JP2006337038A - Analysis method of ligand in sample, and analyzing apparatus of ligands in sample - Google Patents

Analysis method of ligand in sample, and analyzing apparatus of ligands in sample Download PDF

Info

Publication number
JP2006337038A
JP2006337038A JP2005158725A JP2005158725A JP2006337038A JP 2006337038 A JP2006337038 A JP 2006337038A JP 2005158725 A JP2005158725 A JP 2005158725A JP 2005158725 A JP2005158725 A JP 2005158725A JP 2006337038 A JP2006337038 A JP 2006337038A
Authority
JP
Japan
Prior art keywords
receptor
ligand
frequency
sample
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005158725A
Other languages
Japanese (ja)
Inventor
Yoshiro Ochi
啓郎 越智
Tomoaki Ban
知晃 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005158725A priority Critical patent/JP2006337038A/en
Publication of JP2006337038A publication Critical patent/JP2006337038A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an immunoassay instrument capable of shortening the measuring time and of more minutely grasping the state of changes due to aging. <P>SOLUTION: Since the change in the intensity of the reflected light of measuring light due to the natural oscillation frequency of a receptor, the ligand in the sample bonded to the receptor and the composite of the receptor and the ligand, which appear in a frequency region lower than the follow-up frequency limit of the ligand, the receptor and the composite of the ligand and the receptor is used, a band of applied external vibration becomes narrower than the conventional bands, applied in order to calculate the follow-up frequency limit, and the measuring time is shortened. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、サンプル中のリガンドの分析方法およびサンプル中のリガンドを分析する装置に関するものである。生化学的反応の対象になる液体試料の微量な質量変化を検出する免疫測定方法及び装置に関するものである。   The present invention relates to a method for analyzing a ligand in a sample and an apparatus for analyzing a ligand in a sample. The present invention relates to an immunoassay method and apparatus for detecting a minute mass change of a liquid sample to be subjected to a biochemical reaction.

生化学的反応においては、レセプターとリガンドとの結合という反応が重要である。例えば、抗原抗体反応では、レセプターとして抗体が、リガンドとして抗原と結合する。また、例えば酵素反応では、レセプターとして酵素が、リガンドとして酵素基体と結合する。このような反応を利用すれば、サンプル中に含まれるリガンドを、検出することが可能である。例えば、金属薄膜表面に、レセプターを結合させておき、リガンドがレセプターに結合すると、その金属薄膜近傍の誘電率が変化する。表面プラズモン共鳴現象を利用して、その変化を検出し、リガンドとレセプターの結合量を分析する方法が知られている(例えば非特許文献1参照)。   In biochemical reactions, the reaction of binding of a receptor and a ligand is important. For example, in an antigen-antibody reaction, an antibody as a receptor binds to an antigen as a ligand. For example, in an enzyme reaction, an enzyme is bound as a receptor and an enzyme substrate is bound as a ligand. By utilizing such a reaction, it is possible to detect the ligand contained in the sample. For example, when a receptor is bonded to the surface of a metal thin film and a ligand is bonded to the receptor, the dielectric constant near the metal thin film changes. A method is known in which the change is detected using the surface plasmon resonance phenomenon and the amount of binding between the ligand and the receptor is analyzed (see, for example, Non-Patent Document 1).

この方法ではまず、前記のような金属薄膜に、レセプターが結合されている表面の裏から、全反射条件を満たす角度で光を照射する。その入射光により励起された表面プラズモンの波数と、励起光に由来するエバネッセント波の波数が一致する特定の入射角の時だけに、入射光の光量の一部が表面プラズモンの励起に使われ、反射光の光量が減少する。金属薄膜近傍の誘電率の変化を、例えば、入射光の角度を変化させて反射光を計測し、吸収が最大になる入射光の角度を求める方法や、入射光の角度を一定に保ち、吸収が最大になる反射光の角度を求める方法が知られている。   In this method, first, the metal thin film as described above is irradiated with light from the back of the surface to which the receptor is bonded at an angle satisfying the total reflection condition. Only when the wave number of the surface plasmon excited by the incident light and the wave number of the evanescent wave derived from the excitation light coincide with each other, a part of the light amount of the incident light is used for exciting the surface plasmon. The amount of reflected light decreases. Changes in the dielectric constant in the vicinity of the metal thin film can be measured by, for example, measuring the reflected light by changing the angle of the incident light and obtaining the angle of the incident light that maximizes absorption, or maintaining the angle of the incident light constant and absorbing it. There is known a method for obtaining the angle of reflected light that maximizes the angle.

また、レセプターが固定されている金属薄膜の裏面に電気的振動である電界を印加する事で金属薄膜に試料の分離及び移動制御する技術(例えば、特許文献1参照)や金属薄膜の屈折率の変化を利用して多量の試料を一度に計測する技術(特許文献2参照)や外部振動を印加して表面プラズモン共鳴を生じる角度変動の周波数特性を計測し、リガンドとレセプターの結合量を周波数特性の変極点の変化として現れる追従周波数限界を読み取る事により高感度で且つ振動に強い技術が提案されている。
Anal.Chem.,1988,70,2019−2024 特開2003−65947号公報 特開2003−75336号公報
In addition, a technique for controlling the separation and movement of a sample on the metal thin film by applying an electric field that is an electric vibration to the back surface of the metal thin film on which the receptor is fixed (for example, see Patent Document 1) and the refractive index of the metal thin film. Technology that measures a large amount of sample at once using changes (see Patent Document 2) and frequency characteristics of angular fluctuations that cause surface plasmon resonance by applying external vibrations, and measures the amount of ligand-receptor binding. A high-sensitivity and vibration-resistant technique has been proposed by reading the tracking frequency limit that appears as a change in the inflection point.
Anal. Chem. , 1988, 70, 2019-2024. JP 2003-65947 A JP 2003-75336 A

しかしながら従来の方法では、外部振動を印加して表面プラズモン共鳴を生じる角度変動の周波数特性を計測し、リガンドとレセプターの結合量を周波数特性の変極点の変化として現れる追従周波数限界を読み取っていた。そのため、印加する外部振動の周波数を、レセプター及びレセプターと結合したサンプル中のリガンド及びレセプターとリガンドの複合体の追従周波数限界に達するまで幅広い帯域で変化させる必要があり、計測に時間がかかる問題があった。また、計測時間が長いために、経時的な状態の変化を把握することが出来ない問題がある。   However, in the conventional method, the frequency characteristic of the angular fluctuation that causes surface plasmon resonance by applying external vibration is measured, and the follow-up frequency limit that appears as the change of the inflection point of the frequency characteristic is read as the binding amount of the ligand and the receptor. Therefore, it is necessary to change the frequency of the external vibration to be applied in a wide band until the tracking frequency limit of the ligand in the sample bound to the receptor and the receptor and the complex of the receptor and the ligand is reached. there were. In addition, since the measurement time is long, there is a problem that it is impossible to grasp a change in state over time.

本発明は、従来の課題を解決するもので、追従周波数限界より低周波数領域に現れるリガンド及びレセプター及びリガンドとレセプターの複合体の固有振動周波数による計測光の反射光の強度変化を利用する事で計測時間の短縮を可能とし、経時的な状態の変化をより詳細に把握する事を可能とした免疫測定装置を提供することを目的とする。   The present invention solves the conventional problem by utilizing the change in the intensity of reflected light of the measurement light due to the natural vibration frequency of the ligand and the receptor and the complex of the ligand and the receptor appearing in a frequency region lower than the tracking frequency limit. An object of the present invention is to provide an immunoassay device that can shorten the measurement time and can grasp changes in the state with time in more detail.

前記目的を達成するために、本発明の分析方法は、リガンドを含むサンプルと、前記リガンドと特異的に結合しうるレセプターがその片面上に固定され、その裏面に光学プリズムが配置された、表面プラズモン共鳴を起しうる金属薄膜と、計測光を照射する照射手段と、前記計測光の反射光を受光する受光手段と、前記レセプターと結合したリガンドを分析する分析手段とを準備し、前記サンプルと前記金属薄膜とを接触させて前記サンプル中の前記リガンドを前記レセプターに結合させ、前記照射手段により、前記金属薄膜の前記レセプターが固定された面と逆の面に、計測光を照射し、前記受光手段により、前記金属薄膜の面上で反射された前記計測光の反射光を受光し、前記分析手段により、前記反射光から、前記金属薄膜近傍の誘電率の変化により生じた表面プラズモン共鳴角の変化を検出する、サンプル中の前記リガンドの分析方法であって、前記レセプターが固定された領域に外部振動を印加する印加手段を準備し、前記照射手段により前記計測光を照射しながら、前記印加手段により、前記金属薄膜の前記レセプターが固定された面に外部振動を印加し、前記分析手段により、さらに、外部振動に対する表面プラズモン共鳴角の周波数特性を得、前記周波数特性に含まれる前記レセプター及び前記レセプターと結合したサンプル中のリガンド及び前記レセプターと前記リガンドの複合体の固有振動周波数から前記リガンドを分析することを特徴とする。   To achieve the above object, the analysis method of the present invention comprises a surface comprising a sample containing a ligand, a receptor capable of specifically binding to the ligand fixed on one side, and an optical prism arranged on the back side. Preparing a metal thin film capable of causing plasmon resonance, irradiation means for irradiating measurement light, light receiving means for receiving reflected light of the measurement light, and analysis means for analyzing a ligand bound to the receptor; And the metal thin film are brought into contact with each other to bind the ligand in the sample to the receptor, and the irradiation means irradiates the surface opposite to the surface of the metal thin film on which the receptor is fixed, The light receiving means receives the reflected light of the measurement light reflected on the surface of the metal thin film, and the analyzing means receives the dielectric near the metal thin film from the reflected light. A method for analyzing the ligand in a sample for detecting a change in a surface plasmon resonance angle caused by a change in the condition, comprising: applying means for applying external vibration to a region where the receptor is fixed; While irradiating the measurement light, an external vibration is applied to the surface of the metal thin film on which the receptor is fixed while irradiating the measurement light, and the analysis means further obtains a frequency characteristic of a surface plasmon resonance angle with respect to the external vibration. The ligand is analyzed from the natural vibration frequency of the receptor and the ligand bound to the receptor included in the frequency characteristic and the complex of the receptor and the ligand.

このように、本発明の分析方法及び装置では、前記リガンド及び前記レセプターと結合したサンプル中のリガンド及び前記レセプターと前記リガンドの複合体に電気的外部振動である交流電界を印加すると前記リガンド及び前記レセプターと結合したサンプル中のリガンド及び前記レセプターと前記リガンドの複合体は交流電界に追従し、前記金属薄膜近傍の誘電率が変化し表面プラズモン共鳴角が振れ、前記印加する交流電界の周波数が前記リガンド及び前記レセプターと結合したサンプル中のリガンド及び前記レセプターと前記リガンドの複合体の固有振動周波数と同じ時に、前記リガンド及び前記レセプターと結合したサンプル中のリガンド及び前記レセプターと前記リガンドの複合体は前記印加する交流電界の周波数と共鳴し、表面プラズモン共鳴角の振れ幅が増幅されることを利用している。従って、前記リガンド及び前記レセプター及び前記リガンドとレセプターの複合体の追従周波数限界より低周波数領域に現れる前記レセプター及び前記レセプターと結合したサンプル中のリガンド及び前記レセプターと前記リガンドの複合体の固有振動周波数による計測光の反射光の強度変化を用いるので、印加する前記外部振動の帯域が従来の前記追従周波数限界を求めるために印加した帯域より狭くなるので計測時間の短縮を図ることができる。また、計測時間の短縮が可能となるため、単位時間内における計測回数が増えるので、経時的な状態の変化を詳細に把握する事が出来る。 As described above, in the analysis method and apparatus of the present invention, when an alternating electric field, which is an electric external vibration, is applied to the ligand in the sample bound to the ligand and the receptor and the complex of the receptor and the ligand, the ligand and the ligand The ligand in the sample bound to the receptor and the complex of the receptor and the ligand follow an alternating electric field, the dielectric constant near the metal thin film changes, the surface plasmon resonance angle fluctuates, and the frequency of the applied alternating electric field is At the same natural frequency of the ligand and the complex of the receptor and the ligand in the sample bound to the ligand and the receptor, the ligand in the sample bound to the ligand and the receptor and the complex of the receptor and the ligand is Resonates with the frequency of the applied AC electric field, and the surface It utilizes the fact that amplitude of plasmon resonance angle is amplified. Accordingly, the natural vibration frequency of the ligand and the receptor-ligand complex in the sample bound to the receptor and the receptor appearing in a frequency region lower than the tracking frequency limit of the ligand and the receptor and the ligand-receptor complex. Since the change in the intensity of the reflected light of the measurement light is used, the external vibration band to be applied is narrower than the band applied to obtain the conventional follow-up frequency limit, so that the measurement time can be shortened. In addition, since the measurement time can be shortened, the number of times of measurement within a unit time increases, so that changes in state over time can be grasped in detail.

本発明の分析方法および装置において、レセプターとリガンドとしては、少なくとも一方が、電荷を帯びているのが好ましい。外部振動として電気的振動を与える際に、前記金属薄膜表面の誘電率が変化しやすくなるからである。レセプターとリガンドの組み合わせとしては、例えば、抗原と抗体、ホルモンとホルモン受容体、ホルモン受容体とホルモン、ポリヌクレオチドとポリヌクレオチド受容体、ポリヌクレオチド受容体とポリヌクレオチド、酵素阻害剤と酵素、酵素と酵素阻害剤、酵素基質と酵素、酵素と酵素基質等が挙げられる。   In the analysis method and apparatus of the present invention, it is preferable that at least one of the receptor and the ligand is charged. This is because the dielectric constant on the surface of the metal thin film is likely to change when electrical vibration is applied as external vibration. Examples of combinations of receptor and ligand include antigen and antibody, hormone and hormone receptor, hormone receptor and hormone, polynucleotide and polynucleotide receptor, polynucleotide receptor and polynucleotide, enzyme inhibitor and enzyme, enzyme and Examples include enzyme inhibitors, enzyme substrates and enzymes, enzymes and enzyme substrates, and the like.

本発明者は、金属薄膜近傍の誘電率変化のメカニズムを以下のように推察している。前記レセプター及び前記リガンドに外部振動を与えると、外部振動に追従し、前記レセプター及び前記リガンドが前記薄膜表面に密集する。そうすると、前記金属薄膜におけるエバネッセント領域の分子密度が変化する。この分子密度の変化により、エバネッセント領域の誘電率が変化、すなわち前記金属薄膜近傍の誘電率が変化すると推察している。   The inventor presumes the mechanism of the change in dielectric constant in the vicinity of the metal thin film as follows. When external vibration is applied to the receptor and the ligand, the external vibration is followed and the receptor and the ligand are concentrated on the surface of the thin film. Then, the molecular density of the evanescent region in the metal thin film changes. It is presumed that the change in the molecular density changes the dielectric constant in the evanescent region, that is, the dielectric constant in the vicinity of the metal thin film.

本発明の分析方法において、前記印加手段は、電気的振動、磁気的振動及び機械的振動の少なくとも一つを印加する手段であるのが好ましく、少なくとも電気的振動を印加する手段であるのがより好ましい。更に、交流電界を用いるのが好ましい。   In the analysis method of the present invention, the applying means is preferably means for applying at least one of electric vibration, magnetic vibration and mechanical vibration, and more preferably means for applying at least electric vibration. preferable. Furthermore, it is preferable to use an alternating electric field.

本発明者は、前記周波数特性に含まれる前記レセプター及び前記レセプターと結合したサンプル中のリガンド及び前記レセプターと前記リガンドの複合体の固有振動周波数から前記リガンドを分析することを以下のように推察している。    The inventor presumes that the ligand is analyzed from the natural vibration frequency of the receptor and the ligand bound to the receptor and the complex of the receptor and the ligand included in the receptor included in the frequency characteristic as follows. ing.

前記リガンドと前記レセプターが結合する前段階において、前記レセプターに電気的外部振動である交流電界を印加すると前記レセプターは交流電界に追従し、前記金属薄膜近傍の誘電率が変化し表面プラズモン共鳴角が振れ、印加する交流電界の周波数が前記レセプターの固有振動周波数と同じ時に、前記レセプターは前記交流電界の周波数に共鳴し、表面プラズモン共鳴角の振れ幅が増幅される。前記リガンドと前記レセプターが結合しはじめると、前記印加する交流電界の周波数が、前記レセプター及び前記リガンドと前記レセプターの複合体の固有振動周波数と同じ時に、表面プラズモン共鳴角の振れ幅が増幅される。前記リガンドと前記レセプターの結合が十分に行なわれると、前記印加する交流電界の周波数が、前記リガンドと前記レセプターの複合体の固有振動周波数と同じ時に表面プラズモン共鳴角の振れ幅が増幅される。表面プラズモン共鳴角の振れ幅が増幅される時の前記印加する交流電界の周波数は、前記リガンドと前記レセプターの結合状態に依存し、前記リガンド及び前記レセプター及び前記レセプターと前記リガンドの複合体の固有振動周波数の影響を受ける。表面プラズモン共鳴角の振れ幅が増幅される時の前記印加する交流電界の周波数を検出することでリガンドを分析することが可能になる。   When an AC electric field, which is an electric external vibration, is applied to the receptor in the previous stage of binding of the ligand and the receptor, the receptor follows the AC electric field, the dielectric constant near the metal thin film changes, and the surface plasmon resonance angle is increased. When the frequency of the alternating electric field to be shaken and applied is the same as the natural vibration frequency of the receptor, the receptor resonates with the frequency of the alternating electric field, and the amplitude of the surface plasmon resonance angle is amplified. When the ligand and the receptor start to bind, the amplitude of the surface plasmon resonance angle is amplified when the frequency of the applied AC electric field is the same as the natural vibration frequency of the receptor and the complex of the ligand and the receptor. . When the ligand and the receptor are sufficiently bound, the amplitude of the surface plasmon resonance angle is amplified when the frequency of the applied AC electric field is the same as the natural frequency of the complex of the ligand and the receptor. The frequency of the applied AC electric field when the amplitude of the surface plasmon resonance angle is amplified depends on the binding state of the ligand and the receptor, and is unique to the ligand, the receptor, and the complex of the receptor and the ligand. Influenced by vibration frequency. The ligand can be analyzed by detecting the frequency of the applied AC electric field when the amplitude of the surface plasmon resonance angle is amplified.

図1は、本発明の第1の実施例における外部振動を用いる装置の最良の形態を示す。   FIG. 1 shows the best mode of an apparatus using external vibration in the first embodiment of the present invention.

図1において、1は光源、2はプリズム、3は計測光、4は受光装置、5は反射光、6はプラズモンの励起により光量の一部が減少した反射光暗部、7は金属薄膜兼上側電極、8は下側電極、9は金属膜兼上側電極7に固定されたレセプター、10は交流源、11は交流源10の周波数を1/nに変換する分周器、12及び16は特定周波数のみを通すアクティブフィルター、13は外部振動、14はコンデンサー、15は増幅器、17は外部振動の位相(θ0)と、反射光に含まれる外部振動の信号成分の位相(θ1)を比較する検出器、18は検出器17により得られたアナログ信号をデジタル信号に変換するA/Dコンバーター、35はリガンド、θは入射角である。   In FIG. 1, 1 is a light source, 2 is a prism, 3 is measurement light, 4 is a light receiving device, 5 is reflected light, 6 is a reflected light dark portion where a part of the light amount is reduced by plasmon excitation, and 7 is a metal thin film upper side. Electrode, 8 is a lower electrode, 9 is a receptor fixed to the metal film / upper electrode 7, 10 is an AC source, 11 is a frequency divider for converting the frequency of the AC source 10 to 1 / n, and 12 and 16 are specified Active filter that passes only the frequency, 13 is an external vibration, 14 is a capacitor, 15 is an amplifier, 17 is a detection that compares the phase (θ0) of the external vibration with the phase (θ1) of the signal component of the external vibration included in the reflected light , 18 is an A / D converter that converts an analog signal obtained by the detector 17 into a digital signal, 35 is a ligand, and θ is an incident angle.

光源1はROHM社製AlGaAsダブルへテロ接合可視光半導体レーザ、松下日東社製コリメートレンズ及びシグマ光機社製偏光ビームスプリッターから構成されており、そこから発せられた計測光3はビームスプリッターによりp偏光の光のみで、入射角θを変化させながら日本電子レーザ社製のプリズム2を通して日本電子レーザ社製の金で構成されている金属薄膜兼上側電極7に照射される。入射角を変化させる方法として、光源1を駆動させ、計測光3を金属薄膜兼上側電極7上に走査させてもいいし、光源1を固定させポリゴンミラースキャナー等の反射鏡を駆動させ計測光3を走査させてもいい。   The light source 1 is composed of a ROHM AlGaAs double heterojunction visible semiconductor laser, a Matsushita Nitto collimator lens, and a Sigma Kogyo polarization beam splitter, and the measurement light 3 emitted from the beam is split by the beam splitter. Only the polarized light is irradiated to the metal thin film / upper electrode 7 made of gold manufactured by JEOL Laser through the prism 2 manufactured by JEOL Laser while changing the incident angle θ. As a method of changing the incident angle, the light source 1 may be driven and the measurement light 3 may be scanned on the metal thin film / upper electrode 7, or the light source 1 may be fixed and a reflection mirror such as a polygon mirror scanner may be driven. 3 may be scanned.

金属薄膜兼上側電極7に照射された計測光3は金属薄膜兼上側電極7で全反射し、反射光5が生じる。ある特定の入射角θで金属薄膜兼上側電極7に計測光3が照射されると、エバネッセント波が発生し、表面プラズモン共鳴と言われるプラズモン波の励起に光量の一部が使われ、光量が減少した反射光暗部6が発生する。浜松フォトニクス社製Si PIN フォトダイオードにナショナルセミコンダクター社製オペアンプ及び抵抗素子を用いて反射光5の強度を電圧に変換する受光装置4を用いてその反射光5の強度を検出する。光を検出素子として、浜松フォトニクス社製Si PIN フォトダイオードを用いたが、CCD等の受光素子を用いても良い。   The measurement light 3 irradiated to the metal thin film / upper electrode 7 is totally reflected by the metal thin film / upper electrode 7 to generate reflected light 5. When the metal thin film / upper electrode 7 is irradiated with the measurement light 3 at a specific incident angle θ, an evanescent wave is generated, and a part of the light amount is used for excitation of the plasmon wave called surface plasmon resonance. A reduced reflected light dark portion 6 is generated. The intensity of the reflected light 5 is detected by using a light receiving device 4 that converts the intensity of the reflected light 5 into a voltage using an operational amplifier and a resistance element made by National Semiconductor in a Si PIN photodiode manufactured by Hamamatsu Photonics. Although a Si PIN photodiode manufactured by Hamamatsu Photonics was used as the light detection element, a light receiving element such as a CCD may be used.

ここに金属薄膜兼上側電極7及び下側電極8に交流源10と分周器11からなるユニットを接続する。交流源10によりnfの周波数が発生され、分周器11によりfの周波数に変換され、下側電極8によりfの周波数を持った外部振動13が印加され、レセプター9を分子の方向転換により振動させる。ここでエバネッセント波領域の計測光に対する誘電率を支配しているのはリガンドが有する電子分極成分であるので、外部振動13により金属薄膜兼上側電極7表面のエバネッセント領域のレセプター9が方向転換すれば電子の密度中心も変化するので誘電率が変わり、よってプラズモン共鳴が生じる反射光暗部6の特定の角度も受光装置4を囲む範囲で変化する。   A unit composed of an AC source 10 and a frequency divider 11 is connected to the metal thin film / upper electrode 7 and the lower electrode 8. The frequency of nf is generated by the AC source 10, converted to the frequency of f by the frequency divider 11, the external vibration 13 having the frequency of f is applied by the lower electrode 8, and the receptor 9 is vibrated by changing the direction of the molecule. Let Here, since it is the electronic polarization component of the ligand that dominates the dielectric constant for the measurement light in the evanescent wave region, if the receptor 9 in the evanescent region on the surface of the metal thin film / upper electrode 7 changes direction due to the external vibration 13. Since the electron density center also changes, the dielectric constant changes, and the specific angle of the reflected light dark portion 6 where plasmon resonance occurs also changes within the range surrounding the light receiving device 4.

また、金属薄膜兼上側電極7近傍のレセプター9及びリガンド35及びレセプター9とリガンド35の複合体には外部振動13と共鳴しあう固有振動周波数がある。印加する外部振動13の周波数がレセプター9の固有振動周波数の時には、レセプター9は共鳴しレセプター9の方向転換による振動が最大になる。よってエバネッセント波領域の計測光に対する誘電率も変化し、プラズモン共鳴が生じる反射光暗部6の角度変化も最大となる。レセプター9とリガンド35が結合するに従い分子量が増加するので、レセプター9とリガンド35の複合体の固有振動周波数は、結合度合に応じて低周波数に変化する。リガンド35とレセプター9の結合が十分に行なわれ、分子量が一定になればレセプター9の固有振動周波数も一定化する。レセプター9及びリガンド35及びレセプター9とリガンド35の複合体の固有振動周波数は、追従周波数より低周波数領域に現れる。従って印加する外部振動の周波数帯域が狭くなり計測時間の短縮につながる。また、計測時間が短縮できることから単一時間における計測回数を増やすことができるのでリガンド35の経時的な状態を詳細に把握することができる。   Further, the receptor 9 and the ligand 35 in the vicinity of the metal thin film / upper electrode 7 and the complex of the receptor 9 and the ligand 35 have a natural vibration frequency that resonates with the external vibration 13. When the frequency of the external vibration 13 to be applied is the natural vibration frequency of the receptor 9, the receptor 9 resonates and the vibration due to the change in direction of the receptor 9 is maximized. Therefore, the dielectric constant for the measurement light in the evanescent wave region also changes, and the change in the angle of the reflected light dark portion 6 where plasmon resonance occurs is maximized. Since the molecular weight increases as the receptor 9 and the ligand 35 are bound, the natural vibration frequency of the complex of the receptor 9 and the ligand 35 changes to a low frequency according to the degree of binding. When the ligand 35 and the receptor 9 are sufficiently bound and the molecular weight becomes constant, the natural vibration frequency of the receptor 9 also becomes constant. The natural vibration frequency of the receptor 9 and the ligand 35 and the complex of the receptor 9 and the ligand 35 appears in a lower frequency region than the tracking frequency. Therefore, the frequency band of the external vibration to be applied is narrowed and the measurement time is shortened. Moreover, since the measurement time can be shortened, the number of measurements in a single time can be increased, so that the state of the ligand 35 over time can be grasped in detail.

図1の実施例は金属薄膜兼電極を上側、電極を下側にしたが、上下を逆転または左右に配置しても有効であることは言うまでもない。   In the embodiment shown in FIG. 1, the metal thin film / electrode is on the upper side and the electrode is on the lower side.

図2に受光装置4を用いて照射する計測光3の入射角度に対する反射光5の強度を計測した実測値を示す。金属薄膜兼上側電極7の上に試料を置かず空気のみが存在する場合と、試料として水を置いた場合に得られる結果を図2(a)及び図2(b)に示す。図2(a)及び図2(b)のように、測定対象試料が変わると、金属薄膜近傍の誘電率が変化することにより、共鳴角が変化する。よって、この装置を用いた計測において表面プラズモン共鳴曲線が求められ、これにより十分な効果を得られる。   FIG. 2 shows measured values obtained by measuring the intensity of the reflected light 5 with respect to the incident angle of the measurement light 3 irradiated using the light receiving device 4. 2A and 2B show the results obtained when there is only air without placing a sample on the metal thin film / upper electrode 7 and when water is placed as a sample. As shown in FIGS. 2 (a) and 2 (b), when the sample to be measured changes, the dielectric constant in the vicinity of the metal thin film changes, thereby changing the resonance angle. Therefore, a surface plasmon resonance curve is obtained in the measurement using this apparatus, thereby obtaining a sufficient effect.

図3(a)から(c)に、本発明の装置中、外部振動の強度に応じた金属薄膜近傍の状態の一例を示す模式図を示す。 図3(a)は外部振動強度がゼロの状態、図3(b)は外部振動強度が弱い状態、図3(c)は外部振動強度が強い状態の模式図である。それぞれにおいて、19,24,30は光源1により照射された計測光、21,26,32は金属薄膜兼上側電極、20,25,31は計測光19,24,30が金属薄膜兼上側電極21,26,32でプラズモン共鳴が生じた反射光暗部、22,27,33は金属薄膜兼上側電極21,26,32に固定されたレセプター、29,35は外部振動である。θ11、θ12、θ13は表面プラズモン共鳴角である。   FIGS. 3A to 3C are schematic views showing an example of the state in the vicinity of the metal thin film according to the intensity of external vibration in the apparatus of the present invention. FIG. 3A is a schematic view showing a state in which the external vibration intensity is zero, FIG. 3B is a schematic view in a state in which the external vibration intensity is weak, and FIG. In each case, 19, 24, and 30 are measurement light irradiated by the light source 1, 21, 26, and 32 are metal thin film / upper electrodes, and 20, 25, and 31 are measurement light 19, 24, and 30 are metal thin film / upper electrodes 21. , 26, 32 are reflected light dark portions where plasmon resonance occurs, 22, 27, 33 are receptors fixed to the metal thin film / upper electrodes 21, 26, 32, and 29, 35 are external vibrations. θ11, θ12, and θ13 are surface plasmon resonance angles.

リガンド及びレセプターは電荷を有する。そのリガンド及びレセプターに外部振動を印加すると、金属薄膜兼上側電極側に追従し、リガンドが金属薄膜兼上側電極表面に密集する。そのため、金属薄膜兼上側電極におけるエバネッセント領域の分子密度が変化する。この領域の分子密度が変わる事で、エバネッセント領域の誘電率も変化し、プラズモン共鳴が生じる角度が変化する。
よって従来の表面プラズモン計測装置では、プラズモン共鳴は1つの角度でのみ生じていたが、外部振動を印加する事により、1つではなく経時的に複数の角度でプラズモン共鳴が生じる。よって、プラズモン共鳴による暗線には幅を有するようになる。
Ligand and receptor have a charge. When an external vibration is applied to the ligand and receptor, the metal follows the metal thin film / upper electrode, and the ligand is concentrated on the surface of the metal thin film / upper electrode. Therefore, the molecular density of the evanescent region in the metal thin film / upper electrode changes. As the molecular density in this region changes, the dielectric constant of the evanescent region also changes, and the angle at which plasmon resonance occurs changes.
Therefore, in the conventional surface plasmon measurement device, plasmon resonance occurs only at one angle, but by applying external vibration, plasmon resonance occurs at a plurality of angles over time instead of one. Therefore, the dark line due to plasmon resonance has a width.

図4にレセプターとリガンドの複合体の追従周波数と固有振動周波数の関係を示す。横軸は印加する外部振動の周波数を表し、縦軸はレセプターとリガンドの複合体の振動の振れ幅を表す。印加する外部振動の周波数がレセプターとリガンドの複合体の追従周波数限界の時に、レセプターとリガンドの複合体は振動できなくなり、振れ幅がなくなる。従来の方法では、印加する外部振動の周波数はレセプターとリガンドの複合体の追従周波数限界までスイープさせていたので、帯域幅が広くなり計測に時間がかかっていた。レセプターとリガンドの複合体の固有振動周波数は、外部振動によりレセプターとリガンドの複合体が振動している周波数帯域に現れる。従って追従周波数限界より低周波数帯域に現れるので、印加する外部振動の周波数帯域は、従来の帯域幅より狭くなり計測時間の短縮が可能となる。   FIG. 4 shows the relationship between the tracking frequency and the natural vibration frequency of the complex of receptor and ligand. The horizontal axis represents the frequency of the external vibration to be applied, and the vertical axis represents the vibration amplitude of the receptor-ligand complex. When the frequency of external vibration to be applied is at the limit of the tracking frequency of the complex of the receptor and the ligand, the complex of the receptor and the ligand cannot vibrate and the fluctuation width disappears. In the conventional method, the frequency of the external vibration to be applied is swept to the limit of the tracking frequency of the complex of the receptor and the ligand, so that the bandwidth becomes wide and it takes a long time to measure. The natural vibration frequency of the receptor-ligand complex appears in the frequency band in which the receptor-ligand complex vibrates due to external vibration. Therefore, since it appears in a frequency band lower than the tracking frequency limit, the frequency band of the external vibration to be applied becomes narrower than the conventional bandwidth, and the measurement time can be shortened.

図5(a)から(d)にレセプターとリガンドの複合体の固有振動周波数を外部振動の周波数として印加した時におけるレセプター及びレセプターとリガンドの複合体の状態とプラズモン共鳴による暗線の幅について示す。   FIGS. 5 (a) to 5 (d) show the state of the receptor and receptor-ligand complex and the width of the dark line due to plasmon resonance when the natural vibration frequency of the complex of the receptor and ligand is applied as the frequency of external vibration.

図5(a)において、38は金属薄膜兼電極、37は金属薄膜兼電極38に固定化されたレセプター、39は下側電極、40はレセプター37とリガンドの結合を開始する前段階におけるプラズモン共鳴による暗線の幅の波形である。図5(a)は、レセプター37とリガンドの結合を開始する前段階におけるプラズモン共鳴による暗線の幅の波形40と印加する外部振動の周波数の状態を示す。プラズモン共鳴の暗線の幅の波形40は、印加する外部振動の周波数がレセプター37の固有振動周波数faのところで最大値となる。   In FIG. 5A, 38 is a metal thin film and electrode, 37 is a receptor immobilized on the metal thin film and electrode 38, 39 is a lower electrode, and 40 is a plasmon resonance in a stage before starting binding between the receptor 37 and a ligand. It is a waveform of the width of the dark line by. FIG. 5A shows the waveform 40 of the width of the dark line due to plasmon resonance and the state of the frequency of the external vibration to be applied in the stage before starting the binding between the receptor 37 and the ligand. The waveform 40 of the plasmon resonance dark line width has a maximum value when the frequency of the external vibration to be applied is the natural vibration frequency fa of the receptor 37.

図5(b)において、43は金属薄膜兼電極、41は金属薄膜兼電極43に固定化されたレセプター、42はレセプター41と結合したリガンド、44は下側電極、45はリガンドとレセプターの結合度合がx%におけるプラズモン共鳴による暗線の幅の波形、46は図5(a)のプラズモン共鳴による暗線の幅の波形40に(100−x)%を乗じた波形、47は図5(c)のプラズモン共鳴による暗線の幅の波形52にx%を乗じた波形である。図5(b)は、リガンド42とレセプター41の結合が行なわれている段階におけるプラズモン共鳴による暗線の幅の波形45と印加する外部振動の周波数の状態を示す。   In FIG. 5B, 43 is a metal thin film and electrode, 41 is a receptor immobilized on the metal thin film and electrode 43, 42 is a ligand bound to the receptor 41, 44 is a lower electrode, and 45 is a bond between the ligand and the receptor. Waveform of dark line width due to plasmon resonance when degree is x%, 46 is a waveform obtained by multiplying waveform 40 of dark line width due to plasmon resonance of FIG. 5A by (100−x)%, and 47 is a waveform of FIG. This is a waveform obtained by multiplying the waveform 52 of the width of the dark line by plasmon resonance by x%. FIG. 5B shows the state of the waveform 45 of the dark line width due to plasmon resonance and the frequency of the external vibration to be applied at the stage where the ligand 42 and the receptor 41 are bonded.

レセプター41とリガンド42の複合体の固有振動周波数は、リガンド42が結合する前のレセプター41の固有振動周波数faより低周波数になる。金属膜兼上側電極43に固定化されたレセプター41が全て同時にリガンド42と結合することはないので、金属膜兼上側電極43にはレセプター41及びレセプター41とリガンド42の複合体が存在し、プラズモン共鳴による暗線の幅が最大となる周波数はリガンド42とレセプター41の結合度合に依存しながら低周波数領域に変化していく。リガンド42とレセプター41の結合度合がx%におけるプラズモン共鳴による暗線の幅45は、図5(a)に示すリガンドとレセプターの結合が行なわれる前段階のプラズモン共鳴による暗線の幅の波形40を(100−x)%と、図5(c)に後述するリガンドとレセプターの結合が十分に行なわれた段階のプラズモン共鳴による暗線の幅の波形52をx%とを合算した波形となる。   The natural vibration frequency of the complex of the receptor 41 and the ligand 42 is lower than the natural vibration frequency fa of the receptor 41 before the ligand 42 is bound. Since all of the receptors 41 immobilized on the metal film / upper electrode 43 do not bind to the ligand 42 at the same time, the metal film / upper electrode 43 has a receptor 41 and a complex of the receptor 41 and the ligand 42, and plasmon The frequency at which the width of the dark line due to resonance becomes maximum varies in the low frequency region depending on the degree of binding between the ligand 42 and the receptor 41. The width 45 of the dark line due to plasmon resonance when the binding degree of the ligand 42 and the receptor 41 is x% is the waveform 40 of the dark line width due to plasmon resonance in the previous stage where the binding between the ligand and the receptor is performed as shown in FIG. 100-x)% and the waveform 52 of the width of the dark line due to plasmon resonance at the stage where the binding between the ligand and the receptor described later in FIG.

図5(c)において、50は金属薄膜兼電極、48は金属薄膜兼電極50に固定化されたレセプター、49はレセプター48と結合したリガンド、51は下側電極、52はリガンドとレセプターの結合が十分に行なわれた時のプラズモン共鳴による暗線の幅の波形、53はレセプター48とリガンド49の結合を開始する前段階におけるプラズモン共鳴による暗線の幅の波形である。図5(c)はリガンド49とレセプター48の結合が十分に行なわれた段階におけるプラズモン共鳴による暗線の幅と印加する外部振動の周波数の状態を示す。リガンド49とレセプター48の結合が十分に行なわれれば、リガンド49とレセプター48の複合体の固有振動周波数fbのところでプラズモン共鳴による暗線の幅が最大になる。   In FIG. 5C, 50 is a metal thin film / electrode, 48 is a receptor immobilized on the metal thin film / electrode 50, 49 is a ligand bound to the receptor 48, 51 is a lower electrode, 52 is a binding between the ligand and the receptor. Is a waveform of the dark line width due to plasmon resonance when 53 is sufficiently performed, and 53 is a waveform of the dark line width due to plasmon resonance at the stage before the start of binding between the receptor 48 and the ligand 49. FIG. 5C shows the state of the dark line width due to plasmon resonance and the frequency of the applied external vibration at the stage where the ligand 49 and the receptor 48 are sufficiently bonded. If the binding between the ligand 49 and the receptor 48 is sufficiently performed, the width of the dark line due to the plasmon resonance is maximized at the natural vibration frequency fb of the complex of the ligand 49 and the receptor 48.

図5(d)において、54はプラズモン共鳴の暗線の幅が最大となる時の外部振動の周波数を示す。図5(d)は、プラズモン共鳴の暗線の幅が最大となる時の外部振動の周波数の経時変化を示す。横軸を時間とし、縦軸は、プラズモン共鳴の暗線の幅が最大となる時の外部振動の周波数である。プラズモン共鳴の暗線の幅が最大となる時の外部振動の周波数は、リガンドとレセプターとの結合が行なわれる前段階では周波数faであるが、リガンドとレセプターとの結合が進むにつれて低周波数に変化し、リガンドとレセプターとの結合が十分に行われれば固有振動周波数に変化が無くなり、プラズモン共鳴の暗線の幅が最大となる時の外部振動の周波数は、リガンドとレセプターの複合体の固有振動周波数fbとなる。プラズモン共鳴の暗線の幅が最大となる時の外部振動の周波数に変化がなくなると計測を終了する。   In FIG. 5 (d), 54 indicates the frequency of external vibration when the width of the dark line of plasmon resonance is maximized. FIG. 5D shows the change over time in the frequency of the external vibration when the width of the dark line of plasmon resonance is maximized. The horizontal axis represents time, and the vertical axis represents the frequency of external vibration when the width of the plasmon resonance dark line is maximized. The frequency of the external vibration when the width of the dark line of plasmon resonance is the maximum is the frequency fa before the binding between the ligand and the receptor is performed, but changes to a low frequency as the binding between the ligand and the receptor proceeds. When the ligand and the receptor are sufficiently bonded, the natural vibration frequency is not changed, and the frequency of the external vibration when the width of the plasmon resonance dark line becomes maximum is the natural vibration frequency fb of the complex of the ligand and the receptor. It becomes. The measurement is terminated when there is no change in the frequency of the external vibration when the width of the plasmon resonance dark line becomes maximum.

図6(a)と(b)では、印加する外部振動の周波数の変化のさせかたついて説明する。   6A and 6B, how to change the frequency of the external vibration to be applied will be described.

図6(a)において、リガンドとレセプターの複合体の固有振動周波数を求める方法について説明する。   In FIG. 6A, a method for obtaining the natural vibration frequency of a complex of a ligand and a receptor will be described.

第1にリガンドとレセプターの結合が行なわれる前段階におけるレセプターの固有振動周波数faを求める。印加する外部振動の周波数を0Hzからレセプターの追従周波数限界までスイープさせ、プラズモン共鳴による暗線の幅が最大になる周波数を求める。もとめた周波数がレセプターの固有振動周波数faとなる。   First, the natural vibration frequency fa of the receptor in the previous stage before the binding between the ligand and the receptor is performed. The frequency of the external vibration to be applied is swept from 0 Hz to the follower frequency limit of the receptor, and the frequency at which the width of the dark line due to plasmon resonance is maximized is obtained. The obtained frequency becomes the natural vibration frequency fa of the receptor.

第2にリガンドとレセプターの結合がおこなわれている段階においては、印加する外部振動の周波数をレセプターの固有振動周波数faと0Hzの間でスイープさせ、プラズモン共鳴による暗線の幅が最大になる周波数を求める。リガンドとレセプターの結合が行なわれている間は、プラズモン共鳴による暗線の幅が最大になる周波数は変化するので、変化がなくなるまで外部振動の周波数をリガンドの固有振動周波数faと0Hzの間をスイープさせる。プラズモン共鳴による暗線の幅が最大になる周波数に変化がなくなると、プラズモン共鳴による暗線の幅が最大になる周波数がリガンドとレセプターの複合体の固有振動周波数fbとなる。   Second, at the stage where the ligand and the receptor are bound, the frequency of the external vibration to be applied is swept between the natural vibration frequency fa of the receptor and 0 Hz, and the frequency at which the width of the dark line due to plasmon resonance is maximized is determined. Ask. While the ligand and receptor are being bound, the frequency at which the width of the dark line due to plasmon resonance becomes maximum changes, so the external vibration frequency is swept between the natural vibration frequency fa and 0 Hz of the ligand until there is no change. Let When there is no change in the frequency at which the width of the dark line due to plasmon resonance becomes maximum, the frequency at which the width of the dark line due to plasmon resonance becomes maximum becomes the natural vibration frequency fb of the complex of the ligand and the receptor.

図6(b)において、縦軸は印加する外部振動の周波数を表し、横軸に時間を示す。従来はリガンドの追従周波数限界まで、印加する外部振動の周波数をスイープさせる必要があったが、今回は、リガンドとレセプターの結合が行なわれる前段階におけるレセプターの固有振動周波数faまで外部振動の周波数をスイープさせるだけよいので、計測時間の短縮が可能となっている。   In FIG. 6B, the vertical axis represents the frequency of external vibration to be applied, and the horizontal axis represents time. Conventionally, it has been necessary to sweep the frequency of the external vibration to be applied up to the limit of the tracking frequency of the ligand, but this time, the frequency of the external vibration is reduced to the natural vibration frequency fa of the receptor in the previous stage where the ligand and the receptor are combined. Since it is only necessary to sweep, the measurement time can be shortened.

以上のように、本実施例1においては印加する外部振動の周波数と共鳴を起こすレセプター及びリガンド及びリガンドとレセプターの複合体の固有振動周波数によるプラズモン共鳴の暗線の幅の変化を用いることで、リガンドと特異的に結合するレセプターとの反応の計測時間の短縮が可能となった。   As described above, in the first embodiment, the change in the width of the dark line of the plasmon resonance depending on the natural vibration frequency of the receptor and the ligand and the ligand-receptor complex that resonate with the frequency of the external vibration to be applied is used. The measurement time of the reaction with the receptor that specifically binds to can be shortened.

図7において、計測時間の短縮により計測回数が増え、測定精度が改善する事をしめす。横軸に時間を示し、縦軸にプラズモン共鳴の暗線の幅を示す。従来は白丸○60で示す箇所でしか測定が出来なかったが、本発明により測定時間の短縮が可能となるので、黒三角▲61で示す箇所での測定も行なえるようになり、より精度の高い測定が可能となる。   In FIG. 7, it is shown that the number of times of measurement is increased by reducing the measurement time, and the measurement accuracy is improved. The horizontal axis represents time, and the vertical axis represents the width of the plasmon resonance dark line. Previously, measurement was possible only at the location indicated by the white circle ○ 60, but the measurement time can be shortened by the present invention, so that the measurement at the location indicated by the black triangle ▲ 61 can be performed, and more accurate. High measurement is possible.

本発明の免疫測定装置のリガンドとレセプターの固有振動周波数による計測光の反射光の強度変化を測定に用いる測定方法によれば、追従周波数限界より低周波数領域に現れるリガンド及びレセプター及びリガンドとレセプターの複合体の固有振動周波数による計測光の反射光の強度の変化を用いるので、印加する外部振動の帯域が従来の追従周波数限界を求めるために印加した帯域より狭くなるので計測時間の短縮が可能となり、迅速な免疫測定が求められる分野に有用である。   According to the measurement method using the intensity change of the reflected light of the measurement light due to the natural vibration frequency of the ligand and the receptor of the immunoassay device of the present invention, the ligand and the receptor appearing in the lower frequency region than the tracking frequency limit, and the ligand and the receptor Since the change in reflected light intensity of the measurement light due to the natural vibration frequency of the composite is used, the measurement time can be shortened because the applied external vibration band becomes narrower than the band applied to obtain the conventional tracking frequency limit. It is useful in fields that require rapid immunoassay.

本発明の装置の一例を示した模式図Schematic diagram showing an example of the apparatus of the present invention 本発明の装置の一例中、金属薄膜上にレセプターを設置せずに測定した表面プラズモン共鳴曲線と、レセプターとして水を設置して測定した表面プラズモン共鳴曲線の一例を示す図、(a)レセプター無しの場合の表面プラズモン共鳴曲線図、(b)レセプターとして水を設置して測定した場合の表面プラズモン共鳴曲線図The figure which shows an example of the surface plasmon resonance curve measured without installing a receptor on a metal thin film in an example of the apparatus of this invention, and the surface plasmon resonance curve measured by installing water as a receptor, (a) No receptor (B) Surface plasmon resonance curve diagram when measured by installing water as a receptor 本発明の装置中、外部振動の強度に応じた金属薄膜近傍の状態の一例を示す模式図、(a)外部振動強度がゼロの状態での表面プラズモン共鳴を示す模式図、(b)外部振動強度が弱い状態での表面プラズモン共鳴を示す模式図、(c)外部振動強度が強い状態での表面プラズモン共鳴を示す模式図4 is a schematic diagram showing an example of a state in the vicinity of a metal thin film according to the intensity of external vibration in the apparatus of the present invention, (a) a schematic diagram showing surface plasmon resonance in a state where the external vibration intensity is zero, and (b) external vibration. Schematic diagram showing surface plasmon resonance when the intensity is weak, (c) Schematic diagram showing surface plasmon resonance when the external vibration intensity is strong 本発明におけるレセプターとリガンドの複合体の追従周波数と固有振動周波数の関係を説明する図The figure explaining the relationship between the tracking frequency and the natural vibration frequency of the complex of the receptor and the ligand in the present invention 本発明におけるレセプターとリガンドの複合体の固有振動周波数を外部振動の周波数として印加した場合のレセプター及びレセプターとリガンドの複合体の状態とプラズモン共鳴による暗線の幅を示す模式図、(a)レセプターとリガンドの結合を開始する前段階におけるプラズモン共鳴による暗線の幅の波形と印加する外部振動の周波数の状態を示す模式図、(b)リガンドとレセプターの結合が行なわれている段階におけるプラズモン共鳴による暗線の幅の波形と印加する外部振動の周波数の状態を示す模式図、(c)リガンドとレセプターの結合が十分に行なわれた段階におけるプラズモン共鳴による暗線の幅と印加する外部振動の周波数の状態を示す模式図、(d)プラズモン共鳴の暗線の幅が最大となる時の外部振動の周波数の経時変化を示す模式図Schematic diagram showing the state of the receptor and the complex of the receptor and ligand and the width of the dark line by plasmon resonance when the natural frequency of the complex of the receptor and ligand in the present invention is applied as the frequency of external vibration, (a) Schematic diagram showing the waveform of the width of the dark line due to plasmon resonance and the state of the frequency of the external vibration to be applied in the stage before starting the binding of the ligand, (b) Dark line due to plasmon resonance in the stage where the ligand and the receptor are bound Schematic diagram showing the state of the waveform of the width and the frequency of the external vibration to be applied, (c) the state of the width of the dark line due to plasmon resonance and the state of the frequency of the external vibration to be applied when the ligand and the receptor are sufficiently bound (D) The frequency of external vibration when the width of the dark line of plasmon resonance is maximized Schematic diagram illustrating a change in 本発明における印加する外部振動の周波数変化のさせ方を示す模式図、(a)リガンドとレセプターの複合体の固有振動周波数を求める方法を示す模式図、(b)従来と本発明の周波数変化のさせ方を比較した模式図The schematic diagram which shows how to change the frequency of the external vibration to be applied in the present invention, (a) the schematic diagram showing the method for obtaining the natural vibration frequency of the complex of the ligand and the receptor, (b) the frequency change of the conventional and the present invention Schematic comparison of how to let 本発明における測定回数が増えることによる測定精度が改善を説明した図The figure explaining the improvement in measurement accuracy due to the increase in the number of measurements in the present invention

符号の説明Explanation of symbols

1 光源
2 プリズム
3,19,24,30 計測光
4 受光装置
5 反射光
6,20,25,31 プラズモンの励起により光量の一部が減少した反射光暗部
7,21,26,32 金属薄膜兼上側電極
8 下側電極、
9,22,27,33 金属膜兼上側電極に固定されたレセプター
10 交流源、
11 交流源の周波数を分ける分周器
12,16 特定周波数のみを通すアクティブフィルター
13,29,35 外部振動
14 コンデンサー
15 増幅器
17 表面プラズモン共鳴角の振動幅を検出する検出器
18 検出器17により得られたアナログ信号をデジタル信号に変換するA/Dコンバーター
36,42,49 リガンド
37,41,48 レセプター
38,43,50 金属薄膜兼電極
39,44,51 下側電極
40 レセプター37とリガンドの結合を開始する前段階におけるプラズモン共鳴による暗線の幅の波形
45 リガンドとレセプターの結合度合がx%におけるプラズモン共鳴による暗線の幅の波形
46 プラズモン共鳴による暗線の幅の波形40に(100−x)%を乗じた波形
47 プラズモン共鳴による暗線の幅の波形52にレセプターとリガンドの結合度合x%を乗じた波形
52 リガンドとレセプターの結合が十分に行なわれた時のプラズモン共鳴による暗線の幅の波形
53 レセプター48とリガンド49の結合を開始する前段階におけるプラズモン共鳴による暗線の幅の波形
54 プラズモン共鳴の暗線の幅が最大となる時の外部振動の周波数
55 従来の印加する周波数帯域
56 結合が行なわれる前段階においてリガンドの固有振動周波数faを探すために印加する周波数帯域
57 リガンドとレセプターが行なわれている段階において固有振動周波数fbを探すために印加する周波数帯域
58 従来の印加する周波数帯域
59 本発明で印加する周波数帯域
60 従来から測定している箇所
61 本発明で、新たに測定する箇所
θ 入射角
θ11,θ12,θ13 表面プラズモン共鳴角
1 Light source
2 Prism 3, 19, 24, 30 Measuring light 4 Light receiving device 5 Reflected light
6, 20, 25, 31 Reflected light dark portion in which a part of the light amount is reduced by plasmon excitation 7, 21, 26, 32 Metal thin film / upper electrode 8 Lower electrode,
9, 22, 27, 33 Receptor fixed to metal film and upper electrode 10 AC source,
11 Frequency Divider for Dividing Frequency of AC Source 12, 16 Active Filter Passing Only Specific Frequency 13, 29, 35 External Vibration 14 Capacitor 15 Amplifier 17 Detector 18 for Detecting Surface plasmon Resonance Angle Vibration Width 18 Obtained by Detector 17 A / D converter 36, 42, 49 for converting the analog signal thus obtained into a digital signal Ligand 37, 41, 48 Receptor 38, 43, 50 Metal thin film / electrode 39, 44, 51 Lower electrode
40 Waveform of dark line width by plasmon resonance in the stage before starting binding of receptor 37 and ligand 45 Waveform of dark line width by plasmon resonance when the degree of binding between ligand and receptor is x% 46 Waveform of dark line width by plasmon resonance 40 The waveform obtained by multiplying (100−x)% by 47. The waveform 52 obtained by multiplying the waveform 52 of the dark line width by the plasmon resonance by the binding degree x% of the receptor and the ligand. 52 Plasmon resonance when the ligand and the receptor are sufficiently bound. Waveform of dark line width due to 53 53 Waveform of dark line width due to plasmon resonance before the start of binding of receptor 48 and ligand 49 54 Frequency of external vibration when the width of the dark line of plasmon resonance is maximized 55 Conventional application Frequency band 56 Ligand uniqueness before binding Frequency band applied to search for the dynamic frequency fa 57 Frequency band applied to search for the natural vibration frequency fb at the stage where the ligand and the receptor are performed 58 Conventional frequency band applied 59 Frequency band applied according to the present invention 60 Location measured conventionally 61 Location newly measured in the present invention θ Incident angle θ11, θ12, θ13 Surface plasmon resonance angle

Claims (9)

リガンドを含むサンプルと、前記リガンドと結合しうるレセプターがその片面上に固定され、その裏面に光学プリズムが配置された、表面プラズモン共鳴を起しうる金属薄膜と、計測光を照射する照射手段と、前記計測光の反射光を受光する受光手段と、前記レセプターと結合したリガンドを分析する分析手段とを準備し、前記サンプルと前記金属薄膜とを接触させて前記サンプル中の前記リガンドを前記レセプターに結合させ、前記照射手段により、前記金属薄膜の前記レセプターが固定された面と逆の面に、計測光を照射し、前記受光手段により、前記金属薄膜の面上で反射された前記計測光の反射光を受光し、前記分析手段により、前記反射光から、前記金属薄膜近傍の誘電率の変化により生じた表面プラズモン共鳴角の変化を検出する、サンプル中の前記リガンドの分析方法であって、前記レセプターが固定された領域に外部振動を印加する印加手段を準備し、前記照射手段により前記計測光を照射しながら、前記印加手段により、前記金属薄膜の前記レセプターが固定された面に外部振動を印加し、前記分析手段により、外部振動に対する表面プラズモン共鳴角の周波数特性を得、前記周波数特性に含まれる前記レセプター及び前記レセプターと結合したサンプル中のリガンド及び前記レセプターと前記リガンドの複合体の固有振動周波数から前記リガンドを分析することを特徴とした分析方法。 A sample containing a ligand, a metal thin film capable of causing surface plasmon resonance, in which a receptor capable of binding to the ligand is fixed on one side and an optical prism is arranged on the back side thereof, and an irradiation means for irradiating measurement light And a light receiving means for receiving the reflected light of the measurement light and an analysis means for analyzing the ligand bound to the receptor, and bringing the sample into contact with the metal thin film to bring the ligand in the sample into the receptor. The measurement light reflected on the surface of the metal thin film by the light receiving means is irradiated to the surface opposite to the surface of the metal thin film on which the receptor is fixed by the irradiation means. The reflected light is received, and the analysis means detects the change in the surface plasmon resonance angle caused by the change in the dielectric constant in the vicinity of the metal thin film from the reflected light. The method for analyzing the ligand in a sample, comprising: applying means for applying external vibration to a region where the receptor is fixed; and irradiating the measurement light by the irradiating means, A sample in which external vibration is applied to the surface of the metal thin film on which the receptor is fixed, the frequency characteristic of the surface plasmon resonance angle with respect to the external vibration is obtained by the analyzing means, and the receptor included in the frequency characteristic and the receptor are combined. And analyzing the ligand from the natural vibration frequency of a complex of the ligand and the receptor-ligand complex. 前記周波数特性に含まれる前記レセプター及び前記レセプターと結合したサンプル中のリガンド及び前記レセプターと前記リガンドの複合体の固有振動周波数の変化による暗線の振れ幅の変化で前記リガンドを分析することを特徴とした請求項1記載の分析方法。 Analyzing the ligand based on a change in the fluctuation width of a dark line caused by a change in a natural vibration frequency of a ligand and a complex of the receptor and the ligand in the sample that are bound to the receptor and the receptor included in the frequency characteristic; The analysis method according to claim 1. 前記印加する外部振動の周波数帯域を、前記レセプターの固有振動周波数のうち、前記暗線の振れ幅の最大となる固有振動周波数と0Hzの間に設定することを特徴とした請求項2記載の分析方法。 3. The analysis method according to claim 2, wherein the frequency band of the external vibration to be applied is set between 0 Hz and the natural vibration frequency that maximizes the fluctuation width of the dark line among the natural vibration frequencies of the receptor. . レセプターとリガンドの少なくとも一方が電荷を帯びていることを特徴とした請求項1または2または3記載の分析方法。 4. The analysis method according to claim 1, wherein at least one of the receptor and the ligand is charged. 前記印加手段が、電気的振動、磁気的振動および機械的振動の少なくとも一つを印加する手段であることを特徴とした請求項1または2または3記載の分析方法。 4. The analysis method according to claim 1, wherein the applying means is means for applying at least one of electrical vibration, magnetic vibration and mechanical vibration. 前記印加手段が、電気的振動を少なくとも印加する手段である請求項5に記載の方法であって、前記分析手段が、前記反射光から、前記リガンドの物理的物性を分析することを更に含むことを特徴とした分析方法。 6. The method according to claim 5, wherein the applying means is means for applying at least electrical vibration, and the analyzing means further includes analyzing physical physical properties of the ligand from the reflected light. Analysis method characterized by 請求項1から6のいずれかに記載の方法であって、前記レセプターと結合した前記サンプル中のリガンドの量を分析することを特徴とした分析方法。 The method according to any one of claims 1 to 6, wherein the amount of ligand in the sample bound to the receptor is analyzed. レセプターとリガンドとの組み合わせが、抗原と抗体、抗体と抗原、ホルモンとホルモン受容体、ホルモン受容体とホルモン、ポリヌクレオチドとポリヌクレオチド受容体、ポリヌクレオチド受容体とポリヌクレオチド、酵素阻害剤と酵素、酵素と酵素阻害剤、酵素基質と酵素、酵素と酵素基質であることを特徴とした請求項1から7のいずれか記載の分析方法。 The combination of receptor and ligand is antigen and antibody, antibody and antigen, hormone and hormone receptor, hormone receptor and hormone, polynucleotide and polynucleotide receptor, polynucleotide receptor and polynucleotide, enzyme inhibitor and enzyme, The analysis method according to any one of claims 1 to 7, which is an enzyme and an enzyme inhibitor, an enzyme substrate and an enzyme, and an enzyme and an enzyme substrate. 請求項1から8記載のいずれかの分析方法を用いたサンプル中のリガンドを分析する装置。 An apparatus for analyzing a ligand in a sample using the analysis method according to claim 1.
JP2005158725A 2005-05-31 2005-05-31 Analysis method of ligand in sample, and analyzing apparatus of ligands in sample Pending JP2006337038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158725A JP2006337038A (en) 2005-05-31 2005-05-31 Analysis method of ligand in sample, and analyzing apparatus of ligands in sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158725A JP2006337038A (en) 2005-05-31 2005-05-31 Analysis method of ligand in sample, and analyzing apparatus of ligands in sample

Publications (1)

Publication Number Publication Date
JP2006337038A true JP2006337038A (en) 2006-12-14

Family

ID=37557733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158725A Pending JP2006337038A (en) 2005-05-31 2005-05-31 Analysis method of ligand in sample, and analyzing apparatus of ligands in sample

Country Status (1)

Country Link
JP (1) JP2006337038A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508199A (en) * 2007-12-20 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microelectronic sensor device for detecting target particles
JP2011080935A (en) * 2009-10-09 2011-04-21 Konica Minolta Holdings Inc Measuring method and surface plasmon field-enhanced fluorescence measuring device
JP2014025951A (en) * 2013-10-28 2014-02-06 Konica Minolta Inc Measurement method and surface plasmon enhanced fluorescence measurement device
JP2015021818A (en) * 2013-07-18 2015-02-02 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measuring method and surface plasmon enhanced fluorescence measuring apparatus
JP2015021889A (en) * 2013-07-22 2015-02-02 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measuring method and surface plasmon enhanced fluorescence measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508199A (en) * 2007-12-20 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microelectronic sensor device for detecting target particles
JP2011080935A (en) * 2009-10-09 2011-04-21 Konica Minolta Holdings Inc Measuring method and surface plasmon field-enhanced fluorescence measuring device
JP2015021818A (en) * 2013-07-18 2015-02-02 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measuring method and surface plasmon enhanced fluorescence measuring apparatus
JP2015021889A (en) * 2013-07-22 2015-02-02 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measuring method and surface plasmon enhanced fluorescence measuring apparatus
JP2014025951A (en) * 2013-10-28 2014-02-06 Konica Minolta Inc Measurement method and surface plasmon enhanced fluorescence measurement device

Similar Documents

Publication Publication Date Title
US7339681B2 (en) Surface plasmon resonance microscope using common-path phase-shift interferometry
JP4897054B2 (en) Flow velocity measuring device, antigen concentration measuring device, flow velocity measuring method, antigen concentration measuring method
US7671511B2 (en) System for oscillating a micromechanical cantilever
JP2001066248A (en) Surface plasmon sensor
JP6565934B2 (en) Surface plasmon enhanced fluorescence measuring apparatus and surface plasmon enhanced fluorescence measuring method
JP2006337038A (en) Analysis method of ligand in sample, and analyzing apparatus of ligands in sample
JP2006322878A (en) Method and apparatus for analyzing ligands in sample
JPH1078390A (en) Surface plasmon sensor
JP5241274B2 (en) Detection method of detected substance
JP6263887B2 (en) Surface plasmon enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus
CN107219191B (en) Oblique incidence light reflection difference device based on Fourier transform
JP2009250960A (en) Detection method of biomolecule, biomolecule trapping substance, and biomolecule detection device
JPS62291547A (en) Method for measuring concentration of substance
JP2012211811A (en) Optically measuring method and optically measuring device
CN100538338C (en) The analytical approach of the part in the sample and the device of the part in the analytical sample
US8363224B2 (en) Fringe locking subsystem and methods of making and using the same
CN110389110A (en) It is a kind of based on stick-ring structure medium nanometer optical wave antenna sensor and application
CN101660997B (en) Surface plasma resonance sensor for reducing background interference and detection method thereof
JP2015021818A (en) Surface plasmon enhanced fluorescence measuring method and surface plasmon enhanced fluorescence measuring apparatus
JP2007085744A (en) Measuring apparatus and method of surface plasmon resonance
JP2005208051A (en) Method and apparatus for analyzing ligand in sample
KR101118474B1 (en) Apparatus for detecting bio contents using optical coherence
US11905165B2 (en) System and method of continuous, vibration-less, and bi-directional MEMS mirror motion via periodic driving force for rapid data acquisition
JP6586884B2 (en) Chip and surface plasmon enhanced fluorescence measurement method
JP2006500558A (en) Biochemical sensor with thermoelastic probe