JP2006336827A - Ball bearing - Google Patents

Ball bearing Download PDF

Info

Publication number
JP2006336827A
JP2006336827A JP2005165674A JP2005165674A JP2006336827A JP 2006336827 A JP2006336827 A JP 2006336827A JP 2005165674 A JP2005165674 A JP 2005165674A JP 2005165674 A JP2005165674 A JP 2005165674A JP 2006336827 A JP2006336827 A JP 2006336827A
Authority
JP
Japan
Prior art keywords
ball
diameter
groove
raceway groove
raceway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005165674A
Other languages
Japanese (ja)
Inventor
Morio Tanmachi
守男 反町
Keisuke Torii
敬介 鳥井
Yoshiki Takeshima
孝樹 竹島
Tetsuya Sato
哲也 佐藤
Hisato Yamamoto
寿人 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005165674A priority Critical patent/JP2006336827A/en
Publication of JP2006336827A publication Critical patent/JP2006336827A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • F16C2380/27Motor coupled with a gear, e.g. worm gears

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact ball bearing which is excellent in impact resistance, load resistance, and assembling characteristics and which can safely continue a ball to roll between raceway grooves of an inner race and an outer race. <P>SOLUTION: The ball bearing comprises a pair of inner races and outer races counter arranged relatively rotatably and a plurality of balls built-in freely rotatably between raceway grooves formed respectively on a counter surface of the inner race and a counter surface of the outer race and, assuming that the diameter of the virtual circle which goes through the interspace between the inner diameter of the inner race and the outer diameter of the outer race is dm, the pitch circle of the ball is PCD, the ball diameter is Da, the radial direction distance from the lowest part of the raceway groove of the inner race to the edge part of the raceway groove is Hi, and the radial direction distance from the lowest part of the raceway groove of the outer race to the edge part of the raceway groove is Ho, 1.00<(PCD/dm)≤1.05 is obtained and at least either one of Hi, Ho is Hi≥0.15Da or Ho≥0.15Da. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、自動車用パワーステアリング装置、ウィンドウ昇降装置、電動シートアジャスト装置、ワイパー駆動装置などの低騒音・高耐久性が要求される自動車用小型電動モータなどに組み込まれるウォームギア付き出力軸を支持する玉軸受の改良に関する。   The present invention provides an output shaft with a worm gear incorporated in a small electric motor for automobiles that requires low noise and high durability, such as an automobile power steering device, a window lifting device, an electric seat adjustment device, and a wiper driving device. The present invention relates to an improvement of a supporting ball bearing.

自動車用小型電動モータなどに使用されるウォームギア付きモータ装置(以下、モータ装置という)は、例えば図9〜図12に示すように、電動モータ30の出力軸20にウォーム26が設けられ、当該ウォーム26と噛合うウォームホイール28を介して出力が伝達する機構となっており、ウォーム26とウォームホイール28との噛合いによって生じる荷重を支持するための複数の軸受22,24,40が出力軸20に配置された構成となっている。なお、電動モータ30は、その出力軸20に固定されたロータ32とハウジング36に固定されたステータ34とを有しており、例えば、ステータ34に電流を供給した際、当該ステータ34とロータ32との間に生じる磁気的な相互作用により出力軸20を回転させている。
かかるモータ装置には、一般的にウォーム26とウォームホイール28との噛合いによって生じる荷重は出力軸20の径方向への荷重よりも軸方向への荷重の方が大きいという特徴や、軸方向荷重はウォーム26が正転又は逆転する度にその向きが反転するという特徴がある。
A motor device with a worm gear (hereinafter referred to as a motor device) used for a small electric motor for automobiles is provided with a worm 26 on an output shaft 20 of an electric motor 30 as shown in FIGS. 9 to 12, for example. The output is transmitted through a worm wheel 28 that meshes with the worm 26, and a plurality of bearings 22, 24, and 40 for supporting a load caused by the meshing of the worm 26 and the worm wheel 28 are output shafts 20. It is the composition arranged in. The electric motor 30 includes a rotor 32 fixed to the output shaft 20 and a stator 34 fixed to the housing 36. For example, when current is supplied to the stator 34, the stator 34 and the rotor 32 are supplied. The output shaft 20 is rotated by a magnetic interaction generated between the output shaft 20 and the output shaft 20.
In such a motor device, generally, the load generated by the meshing between the worm 26 and the worm wheel 28 is characterized in that the load in the axial direction is larger than the load in the radial direction of the output shaft 20, and the axial load. Is characterized in that its direction is reversed every time the worm 26 is rotated forward or reverse.

このようなモータ装置における軸受構成として、例えば、図9に示すモータ装置では、3つのラジアル滑り軸受24が出力軸20の中央及び両端にそれぞれ配置されているとともに、2つのスラスト滑り軸受40が出力軸20の両端にそれぞれ配置されている(特許文献1参照)。また、図10に示すモータ装置では、2列組合せ玉軸受22が出力軸20の中央に配置されているとともに、2つのラジアル滑り軸受24が出力軸20の両端にそれぞれ配置されている(特許文献2参照)。また、図11に示すモータ装置では、単列の深溝玉軸受22が出力軸20の中央に配置されているとともに、2つのラジアル滑り軸受24が出力軸20の両端にそれぞれ配置されている(特許文献1参照)。また、図12に示すモータ装置では、単列の深溝玉軸受22が出力軸20の中央に配置されているとともに、ラジアル滑り軸受24が出力軸20のモータ側のみに配置されている(特許文献3参照)。
なお、各図9〜12は、特許文献1〜3に示されているモータ装置の特徴構成が明らかになるように、各文献1〜3に添付された図面を簡略化して示している。
As a bearing configuration in such a motor device, for example, in the motor device shown in FIG. 9, three radial slide bearings 24 are arranged at the center and both ends of the output shaft 20, respectively, and two thrust slide bearings 40 are output. It arrange | positions at the both ends of the axis | shaft 20, respectively (refer patent document 1). In the motor device shown in FIG. 10, a two-row combination ball bearing 22 is disposed at the center of the output shaft 20, and two radial plain bearings 24 are disposed at both ends of the output shaft 20, respectively (Patent Literature). 2). In the motor device shown in FIG. 11, a single row deep groove ball bearing 22 is disposed at the center of the output shaft 20 and two radial plain bearings 24 are disposed at both ends of the output shaft 20 (patents). Reference 1). In the motor device shown in FIG. 12, a single row deep groove ball bearing 22 is arranged at the center of the output shaft 20, and a radial sliding bearing 24 is arranged only on the motor side of the output shaft 20 (Patent Document). 3).
In addition, each FIG. 9-12 has simplified and shown drawing attached to each literature 1-3 so that the characteristic structure of the motor apparatus shown by patent documents 1-3 may become clear.

しかしながら、図9に示すようなモータ装置では、出力軸20の両端にスラスト軸受40を配置するためのスペースが必要となり、そのためモータ装置が軸方向に大型化してしまうという問題がある。同様に、図10に示すようなモータ装置でも、2列組合せの玉軸受22を配置するためのスペースが必要となり、そのためモータ装置が軸方向に大型化してしまう。このようなモータ装置の大型化は、例えば、軸方向にスペース的な余裕のない車両に当該モータ装置を組み込む場合に問題となる。
これに対し、図11に示すようなモータ装置では、単列の深溝玉軸受22のみが配置されており、軸受の取付スペースが小さくて済むため、当該モータ装置の軸方向の小型化を図ることができる。また、図12に示すようなモータ装置では、モータ側にのみラジアル滑り軸受24を配置しているため、さらに当該モータ装置の軸方向の小型化を図ることができる。
However, the motor device as shown in FIG. 9 requires a space for disposing the thrust bearings 40 at both ends of the output shaft 20, and there is a problem that the motor device is enlarged in the axial direction. Similarly, even in the motor device as shown in FIG. 10, a space for arranging the two-row combination ball bearings 22 is required, so that the motor device is enlarged in the axial direction. Such an increase in the size of the motor device becomes a problem when, for example, the motor device is incorporated in a vehicle having no space in the axial direction.
On the other hand, in the motor device as shown in FIG. 11, only the single row deep groove ball bearings 22 are disposed, and the mounting space for the bearings can be small, so that the motor device can be downsized in the axial direction. Can do. Further, in the motor device as shown in FIG. 12, the radial sliding bearing 24 is arranged only on the motor side, so that the motor device can be further reduced in the axial direction.

ところで、これらのモータ装置(図11,12)に用いた単列の深溝玉軸受22は、例えば図8に示すように、ウォーム26とウォームホイール28の噛合いによって生じる軸方向への大きな荷重を当該深溝玉軸受22のみで負荷することになる。この場合、例えば振動等の外的要因によって当該深溝玉軸受22に衝撃荷重が加わると、玉6の転動面と内輪2の軌道面(軌道溝8)及び外輪4の軌道面(軌道溝10)との転がり接触部の接触楕円が、各軌道面の幅方向の縁部に達するいわゆる玉の乗り上げが生じる場合がある。この場合、玉6の転動面及び各軌道面(軌道溝8,10)の縁部8s,10sにエッジロード(応力集中)が発生し、これらに過大な面圧が加わることによって、玉6の転動面に傷が付いたり、内輪2及び外輪4の軌道面(軌道溝8,10)に圧痕が形成される虞がある。このような状態でモータ装置を運転させ続けると、深溝玉軸受22から異音が発生したり、深溝玉軸受22(特に、内輪2の軌道溝8及び外輪4の軌道溝10、玉6の転動面)が早期にクラックやフレーキングを起こしたりする場合があるため、モータ装置を長期に亘って良好に運転させ続けることが困難になってしまう。   By the way, the single row deep groove ball bearings 22 used in these motor devices (FIGS. 11 and 12), for example, as shown in FIG. 8, receive a large axial load caused by the meshing of the worm 26 and the worm wheel 28. The load is applied only by the deep groove ball bearing 22. In this case, for example, when an impact load is applied to the deep groove ball bearing 22 due to an external factor such as vibration, the rolling surface of the ball 6, the raceway surface of the inner ring 2 (the raceway groove 8), and the raceway surface of the outer ring 4 (the raceway groove 10). ) And the contact ellipse of the rolling contact portion may reach a so-called ball reaching the edge in the width direction of each raceway surface. In this case, an edge load (stress concentration) is generated on the rolling surface of the ball 6 and the edge portions 8s and 10s of the raceway surfaces (track grooves 8 and 10), and an excessive surface pressure is applied to the balls 6 and thereby the ball 6 There is a possibility that the rolling surfaces of the inner ring 2 and the outer ring 4 may be scratched or indentations may be formed on the raceway surfaces (track grooves 8 and 10). If the motor device continues to be operated in such a state, abnormal noise is generated from the deep groove ball bearing 22 or the deep groove ball bearing 22 (particularly, the race groove 8 of the inner ring 2 and the race groove 10 of the outer ring 4, the rolling of the balls 6). Since the moving surface) may crack or flake early, it becomes difficult to keep the motor device operating well over a long period of time.

そこで、上述したような玉6の軌道溝8,10の縁部8s,10sへの乗り上げを防止し、当該深溝玉軸受22(特に、内輪2及び外輪4、玉6)の耐衝撃性や耐荷重性を確保するための方策として、例えば、(1)軸受サイズを大きくする。(2)玉6の直径を大きくしたり、組込数を増やす。(3)内輪2の軌道溝8及び外輪4の軌道溝10の断面の曲率半径を大きくする。(4)軸受の内部すきまを小さくする。(5)内輪2の軌道溝8及び外輪4の軌道溝10の溝の深さを深くする等の各種の方策が考えられる。   Therefore, the ball 6 is prevented from riding on the edge portions 8s and 10s of the raceway grooves 8 and 10, and the impact resistance and resistance of the deep groove ball bearing 22 (in particular, the inner ring 2 and the outer ring 4 and the ball 6) are prevented. As measures to ensure loadability, for example, (1) increase the bearing size. (2) Increase the diameter of the ball 6 or increase the number of incorporation. (3) The curvature radius of the cross section of the raceway groove 8 of the inner ring 2 and the raceway groove 10 of the outer ring 4 is increased. (4) Reduce the internal clearance of the bearing. (5) Various measures such as increasing the depth of the raceway groove 8 of the inner ring 2 and the raceway groove 10 of the outer ring 4 are conceivable.

しかしながら、方策(1)では、軸受の取付スペースが大きくなるため、モータ装置が軸方向及び径方向に大型化してしまう。また、方策(2)では、軸受の寸法上の制約から、玉6の直径の大きさや組込数には限界があり、設計の自由度が低くなってしまう。このため、軸受の寸法によっては所望の耐乗り上げ性を確保できない(玉6が内輪2の軌道溝8の縁部8s及び外輪4の軌道溝10の縁部10sに乗り上げることを抑止できない)虞がある(特に、ミニアチュア玉軸受あるいは小径玉軸受に適用する場合)。さらに、方策(3)や方策(4)では、外部から大きな荷重(例えば、衝撃荷重等)が加わらない運転時であっても、玉6の転動面と内輪2及び外輪4の軌道溝8,10との転がり接触部の圧力が大きくなるため、例えば接触部が発熱したり、摩擦により摩耗したりすることで、軸受の寿命が低下する(軸受の早期の交換が必要となる)虞がある。さらにまた、方策(5)では、軸受を組み立てる際、玉6を内輪2の軌道溝8と外輪4の軌道溝10との間に組み込み難くなり、軸受の組立作業が煩雑になるとともに、当該組立作業の際、玉6の転動面や内輪2及び外輪4の軌道面(軌道溝8,10)が損傷してしまう虞がある。
実公平6−15491号公報 特開平9−132154号公報 実公昭61−3248号公報
However, in the measure (1), since the mounting space for the bearing is increased, the motor device is enlarged in the axial direction and the radial direction. Further, in the measure (2), the size of the balls 6 and the number of built-in balls are limited due to restrictions on the dimensions of the bearings, and the degree of freedom in design is reduced. For this reason, depending on the size of the bearing, the desired ride resistance cannot be ensured (the ball 6 cannot be prevented from riding on the edge 8s of the raceway groove 8 of the inner ring 2 and the edge 10s of the raceway groove 10 of the outer ring 4). Yes (especially when applied to miniature ball bearings or small diameter ball bearings). Further, in the measures (3) and (4), the rolling surfaces of the balls 6 and the raceway grooves 8 of the inner ring 2 and the outer ring 4 can be used even during operation in which a large load (for example, impact load) is not applied from the outside. , 10, the pressure of the rolling contact portion increases, and for example, the contact portion may generate heat or wear due to friction, which may shorten the life of the bearing (requires early replacement of the bearing). is there. Furthermore, in the measure (5), when assembling the bearing, it becomes difficult to incorporate the ball 6 between the raceway groove 8 of the inner ring 2 and the raceway groove 10 of the outer ring 4. During the work, the rolling surfaces of the balls 6 and the raceways (the raceways 8 and 10) of the inner race 2 and the outer race 4 may be damaged.
No. 6-15491 JP-A-9-132154 Japanese Utility Model Publication No. 61-3248

本発明は、このような課題を解決するためになされており、その目的は、玉を内外輪の軌道溝間に安定して転動させ続けることが可能な耐衝撃性、耐荷重性及び組立性に優れたコンパクトな玉軸受を提供することにある。   The present invention has been made to solve such problems, and its purpose is to provide impact resistance, load resistance and assembly capable of stably rolling the ball between the raceway grooves of the inner and outer rings. The object is to provide a compact ball bearing with excellent properties.

このような目的を達成するために、本発明に係る玉軸受は、相対回転可能に対向して配置された一対の内輪及び外輪と、内輪の対向面及び外輪の対向面にそれぞれ形成された軌道溝間に転動自在に組み込まれた複数の玉とを備えている。このような構成において、内輪の内径と外輪の外径との中間を通る仮想円の直径をdm、玉のピッチ円径をPCD、玉の直径をDa、内輪の軌道溝の最底部から当該軌道溝の縁部までの径方向距離をHi、外輪の軌道溝の最底部から当該軌道溝の縁部までの径方向距離をHoとした場合、1.00<(PCD/dm)≦1.05であるとともに、少なくともHi,Hoのうちいずれか一方は、Hi≧0.15Da若しくはHo≧0.15Daとなるように設定されている。この場合、玉軸受は、複数の玉が軌道溝間に沿って1列に並んだ単列の玉軸受としている。   In order to achieve such an object, a ball bearing according to the present invention includes a pair of inner and outer rings arranged opposite to each other so as to be relatively rotatable, and raceways formed on the inner ring facing surface and the outer ring facing surface, respectively. It is provided with a plurality of balls that are rotatably incorporated between the grooves. In such a configuration, the diameter of the imaginary circle passing between the inner diameter of the inner ring and the outer diameter of the outer ring is dm, the pitch diameter of the balls is PCD, the diameter of the balls is Da, and the track from the bottom of the track groove of the inner ring. When the radial distance to the edge of the groove is Hi and the radial distance from the bottom of the raceway groove of the outer ring to the edge of the raceway groove is Ho, 1.00 <(PCD / dm) ≦ 1.05 In addition, at least one of Hi and Ho is set to satisfy Hi ≧ 0.15 Da or Ho ≧ 0.15 Da. In this case, the ball bearing is a single row ball bearing in which a plurality of balls are arranged in a row along the raceway grooves.

本発明によれば、玉を内外輪の軌道溝間に安定して転動させ続けることが可能となり、耐衝撃性、耐荷重性及び組立性に優れた玉軸受をコンパクトにすることができる。   According to the present invention, it becomes possible to keep balls stably rolling between the raceway grooves of the inner and outer rings, and a ball bearing excellent in impact resistance, load resistance and assemblability can be made compact.

以下、本発明の一実施形態に係る玉軸受について、添付図面を参照して説明する。
本実施形態の玉軸受は、上述したウォームギア付きモータ装置(図9〜図12)の改良であるため、以下では、改良部分の説明に止める。なお、図9〜図12のウォームギア付きモータ装置と同一の構成には図面上で同一符号を付して、その説明を省略する。
Hereinafter, a ball bearing according to an embodiment of the present invention will be described with reference to the accompanying drawings.
Since the ball bearing of this embodiment is an improvement of the above-described motor device with a worm gear (FIGS. 9 to 12), the description of the improved portion will be given below. In addition, the same code | symbol is attached | subjected on drawing and the description is abbreviate | omitted to the structure same as the motor apparatus with a worm gear of FIGS.

図1及び図2に示すように、本実施形態のウォームギア付きモータ装置(以下、モータ装置という)は、出力軸20が単列の深溝玉軸受22及び2つのラジアル滑り軸受24によって回転自在に支持されており、深溝玉軸受22は、相対回転可能に対向して配置された内輪2及び外輪4と、内輪2の対向面2aと外輪4の対向面4aにそれぞれ形成された一列の軌道溝8,10間に転動自在に組み込まれた複数の玉6とを備えている。本実施形態において、深溝玉軸受22は出力軸20の中央に配置され、2つのラジアル滑り軸受24は出力軸20の両端にそれぞれ配置されている。また、複数の玉6は、保持器12によって1つずつ回転自在に保持されている。なお、内輪2の軌道溝8及び外輪4の軌道溝10は、それぞれ断面円弧状に形成されている。   As shown in FIGS. 1 and 2, in the motor device with a worm gear (hereinafter referred to as “motor device”) of the present embodiment, the output shaft 20 is rotatably supported by a single row deep groove ball bearing 22 and two radial slide bearings 24. The deep groove ball bearings 22 are arranged in a row of raceway grooves 8 formed on the inner ring 2 and the outer ring 4, which are arranged to face each other so as to be relatively rotatable, and on the facing surface 2a of the inner ring 2 and the facing surface 4a of the outer ring 4, respectively. , 10 and a plurality of balls 6 incorporated so as to roll freely. In the present embodiment, the deep groove ball bearing 22 is disposed at the center of the output shaft 20, and the two radial slide bearings 24 are disposed at both ends of the output shaft 20. The plurality of balls 6 are rotatably held one by one by the cage 12. The raceway groove 8 of the inner ring 2 and the raceway groove 10 of the outer ring 4 are each formed in a circular arc shape in cross section.

本実施形態において、深溝玉軸受22は、内輪2の内径dと外輪4の外径Dとの中間を通る仮想円の直径をdm(以下、中央径dmという)とし、各玉6の中心点を結んだ仮想円の直径をPCD(以下、ピッチ円径PCDという。PCD:Pitch Circle Diameter)とした場合、中央径dmとピッチ円径PCDとの関係が、1.00<(PCD/dm)≦1.05の範囲内となるように設定されている。
また、内輪2の軌道溝8の最底部から当該軌道溝8の縁部(肩部)8sまでの径方向の距離(軌道溝8の深さ)をHi(以下、溝深さHiという)、外輪4の軌道溝10の最底部から当該軌道溝10の縁部(肩部)10sまでの径方向の距離(軌道溝10の深さ)をHo(以下、溝深さHoという)とし、玉6の直径(玉直径)をDa(以下、玉直径Daという)とした場合、少なくとも内輪2の軌道溝8の溝深さHi若しくは外輪4の軌道溝10の溝深さHoのいずれか一方は、玉直径Daの15%以上であって(Hi≧0.15Da及びHo≧0.15Da)、内輪2の軌道溝8の溝深さHiが外輪4の軌道溝10の溝深さHo以上に大きくなるように設定されている(Hi≧Ho,好ましくはHi>Ho)。
In this embodiment, the deep groove ball bearing 22 has a diameter of an imaginary circle passing through the middle between the inner diameter d of the inner ring 2 and the outer diameter D of the outer ring 4 as dm (hereinafter referred to as the center diameter dm), and the center point of each ball 6 When the diameter of the imaginary circle connecting the two is PCD (hereinafter referred to as pitch circle diameter PCD; PCD: Pitch Circle Diameter), the relationship between the center diameter dm and the pitch circle diameter PCD is 1.00 <(PCD / dm). It is set to be within a range of ≦ 1.05.
A radial distance (depth of the track groove 8) from the bottom of the track groove 8 of the inner ring 2 to the edge (shoulder) 8s of the track groove 8 is defined as Hi (hereinafter referred to as a groove depth Hi). The radial distance (depth of the raceway groove 10) from the bottom of the raceway groove 10 of the outer ring 4 to the edge (shoulder) 10s of the raceway groove 10 is defined as Ho (hereinafter referred to as the groove depth Ho). When the diameter of 6 (ball diameter) is Da (hereinafter referred to as ball diameter Da), at least one of the groove depth Hi of the raceway groove 8 of the inner ring 2 or the groove depth Ho of the raceway groove 10 of the outer ring 4 is The ball diameter Da is 15% or more (Hi ≧ 0.15 Da and Ho ≧ 0.15 Da), and the groove depth Hi of the raceway groove 8 of the inner ring 2 is greater than or equal to the groove depth Ho of the raceway groove 10 of the outer ring 4. It is set so as to increase (Hi ≧ Ho, preferably Hi> Ho).

例えば、中央径dmとピッチ円径PCDとの比(PCD/dm)を1.03とし、内輪2の軌道溝8の溝深さHiと玉直径Daとの比(Hi/Da)を0.20、また、外輪4の軌道溝10の溝深さHoと玉直径Daとの比(Ho/Da)を0.17とした場合、JIS B1513規格に相当する本実施形態の玉軸受(軸受内径d:φ8(mm)、軸受外径D:φ22(mm)、軸受幅B:7(mm)、玉直径Da:φ3.969(mm))において(図1参照)、玉軸受の組立性を示すx1値及び玉6の乗り上げ荷重を計算すると、x1値は0.118となり、乗り上げ荷重は1900(N)となる。なお、x1値は、玉直径Daと干渉量x(玉6を内輪2及び外輪4の軌道溝8,10間に組み込む際に玉6が軌道溝8又は軌道溝10に入り込む(干渉する)量)との比(x1=x/Da)であり、詳細は後述する。
これに対し、中央径dmとピッチ円径PCDとの比(PCD/dm)を1.00とし、内輪2の軌道溝8の溝深さHiと玉直径Daとの比(Hi/Da)を0.14、また、外輪4の軌道溝10の溝深さHoと玉直径Daとの比(Ho/Da)を0.12とした場合、JIS B1513規格に相当する既存の玉軸受(d:φ8(mm)、D:φ22(mm)、B:7(mm)、Da:φ3.969(mm))においては、x1値が0.121となり、乗り上げ荷重が900(N)となる。
For example, the ratio (PCD / dm) between the center diameter dm and the pitch circle diameter PCD is 1.03, and the ratio (Hi / Da) between the groove depth Hi of the raceway groove 8 of the inner ring 2 and the ball diameter Da is 0. 20 and the ratio of the groove depth Ho of the raceway groove 10 of the outer ring 4 to the ball diameter Da (Ho / Da) is 0.17, the ball bearing of this embodiment corresponding to the JIS B1513 standard (bearing inner diameter) d: φ8 (mm), bearing outer diameter D: φ22 (mm), bearing width B: 7 (mm), ball diameter Da: φ3.969 (mm)) (see FIG. 1) When the indicated x1 value and the riding load of the ball 6 are calculated, the x1 value is 0.118, and the riding load is 1900 (N). The x1 value is the ball diameter Da and the amount of interference x (the amount by which the ball 6 enters (interfers with) the raceway groove 8 or the raceway groove 10 when the ball 6 is assembled between the raceway grooves 8 and 10 of the inner ring 2 and the outer ring 4. ) (X1 = x / Da), details of which will be described later.
On the other hand, the ratio (PCD / dm) between the center diameter dm and the pitch circle diameter PCD is set to 1.00, and the ratio (Hi / Da) between the groove depth Hi of the raceway groove 8 of the inner ring 2 and the ball diameter Da. When the ratio of the groove depth Ho of the raceway groove 10 of the outer ring 4 to the ball diameter Da (Ho / Da) is 0.12, the existing ball bearing corresponding to the JIS B1513 standard (d: In φ8 (mm), D: φ22 (mm), B: 7 (mm), Da: φ3.969 (mm)), the x1 value is 0.121, and the riding load is 900 (N).

このように、中央径dmとピッチ円径PCDとの関係をPCD/dm=1.00とした既存の玉軸受と比較して、本実施形態の玉軸受は、玉直径Daや玉の組込数、内輪2及び外輪4の軌道溝8,10の断面の曲率半径、ラジアル内部すきま等を大幅に変更することなく、また、組立性を損なうことなく、コンパクトでありながら内輪2及び外輪4の軌道溝8,10を深くする(溝深さHi,Hoを大きくする)ことができる。これにより、玉6が内輪2及び外輪4の軌道溝8,10の縁部8s,10sに乗り上げるために要する荷重を大きくする(上述した例では、必要な乗り上げ荷重を900Nから1900Nに増加させる)ことで、玉6の転動面と内輪2及び外輪4の軌道溝8,10との転がり接触部に仮想的に形成される接触楕円が、内輪2及び外輪4の軌道溝8,10の縁部8s,10sまで達し難くなる(玉6を内輪2及び外輪4の軌道溝8,10間に安定して転動させ続けることが可能となる)。このため、玉6の耐乗り上げ性を確保し、耐衝撃性、耐荷重性及び組立性に優れた深溝玉軸受22をコンパクトにすることができる。
したがって、かかる深溝玉軸受22を用いたウォームギア付きモータ装置は、装置の大型化を招くことなく(小型化することができ)、装置(例えば、深溝玉軸受22)から異音が発生することもなく、長期に亘って良好に運転させ続けることができる(耐久性を向上させることができる)。
Thus, compared with the existing ball bearing in which the relationship between the center diameter dm and the pitch circle diameter PCD is PCD / dm = 1.00, the ball bearing according to the present embodiment includes the ball diameter Da and the ball integration. The number of inner rings 2 and outer rings 4 can be reduced without changing the radius of curvature of the raceway grooves 8 and 10 of the inner ring 2 and the outer ring 4 and the radial internal clearance. The raceway grooves 8 and 10 can be deepened (groove depths Hi and Ho are increased). Thereby, the load required for the ball 6 to ride on the edge portions 8s, 10s of the raceway grooves 8, 10 of the inner ring 2 and the outer ring 4 is increased (in the above-described example, the necessary ride load is increased from 900N to 1900N). Thus, the contact ellipse virtually formed in the rolling contact portion between the rolling surface of the ball 6 and the race grooves 8 and 10 of the inner ring 2 and the outer ring 4 is the edge of the race grooves 8 and 10 of the inner ring 2 and the outer ring 4. It becomes difficult to reach the portions 8s and 10s (the ball 6 can be stably rolled between the raceway grooves 8 and 10 of the inner ring 2 and the outer ring 4). For this reason, it is possible to secure the climbing resistance of the ball 6 and to make the deep groove ball bearing 22 excellent in impact resistance, load resistance and assemblability compact.
Therefore, the motor device with a worm gear using such a deep groove ball bearing 22 may generate noise from the device (for example, the deep groove ball bearing 22) without increasing the size of the device (can be downsized). Without being able to continue to operate well over a long period of time (durability can be improved).

ここで、玉軸受の組立性を示すx1値(x1=x/Da:玉直径Daと干渉量xとの比)について、図13(a),(b)を参照して説明する。
玉軸受の組立方法としては、一例として、同一平面内で内輪2を外輪4に対し径方向(ラジアル方向)に移動(偏心)させ、内輪2と外輪4との間に形成された半月状の開口部Sから複数の玉6を内輪2の軌道溝8と外輪4の軌道溝10との間に挿入し(図13(a))、最終段階で内輪2と外輪4とが同心となる位置まで内輪2に力を加えて外輪4を弾性変形させる方法がある。このような方法により組込玉数が最大になるようにしている。
この場合、半月状の開口部Sから複数の玉6を挿入する際の各玉6の位置は、当該開口部S内で任意の位置を取ることになる。図13(b)に示す状態はその一例で、開口部Sの一番広い位置(例えば、図13(b)中の開口部Sの中央上部)以外の各玉6が内輪2の軌道溝8に沿った状態で配置され、開口部Sの一番広い位置(同中央上部)に配置される玉6の一部が外輪4とxだけ干渉している(重なっている)状態となっている。
この干渉量xが大きすぎると、当該玉軸受は、玉6を内輪2の軌道溝8と外輪4の軌道溝10との間に組み込み難くなり(最悪の場合、全てを組み込むことができない)、自動組立機により量産することができない(組立ラインが停滞し易くなる)虞がある。この干渉量xは、内輪2及び外輪4の軌道径、内輪2及び外輪4の軌道溝8,10の溝深さHi,Ho、玉直径Da、玉数などから決定される値であり、この干渉量xと玉直径Daとの比をx1(x1=x/Da)として定義し、玉軸受の組立性を示す指標のうちの1つとしている。
Here, the x1 value (x1 = x / Da: ratio of the ball diameter Da and the interference amount x) indicating the assemblability of the ball bearing will be described with reference to FIGS. 13 (a) and 13 (b).
As an example of a method for assembling the ball bearing, the inner ring 2 is moved (eccentric) in the radial direction (radial direction) with respect to the outer ring 4 in the same plane, and is formed in a half-moon shape formed between the inner ring 2 and the outer ring 4. A plurality of balls 6 are inserted between the raceway groove 8 of the inner ring 2 and the raceway groove 10 of the outer ring 4 from the opening S (FIG. 13A), and the inner ring 2 and the outer ring 4 are concentric at the final stage. There is a method in which the outer ring 4 is elastically deformed by applying a force to the inner ring 2. By such a method, the number of balls to be incorporated is maximized.
In this case, the position of each ball 6 when the plurality of balls 6 are inserted from the half-moon-shaped opening S takes an arbitrary position in the opening S. The state shown in FIG. 13B is one example, and each ball 6 other than the widest position of the opening S (for example, the upper center of the opening S in FIG. 13B) is the track groove 8 of the inner ring 2. , And a part of the ball 6 arranged at the widest position (upper center) of the opening S interferes with (overlaps) only the outer ring 4 and x. .
If this amount of interference x is too large, it will be difficult for the ball bearing to incorporate the ball 6 between the raceway groove 8 of the inner ring 2 and the raceway groove 10 of the outer ring 4 (in the worst case, not all of them). There is a risk that mass production cannot be performed by the automatic assembly machine (the assembly line is likely to be stagnant). The amount of interference x is a value determined from the track diameters of the inner ring 2 and the outer ring 4, the groove depths Hi and Ho of the track grooves 8 and 10 of the inner ring 2 and the outer ring 4, the ball diameter Da, the number of balls, etc. The ratio between the interference amount x and the ball diameter Da is defined as x1 (x1 = x / Da), which is one of the indexes indicating the assemblability of the ball bearing.

図3には、内輪2の軌道溝8の溝深さHiと外輪4の軌道溝10の溝深さHoとを同一(Hi=Ho)として、組立性を示すx1値が従来の玉軸受と同値の場合(x1=0.25)の中央径dmとピッチ円径PCDとの比(PCD/dm)と、玉直径Daと溝深さHi(あるいは溝深さHo)との比(Hi/DaあるいはHo/Da)との関係について計算した結果を示している。なお、図3中において、横軸は中央径dmとピッチ円径PCDとの比(PCD/dm)、縦軸の左側は玉直径Daと溝深さHi(あるいは溝深さHo)との比(Hi/DaあるいはHo/Da)、縦軸の右側は玉直径Daと干渉量xとの比x1(x/Da)をそれぞれ示している。
図3から明らかなように、中央径dmとピッチ円径PCDとの関係を、本発明の技術的範囲である1.00<(PCD/dm)≦1.05とすることによって、従来の玉軸受(PCD/dm=1.00)と比較して、組立性を損なうことなく、溝深さHi(あるいは溝深さHo)を大きくする(内輪2及び外輪4の軌道溝8,10を深くする)ことができる。
In FIG. 3, the groove depth Hi of the raceway groove 8 of the inner ring 2 and the groove depth Ho of the raceway groove 10 of the outer ring 4 are the same (Hi = Ho), and the x1 value indicating the assemblability is the same as that of the conventional ball bearing. In the case of the same value (x1 = 0.25), the ratio (PCD / dm) between the center diameter dm and the pitch circle diameter PCD and the ratio (Hi /) between the ball diameter Da and the groove depth Hi (or groove depth Ho). The calculation results for the relationship with Da or Ho / Da) are shown. In FIG. 3, the horizontal axis is the ratio of the center diameter dm to the pitch circle diameter PCD (PCD / dm), and the left side of the vertical axis is the ratio of the ball diameter Da to the groove depth Hi (or groove depth Ho). (Hi / Da or Ho / Da), the right side of the vertical axis indicates the ratio x1 (x / Da) between the ball diameter Da and the interference amount x.
As is apparent from FIG. 3, the relationship between the center diameter dm and the pitch circle diameter PCD is 1.00 <(PCD / dm) ≦ 1.05, which is the technical scope of the present invention. Compared to the bearing (PCD / dm = 1.00), the groove depth Hi (or the groove depth Ho) is increased without impairing the assemblability (the race grooves 8, 10 of the inner ring 2 and the outer ring 4 are deepened). can do.

なお、中央径dmとピッチ円径PCDとの比(PCD/dm)が、1.05を超える場合、ピッチ円径PCDは外側に開く(玉6は、外輪4とさらに接触する方向へ位置付けられる)。この場合、図4に示すように、外輪4の断面高さ(厚み)Hに対する玉直径Da(通常、Da=0.5〜0.6H程度)によっては、外輪4の軌道溝10の最底部の肉厚(最小肉厚)Noを充分に確保できず、外輪4が変形や強度低下を起こしたりする虞がある。このため、PCD/dm(中央径とピッチ円径との比)とNo/H(外輪4の断面高さと最小肉厚との比)との関係(PCD/dmに対するNo/Hの値)は、図4中の太線(No/H=0.15)よりも上の領域にあることが好ましい。   When the ratio of the center diameter dm to the pitch circle diameter PCD (PCD / dm) exceeds 1.05, the pitch circle diameter PCD opens to the outside (the balls 6 are positioned in the direction of further contact with the outer ring 4). ). In this case, as shown in FIG. 4, depending on the ball diameter Da (usually about Da = 0.5 to 0.6H) with respect to the cross-sectional height (thickness) H of the outer ring 4, the bottom part of the raceway groove 10 of the outer ring 4 is used. The wall thickness (minimum wall thickness) No. cannot be sufficiently secured, and the outer ring 4 may be deformed or the strength may be reduced. Therefore, the relationship between PCD / dm (ratio between the center diameter and pitch circle diameter) and No / H (ratio between the cross-sectional height of the outer ring 4 and the minimum wall thickness) (value of No / H with respect to PCD / dm) is In the region above the thick line (No / H = 0.15) in FIG.

また、図5に示すように、溝深さHi(あるいは溝深さHo)を大きくしすぎると、内輪2の外径面(対向面2a)と外輪4の内径面(対向面4a)との間隔が狭くなり、保持器12の厚さCt(通常、Ct=0.4〜0.5Da程度)を充分に確保できず、例えば保持器12が変形や強度低下を起こしたりする虞がある。またこの場合、保持器12の厚さCtを確保しようとすると、内輪2の外径面(対向面2a)や外輪4の内径面(対向面4a)と保持器12とが干渉(接触)したりする虞がある。
このため、PCD/dm(中央径とピッチ円径との比)とHi/DaあるいはHo/Da(玉直径Daと溝深さHiあるいは溝深さHoとの比)との関係(PCD/dmに対するHi/DaあるいはHo/Daの値)は、図5中の太線(Hi/Da=0.25)よりも下の領域にあることが好ましい。一方、中央径dmとピッチ円径PCDとの比(PCD/dm)が、1.00以下の場合には、従来の玉軸受の設計と何ら変わりなく、溝深さHi(あるいは溝深さHo)を充分に確保することができない。この場合、玉6が内輪2及び外輪4の軌道溝8,10の縁部8s,10sに乗り上げることにより、玉6の転動面に傷が発生したり、内輪2及び外輪4の軌道面(軌道溝8,10)に圧痕などが発生し、ひいては、例えば、モータ装置から異音が発生したり、モータ装置の耐久性が悪化する虞がある。
As shown in FIG. 5, if the groove depth Hi (or groove depth Ho) is excessively increased, the outer diameter surface (opposing surface 2a) of the inner ring 2 and the inner diameter surface (opposing surface 4a) of the outer ring 4 are reduced. The interval is narrowed, and the thickness Ct of the cage 12 (usually about Ct = 0.4 to 0.5 Da) cannot be secured sufficiently. For example, the cage 12 may be deformed or the strength may be reduced. In this case, if the thickness Ct of the cage 12 is to be secured, the outer diameter surface (opposing surface 2a) of the inner ring 2 and the inner diameter surface (opposing surface 4a) of the outer ring 4 interfere with (contact) the cage 12. There is a risk that.
Therefore, the relationship (PCD / dm) between PCD / dm (ratio between the center diameter and pitch circle diameter) and Hi / Da or Ho / Da (ratio between ball diameter Da and groove depth Hi or groove depth Ho). (Hi / Da or Ho / Da value) is preferably in a region below the thick line (Hi / Da = 0.25) in FIG. On the other hand, when the ratio (PCD / dm) between the center diameter dm and the pitch circle diameter PCD is 1.00 or less, the groove depth Hi (or groove depth Ho) is the same as the conventional ball bearing design. ) Cannot be secured sufficiently. In this case, the balls 6 run on the edges 8 s and 10 s of the race grooves 8 and 10 of the inner ring 2 and the outer ring 4, so that the rolling surfaces of the balls 6 are damaged, or the race surfaces of the inner ring 2 and the outer ring 4 ( An indentation or the like is generated in the raceway grooves 8 and 10), and as a result, for example, there is a possibility that abnormal noise is generated from the motor device or the durability of the motor device is deteriorated.

図6は、内輪2の軌道溝8の溝深さHiと外輪4の軌道溝10の溝深さHoとを同一(Hi=Ho)とした場合、溝深さHi(あるいは溝深さHo)と内輪2の軌道溝8の縁部8s(あるいは外輪4の軌道溝10の縁部10s)に玉6が乗り上げるために要する荷重との関係について計算した結果を示している。
図6から明らかなように、内輪2の軌道溝8の溝深さHi及び外輪4の軌道溝10の溝深さHoを本発明の技術的範囲である玉直径Daの15%以上(Hi≧0.15Da,Ho≧0.15Da)とすることによって、従来の玉軸受(12〜14%)と比較して玉6の乗り上げ荷重をほぼ1.2〜1.5倍以上に向上することができる。なお、図6は、溝深さHi,Hoが玉直径Daの12%であるとき(Hi/Da=0.12,Ho/Da=0.12)の玉6の乗り上げ荷重を1.0とした場合のHi/Da(あるいはHo/Da)に対する玉6の乗り上げ荷重を示している。
FIG. 6 shows the groove depth Hi (or groove depth Ho) when the groove depth Hi of the raceway groove 8 of the inner ring 2 and the groove depth Ho of the raceway groove 10 of the outer ring 4 are the same (Hi = Ho). 3 shows the result of calculation regarding the relationship between the ball 6 and the load required for the ball 6 to ride on the edge 8s of the raceway groove 8 of the inner ring 2 (or the edge 10s of the raceway groove 10 of the outer ring 4).
As apparent from FIG. 6, the groove depth Hi of the raceway groove 8 of the inner ring 2 and the groove depth Ho of the raceway groove 10 of the outer ring 4 are 15% or more of the ball diameter Da which is the technical scope of the present invention (Hi ≧ 0.15 Da, Ho ≧ 0.15 Da), the ride load of the ball 6 can be improved by about 1.2 to 1.5 times or more compared with the conventional ball bearing (12 to 14%). it can. In FIG. 6, when the groove depth Hi, Ho is 12% of the ball diameter Da (Hi / Da = 0.12, Ho / Da = 0.12), the riding load of the ball 6 is 1.0. The riding load of the ball 6 with respect to Hi / Da (or Ho / Da) is shown.

また、本実施形態においては、内輪2の軌道溝8の溝深さHiを外輪4の軌道溝10の溝深さHo以上に大きくすることにより(Hi≧Ho,好ましくはHi>Ho)、内輪2の軌道溝8に仮想的に形成される玉6との接触楕円と内輪2の軌道溝8の縁部8sとの距離と、外輪4の軌道溝10に仮想的に形成される玉6との接触楕円と外輪4の軌道溝10の縁部10sとの距離とがほぼ同じになるようにしている。すなわち、本実施形態の玉軸受では、内輪2の軌道溝8の円周方向に関する形状が凸となる分(円周方向に存在する接触楕円の短径が小さくなって)、内輪2の軌道溝8に形成される接触楕円部分の玉6と軌道溝8との接触圧力が高くなり、その分この楕円の長径が、外輪4の軌道溝10に形成される接触楕円の長径と比較して大きくなる。このように、本実施形態においては、内輪2の軌道溝8の溝深さHiを外輪4の軌道溝10の溝深さHo以上に大きくすることにより(Hi≧Ho,好ましくはHi>Ho)、内輪2の軌道溝8に仮想的に形成される玉6との接触楕円と、外輪4の軌道溝10の縁部10sに比べて玉6が乗り上げやすい内輪2の軌道溝8の縁部8sとの距離を確保することで、玉6の乗り上げ荷重が内輪2の軌道溝8と外輪4の軌道溝10とでほぼ均一となるようにしている。   Further, in the present embodiment, the inner ring 2 has a groove depth Hi larger than the groove depth Ho of the outer ring 4 (Hi ≧ Ho, preferably Hi> Ho). The distance between the contact ellipse with the ball 6 virtually formed in the second raceway groove 8 and the edge 8s of the raceway groove 8 of the inner ring 2, and the ball 6 virtually formed in the raceway groove 10 of the outer ring 4; The distance between the contact ellipse and the edge 10s of the raceway groove 10 of the outer ring 4 is made substantially the same. That is, in the ball bearing of the present embodiment, the raceway groove of the inner ring 2 is reduced by the convex shape of the raceway groove 8 of the inner ring 2 (the minor axis of the contact ellipse existing in the circumferential direction is reduced). The contact pressure between the ball 6 of the contact ellipse formed on the ball 8 and the raceway groove 8 is increased, and the major axis of this ellipse is larger than the major axis of the contact ellipse formed on the raceway groove 10 of the outer ring 4. Become. Thus, in the present embodiment, the groove depth Hi of the raceway groove 8 of the inner ring 2 is made larger than the groove depth Ho of the raceway groove 10 of the outer ring 4 (Hi ≧ Ho, preferably Hi> Ho). The contact ellipse with the ball 6 virtually formed in the raceway groove 8 of the inner ring 2 and the edge portion 8s of the raceway groove 8 of the inner ring 2 that is easier to ride the ball 6 than the edge portion 10s of the raceway groove 10 of the outer ring 4. Is ensured so that the load on the ball 6 is substantially uniform between the raceway groove 8 of the inner ring 2 and the raceway groove 10 of the outer ring 4.

図7は、内輪2の軌道溝8の溝深さHiと外輪4の軌道溝10の溝深さHoとの和(Hi+Ho)を玉直径Daの38%(Hi+Ho=0.38Da)に固定した場合における、内輪2の軌道溝8の溝深さHiと外輪4の軌道溝10の溝深さHoとの比(Hi/Ho)と、玉6が内輪2の軌道溝8の縁部8s及び外輪4の軌道溝10の縁部10sに乗り上げるために要する荷重との関係について計算した結果を示している。
図7から明らかなように、内輪2の軌道溝8の溝深さHiと外輪4の軌道溝10の溝深さHoとの比(Hi/Ho)を1.2程度とした場合に、玉6の乗り上げ荷重を内輪2の軌道溝8と外輪4の軌道溝10とでほぼ均一かつ充分に確保することができる。なお、このような効果を最大限に発揮させるためには、内輪2の軌道溝8の溝深さHiを外輪4の軌道溝10の溝深さHoの1.1〜1.3倍とすることが好ましい(図7に示す計算結果参照)。
In FIG. 7, the sum (Hi + Ho) of the groove depth Hi of the raceway groove 8 of the inner ring 2 and the groove depth Ho of the raceway groove 10 of the outer ring 4 is fixed to 38% of the ball diameter Da (Hi + Ho = 0.38 Da). In this case, the ratio (Hi / Ho) of the groove depth Hi of the raceway groove 8 of the inner ring 2 and the groove depth Ho of the raceway groove 10 of the outer ring 4, the edge 6s of the raceway groove 8 of the inner ring 2 and the ball 6 The calculation result about the relationship with the load required to ride on the edge part 10s of the raceway groove | channel 10 of the outer ring | wheel 4 is shown.
As apparent from FIG. 7, when the ratio (Hi / Ho) of the groove depth Hi of the raceway groove 8 of the inner ring 2 to the groove depth Ho of the raceway groove 10 of the outer ring 4 is about 1.2, 6 can be ensured substantially uniformly and sufficiently by the raceway groove 8 of the inner ring 2 and the raceway groove 10 of the outer ring 4. In order to maximize such an effect, the groove depth Hi of the raceway groove 8 of the inner ring 2 is set to 1.1 to 1.3 times the groove depth Ho of the raceway groove 10 of the outer ring 4. It is preferable (see the calculation result shown in FIG. 7).

以上のように、本実施形態によれば、深溝玉軸受22の大幅な設計変更をすることなく(玉直径Da、玉数、曲率半径、内部すきま等)、かつ、組立性を損なうことなく、玉6を内輪2及び外輪4の軌道溝8,10間で安定して転動させ続けることができる。このため、玉6の耐乗り上げ性を確保し、耐衝撃性、耐荷重性及び組立性に優れた深溝玉軸受22をコンパクトにすることができる。したがって、このような深溝玉軸受22を用いることで、ウォームギア付きモータ装置は、装置の大型化を招くことなく、装置の信頼性(異音が発生しない静粛性)の向上を図ることができ、長期に亘って良好に運転させ続けることができる(耐久性を向上させることができる)。   As described above, according to this embodiment, the design of the deep groove ball bearing 22 is not significantly changed (the ball diameter Da, the number of balls, the radius of curvature, the internal clearance, etc.), and the assembling property is not impaired. The ball 6 can continue to roll stably between the raceway grooves 8 and 10 of the inner ring 2 and the outer ring 4. For this reason, it is possible to secure the climbing resistance of the ball 6 and to make the deep groove ball bearing 22 excellent in impact resistance, load resistance and assemblability compact. Therefore, by using such a deep groove ball bearing 22, the motor device with a worm gear can improve the reliability of the device (quietness that does not generate abnormal noise) without increasing the size of the device, It can continue to operate well over a long period of time (durability can be improved).

なお、上述した実施形態においては、内輪2の軌道溝8の溝深さHi及び外輪4の軌道溝10の溝深さHoをいずれも玉直径Daの15%以上(Hi≧0.15Da及びHo≧0.15Da)としたが、いずれか一方の溝深さ(Hi若しくはHo)のみを玉直径Daの15%以上(Hi≧0.15Da若しくはHo≧0.15Da)としてもよい。また、上述した実施形態においては、内輪2の軌道溝8の溝深さHiが外輪4の軌道溝10の溝深さHoよりも大きくなるように設定したが(Hi>Ho)、内輪2の軌道溝8の溝深さHiと外輪4の軌道溝10の溝深さHoとが同一となるように設定してもよく(Hi=Ho)、外輪4の軌道溝10の溝深さHoが内輪2の軌道溝8の溝深さHiよりも大きくなるように設定してもよい(Ho>Hi)。
また、上述した実施形態においては、玉軸受を深溝玉軸受22として説明したが、軸受形式はこれに限定されず、例えば、ミニアチュア玉軸受や小径玉軸受などに適用することで上述の効果を発揮させることができる。
In the embodiment described above, the groove depth Hi of the raceway groove 8 of the inner ring 2 and the groove depth Ho of the raceway groove 10 of the outer ring 4 are both 15% or more of the ball diameter Da (Hi ≧ 0.15 Da and Ho). However, only one of the groove depths (Hi or Ho) may be 15% or more of the ball diameter Da (Hi ≧ 0.15 Da or Ho ≧ 0.15 Da). In the embodiment described above, the groove depth Hi of the raceway groove 8 of the inner ring 2 is set to be larger than the groove depth Ho of the raceway groove 10 of the outer ring 4 (Hi> Ho). The groove depth Hi of the raceway groove 8 and the groove depth Ho of the raceway groove 10 of the outer ring 4 may be set to be the same (Hi = Ho), and the groove depth Ho of the raceway groove 10 of the outer ring 4 is You may set so that it may become larger than the groove depth Hi of the raceway groove | channel 8 of the inner ring | wheel 2 (Ho> Hi).
In the above-described embodiment, the ball bearing is described as the deep groove ball bearing 22, but the bearing type is not limited to this, and for example, the above-described effects can be achieved by applying to a miniature ball bearing or a small diameter ball bearing. Can be made.

本発明に係るウォームギア付きモータ装置の主要部分の構成例を示す断面図。Sectional drawing which shows the structural example of the principal part of the motor apparatus with a worm gear which concerns on this invention. 本発明に係るウォームギア付きモータ装置の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the motor apparatus with a worm gear which concerns on this invention. x1値が同値の場合の[ピッチ円径PCD/中央径dm]と[溝深さHi,Ho]との関係を示す図。The figure which shows the relationship between [pitch circle diameter PCD / center diameter dm] and [groove depth Hi, Ho] in case x1 value is the same value. [ピッチ円径PCD/中央径dm]と[外輪最小肉厚No/断面高さH]との関係を示す図。The figure which shows the relationship between [pitch circle diameter PCD / center diameter dm] and [outer ring minimum wall thickness No./section height H]. [ピッチ円径PCD/中央径dm]と[溝深さHi(あるいは溝深さHo)/玉直径Da]との関係を示す図。The figure which shows the relationship between [pitch circle diameter PCD / center diameter dm] and [groove depth Hi (or groove depth Ho) / ball diameter Da]. [溝深さHi(あるいはHo)/玉直径Da]と[玉の乗り上げ荷重比]との関係を示す図。The figure which shows the relationship between [groove depth Hi (or Ho) / ball diameter Da] and [ball riding load ratio]. [溝深さHi/溝深さHo(各溝深さ比)]と[玉の乗り上げ荷重]との関係を示す図。The figure which shows the relationship between [groove depth Hi / groove depth Ho (each groove depth ratio)] and [the riding load of a ball]. 従来のウォームギア付きモータ装置の主要部分の構成例を示す断面図。Sectional drawing which shows the structural example of the principal part of the conventional motor apparatus with a worm gear. 従来のウォームギア付きモータ装置の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the conventional motor apparatus with a worm gear. 従来のウォームギア付きモータ装置の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the conventional motor apparatus with a worm gear. 従来のウォームギア付きモータ装置の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the conventional motor apparatus with a worm gear. 従来のウォームギア付きモータ装置の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the conventional motor apparatus with a worm gear. (a)及び(b)は、玉軸受の組立方法の一例を説明するための正面図。(a) And (b) is a front view for demonstrating an example of the assembly method of a ball bearing.

符号の説明Explanation of symbols

2 内輪
4 外輪
6 玉
8,10 軌道溝
8s,10s 縁部(肩部)
d 内輪内径
D 外輪外径
dm 中央径
PCD ピッチ円径
Da 玉直径
Hi,Ho 溝深さ
2 Inner ring 4 Outer ring 6 Ball 8, 10 Track groove 8s, 10s Edge (shoulder)
d Inner ring inner diameter D Outer ring outer diameter dm Center diameter PCD Pitch circle diameter Da Ball diameter Hi, Ho Groove depth

Claims (2)

相対回転可能に対向して配置された一対の内輪及び外輪と、
内輪の対向面及び外輪の対向面にそれぞれ形成された軌道溝間に転動自在に組み込まれた複数の玉とを備えており、
内輪の内径と外輪の外径との中間を通る仮想円の直径をdm、玉のピッチ円径をPCD、玉の直径をDa、内輪の軌道溝の最底部から当該軌道溝の縁部までの径方向距離をHi、外輪の軌道溝の最底部から当該軌道溝の縁部までの径方向距離をHoとした場合、1.00<(PCD/dm)≦1.05であるとともに、少なくともHi,Hoのうちいずれか一方は、Hi≧0.15Da若しくはHo≧0.15Daであることを特徴とする玉軸受。
A pair of inner and outer rings disposed opposite to each other for relative rotation;
A plurality of balls that are rotatably integrated between raceway grooves formed on the opposing surface of the inner ring and the opposing surface of the outer ring,
The diameter of the imaginary circle that passes between the inner diameter of the inner ring and the outer diameter of the outer ring is dm, the pitch diameter of the ball is PCD, the diameter of the ball is Da, and from the bottom of the inner ring raceway groove to the edge of the raceway groove When the radial distance is Hi and the radial distance from the bottom of the outer raceway groove to the edge of the raceway groove is Ho, 1.00 <(PCD / dm) ≦ 1.05 and at least Hi , Ho is a ball bearing, wherein Hi ≧ 0.15 Da or Ho ≧ 0.15 Da.
玉軸受は、複数の玉が軌道溝間に沿って1列に並んだ単列であることを特徴とする請求項1に記載の玉軸受。
The ball bearing according to claim 1, wherein the ball bearing is a single row in which a plurality of balls are arranged in a row along the raceway grooves.
JP2005165674A 2005-06-06 2005-06-06 Ball bearing Pending JP2006336827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165674A JP2006336827A (en) 2005-06-06 2005-06-06 Ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165674A JP2006336827A (en) 2005-06-06 2005-06-06 Ball bearing

Publications (1)

Publication Number Publication Date
JP2006336827A true JP2006336827A (en) 2006-12-14

Family

ID=37557550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165674A Pending JP2006336827A (en) 2005-06-06 2005-06-06 Ball bearing

Country Status (1)

Country Link
JP (1) JP2006336827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065829A (en) * 2008-09-12 2010-03-25 Nsk Ltd Rolling bearing and design method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065829A (en) * 2008-09-12 2010-03-25 Nsk Ltd Rolling bearing and design method for the same

Similar Documents

Publication Publication Date Title
EP2180210B1 (en) Reduction gear
EP2952763B1 (en) Multipoint contact ball bearing
JP6047999B2 (en) Rotating support device
WO2011062257A1 (en) Tandem angular type ball bearing
JPWO2003071142A1 (en) Rotation support device for pulley for compressor
EP2706265B1 (en) Speed reducer
JP2008189212A (en) In-wheel motor driving device
JP2007333022A (en) Deep groove ball bearing
JP4661424B2 (en) Rotation support
JP5067789B2 (en) In-wheel motor drive device
JP5600927B2 (en) Tandem angular contact ball bearings
JP2006336827A (en) Ball bearing
JP2005214330A (en) Four-point contact ball bearing and manufacturing method thereof
JP2006194361A (en) Screw compressor bearing device
EP2628968A1 (en) Loose spacing body forming an open pocket to accomodate two rollers, in particular for a thrust roller bearing of a tunnel boring machine
US20050064977A1 (en) Roller/retainer assembly for planetary gear and planetary gears support using the same
JP2006292046A (en) Rolling bearing, and transmission for automobile, motor and generator using the same
JP2009108996A (en) Planetary gear device and transaxle for vehicle
JPWO2003025409A1 (en) Pulley rotation support device
JP2009216112A (en) Radial needle roller bearing
JP6121760B2 (en) Electric linear actuator
JP2010169105A (en) Support structure of ball screw shaft
JP2008014414A (en) Thrust roller bearing
JP2009180235A (en) Automatic self-aligning roller bearing
JP4687019B2 (en) Pinion shaft support bearing device