対地へ抵抗Rを介して接地した後に、端子(a)を端子(d)に接続して直接接地をする。
その後、端子(a)を端子(c)に接続して試験用変圧器2により、ケーブル導体−遮蔽間に上記昇圧パターンで上昇する交流電圧を課電して残留電荷信号を測定する。
In FIG. 1, the residual charge is measured as follows. ,
First, the terminals (a) and (b) of the changeover switch SW are connected and a DC high voltage is applied between the conductor and shield of the cable 3 from the DC high voltage generator 1.
Next, after the terminal (a) is connected to the terminal (e) and the voltage application is completed, the cable conductor is grounded to the ground via the resistor R, and then the terminal (a) is connected to the terminal (d) and directly grounded. To do.
Thereafter, the terminal (a) is connected to the terminal (c), and the residual voltage signal is measured by applying an alternating voltage rising in the above-described boosting pattern between the cable conductor and the shield by the test transformer 2.

試験用変圧器2の低圧側より測定信号が取り出され、この測定信号は直流成分信号を検出するためのローパスフィルタ4に入力される。
上記ローパスフィルタ4の出力は、増幅器5へと入力され、増幅器5の出力から測定結果である残留電荷信号が得られる。
上記のように残留電荷を測定し、残留電荷の時間的変化などからケーブルの絶縁劣化の診断を行なうことができる。なお、残留電荷による劣化診断については、例えば前記特許文献2、3などに記載されるように従来から種々の方法が提案されており、これら周知な方法を用いることにより、実現することができる。
A measurement signal is taken out from the low voltage side of the test transformer 2, and this measurement signal is input to a low-pass filter 4 for detecting a DC component signal.
The output of the low-pass filter 4 is input to the amplifier 5, and a residual charge signal as a measurement result is obtained from the output of the amplifier 5.
As described above, the residual charge is measured, and the insulation deterioration of the cable can be diagnosed from the temporal change of the residual charge. For example, various methods have been proposed for deterioration diagnosis based on residual charges, as described in Patent Documents 2 and 3, for example, and can be realized by using these well-known methods.

上記交流電圧の昇圧パターンの例としては、例えば図2に示すように、直線状昇圧に代えて電圧を正弦波のn乗的に昇圧させることが挙げられる。
上記n値を大きくすればするほど、昇圧開始点における零電圧からの変化、あるいは昇圧中から昇圧終了点における変化は滑らかになるために、回路応答に起因するノイズ性信号は小さくなる。このnの値は使用する機器の性能により選択することになる。
なお、波形の昇圧開始点の零電圧から所定の電圧値までの領域、および昇圧終了点の前から昇圧終了点である一定の電圧値に移行するまでの領域において、その変化率が連続的に変化する様な波形であれば、任意の昇圧波形が選択できる。
As an example of the AC voltage boosting pattern, for example, as shown in FIG. 2, the voltage may be boosted to the nth power of a sine wave instead of the linear boosting.
As the n value is increased, the change from the zero voltage at the boost start point or the change from the boosting end point to the boost end point becomes smoother, and the noise signal resulting from the circuit response becomes smaller. The value of n is selected according to the performance of the equipment used.
It should be noted that the rate of change is continuously increased in the region from the zero voltage to the predetermined voltage value at the boosting start point of the waveform and in the region from before the boosting end point to the constant voltage value that is the boosting end point. Any boosted waveform can be selected as long as the waveform changes.

図3に示す模擬残留電荷信号(残留電荷量4.5nC)を想定し、模擬残留電荷信号が重畳している場合と重畳していない場合の、装置における検出信号のシミュレーション結果を図4〜図6に示す。シミュレーションに際し図5、図6に示すものでは交流電圧値を一定に保つ保持時間については無視している。
図4は直線状昇圧の場合の検出波形を示している。また、図5、図6は課電する最終電圧を同一とし、更に、昇圧開始から昇圧完了までの時間を正弦波の2.4乗および3.0乗の1/4波長が同一となる様に昇圧した際に放出される波形を示している。なお同時の太線で示した波形は交流電圧の変化パターンを示している。
図4に示す様に、直線状昇圧した場合には、残留電荷信号に比較して極めて大きな回路応答に起因したノイズ性信号が発生する。
残留電荷信号が重畳している波形と当該信号が重畳していない波形において、両者の差分をとることにより、重畳した模擬残留電荷信号が獲得できるものの、差分を取らなければ区別ができないほどである。図4では縦軸を1×10-3のスケールで示しているため、残留電荷信号が重畳している波形と、重畳していない波形はほとんど重なっている。
Assuming the simulated residual charge signal (residual charge amount 4.5 nC) shown in FIG. 3, simulation results of detection signals in the apparatus when the simulated residual charge signal is superimposed and when not superimposed are shown in FIGS. It is shown in FIG. In the simulation, the holding time for keeping the AC voltage value constant is ignored in the cases shown in FIGS.
FIG. 4 shows a detection waveform in the case of linear boosting. 5 and 6, the final voltage to be applied is the same, and the time from the start of boosting to the completion of boosting is the same as the ¼ wave of the sine wave to the 2.4th and 3.0th powers. Shows the waveform released when the pressure is increased. The waveform indicated by the bold line at the same time indicates the change pattern of the AC voltage.
As shown in FIG. 4, when linearly boosting, a noisy signal is generated due to an extremely large circuit response compared to the residual charge signal.
By taking the difference between the waveform in which the residual charge signal is superimposed and the waveform in which the signal is not superimposed, the superimposed simulated residual charge signal can be acquired, but it cannot be distinguished unless the difference is taken. . In FIG. 4, since the vertical axis is shown with a scale of 1 × 10 −3 , the waveform in which the residual charge signal is superimposed and the waveform in which the residual charge signal is not superimposed almost overlap each other.

一方、直線状の昇圧でなく、正弦波の2.4乗とした場合には、図5に示すように、交流電圧の課電に伴うノイズ性の信号の大きさは、直線状の昇圧の場合に発生するものに比較して、1/10000程度にまで小さくなる。すなわち、同図に示すように、残留電荷信号が重畳した波形と当該信号が重畳していない波形には明確な差が生じており、前者の差分をとらなくとも重畳した模擬残留電荷信号を判別することができる。
この状況はnを更に大きくすることにより顕著になる。一例として、n=3.0とした場合を図6に示す。図6ではノイズ性の信号の大きさは更に小さくなっており、模擬残留電荷信号をさらに明確に判別することができる。
On the other hand, when the sine wave is raised to the 2.4th power instead of the linear boost, as shown in FIG. Compared to what occurs in some cases, it is reduced to about 1/10000. That is, as shown in the figure, there is a clear difference between the waveform in which the residual charge signal is superimposed and the waveform in which the signal is not superimposed, and the simulated residual charge signal can be discriminated without taking the former difference. can do.
This situation becomes prominent when n is further increased. As an example, FIG. 6 shows a case where n = 3.0. In FIG. 6, the magnitude of the noisy signal is further reduced, and the simulated residual charge signal can be more clearly discriminated.

本発明の実施例の残留電荷測定装置の構成例を示す図である。It is a figure which shows the structural example of the residual charge measuring apparatus of the Example of this invention. 直線状の昇圧パターンと、非直線状の昇圧パターン(sinn 波形)を示す図である。It is a figure which shows a linear pressure | voltage rise pattern and a non-linear pressure | voltage rise pattern (sin n waveform). シミュレーションにおいて重畳した模擬残留電荷信号を示す図である。It is a figure which shows the simulation residual charge signal superimposed in simulation. 交流電圧を直線状に昇圧させた場合のシミュレーション結果を示す図である。It is a figure which shows the simulation result at the time of raising an alternating voltage linearly. 交流電圧をsinn (n=2.3)で昇圧させた場合のシミュレーション結果を示す図である。The AC voltage is a diagram showing a simulation result when was boosted by sin n (n = 2.3). 交流電圧をsinn (n=3.0)で昇圧させた場合のシミュレーション結果を示す図である。The AC voltage is a diagram showing a simulation result when was boosted by sin n (n = 3.0).

符号の説明Explanation of symbols

1 直流高電圧発生装置
2 試験用変圧器
2a 昇圧パターン発生器
2b 電力増幅器
3 CVケーブル
4 ローパスフィルタ
5 増幅器
SW 切換えスイッチ
DESCRIPTION OF SYMBOLS 1 DC high voltage generator 2 Test transformer 2a Boosting pattern generator 2b Power amplifier 3 CV cable 4 Low pass filter 5 Amplifier SW changeover switch

Claims (1)

CVケーブルに直流電圧あるいは直流電圧と同様な作用を有する電圧波形を課電した後に、所定のパターンで昇圧する交流電圧を課電し、上記直流電圧課電時あるいは直流電圧と同様な作用を有する電圧波形課電時に、上記CVケーブルの水トリーに蓄積した電荷を放出させ残留電荷を測定するCVケーブルの残留電荷測定方法であって、
上記交流電圧を、交流電圧が零電圧から所定の値になるまでの領域において、その変化率が徐々に大きくなるように連続的に上昇させ、また、昇圧終了前の所定の電圧から一定値に達するまでの領域において、その変化率が徐々に小さくなるように連続的に上昇させる
ことを特徴とする残留電荷測定方法。

After applying a DC voltage or a voltage waveform having the same action as the DC voltage to the CV cable, an AC voltage boosted in a predetermined pattern is applied, and the same action as the DC voltage or the DC voltage is applied. A method for measuring a residual charge of a CV cable, in which a charge accumulated in the water tree of the CV cable is discharged and a residual charge is measured during voltage waveform application,
The AC voltage is continuously increased so that the rate of change gradually increases in a range from the zero voltage to a predetermined value, and the AC voltage is increased from the predetermined voltage before the end of boosting to a constant value. A residual charge measuring method, wherein the rate of change is continuously increased so that the rate of change gradually decreases in a region until it reaches.

JP2005163517A 2005-06-03 2005-06-03 CV cable residual charge measurement method Active JP4676255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005163517A JP4676255B2 (en) 2005-06-03 2005-06-03 CV cable residual charge measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005163517A JP4676255B2 (en) 2005-06-03 2005-06-03 CV cable residual charge measurement method

Publications (2)

Publication Number Publication Date
JP2006337226A true JP2006337226A (en) 2006-12-14
JP4676255B2 JP4676255B2 (en) 2011-04-27

Family

ID=37557911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163517A Active JP4676255B2 (en) 2005-06-03 2005-06-03 CV cable residual charge measurement method

Country Status (1)

Country Link
JP (1) JP4676255B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264976A (en) * 1985-09-17 1987-03-24 Toshiba Corp Method for measuring withstand voltage of neutron detector
JPH03102268A (en) * 1989-09-14 1991-04-26 Mitsubishi Cable Ind Ltd Diagnostic method of deterioration of insulation of power cable
JPH0862280A (en) * 1994-08-24 1996-03-08 Tokyo Electric Power Co Inc:The Diagnosis of insulation degradation of power cable
JP2002340970A (en) * 2001-03-13 2002-11-27 Mitsubishi Cable Ind Ltd Insulation deterioration diagnostic method for power cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264976A (en) * 1985-09-17 1987-03-24 Toshiba Corp Method for measuring withstand voltage of neutron detector
JPH03102268A (en) * 1989-09-14 1991-04-26 Mitsubishi Cable Ind Ltd Diagnostic method of deterioration of insulation of power cable
JPH0862280A (en) * 1994-08-24 1996-03-08 Tokyo Electric Power Co Inc:The Diagnosis of insulation degradation of power cable
JP2002340970A (en) * 2001-03-13 2002-11-27 Mitsubishi Cable Ind Ltd Insulation deterioration diagnostic method for power cable

Also Published As

Publication number Publication date
JP4676255B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP5423748B2 (en) Abnormality detection device for speaker circuit for generating vehicle operation notification sound
CN110763903B (en) Residual current detection method, device and circuit
JP2009229184A (en) Harmonic probing method and device
CA2614832A1 (en) Method for locating leaks in pipes
TW200710406A (en) Leakage current detection apparatus and leakage current detection method
JP2018151345A (en) Partial discharge detection method and partial discharge detection device
JP4676255B2 (en) CV cable residual charge measurement method
JP2008215864A (en) Partial discharge detection device and partial discharge detection method of rotary electric machine
JP4383393B2 (en) CV cable residual charge measurement method
CN112731084B (en) Transformer testing device and testing method
RU2434236C1 (en) High-voltage equipment diagnostic method
JP7339881B2 (en) Partial discharge detection device and partial discharge detection method
KR101410734B1 (en) Signal precessing device and method for elimination partial discharge noise using FFT
KR100475739B1 (en) system for testing character of filter
KR101832190B1 (en) Apparatus and method for diagnosing a partial discharging having a calibration funtiality
JP2000209767A (en) Analog input section monitoring device for digital protective controller
JP4336328B2 (en) CV cable residual charge measurement method
JP2004354093A (en) Deterioration diagnostic method of power cable
CN111257813B (en) Non-contact voltage measurement system field calibration method and calibration device thereof
JP3431390B2 (en) Cable insulation diagnosis method
JP2004064896A (en) Insulation monitoring device and its method
JP7370921B2 (en) Partial discharge measuring device and partial discharge measuring method
JP2005181208A (en) Deterioration diagnostic method and deterioration diagnostic device for cv cable
US9063028B2 (en) Apparatus and method for detection of mechanical inputs
Lim et al. Development of PRPS conversion algorithm and generator using PRPD pattern of underground power transmission cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4676255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350