JP2006336826A - Hydrostatic gas bearing spindle - Google Patents

Hydrostatic gas bearing spindle Download PDF

Info

Publication number
JP2006336826A
JP2006336826A JP2005165614A JP2005165614A JP2006336826A JP 2006336826 A JP2006336826 A JP 2006336826A JP 2005165614 A JP2005165614 A JP 2005165614A JP 2005165614 A JP2005165614 A JP 2005165614A JP 2006336826 A JP2006336826 A JP 2006336826A
Authority
JP
Japan
Prior art keywords
gas
gas bearing
static pressure
bearing spindle
hydrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005165614A
Other languages
Japanese (ja)
Inventor
Teruyoshi Horiuchi
照悦 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005165614A priority Critical patent/JP2006336826A/en
Publication of JP2006336826A publication Critical patent/JP2006336826A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0681Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
    • F16C32/0696Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for both radial and axial load

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrostatic gas bearing spindle capable of preventing intrusion of foreign matter such as working fluid to a hydrostatic gas bearing even after the operation is terminated. <P>SOLUTION: This hydrostatic gas bearing spindle 1 includes a communication passage 70 for communicating a hydrostatic gas journal bearing 31, a hydrostatic gas thrust bearing 32 and the external of the hydrostatic gas bearing spindle 1, a sealing gas supply portion 50 for supplying a sealing gas to the communication passage 70 for preventing inflow of the foreign matter to the hydrostatic gas journal bearing 31 and the hydrostatic gas thrust bearing 32, and a sealing gas flow channel 51 connecting the communication passage 70 and the seal gas supply portion 50. The communication passage 70 is provided with a liquid storing portion between a first connecting portion as a connecting portion with the sealing gas flow channel 51 and a communication passage opening as an opening to the external of the hydrostatic gas bearing spindle 1 in the communication passage 70. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は静圧気体軸受スピンドルに関し、より特定的には、静圧気体軸受への異物の流入を防止するためのシール用気体供給部を備えた静圧気体軸受スピンドルに関するものである。   The present invention relates to a hydrostatic gas bearing spindle, and more particularly to a hydrostatic gas bearing spindle provided with a sealing gas supply unit for preventing foreign matter from flowing into the hydrostatic gas bearing.

工作機械などの加工機に使用される静圧気体軸受スピンドルは、研削液や切削液など(以下、加工液)の飛沫が飛散する環境で使用される場合が多い。このような場合、加工機の運転中に被加工物の切り屑を含んだ加工液が静圧気体軸受の軸受すき間に侵入し、静圧気体軸受の焼付き等の不具合が生じるおそれがある。   A static pressure gas bearing spindle used for a processing machine such as a machine tool is often used in an environment where splashes of grinding fluid, cutting fluid, and the like (hereinafter referred to as processing fluid) are scattered. In such a case, during operation of the processing machine, the machining fluid containing chips of the workpiece may enter the bearing gap of the static pressure gas bearing, causing problems such as seizure of the static pressure gas bearing.

これに対し、圧縮空気を用いたシール機構を設けた静圧気体軸受スピンドルが提案されている。これにより、静圧気体軸受スピンドルの運転中、すなわちシール機構および静圧気体軸受に圧縮空気が供給されている間においては、加工液の静圧気体軸受への侵入は防止される(たとえば特許文献1参照)。
特開2000−46054号公報
On the other hand, a hydrostatic gas bearing spindle provided with a sealing mechanism using compressed air has been proposed. This prevents the machining fluid from entering the static pressure gas bearing during operation of the static pressure gas bearing spindle, that is, while compressed air is supplied to the sealing mechanism and the static pressure gas bearing (for example, Patent Documents). 1).
JP 2000-46054 A

しかし、静圧気体軸受スピンドルの運転が終了し、シール機構および静圧気体軸受への圧縮空気の供給が停止した場合、静圧気体軸受スピンドルに付着した加工液が毛細管現象により静圧気体軸受に侵入するおそれがある。さらに、静圧気体軸受スピンドルの運転により温度が上昇したスピンドル内部の気体が、運転停止後に冷却されることにより収縮して、スピンドル内部はスピンドル外部に対して負圧となる。そのため、静圧気体軸受スピンドルに付着した加工液が空気とともにスピンドル内部の静圧気体軸受に浸入するおそれもある。このようにして加工液が静圧気体軸受に侵入した場合、静圧気体軸受スピンドルの運転を再開すると、静圧気体軸受の焼付き等の不具合が生じるおそれがある。   However, when the operation of the hydrostatic gas bearing spindle is completed and the supply of compressed air to the sealing mechanism and hydrostatic gas bearing is stopped, the working fluid adhering to the hydrostatic gas bearing spindle is transferred to the hydrostatic gas bearing by capillary action. There is a risk of intrusion. Furthermore, the gas inside the spindle, whose temperature has been raised by the operation of the hydrostatic gas bearing spindle, is contracted by being cooled after the operation is stopped, and the inside of the spindle becomes a negative pressure with respect to the outside of the spindle. Therefore, there is a possibility that the machining fluid adhering to the static pressure gas bearing spindle may enter the static pressure gas bearing inside the spindle together with air. When the machining fluid enters the static pressure gas bearing in this manner, there is a risk that problems such as seizure of the static pressure gas bearing may occur if the operation of the static pressure gas bearing spindle is resumed.

そこで、本発明の目的は、運転が終了した後においても静圧気体軸受への加工液などの異物の侵入を防止可能な静圧気体軸受スピンドルを提供することである。   Accordingly, an object of the present invention is to provide a static pressure gas bearing spindle capable of preventing foreign matter such as machining fluid from entering the static pressure gas bearing even after the operation is completed.

本発明に従った静圧気体軸受スピンドルは、静圧気体軸受を備えた静圧気体軸受スピンドルであって、静圧気体軸受と静圧気体軸受スピンドルの外部とを連通する連通路と、静圧気体軸受への異物の流入を防止するために連通路にシール用気体を供給するためのシール用気体供給部と、連通路とシール用気体供給部とを繋ぐシール用気体流路とを含んでいる。連通路には、シール用気体流路との連結部である第1の連結部と連通路における静圧気体軸受スピンドルの外部への開口である連通路開口との間に液溜め部が形成されている。   A hydrostatic gas bearing spindle according to the present invention is a hydrostatic gas bearing spindle provided with a hydrostatic gas bearing, wherein the hydrostatic gas bearing communicates with the outside of the hydrostatic gas bearing spindle, A sealing gas supply section for supplying a sealing gas to the communication path in order to prevent foreign matter from flowing into the gas bearing; and a sealing gas flow path connecting the communication path and the sealing gas supply section. Yes. In the communication passage, a liquid reservoir is formed between the first connection portion which is a connection portion with the sealing gas flow path and the communication passage opening which is an opening to the outside of the static pressure gas bearing spindle in the communication passage. ing.

本発明の静圧気体軸受スピンドルによれば、静圧気体軸受スピンドルの運転中においては、シール用気体供給部からシール用気体流路を通って連通路にシール用気体が供給されることにより、静圧気体軸受への異物の流入が防止される。一方、静圧気体軸受スピンドルの運転が終了し、連通路へのシール用気体の供給が停止された場合においては、毛細管現象、静圧気体軸受スピンドル内部の負圧などに起因して連通路開口から加工液などの異物が侵入するおそれがある。しかし、加工液などの異物が侵入した場合であっても、侵入した加工液などの異物は液溜め部に捕捉されて溜まる。そのため、液溜め部よりも静圧気体軸受側(シール用気体の排出方向における上流側)には加工液などの異物はほとんど侵入せず、わずかに侵入した場合でも表面張力により液溜め部付近に保持され、静圧気体軸受への侵入は抑制される。その結果、運転が終了した後においても静圧気体軸受への加工液などの異物の侵入を防止可能な静圧気体軸受スピンドルを提供することができる。   According to the static pressure gas bearing spindle of the present invention, during operation of the static pressure gas bearing spindle, the sealing gas is supplied from the sealing gas supply portion to the communication path through the sealing gas flow path, Inflow of foreign matter to the static pressure gas bearing is prevented. On the other hand, when the operation of the static pressure gas bearing spindle is finished and the supply of the sealing gas to the communication path is stopped, the communication path opening is caused by capillary action, negative pressure inside the static pressure gas bearing spindle, etc. There is a risk that foreign matter such as machining fluid may enter. However, even when foreign matter such as machining fluid enters, foreign matter such as the entered machining fluid is captured and collected in the liquid reservoir. For this reason, foreign matter such as machining fluid hardly enters the hydrostatic gas bearing side (upstream side in the discharge direction of the sealing gas) from the liquid reservoir, and even if it enters slightly, the surface tension causes the vicinity of the liquid reservoir. It is held and entry into the hydrostatic gas bearing is suppressed. As a result, it is possible to provide a hydrostatic gas bearing spindle capable of preventing foreign matter such as machining fluid from entering the hydrostatic gas bearing even after the operation is completed.

ここで、連通路とはたとえば回転部と当該回転部を取り囲むように隣接するハウジングとを含む静圧気体軸受スピンドルにおいては、回転部とハウジングとの隙間であって、静圧気体軸受と静圧気体軸受スピンドルの外部とを連通する通路である。   Here, in the static pressure gas bearing spindle including a rotating portion and a housing adjacent to surround the rotating portion, for example, the communication path is a gap between the rotating portion and the housing, and is a static pressure gas bearing and a static pressure. A passage communicating with the outside of the gas bearing spindle.

上記静圧気体軸受スピンドルにおいて好ましくは、液溜め部と静圧気体軸受スピンドルの外部とを繋ぐ液体排出路をさらに備えている。これにより、液溜め部に溜まった加工液などの異物は、静圧気体軸受スピンドルの運転が再開され、連通路にシール用気体の供給されることにより、液体排出路を通って静圧気体軸受スピンドルの外部へと排出される。その結果、液溜め部に溜まった加工液などの異物を取り除く作業を別途行なう必要がなくなり、静圧気体軸受スピンドルの保全が容易となる。   Preferably, the hydrostatic gas bearing spindle further includes a liquid discharge path that connects the liquid reservoir and the outside of the hydrostatic gas bearing spindle. As a result, foreign matter such as machining fluid accumulated in the liquid reservoir is restarted by the operation of the static pressure gas bearing spindle, and the sealing gas is supplied to the communication path, so that the static pressure gas bearing passes through the liquid discharge path. It is discharged to the outside of the spindle. As a result, it is not necessary to separately perform a work for removing foreign substances such as machining fluid accumulated in the liquid reservoir, and maintenance of the static pressure gas bearing spindle is facilitated.

上記静圧気体軸受スピンドルにおいて好ましくは、液体排出路の気体の流れに垂直な断面の断面積は、液溜め部よりも連通路開口側における連通路の気体の流れに垂直な断面の断面積よりも小さい。   Preferably, in the static pressure gas bearing spindle, the cross-sectional area of the cross section perpendicular to the gas flow in the liquid discharge path is greater than the cross-sectional area of the cross section perpendicular to the gas flow in the communication path on the communication path opening side of the liquid reservoir. Is also small.

これにより、液体排出路を通って静圧気体軸受スピンドルの外部に排出されるシール用気体の量を抑制することができる。その結果、液体排出路を設けることによるシール性能への影響を小さくすることができる。   Thereby, the quantity of the gas for sealing discharged | emitted through the liquid discharge path to the exterior of a static pressure gas bearing spindle can be suppressed. As a result, it is possible to reduce the influence on the sealing performance by providing the liquid discharge path.

上記静圧気体軸受スピンドルにおいて好ましくは、液溜め部には、連通路におけるシール用気体の排出方向での上流側に位置する連通路との接続部である上流側接続開口と、排出方向における下流側に位置する連通路との接続部である下流側接続開口とが形成されている。下流側接続開口は、上流側接続開口から液溜め部に供給されるシール用気体の供給方向に沿った方向から見て、上流側接続開口と平面的に重ならない位置に配置されている。   In the hydrostatic gas bearing spindle, preferably, the liquid reservoir includes an upstream connection opening that is a connection portion with a communication path located upstream in the discharge direction of the sealing gas in the communication path, and a downstream in the discharge direction. A downstream connection opening which is a connection portion with the communication path located on the side is formed. The downstream connection opening is arranged at a position that does not overlap the upstream connection opening in a plan view when viewed from the direction along the supply direction of the sealing gas supplied from the upstream connection opening to the liquid reservoir.

これにより、下流側接続開口から液溜め部に侵入した加工液などの異物は上流側接続開口に直接侵入しにくくなるため、液溜め部に捕捉されやすくなる。その結果、液溜め部に侵入した加工液の静圧気体軸受への侵入は一層抑制される。   As a result, foreign matter such as machining fluid that has entered the liquid reservoir from the downstream connection opening is less likely to directly enter the upstream connection opening, and is thus easily captured by the liquid reservoir. As a result, the penetration of the working fluid that has entered the liquid reservoir into the static pressure gas bearing is further suppressed.

上記静圧気体軸受スピンドルにおいて好ましくは、連通路において、静圧気体軸受と第1の連結部との間に連結され、連通路と外部とを繋ぐ圧力調整用排出路をさらに備えている。連通路と圧力調整用排出路との連結部である第2の連結部と第1の連結部との間における気体の流れに対する抵抗は、圧力調整用排出路における気体の流れに対する抵抗よりも大きくなるように、連通路および圧力調整用排出路が構成されている。   Preferably, the static pressure gas bearing spindle further includes a pressure adjusting discharge path connected between the static pressure gas bearing and the first connecting portion in the communication path and connecting the communication path and the outside. The resistance to the gas flow between the second connecting portion and the first connecting portion, which is the connecting portion between the communication passage and the pressure adjusting discharge passage, is larger than the resistance to the gas flow in the pressure adjusting discharge passage. Thus, the communication path and the pressure adjusting discharge path are configured.

連通路におけるシール用気体の圧力が上昇すると、静圧気体軸受の外周部の圧力が上がり、静圧気体軸受の軸受すき間の圧力分布に影響を与え、回転部の回転の定常位置の変化、剛性の低下(回転部の回転振れ精度の低下)などの不具合を生じるおそれがある。特に、シール性能を向上させる目的で、圧縮空気などのシール用気体の供給圧力を上昇させた場合、連通路の幅を小さくした場合などにおいてこのような不具合が生じやすい。これに対し、連通路および圧力調整用排出路が上述のように構成されることで、シール用気体の圧力を上げた場合でも、静圧気体軸受の周囲はスピンドル外部の圧力とほぼ等しい圧力に保たれる。その結果、シール用気体が静圧気体軸受の軸受すき間の圧力分布に影響を与えることによる不具合の発生を抑制することができる。   When the pressure of the sealing gas in the communication path increases, the pressure at the outer periphery of the hydrostatic gas bearing increases, which affects the pressure distribution in the bearing clearance of the hydrostatic gas bearing, changes in the steady position of rotation of the rotating part, and rigidity There is a risk that problems such as lowering (decrease in rotational runout accuracy of the rotating part) may occur. In particular, in order to improve the sealing performance, such a problem is likely to occur when the supply pressure of a sealing gas such as compressed air is increased, or when the width of the communication path is reduced. On the other hand, the communication passage and the pressure adjusting discharge passage are configured as described above, so that the pressure around the hydrostatic gas bearing is almost equal to the pressure outside the spindle even when the pressure of the sealing gas is increased. Kept. As a result, it is possible to suppress the occurrence of problems caused by the sealing gas affecting the pressure distribution in the bearing gap of the static pressure gas bearing.

上記静圧気体軸受スピンドルにおいて好ましくは、連通路と圧力調整用排出路との連結部である第2の連結部と第1の連結部との間における気体の流れに対する抵抗は、液溜め部と第1の連結部との間における気体の流れに対する抵抗よりも大きくなるように連通路が構成されている。   In the hydrostatic gas bearing spindle, preferably, the resistance to the gas flow between the second connecting portion and the first connecting portion, which is a connecting portion between the communication passage and the pressure adjusting discharge passage, is the liquid reservoir portion. The communication path is configured to be larger than the resistance against the gas flow between the first connecting portion and the first connecting portion.

これにより、シール性能の確保に必要なシール用気体が気体の流れに対する抵抗の小さい経路を通って連通路開口から噴出されるとともに、過剰なシール用気体が気体の流れに対する抵抗の大きい経路を通って静圧気体軸受スピンドルの外部へと排出される。その結果、圧力調整用排出路を設けることによるシール性能の低下を回避することができる。   As a result, the sealing gas necessary for ensuring the sealing performance is ejected from the communication passage opening through a path having a low resistance to the gas flow, and excessive sealing gas is passed through a path having a high resistance to the gas flow. And discharged outside the static pressure gas bearing spindle. As a result, it is possible to avoid a decrease in sealing performance due to the provision of the pressure adjusting discharge passage.

以上の説明から明らかなように、本発明の静圧気体軸受スピンドルによれば、運転が終了した後においても静圧気体軸受への加工液などの異物の侵入を防止可能な静圧気体軸受スピンドルを提供することができる。   As is apparent from the above description, according to the hydrostatic gas bearing spindle of the present invention, the hydrostatic gas bearing spindle capable of preventing foreign matter such as machining fluid from entering the hydrostatic gas bearing even after the operation is completed. Can be provided.

以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1は、本発明の一実施の形態である実施の形態1の静圧気体軸受スピンドルの構成を示す概略断面図である。また、図2は、図1の領域II付近を拡大して示した概略部分断面図である。図1および図2を参照して、実施の形態1の静圧気体軸受スピンドルの構成について説明する。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a configuration of a static pressure gas bearing spindle according to Embodiment 1, which is an embodiment of the present invention. FIG. 2 is a schematic partial cross-sectional view showing the vicinity of region II in FIG. 1 in an enlarged manner. With reference to FIG. 1 and FIG. 2, the structure of the static pressure gas bearing spindle of Embodiment 1 is demonstrated.

図1を参照して、実施の形態1の静圧気体軸受スピンドル1は、回転部10と、回転部10を取り囲むように形成されたハウジング部20とを備えている。回転部10とハウジング部20との間には、回転部10を軸に垂直な方向(ラジアル方向)に軸支する静圧気体ジャーナル軸受31と、回転部10を軸方向(アキシアル方向)に軸支する静圧気体スラスト軸受32とが配置されている。さらに、静圧気体軸受スピンドル1は軸受用気体供給部40を備えており、図示しないエアコンプレッサなどの軸受用気体供給源から軸受用気体供給部40に供給された空気などの軸受用気体が軸受用気体供給路33からジャーナル給気絞り31Aおよびスラスト給気絞り32Aを通じて静圧気体ジャーナル軸受31および静圧気体スラスト軸受32に供給される構成となっている。これにより、回転部10とハウジング部20との間の隙間において、供給された軸受用気体により気体膜が形成されて、回転部10はハウジング部20に対して回転自在に軸支されている。回転部10にはモータの回転子60が配置されており、回転部10はモータの動力により回転可能に構成されている。   Referring to FIG. 1, the static pressure gas bearing spindle 1 of Embodiment 1 includes a rotating part 10 and a housing part 20 formed so as to surround the rotating part 10. Between the rotating part 10 and the housing part 20, a hydrostatic gas journal bearing 31 that supports the rotating part 10 in a direction perpendicular to the axis (radial direction) and an axis of the rotating part 10 in the axial direction (axial direction) are provided. A supporting hydrostatic gas thrust bearing 32 is arranged. Further, the static pressure gas bearing spindle 1 includes a bearing gas supply unit 40, and a bearing gas such as air supplied from a bearing gas supply source such as an air compressor (not shown) to the bearing gas supply unit 40 is a bearing. The gas supply passage 33 is supplied to the static pressure gas journal bearing 31 and the static pressure gas thrust bearing 32 through the journal supply throttle 31A and the thrust supply throttle 32A. Thus, a gas film is formed by the supplied bearing gas in the gap between the rotating portion 10 and the housing portion 20, and the rotating portion 10 is pivotally supported with respect to the housing portion 20. A rotor 60 of the motor is disposed in the rotating unit 10, and the rotating unit 10 is configured to be rotatable by the power of the motor.

さらに、静圧気体軸受スピンドル1は静圧気体ジャーナル軸受31および静圧気体スラスト軸受32と静圧気体軸受スピンドル1の外部とを連通する連通路70と、静圧気体軸受部への異物の流入を防止するために連通路70にシール用気体を供給するためのシール用気体供給部50と、連通路70とシール用気体供給部50とを繋ぐシール用気体流路51とを含んでいる。   Further, the static pressure gas bearing spindle 1 includes a static pressure gas journal bearing 31, a static pressure gas thrust bearing 32 and a communication passage 70 that communicates the outside of the static pressure gas bearing spindle 1 and the inflow of foreign matter to the static pressure gas bearing portion. In order to prevent this, a sealing gas supply part 50 for supplying a sealing gas to the communication path 70 and a sealing gas flow channel 51 connecting the communication path 70 and the sealing gas supply part 50 are included.

図2を参照して、連通路70には、シール用気体流路51との連結部である第1の連結部71と連通路70における静圧気体軸受スピンドル1の外部への開口である連通路開口72との間に液溜め部73が形成されている。ここで、連通路70は、静圧気体軸受スピンドル1の外部から、連通路開口72、連通路開口72と液溜め部73とを繋ぐ第1のシール隙間77、液溜め部73、液溜め部73と第1の連結部71とを繋ぐ第2のシール隙間78、第1の連結部71、第1の連結部71と静圧気体軸受部とを繋ぐ第3のシール隙間79を経て静圧気体軸受部に至るように形成されている。また、回転部10の軸方向に垂直な断面は円形である。そして、連通路70および液溜め部73は回転部10に沿うように形成されており、軸方向に垂直な断面は円環状の形状となっている。   Referring to FIG. 2, the communication passage 70 is a first connection portion 71 that is a connection portion with the sealing gas flow path 51 and a communication passage that is an opening to the outside of the static pressure gas bearing spindle 1 in the communication passage 70. A liquid reservoir 73 is formed between the passage opening 72. Here, the communication passage 70 includes a communication passage opening 72, a first seal gap 77 that connects the communication passage opening 72 and the liquid reservoir 73, a liquid reservoir 73, and a liquid reservoir from the outside of the static pressure gas bearing spindle 1. The second seal gap 78 connecting 73 and the first connecting portion 71, the first connecting portion 71, and the third seal gap 79 connecting the first connecting portion 71 and the static pressure gas bearing portion via static pressure. It is formed so as to reach the gas bearing portion. Moreover, the cross section perpendicular | vertical to the axial direction of the rotation part 10 is circular. The communication passage 70 and the liquid reservoir 73 are formed along the rotating portion 10, and the cross section perpendicular to the axial direction has an annular shape.

さらに、静圧気体軸受スピンドル1は液溜め部73と静圧気体軸受スピンドル1の外部とを繋ぐ液体排出路90を備えている。そして、液体排出路90の気体の流れの方向に垂直な断面の断面積は、液溜め部73よりも連通路開口72側における連通路70(第1のシール隙間77)の気体の流れの方向に垂直な断面の断面積よりも小さい。さらに、液体排出路90と第1のシール隙間77の、気体の流れの方向に垂直な断面の断面積の和は、第2のシール隙間78の気体の流れの方向に垂直な断面の断面積よりも小さい。   Further, the static pressure gas bearing spindle 1 is provided with a liquid discharge passage 90 that connects the liquid reservoir 73 and the outside of the static pressure gas bearing spindle 1. The cross-sectional area of the cross section perpendicular to the direction of the gas flow in the liquid discharge path 90 is the direction of the gas flow in the communication path 70 (first seal gap 77) on the communication path opening 72 side of the liquid reservoir 73. Smaller than the cross-sectional area of the cross section perpendicular to. Furthermore, the sum of the cross-sectional areas of the liquid discharge passage 90 and the first seal gap 77 in the cross section perpendicular to the direction of gas flow is the cross-sectional area of the cross section of the second seal gap 78 perpendicular to the direction of gas flow. Smaller than.

さらに、液溜め部73には、連通路70におけるシール用気体の排出方向での上流側に位置する連通路70との接続部である上流側接続開口74と、排出方向における下流側に位置する連通路70との接続部である下流側接続開口75とが形成されている。下流側接続開口75は、上流側接続開口74から液溜め部73に供給されるシール用気体の供給方向76に沿った方向から見て、上流側接続開口74と平面的に重ならない位置に配置されている。別の観点から説明すると、連通路70は液溜め部73において屈曲している。   Furthermore, the liquid reservoir 73 is positioned on the downstream side in the discharge direction and the upstream side connection opening 74 that is a connection part with the communication path 70 located on the upstream side in the discharge direction of the sealing gas in the communication path 70. A downstream connection opening 75 which is a connection portion with the communication path 70 is formed. The downstream connection opening 75 is disposed at a position that does not overlap the upstream connection opening 74 in a plan view when viewed from the direction along the supply direction 76 of the sealing gas supplied from the upstream connection opening 74 to the liquid reservoir 73. Has been. From another viewpoint, the communication path 70 is bent at the liquid reservoir 73.

次に、図1および図2を参照して、実施の形態1の静圧気体軸受スピンドル1の動作について説明する。図1を参照して、モータの回転子60を有するモータに図示しない電源から電力が供給されることにより、回転駆動力が発生する。これにより、ハウジング部20に対して回転自在に軸支されている回転部10は、ハウジング部20に対して相対的に回転する。   Next, the operation of the static pressure gas bearing spindle 1 according to the first embodiment will be described with reference to FIGS. 1 and 2. Referring to FIG. 1, a rotational driving force is generated by supplying electric power from a power source (not shown) to a motor having a rotor 60 of the motor. Thereby, the rotating part 10 that is pivotally supported with respect to the housing part 20 rotates relative to the housing part 20.

このとき、図示しないエアコンプレッサなどのシール用気体供給源からシール用気体がシール用気体供給部50に供給される。シール用気体供給部50に供給されたシール用気体はシール用気体流路51を通り、図2に示すように第1の連結部71において連通路70に到達する。そして、シール用気体は第2のシール隙間78、液溜め部73および第1のシール隙間77を通って連通路開口72から静圧気体軸受スピンドル1の外部に向けて噴出する。これにより、静圧気体軸受スピンドル1の運転中においては、加工液の飛沫が飛散する環境で使用される場合であっても、加工液の連通路70への侵入は防止される。   At this time, a sealing gas is supplied to the sealing gas supply unit 50 from a sealing gas supply source such as an air compressor (not shown). The sealing gas supplied to the sealing gas supply unit 50 passes through the sealing gas flow channel 51 and reaches the communication path 70 in the first connecting unit 71 as shown in FIG. Then, the sealing gas is ejected from the communication passage opening 72 toward the outside of the static pressure gas bearing spindle 1 through the second seal gap 78, the liquid reservoir 73, and the first seal gap 77. As a result, during operation of the static pressure gas bearing spindle 1, entry of the machining fluid into the communication path 70 is prevented even when the machining fluid is used in an environment in which splashing occurs.

一方、静圧気体軸受スピンドル1の運転が終了し、シール用気体の噴出が停止した状態においては、運転により温度が上昇していた静圧気体軸受スピンドル1の温度が低下することにより連通路70内部の気体の温度が低下して収縮し、静圧気体軸受スピンドル1の外部に対して連通路70の内部が負圧状態となる。その結果、連通路開口72の周辺に付着している切り屑を含んだ加工液が連通路70の内部に侵入するおそれがある。また、毛細管現象によっても、加工液が連通路70の内部に侵入するおそれがある。しかし、静圧気体軸受スピンドル1においては、連通路70において、第1の連結部71と連通路開口72との間に液溜め部73が形成されているため、連通路開口72から第1のシール隙間77を通って侵入した加工液は液溜め部73において捕捉される。そのため、加工液は第2のシール隙間78へはほとんど侵入しない。また、加工液が第2のシール隙間78にわずかに侵入した場合であっても、加工液は表面張力により第2のシール隙間78に保持される。以上の結果、静圧気体軸受スピンドル1においては、連通路70に侵入した加工液の静圧気体ジャーナル軸受31および静圧気体スラスト軸受32への侵入が抑制されている。   On the other hand, in the state where the operation of the static pressure gas bearing spindle 1 is finished and the ejection of the sealing gas is stopped, the temperature of the static pressure gas bearing spindle 1 whose temperature has been increased by the operation decreases, and thereby the communication path 70 is reduced. The temperature of the internal gas decreases and contracts, and the inside of the communication passage 70 is in a negative pressure state with respect to the outside of the static pressure gas bearing spindle 1. As a result, there is a possibility that the machining fluid containing chips adhering to the periphery of the communication path opening 72 may enter the communication path 70. In addition, the machining liquid may enter the communication path 70 due to capillary action. However, in the static pressure gas bearing spindle 1, since the liquid reservoir 73 is formed between the first connection portion 71 and the communication passage opening 72 in the communication passage 70, the first passage 71 is connected to the first passage 71. The machining liquid that has entered through the seal gap 77 is captured by the liquid reservoir 73. For this reason, the machining liquid hardly penetrates into the second seal gap 78. Even when the machining liquid slightly enters the second seal gap 78, the machining liquid is held in the second seal gap 78 due to surface tension. As a result, in the static pressure gas bearing spindle 1, the penetration of the machining fluid that has entered the communication path 70 into the static pressure gas journal bearing 31 and the static pressure gas thrust bearing 32 is suppressed.

さらに、前述のように実施の形態1の静圧気体軸受スピンドル1は、液溜め部73と静圧気体軸受スピンドル1の外部とを繋ぐ液体排出路90を備えている。そのため、静圧気体軸受スピンドル1の運転が再開され、シール用気体が連通路70に供給されると、液溜め部73に溜まった加工液は、液体排出路90を通って静圧気体軸受スピンドル1の外部へと排出される。その結果、液溜め部73に溜まった加工液を取り除く作業を別途行なう必要がなく、静圧気体軸受スピンドル1の保全(メンテナンス)が容易となっている。ここで、液体排出路90は少なくとも1個形成されていればよいが、加工液を効率よく排出するためには複数個形成されていることがより好ましい。また、複数個形成される場合においては、液体排出路90は、排出された液体が周囲に悪影響を生じず、かつ加工液の飛散液滴やミストが液体排出路90に侵入しにくい位置に配置されることが望ましい。さらに、加工液の侵入を防止するために、液体排出路90の出口付近(出口に隣接する位置)に焼結金属や多孔性樹脂などの多孔質部材を配置してもよい。   Furthermore, as described above, the static pressure gas bearing spindle 1 of the first embodiment includes the liquid discharge path 90 that connects the liquid reservoir 73 and the outside of the static pressure gas bearing spindle 1. Therefore, when the operation of the static pressure gas bearing spindle 1 is restarted and the sealing gas is supplied to the communication path 70, the machining liquid accumulated in the liquid reservoir 73 passes through the liquid discharge path 90 and is then static pressure gas bearing spindle. 1 is discharged to the outside. As a result, it is not necessary to separately perform the work of removing the machining liquid accumulated in the liquid reservoir 73, and maintenance (maintenance) of the static pressure gas bearing spindle 1 is facilitated. Here, at least one liquid discharge path 90 may be formed, but it is more preferable that a plurality of liquid discharge paths 90 be formed in order to efficiently discharge the machining liquid. In the case where a plurality of liquid discharge channels are formed, the liquid discharge path 90 is disposed at a position where the discharged liquid does not adversely affect the surroundings and the scattered droplets or mist of the processing liquid does not easily enter the liquid discharge path 90. It is desirable that Furthermore, a porous member such as a sintered metal or a porous resin may be disposed in the vicinity of the outlet of the liquid discharge path 90 (position adjacent to the outlet) in order to prevent the processing liquid from entering.

さらに、前述のように液体排出路90の気体の流れに垂直な断面の断面積は、第1のシール隙間77の気体の流れの方向に垂直な断面の断面積よりも小さい。そのため、液体排出路90を通って静圧気体軸受スピンドル1の外部に排出されるシール用気体の量が抑制されている。その結果、液体排出路90を設けることによるシール性能への影響は小さくなっている。また、液体排出路90と第1のシール隙間77の、気体の流れの方向に垂直な断面の断面積の和は、第2のシール隙間78の気体の流れの方向に垂直な断面の断面積よりも小さい。そのため、第2のシール隙間78の気体の流れに対する抵抗は、第2のシール隙間78よりも下流部分の抵抗より小さくなり、液溜め部73のシール用気体の圧力は比較的高く維持される。その結果、シール用気体は第1のシール隙間77から高速で噴出して、さらに良好なシール性能を実現できる。   Furthermore, as described above, the cross-sectional area of the cross section perpendicular to the gas flow in the liquid discharge passage 90 is smaller than the cross-sectional area of the cross section of the first seal gap 77 perpendicular to the gas flow direction. Therefore, the amount of sealing gas discharged to the outside of the static pressure gas bearing spindle 1 through the liquid discharge passage 90 is suppressed. As a result, the influence on the sealing performance by providing the liquid discharge path 90 is reduced. Further, the sum of the cross-sectional areas of the liquid discharge passage 90 and the first seal gap 77 in the cross section perpendicular to the gas flow direction is the cross-sectional area of the second seal gap 78 in the cross section perpendicular to the gas flow direction. Smaller than. Therefore, the resistance of the second seal gap 78 to the gas flow is smaller than the resistance of the downstream portion of the second seal gap 78, and the pressure of the sealing gas in the liquid reservoir 73 is kept relatively high. As a result, the sealing gas is ejected from the first seal gap 77 at a high speed, and a better sealing performance can be realized.

なお、液体排出路90における気体の流れに対する抵抗が、第1のシール隙間77における気体の流れに対する抵抗よりも大きくなるように連通路70および液体排出路90を構成してもよい。これにより、液体排出路90を通って静圧気体軸受スピンドル1の外部に排出されるシール用気体の量が抑制される。その結果、液体排出路90を設けることによるシール性能への影響は小さくなる。ここで、液体排出路90における気体の流れに対する抵抗を第1のシール隙間77における気体の流れに対する抵抗よりも大きくするためには、たとえば液体排出路90の気体の流れの方向に垂直な断面の断面積を第1のシール隙間77の気体の流れの方向に垂直な断面の断面積よりも小さくする、液体排出路90の長さを第1のシール隙間77の気体の流れの方向における長さよりも長くする、などの対策を採用することができる。   The communication path 70 and the liquid discharge path 90 may be configured such that the resistance to the gas flow in the liquid discharge path 90 is larger than the resistance to the gas flow in the first seal gap 77. Thereby, the amount of sealing gas discharged through the liquid discharge passage 90 to the outside of the static pressure gas bearing spindle 1 is suppressed. As a result, the influence on the sealing performance by providing the liquid discharge path 90 is reduced. Here, in order to make the resistance to the gas flow in the liquid discharge path 90 larger than the resistance to the gas flow in the first seal gap 77, for example, a cross section perpendicular to the direction of the gas flow in the liquid discharge path 90 is used. The cross-sectional area is made smaller than the cross-sectional area of the cross section perpendicular to the gas flow direction of the first seal gap 77. The length of the liquid discharge passage 90 is made longer than the length of the first seal gap 77 in the gas flow direction. Measures such as lengthening can be adopted.

さらに、前述のように下流側接続開口75は、シール用気体の供給方向76に沿った方向から見て、上流側接続開口74と平面的に重ならない位置に配置されている。別の観点から説明すると、連通路70は液溜め部73において屈曲している。そのため、下流側接続開口75から液溜め部73に侵入した加工液は上流側接続開口74に直接侵入しにくくなっており、液溜め部73に捕捉されやすくなっている。その結果、連通路70に侵入した加工液の静圧気体ジャーナル軸受31および静圧気体スラスト軸受32への侵入は一層抑制されている。   Further, as described above, the downstream connection opening 75 is arranged at a position that does not overlap the upstream connection opening 74 in a plan view when viewed from the direction along the supply direction 76 of the sealing gas. From another viewpoint, the communication path 70 is bent at the liquid reservoir 73. Therefore, the machining liquid that has entered the liquid reservoir 73 from the downstream connection opening 75 is less likely to directly enter the upstream connection opening 74, and is easily captured by the liquid reservoir 73. As a result, the penetration of the machining fluid that has entered the communication passage 70 into the static pressure gas journal bearing 31 and the static pressure gas thrust bearing 32 is further suppressed.

なお、図2に示すように静圧気体軸受スピンドル1において、ハウジング部20が複数の部材から構成されており、当該部材同士の隙間を含む間隙によって液溜め部73と静圧気体ジャーナル軸受31または/および静圧気体スラスト軸受32とが連通している場合、当該隙間の少なくとも一箇所にOリング100を配置することが好ましい。これにより、加工液が当該間隙を通じて液溜め部73から静圧気体ジャーナル軸受31または/および静圧気体スラスト軸受32へと侵入することを防止することができる。   As shown in FIG. 2, in the hydrostatic gas bearing spindle 1, the housing portion 20 is composed of a plurality of members, and the liquid reservoir 73 and the hydrostatic gas journal bearing 31 or the like are formed by a gap including a gap between the members. / And when the static pressure gas thrust bearing 32 communicates, it is preferable to arrange the O-ring 100 in at least one place of the gap. Accordingly, it is possible to prevent the machining fluid from entering the static pressure gas journal bearing 31 and / or the static pressure gas thrust bearing 32 from the liquid reservoir 73 through the gap.

(実施の形態2)
図3は、本発明の一実施の形態である実施の形態2の静圧気体軸受スピンドルの構成を説明するための概略部分断面図である。図1および図3を参照して、本発明の実施の形態2の静圧気体軸受スピンドルの構成を説明する。
(Embodiment 2)
FIG. 3 is a schematic partial cross-sectional view for explaining the configuration of the hydrostatic gas bearing spindle according to the second embodiment which is an embodiment of the present invention. With reference to FIG. 1 and FIG. 3, the structure of the static pressure gas bearing spindle of Embodiment 2 of this invention is demonstrated.

実施の形態2の静圧気体軸受スピンドル1と、上述した実施の形態1の静圧気体軸受スピンドル1とは基本的に同様の構成を有している。しかし、実施の形態2では、図1の領域IIIの部分において、図3に示すような構成を有している点で実施の形態1とは異なっている。   The static pressure gas bearing spindle 1 of the second embodiment and the static pressure gas bearing spindle 1 of the first embodiment described above have basically the same configuration. However, the second embodiment is different from the first embodiment in that the region III in FIG. 1 has a configuration as shown in FIG.

具体的には、図3を参照して実施の形態2の静圧気体軸受スピンドル1は、連通路70において、静圧気体ジャーナル軸受31および静圧気体スラスト軸受32と第1の連結部71とを繋ぐ第3のシール隙間79に連結され、連通路70と静圧気体軸受スピンドル1の外部とを繋ぐ圧力調整用排出路80をさらに備えている点で、実施の形態1の静圧気体軸受スピンドル1とは異なっている。すなわち、圧力調整用排出路80は排出通路81を有しており、排出通路81の一端は第2の連結部82において連通路70の第3のシール隙間79に連結されている。さらに、排出通路81の他端は静圧気体軸受スピンドル1の外部への開口83を有する排気通路84に連結されている。   Specifically, referring to FIG. 3, the static pressure gas bearing spindle 1 according to the second embodiment includes a static pressure gas journal bearing 31, a static pressure gas thrust bearing 32, a first connection portion 71, and a communication path 70. The hydrostatic gas bearing of the first embodiment is further provided with a pressure adjusting discharge passage 80 that is connected to the third seal gap 79 that connects the communication path 70 and the outside of the hydrostatic gas bearing spindle 1. It is different from the spindle 1. That is, the pressure adjusting discharge passage 80 has a discharge passage 81, and one end of the discharge passage 81 is connected to the third seal gap 79 of the communication passage 70 at the second connecting portion 82. Further, the other end of the discharge passage 81 is connected to an exhaust passage 84 having an opening 83 to the outside of the static pressure gas bearing spindle 1.

さらに、連通路70と圧力調整用排出路80との連結部である第2の連結部82と第1の連結部71との間の第3のシール隙間79における気体の流れに対する抵抗は、液溜め部73と第1の連結部71とを繋ぐ第2のシール隙間78における気体の流れに対する抵抗よりも大きくなるように連通路70が構成されている。   Further, the resistance to the gas flow in the third seal gap 79 between the second connecting portion 82 and the first connecting portion 71, which is a connecting portion between the communication passage 70 and the pressure adjusting discharge passage 80, is liquid. The communication path 70 is configured to be larger than the resistance against the gas flow in the second seal gap 78 connecting the reservoir 73 and the first connecting portion 71.

次に、図1および図3を参照して、実施の形態2の静圧気体軸受スピンドル1の動作について説明する。実施の形態2の静圧気体軸受スピンドル1は実施の形態1の静圧気体軸受スピンドル1と同様に動作し、かつシール用気体の噴出により加工液の連通路70への侵入も同様に防止されている。さらに、静圧気体軸受スピンドル1の運転停止後における加工液の連通路70への侵入防止についても同様である。   Next, the operation of the hydrostatic gas bearing spindle 1 according to the second embodiment will be described with reference to FIGS. 1 and 3. The hydrostatic gas bearing spindle 1 of the second embodiment operates in the same manner as the hydrostatic gas bearing spindle 1 of the first embodiment, and the intrusion of the machining fluid into the communication path 70 is similarly prevented by the ejection of the sealing gas. ing. Further, the same is true for preventing the machining fluid from entering the communication path 70 after the operation of the static pressure gas bearing spindle 1 is stopped.

ここで、前述のように実施の形態2の静圧気体軸受スピンドル1は、連通路70において、第3のシール隙間79に連結され、連通路70と静圧気体軸受スピンドル1の外部とを繋ぐ圧力調整用排出路80をさらに備えている。そして、第2の連結部82と第1の連結部71との間の第3のシール隙間79における気体の流れに対する抵抗は、圧力調整用排出路80における気体の流れに対する抵抗よりも大きくなるように、連通路70および圧力調整用排出路80が構成されている。そのため、連通路70に供給されたシール用気体は、第3のシール隙間79によって静圧気体軸受側への流出を制限され、流出したシール用気体は圧力調整用排出路80を通じて外部に放出されるため、静圧気体軸受の軸受すき間周辺の圧力は、ほぼスピンドル外部の大気圧に維持される。その結果、シール用気体が静圧気体ジャーナル軸受31および静圧気体スラスト軸受32の軸受すき間の圧力分布に影響を与えることによる不具合の発生を抑制することができる。   Here, as described above, the static pressure gas bearing spindle 1 of the second embodiment is connected to the third seal gap 79 in the communication path 70 and connects the communication path 70 and the outside of the static pressure gas bearing spindle 1. A pressure adjusting discharge passage 80 is further provided. The resistance to the gas flow in the third seal gap 79 between the second connection portion 82 and the first connection portion 71 is larger than the resistance to the gas flow in the pressure adjusting discharge passage 80. In addition, a communication passage 70 and a pressure adjusting discharge passage 80 are formed. Therefore, the sealing gas supplied to the communication passage 70 is restricted from flowing out to the static pressure gas bearing side by the third seal gap 79, and the discharged sealing gas is discharged to the outside through the pressure adjusting discharge passage 80. Therefore, the pressure around the bearing clearance of the static pressure gas bearing is maintained at an atmospheric pressure outside the spindle. As a result, it is possible to suppress the occurrence of problems caused by the sealing gas affecting the pressure distribution between the bearing gaps of the static pressure gas journal bearing 31 and the static pressure gas thrust bearing 32.

さらに、前述のように第3のシール隙間79における気体の流れに対する抵抗は、第2のシール隙間78における気体の流れに対する抵抗よりも大きくなるように連通路70が構成されている。そのため、シール性能の確保に必要なシール用気体が気体の流れに対する抵抗の小さい第2のシール隙間78を通じて連通路開口72から静圧気体軸受スピンドル1の外部に噴出するとともに、過剰なシール用気体が気体の流れに対する抵抗の大きい第3のシール隙間79を通じて圧力調整用排出路80に至り、外部への開口83から静圧気体軸受スピンドル1の外部へと排出される。その結果、圧力調整用排出路80を設けることによるシール性能の低下を回避することができる。   Further, as described above, the communication path 70 is configured such that the resistance to the gas flow in the third seal gap 79 is larger than the resistance to the gas flow in the second seal gap 78. Therefore, the sealing gas necessary for ensuring the sealing performance is ejected from the communication passage opening 72 to the outside of the static pressure gas bearing spindle 1 through the second seal gap 78 having a low resistance to the gas flow, and an excessive sealing gas. Reaches the pressure adjusting discharge passage 80 through the third seal gap 79 having a large resistance to the gas flow, and is discharged from the opening 83 to the outside of the hydrostatic gas bearing spindle 1. As a result, it is possible to avoid a decrease in sealing performance due to the provision of the pressure adjusting discharge passage 80.

ここで、第3のシール隙間79における気体の流れに対する抵抗が大きいほど、静圧気体軸受の性能への影響による不具合の発生を抑制し、かつシール性能を向上させることが可能になる。そのため、回転部10との接触が生じない範囲で、第3のシール隙間79における気体の流れに対する抵抗が最も大きくなるように、連通路70の構成を決定することができる。第3のシール隙間79における気体の流れに対する抵抗を第2のシール隙間78における気体の流れに対する抵抗よりも大きくするためには、たとえば第3のシール隙間79の気体の流れに垂直な断面の断面積を第2のシール隙間78の気体の流れに垂直な断面の断面積よりも小さくする、第3のシール隙間79気体の流れの長さを第2のシール隙間78の気体の流れにおける長さよりも長くする、などの対策を採用することができる。   Here, as the resistance to the gas flow in the third seal gap 79 is larger, it is possible to suppress the occurrence of problems due to the influence on the performance of the static pressure gas bearing and to improve the seal performance. Therefore, the configuration of the communication path 70 can be determined so that the resistance to the gas flow in the third seal gap 79 is maximized within a range where no contact with the rotating unit 10 occurs. In order to make the resistance to the gas flow in the third seal gap 79 larger than the resistance to the gas flow in the second seal gap 78, for example, the cross section of the third seal gap 79 perpendicular to the gas flow is cut off. The area of the third seal gap 79 is smaller than the cross-sectional area of the second seal gap 78 perpendicular to the gas flow, and the length of the third seal gap 79 is longer than the length of the gas flow of the second seal gap 78 in the gas flow. Measures such as lengthening can be adopted.

また、連通路70と圧力調整用排出路80との連結部である第2の連結部82と第1の連結部71との間における連通路70(第3のシール隙間79)の気体の流れに垂直な断面の断面積は、液溜め部73と第1の連結部71との間における連通路70(第2のシール隙間78)の気体の流れの方向に垂直な断面の断面積よりも小さくなるように、連通路70を構成してもよい。   Further, the gas flow in the communication path 70 (third seal gap 79) between the second connection part 82 and the first connection part 71, which are the connection parts of the communication path 70 and the pressure adjusting discharge path 80. The cross-sectional area of the cross section perpendicular to the cross-sectional area is greater than the cross-sectional area of the cross section perpendicular to the direction of gas flow in the communication passage 70 (second seal gap 78) between the liquid reservoir 73 and the first connecting portion 71. You may comprise the communicating path 70 so that it may become small.

通常、第3のシール隙間79および第2のシール隙間78においては、気体の流れの方向の長さなどの他の要素に比べて、気体の流れの方向に垂直な断面の断面積は気体の流れに対する抵抗に及ぼす影響が大きい。そのため、上述のような連通路70の構成により、第3のシール隙間79における気体の流れに対する抵抗を、第2のシール隙間78における気体の流れに対する抵抗よりも大きくなるように連通路70を構成することができる。その結果、圧力調整用排出路80を設けることによるシール性能の低下を回避することができる。   In general, in the third seal gap 79 and the second seal gap 78, the cross-sectional area of the cross section perpendicular to the gas flow direction is smaller than that of the gas flow direction compared to other elements such as the length in the gas flow direction. The effect on resistance to flow is large. Therefore, the communication path 70 is configured such that the resistance to the gas flow in the third seal gap 79 is larger than the resistance to the gas flow in the second seal gap 78 by the configuration of the communication path 70 as described above. can do. As a result, it is possible to avoid a decrease in sealing performance due to the provision of the pressure adjusting discharge passage 80.

今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time is to be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の静圧気体軸受スピンドルは、静圧気体軸受への異物の流入を防止するためのシール用気体供給部を備えた静圧気体軸受スピンドルに特に有利に適用され得る。   The hydrostatic gas bearing spindle of the present invention can be particularly advantageously applied to a hydrostatic gas bearing spindle provided with a sealing gas supply unit for preventing foreign substances from flowing into the hydrostatic gas bearing.

実施の形態1の静圧気体軸受スピンドルの構成を示す概略断面図である。1 is a schematic cross-sectional view showing a configuration of a static pressure gas bearing spindle of a first embodiment. 図1の領域II付近を拡大して示した概略部分断面図である。FIG. 2 is a schematic partial cross-sectional view showing an area around a region II in FIG. 1 in an enlarged manner. 実施の形態2の静圧気体軸受スピンドルの構成を説明するための概略部分断面図である。FIG. 6 is a schematic partial cross-sectional view for explaining a configuration of a static pressure gas bearing spindle of a second embodiment.

符号の説明Explanation of symbols

1 静圧気体軸受スピンドル、10 回転部、20 ハウジング部、31 静圧気体ジャーナル軸受、32 静圧気体スラスト軸受、33 軸受用気体供給路、40 軸受用気体供給部、50 シール用気体供給部、51 シール用気体流路、60 モータの回転子、70 連通路、71 第1の連結部、72 連通路開口、73 液溜め部、74 上流側接続開口、75 下流側接続開口、76 シール用気体の供給方向、77 第1のシール隙間、78 第2のシール隙間、79 第3のシール隙間、80 圧力調整用排出路、81 排出通路、82 第2の連結部、83 外部への開口、84 排気通路、90 液体排出路、100 Oリング。   DESCRIPTION OF SYMBOLS 1 Static pressure gas bearing spindle, 10 rotation part, 20 housing part, 31 Static pressure gas journal bearing, 32 Static pressure gas thrust bearing, 33 Gas supply path for bearings, 40 Gas supply part for bearings, 50 Gas supply part for seals, 51 Sealing gas flow path, 60 Motor rotor, 70 Communication path, 71 First connection part, 72 Communication path opening, 73 Liquid reservoir, 74 Upstream connection opening, 75 Downstream connection opening, 76 Sealing gas Supply direction, 77 first seal gap, 78 second seal gap, 79 third seal gap, 80 pressure adjusting discharge path, 81 discharge path, 82 second connecting portion, 83 opening to the outside, 84 Exhaust passage, 90 liquid discharge passage, 100 O-ring.

Claims (6)

静圧気体軸受を備えた静圧気体軸受スピンドルであって、
前記静圧気体軸受と前記静圧気体軸受スピンドルの外部とを連通する連通路と、
前記静圧気体軸受への異物の流入を防止するために前記連通路にシール用気体を供給するためのシール用気体供給部と、
前記連通路と前記シール用気体供給部とを繋ぐシール用気体流路とを含み、
前記連通路には、前記シール用気体流路との連結部である第1の連結部と前記連通路における前記静圧気体軸受スピンドルの外部への開口である連通路開口との間に液溜め部が形成されている、静圧気体軸受スピンドル。
A hydrostatic gas bearing spindle with hydrostatic gas bearings,
A communication passage communicating the static pressure gas bearing and the outside of the static pressure gas bearing spindle;
A sealing gas supply unit for supplying a sealing gas to the communication path in order to prevent inflow of foreign matter into the static pressure gas bearing;
A sealing gas flow path connecting the communication path and the sealing gas supply unit;
In the communication passage, a liquid reservoir is provided between a first connection portion that is a connection portion with the sealing gas flow path and a communication passage opening that is an opening to the outside of the static pressure gas bearing spindle in the communication passage. A hydrostatic gas bearing spindle in which the part is formed.
前記液溜め部と前記静圧気体軸受スピンドルの外部とを繋ぐ液体排出路をさらに備えた、請求項1に記載の静圧気体軸受スピンドル。   The hydrostatic gas bearing spindle according to claim 1, further comprising a liquid discharge path that connects the liquid reservoir and the outside of the hydrostatic gas bearing spindle. 前記液体排出路の気体の流れに垂直な断面の断面積は、前記液溜め部よりも前記連通路開口側における前記連通路の気体の流れに垂直な断面の断面積よりも小さい、請求項1または2に記載の静圧気体軸受スピンドル。   The cross-sectional area of the cross section perpendicular to the gas flow in the liquid discharge path is smaller than the cross-sectional area of the cross section perpendicular to the gas flow in the communication path on the communication path opening side than the liquid reservoir. Or a hydrostatic gas bearing spindle according to 2; 前記液溜め部には、
前記連通路における前記シール用気体の排出方向での上流側に位置する前記連通路との接続部である上流側接続開口と、
前記排出方向における下流側に位置する前記連通路との接続部である下流側接続開口とが形成され、
前記下流側接続開口は、前記上流側接続開口から前記液溜め部に供給される前記シール用気体の供給方向に沿った方向から見て、前記上流側接続開口と平面的に重ならない位置に配置されている、請求項1〜3のいずれかに記載の静圧気体軸受スピンドル。
In the liquid reservoir,
An upstream connection opening which is a connection portion with the communication path located on the upstream side in the discharge direction of the sealing gas in the communication path;
A downstream connection opening that is a connection portion with the communication path located on the downstream side in the discharge direction is formed;
The downstream connection opening is arranged at a position that does not overlap the upstream connection opening in a plan view when viewed from the direction along the supply direction of the sealing gas supplied from the upstream connection opening to the liquid reservoir. The hydrostatic gas bearing spindle according to any one of claims 1 to 3.
前記連通路において、前記静圧気体軸受と前記第1の連結部との間に連結され、前記連通路と外部とを繋ぐ圧力調整用排出路をさらに備え、
前記連通路と前記圧力調整用排出路との連結部である第2の連結部と前記第1の連結部との間における気体の流れに対する抵抗は、前記圧力調整用排出路における気体の流れに対する抵抗よりも大きくなるように、前記連通路および前記圧力調整用排出路が構成されている、請求項1〜4のいずれかに記載の静圧気体軸受スピンドル。
The communication path further includes a pressure adjusting discharge path that is connected between the static pressure gas bearing and the first connection portion and connects the communication path and the outside.
The resistance to the gas flow between the second connecting portion and the first connecting portion, which is the connecting portion between the communication passage and the pressure adjusting discharge passage, is against the gas flow in the pressure adjusting discharge passage. The hydrostatic gas bearing spindle according to any one of claims 1 to 4, wherein the communication path and the pressure adjusting discharge path are configured to be larger than a resistance.
前記第2の連結部と前記第1の連結部との間における気体の流れに対する抵抗は、前記液溜め部と前記第1の連結部との間における気体の流れに対する抵抗よりも大きくなるように前記連通路が構成されている、請求項5に記載の静圧気体軸受スピンドル。   The resistance to the gas flow between the second connection part and the first connection part is larger than the resistance to the gas flow between the liquid reservoir part and the first connection part. The hydrostatic gas bearing spindle according to claim 5, wherein the communication path is configured.
JP2005165614A 2005-06-06 2005-06-06 Hydrostatic gas bearing spindle Pending JP2006336826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165614A JP2006336826A (en) 2005-06-06 2005-06-06 Hydrostatic gas bearing spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165614A JP2006336826A (en) 2005-06-06 2005-06-06 Hydrostatic gas bearing spindle

Publications (1)

Publication Number Publication Date
JP2006336826A true JP2006336826A (en) 2006-12-14

Family

ID=37557549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165614A Pending JP2006336826A (en) 2005-06-06 2005-06-06 Hydrostatic gas bearing spindle

Country Status (1)

Country Link
JP (1) JP2006336826A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113156A (en) * 2007-11-07 2009-05-28 Ntn Corp Static pressure gas bearing spindle
JP2009303379A (en) * 2008-06-12 2009-12-24 Nsk Ltd Spindle device and method of manufacturing spindle device
CN102101180A (en) * 2011-03-29 2011-06-22 湖南大学 Liquid-gas suspension electric main shaft
CN102252023A (en) * 2011-06-08 2011-11-23 大连海事大学 Static pressure gas bearing
US20120070108A1 (en) * 2010-09-17 2012-03-22 Leonid Kashchenevsky Hydrostatic arrangement for a spin welding machine and method of supporting spindle for the same
CN102691797A (en) * 2011-03-23 2012-09-26 刘森钢 Radial blowing device for high-speed electric spindle
CN102691796A (en) * 2011-03-23 2012-09-26 刘森钢 Axial blowing device of high-speed electric spindle
CN103128864A (en) * 2011-11-23 2013-06-05 北京中电科电子装备有限公司 Thrust bearing and motorized spindle
JP2018012149A (en) * 2016-07-20 2018-01-25 株式会社ディスコ Spindle unit
US20200039017A1 (en) * 2018-07-31 2020-02-06 Fanuc Corporation Spindle device
US10758985B2 (en) * 2018-08-31 2020-09-01 Fanuc Corporation Spindle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150075A (en) * 1987-12-08 1989-06-13 Toshiba Corp Bearing device for hydraulic machine
JPH03112168U (en) * 1990-02-28 1991-11-15
JPH0554821U (en) * 1991-12-25 1993-07-23 株式会社ディスコ Air spindle
JPH10100002A (en) * 1996-09-27 1998-04-21 Mitsubishi Heavy Ind Ltd Air spindle
JP2000153426A (en) * 1998-09-14 2000-06-06 Toyoda Mach Works Ltd Seal device for tool main spindle in machine tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150075A (en) * 1987-12-08 1989-06-13 Toshiba Corp Bearing device for hydraulic machine
JPH03112168U (en) * 1990-02-28 1991-11-15
JPH0554821U (en) * 1991-12-25 1993-07-23 株式会社ディスコ Air spindle
JPH10100002A (en) * 1996-09-27 1998-04-21 Mitsubishi Heavy Ind Ltd Air spindle
JP2000153426A (en) * 1998-09-14 2000-06-06 Toyoda Mach Works Ltd Seal device for tool main spindle in machine tool

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113156A (en) * 2007-11-07 2009-05-28 Ntn Corp Static pressure gas bearing spindle
JP2009303379A (en) * 2008-06-12 2009-12-24 Nsk Ltd Spindle device and method of manufacturing spindle device
US20120070108A1 (en) * 2010-09-17 2012-03-22 Leonid Kashchenevsky Hydrostatic arrangement for a spin welding machine and method of supporting spindle for the same
CN102691796A (en) * 2011-03-23 2012-09-26 刘森钢 Axial blowing device of high-speed electric spindle
CN102691797A (en) * 2011-03-23 2012-09-26 刘森钢 Radial blowing device for high-speed electric spindle
CN102101180A (en) * 2011-03-29 2011-06-22 湖南大学 Liquid-gas suspension electric main shaft
CN102101180B (en) * 2011-03-29 2012-08-29 湖南大学 Liquid-gas suspension electric main shaft
CN102252023A (en) * 2011-06-08 2011-11-23 大连海事大学 Static pressure gas bearing
CN103128864A (en) * 2011-11-23 2013-06-05 北京中电科电子装备有限公司 Thrust bearing and motorized spindle
JP2018012149A (en) * 2016-07-20 2018-01-25 株式会社ディスコ Spindle unit
US20200039017A1 (en) * 2018-07-31 2020-02-06 Fanuc Corporation Spindle device
US10882156B2 (en) * 2018-07-31 2021-01-05 Fanuc Corporation Spindle device
US10758985B2 (en) * 2018-08-31 2020-09-01 Fanuc Corporation Spindle device

Similar Documents

Publication Publication Date Title
JP2006336826A (en) Hydrostatic gas bearing spindle
WO2013002252A1 (en) Rolling bearing
US10001170B2 (en) Rolling bearing
US20110280679A1 (en) Cooling structure for machine tool main spindle
US6834997B2 (en) Spindle device using dynamic pressure bearing
JP2018068084A (en) Electric motor having air purge function
JP2009279673A (en) Spindle device and method of suppressing entry of foreign matter into spindle device
JP7164962B2 (en) Cooling structure of bearing device
WO2020090278A1 (en) Spindle device with built-in motor
JP5196397B2 (en) Hydrostatic gas bearing spindle
JP4657029B2 (en) Hydrostatic gas bearing spindle
JP2006125485A (en) Rolling bearing lubricating device
JP2009068649A (en) Spindle device
JP2005059151A (en) Cutting device
JP2004190739A (en) Air supply structure for non-contact bearing spindle device
JP2009085340A (en) Seal device for rotary shaft and seal cap
JP2008185203A (en) Sealing device of rotary shaft
JP2009197942A (en) Gas bearing spindle
JP2005180531A (en) Air oil lubricating structure of rolling bearing
CN113427400B (en) High-speed air-float grinding main shaft
JP4264731B2 (en) Hydrostatic air bearing spindle
JP2004106091A (en) Main spindle device of machine tool
WO2019188621A1 (en) Cooling structure for bearing device
JP2011240415A (en) Spindle device of machine tool
JP7265396B2 (en) rotary machine for work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831