JP2006336714A - Automatic shift control device - Google Patents

Automatic shift control device Download PDF

Info

Publication number
JP2006336714A
JP2006336714A JP2005160494A JP2005160494A JP2006336714A JP 2006336714 A JP2006336714 A JP 2006336714A JP 2005160494 A JP2005160494 A JP 2005160494A JP 2005160494 A JP2005160494 A JP 2005160494A JP 2006336714 A JP2006336714 A JP 2006336714A
Authority
JP
Japan
Prior art keywords
gear stage
fuel consumption
consumption rate
transmission
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005160494A
Other languages
Japanese (ja)
Other versions
JP4792817B2 (en
Inventor
Nobuyuki Nishimura
伸之 西村
Yoshinori Ukai
美憲 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2005160494A priority Critical patent/JP4792817B2/en
Publication of JP2006336714A publication Critical patent/JP2006336714A/en
Application granted granted Critical
Publication of JP4792817B2 publication Critical patent/JP4792817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic shift control device capable of improving the fuel economy of a vehicle. <P>SOLUTION: This transmission control device automatically shifts a transmission 3 having a plurality of shift stages different in power transmission efficiency from each other. The transmission control device comprises a fuel consumption calculation means 9 calculating a fuel consumption at which a present engine output is maintained for each shift stage of the transmission 3 based on the operating state of an engine 1 and a predetermined fuel consumption map, a correction means 9 correcting the fuel consumption at each shift stage calculated by the fuel consumption calculation means 9 based on a difference in power transmission efficiency between the shift stages, and a shift control means 9 comparing the fuel consumption for each shift stage obtained after correcting it by the correction means 9, selecting, as a target shift stage, the shift stage with the minimum fuel consumption in such a range that the vehicle is not stalled, and shifting the transmission 3 to the target shift stage. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、変速機を車両が失速しない範囲で最も低燃費で走行可能なギア段へと自動変速する自動変速制御装置に関するものである。   The present invention relates to an automatic shift control device that automatically shifts a transmission to a gear stage that can travel with the lowest fuel consumption within a range in which a vehicle does not stall.

変速機を自動的に変速する自動変速制御装置において、変速機のギア段を、車両が失速しない範囲で最も燃料消費率が小さいと判断されるギア段へと変速する低燃費モードと称される変速制御を実行するものが提案されている(例えば、特許文献1参照)。   In an automatic shift control device that automatically shifts a transmission, the transmission gear stage is referred to as a low fuel consumption mode that shifts to a gear stage that is determined to have the lowest fuel consumption rate within a range in which the vehicle does not stall. A device that executes shift control has been proposed (see, for example, Patent Document 1).

この低燃費モードの変速制御内容の概略を図4を用いて説明する。   The outline of the shift control content in the low fuel consumption mode will be described with reference to FIG.

図4中横軸がエンジン回転速度であり、縦軸が正味平均有効圧力Pme(エンジントルクに相当)である。図4中実線Aで示す線図はエンジンの等燃費線図(燃料消費率マップ)であり、同一ライン上であれば燃料消費率SFCが同じであることを意味している。また、この等燃費線図Aにおいて、内側のラインに近づくほど燃料消費率が低く、逆に外側のラインに近づくほど燃料消費率が高くなる。点線Bで示すラインは、エンジンの最大トルク線図である。   In FIG. 4, the horizontal axis represents the engine rotation speed, and the vertical axis represents the net average effective pressure Pme (corresponding to engine torque). A diagram indicated by a solid line A in FIG. 4 is an equal fuel consumption diagram (fuel consumption rate map) of the engine, and means that the fuel consumption rate SFC is the same if it is on the same line. In this iso-fuel consumption diagram A, the closer to the inner line, the lower the fuel consumption rate, and conversely, the closer to the outer line, the higher the fuel consumption rate. A line indicated by a dotted line B is a maximum torque diagram of the engine.

低燃費モードでは、車両の運転状態に基づいて、現在の運転状態を維持するために最低限必要な馬力(つまり現在の状態で定常走行するために必要なエンジン出力)を決定し、その等馬力線図Cを作成する。定常走行に必要な馬力は、走行条件(路面の勾配など)やアクセル開度、つまりエンジン負荷に応じて変化する。   In the low fuel consumption mode, the minimum horsepower required for maintaining the current driving state (that is, the engine output necessary for steady running in the current state) is determined based on the driving state of the vehicle, and the equal horsepower is determined. A diagram C is created. The horsepower required for steady running varies according to running conditions (road surface gradient, etc.) and accelerator opening, that is, engine load.

今、変速機のギア段がN段で、エンジン回転速度がR(N)で走行しているとする。すると、まず、現ギア段Nで現在の運転状態を維持するために最低限必要となる必要トルクT(N)が算出され、その必要トルクT(N)とエンジン回転速度R(N)とに基づいて等馬力線図Cが作成される。なお、図4において、エンジン回転速度R及びエンジントルクTの括弧内の記号は対応するギア段を示している。   Now, assume that the transmission is running at N gears and the engine speed is R (N). Then, first, the minimum required torque T (N) required to maintain the current operating state at the current gear stage N is calculated, and the required torque T (N) and the engine rotational speed R (N) are calculated. Based on this, an equal horsepower diagram C is created. In FIG. 4, the symbols in parentheses for the engine speed R and the engine torque T indicate the corresponding gear stages.

次に、現在のエンジン回転速度R(N)と変速機の各ギア段のギア比とに基づいて、変速機の各ギア段毎に変速後の仮想エンジン回転速度を決定し、その仮想エンジン回転速度と等馬力線図Cとに基づいて、各ギア段毎に、変速後現在のエンジン出力を維持するために必要となる必要トルクを決定する。つまり、図4において、変速機を現ギア段Nから1段シフトアップした後の仮想エンジン回転速度がR(N+1)であり、そのN+1段で現在のエンジン出力を維持するために必要なトルクはT(N+1)である。また、変速機を現ギア段Nから2段シフトアップした後の仮想エンジン回転速度がR(N+2)であり、N+2段で現在のエンジン出力を維持するために必要なトルクはT(N+2)である。なお、図4では、現ギア段NからN+2段までしか示されていないが、変速機の全てのギア段に対して変速後の仮想エンジン回転速度Rと必要トルクTとが決定される。そして、その仮想エンジン回転速度R及び必要トルクTと等燃費線図Aとに基づいて、変速機の各ギア段毎に燃料消費率が決定される。   Next, based on the current engine speed R (N) and the gear ratio of each gear stage of the transmission, the virtual engine speed after the shift is determined for each gear stage of the transmission, and the virtual engine rotation is determined. Based on the speed and the constant horsepower diagram C, the necessary torque required to maintain the current engine output after the shift is determined for each gear stage. In other words, in FIG. 4, the virtual engine rotation speed after the transmission is shifted up one stage from the current gear stage N is R (N + 1), and the torque required to maintain the current engine output at the N + 1 stage is T (N + 1). Further, the virtual engine rotation speed after the transmission is shifted up two stages from the current gear stage N is R (N + 2), and the torque required to maintain the current engine output at N + 2 stage is T (N + 2). is there. In FIG. 4, only the current gear stage N to N + 2 are shown, but the virtual engine rotational speed R and the required torque T after the shift are determined for all the gear stages of the transmission. The fuel consumption rate is determined for each gear stage of the transmission based on the virtual engine rotation speed R, the required torque T, and the iso-fuel consumption diagram A.

次に、必要トルクTが、エンジンの最大トルクB以下であるギア段のみを選択可能なギア段として決定する。これは、必要トルクTがエンジンの最大トルクBよりも大きいギア段に変速すると、変速後に車両が失速してしまうからである。そして、選択可能なギア段のなかで、最も燃料消費率の低いギア段を目標ギア段として選定し、変速機をその目標ギア段へ変速する。   Next, only the gear stage in which the required torque T is equal to or less than the maximum torque B of the engine is determined as a selectable gear stage. This is because if the required torque T is shifted to a gear stage that is larger than the maximum torque B of the engine, the vehicle will stall after the shift. Then, the gear stage having the lowest fuel consumption rate is selected as the target gear stage among the selectable gear stages, and the transmission is shifted to the target gear stage.

図4の例では、選択可能なギア段として、現ギア段Nと、現ギアよりも一つ高いギア段N+1が決定され、両者の燃料消費率が比較される。ここでは、現ギア段NよりもN+1段の方が燃料消費率が低いので、変速機がN+1段にシフトアップされることになる。   In the example of FIG. 4, the current gear stage N and a gear stage N + 1 that is one higher than the current gear are determined as selectable gear stages, and the fuel consumption rates of both are compared. Here, since the fuel consumption rate is lower in the N + 1 stage than in the current gear stage N, the transmission is shifted up to the N + 1 stage.

このように、低燃費モードでは、変速機を最もエンジンの燃料消費率が低いギア段に変速することで、車両の低燃費化を図っている。   As described above, in the low fuel consumption mode, the vehicle is reduced in fuel consumption by shifting the transmission to a gear stage having the lowest fuel consumption rate of the engine.

特開平11−082084号公報JP-A-11-082084 特開2003−291684号公報JP 2003-291684 A

ところで、車両の実際の燃費は、エンジン単体で定まる燃料消費率だけでなく、変速機の動力伝達効率などによっても左右される。そのため、エンジンの燃料消費率のみを比較して目標ギア段を選定する従来の自動変速制御装置では、ギア段によって動力伝達効率が異なる変速機において、車両の燃費向上を十分に図ることができない可能性がある。   Incidentally, the actual fuel consumption of a vehicle depends not only on the fuel consumption rate determined by the engine alone, but also on the power transmission efficiency of the transmission. Therefore, in the conventional automatic transmission control device that selects the target gear stage by comparing only the fuel consumption rate of the engine, it is possible that the fuel efficiency of the vehicle cannot be sufficiently improved in a transmission having different power transmission efficiency depending on the gear stage. There is sex.

例えば、変速機が、入力軸の動力を変速ギアを介して出力軸に伝達する非直結ギア段と、入力軸の動力を変速ギアを介さずに出力軸に直接伝達する直結ギア段とを備える場合、動力伝達効率は直結ギア段のほうが非直結ギア段よりも良くなる。そのため、図4の等馬力線図Cにおいて、同一ライン上に位置する直結ギア段と非直結ギア段とで、燃料消費率が同一であっても、車両の実際の燃費は直結ギア段のほうが良くなる。   For example, the transmission includes a non-directly connected gear stage that transmits the power of the input shaft to the output shaft through the transmission gear, and a direct connection gear stage that directly transmits the power of the input shaft to the output shaft without using the transmission gear. In this case, the power transmission efficiency is better in the direct gear stage than in the non-direct gear stage. Therefore, in the equi-horsepower diagram C in FIG. 4, even if the direct consumption gear stage and the non-direct connection gear stage located on the same line have the same fuel consumption rate, the actual fuel consumption of the vehicle is higher in the direct connection gear stage. Get better.

このように、動力伝達効率が異なるギア段を備えた変速機を変速する場合、エンジンの燃料消費率だけを比較したのでは、車両の燃費の良悪を正確に判断することができない。   As described above, when shifting gears having gear stages having different power transmission efficiencies, it is impossible to accurately determine the fuel efficiency of the vehicle by comparing only the fuel consumption rate of the engine.

つまり、従来の自動変速制御装置では、エンジン単体で定まる燃料消費率のみを比較して目標ギア段を選定するため、車両の燃費が最も良いギア段が選定されない可能性があり、車両の燃費向上を十分に図ることができないという懸念がある。   In other words, in the conventional automatic transmission control device, the target gear stage is selected by comparing only the fuel consumption rate determined by the engine alone, so there is a possibility that the gear stage with the best fuel efficiency of the vehicle may not be selected, which improves the fuel efficiency of the vehicle There is a concern that this cannot be fully achieved.

そこで、本発明の目的は、上記課題を解決し、動力伝達効率の異なる複数のギア段を備えた変速機を有する車両であっても、燃費向上を確実に図ることができる自動変速制御装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an automatic transmission control device that can solve the above-described problems and reliably improve fuel efficiency even in a vehicle having a transmission having a plurality of gear stages having different power transmission efficiency. It is to provide.

上記目的を達成するために本発明は、動力伝達効率が異なる複数のギア段を備えた変速機を自動的に変速制御する変速制御装置において、エンジンの運転状態と予め定められた燃料消費率マップとに基づいて、現在のエンジン出力を維持したときの燃料消費率を上記変速機の各ギア段毎に算出する燃料消費率算出手段と、その燃料消費率算出手段により算出された上記各ギア段の燃料消費率を、上記各ギア段間の動力伝達効率の差に基づいて補正する補正手段と、その補正手段により補正された上記各ギア段の補正後の燃料消費率を比較して、車両が失速しない範囲で最も燃料消費率が小さいギア段を目標ギア段として選定して、その目標ギア段に上記変速機を変速する変速制御手段とを備えたものである。   In order to achieve the above object, the present invention provides an engine operating state and a predetermined fuel consumption rate map in a shift control device that automatically shifts a transmission having a plurality of gear stages having different power transmission efficiencies. The fuel consumption rate calculation means for calculating the fuel consumption rate when the current engine output is maintained for each gear stage of the transmission, and the gear stages calculated by the fuel consumption rate calculation means. The correction means for correcting the fuel consumption rate of the vehicle based on the difference in power transmission efficiency between the gear stages and the corrected fuel consumption rate of the gear stages corrected by the correction means A gear stage having the smallest fuel consumption rate within a range in which the vehicle does not stall is selected as a target gear stage, and shift control means for shifting the transmission is provided at the target gear stage.

上記補正手段は、上記燃料消費率算出手段により算出された上記各ギア段の燃料消費率に、上記各ギア段間の動力伝達効率の差に基づいて各ギア段毎に予め決定された補正係数を乗じて、上記各ギア段の燃料消費率を各々補正するものであり、上記補正係数は、動力伝達効率の良いギア段の値が、動力伝達効率の悪いギア段の値よりも小さくなるように設定されるものでもよい。   The correction means includes a correction coefficient predetermined for each gear stage based on a difference in power transmission efficiency between the gear stages to the fuel consumption rate of each gear stage calculated by the fuel consumption rate calculation means. To correct the fuel consumption rate of each gear stage so that the value of the gear stage with good power transmission efficiency is smaller than the value of the gear stage with poor power transmission efficiency. It may be set to.

上記変速機が、入力軸の動力を変速ギアを介して出力軸に伝達する非直結ギア段と、上記入力軸の動力を上記変速ギアを介さずに上記出力軸に伝達する直結ギア段とを有し、上記直結ギア段の補正係数が、上記非直結ギア段の補正係数よりも小さく設定されたものでもよい。   The transmission includes a non-directly connected gear stage that transmits power of the input shaft to the output shaft via a transmission gear, and a direct connection gear stage that transmits power of the input shaft to the output shaft without passing through the transmission gear. And the correction coefficient of the direct gear stage may be set smaller than the correction coefficient of the non-direct gear stage.

上記変速機が、入力軸の動力を変速ギアを介して出力軸に伝達する非直結ギア段と、上記入力軸の動力を上記変速ギアを介さずに上記出力軸に伝達する直結ギア段とを有し、上記補正手段が、上記燃料消費率算出手段により算出された上記各ギア段の燃料消費率の内、上記直結ギア段の燃料消費率にのみ1未満の補正係数を乗じて補正し、上記非直結ギア段の燃料消費率は補正しないものでもよい。   The transmission includes a non-directly connected gear stage that transmits power of the input shaft to the output shaft via a transmission gear, and a direct connection gear stage that transmits power of the input shaft to the output shaft without passing through the transmission gear. And the correction means corrects the fuel consumption rate of each gear stage calculated by the fuel consumption rate calculation means by multiplying only the fuel consumption rate of the directly connected gear stage by a correction coefficient less than 1. The fuel consumption rate of the non-directly connected gear stage may not be corrected.

本発明によれば、動力伝達効率の異なる複数のギア段を備えた変速機を有する車両であっても、燃費向上を確実に図ることができるという優れた効果を発揮するものである。   According to the present invention, even in a vehicle having a transmission having a plurality of gear stages having different power transmission efficiencies, an excellent effect that fuel efficiency can be reliably improved is exhibited.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本実施形態に係る車両の自動変速制御装置の概略図である。   FIG. 1 is a schematic diagram of an automatic transmission control device for a vehicle according to the present embodiment.

本実施形態の自動変速制御装置は、トラック等の車両に搭載されるディーゼルエンジン1にクラッチ2を介して連結された多段変速機3(ここでは前進六段変速機)を自動変速するものである。   The automatic transmission control apparatus according to the present embodiment automatically shifts a multi-stage transmission 3 (here, a forward six-stage transmission) connected to a diesel engine 1 mounted on a vehicle such as a truck via a clutch 2. .

エンジン1はエンジン制御手段(ECU)6によって制御される。ECU6は基本的には、エンジン1の回転速度を検出するエンジン回転センサ7と、アクセルペダル5の開度を検出するアクセル開度センサ8との検出値からエンジンの運転状態(エンジン回転速度及びエンジン負荷)を読取り、そのエンジン運転状態に基づいてエンジン1の燃料噴射時期及び燃料噴射量(エンジン出力)等を制御する。   The engine 1 is controlled by an engine control means (ECU) 6. The ECU 6 basically operates the engine from the detected values of the engine rotation sensor 7 for detecting the rotation speed of the engine 1 and the accelerator opening sensor 8 for detecting the opening of the accelerator pedal 5 (engine rotation speed and engine speed). Load) is read, and the fuel injection timing and fuel injection amount (engine output) of the engine 1 are controlled based on the engine operating state.

クラッチ2及び変速機3は、TMCU(変速制御手段)9によって自動制御される。ECU6とTMCU9とは互いにバスケーブル等を介して接続され、相互に連絡可能となっている。   The clutch 2 and the transmission 3 are automatically controlled by a TMCU (shift control means) 9. The ECU 6 and the TMCU 9 are connected to each other via a bus cable or the like and can communicate with each other.

クラッチ2にはクラッチアクチュエータ10が設けられ、TMCU9はこのクラッチアクチュエータ10に信号を出力し、クラッチアクチュエータ10を介してクラッチ2を断接制御する。なお、本実施形態では、クラッチ2はクラッチペダル11によるマニュアル断接も可能となっている。クラッチ2には、クラッチプレート(図示せず)の位置を検出するためのクラッチストロークセンサ14が設けられ、クラッチストロークセンサ14の検出値はECU6及びTMCU9に送信される。   The clutch 2 is provided with a clutch actuator 10, and the TMCU 9 outputs a signal to the clutch actuator 10 to control connection / disconnection of the clutch 2 via the clutch actuator 10. In the present embodiment, the clutch 2 can be manually connected / disconnected by the clutch pedal 11. The clutch 2 is provided with a clutch stroke sensor 14 for detecting the position of a clutch plate (not shown), and the detected value of the clutch stroke sensor 14 is transmitted to the ECU 6 and the TMCU 9.

図2に示すように、変速機3は、入力軸21と、これと同軸に配置された出力軸22と、これらに平行に配置された副軸24とを有する。入力軸21には、入力主ギア25が設けられている。出力軸22には、1速主ギアM1と、2速主ギアM2と、3速主ギアM3と、4速主ギアM4と、リバース主ギアMRとが夫々軸支されていると共に、6速主ギアM6が固設されている。副軸24には、入力主ギア25に噛合する入力副ギア26と、1速主ギアM1に噛合する1速副ギアC1と、2速主ギアM2に噛合する2速副ギアC2と、3速主ギアM3に噛合する3速副ギアC3と、4速主ギアM4に噛合する4速副ギアC4と、リバース主ギアMRにアイドルギアIRを介して噛合するリバース副ギアCRとが固設されていると共に、6速主ギアM6に噛合する6速副ギアC6が軸支されている。   As shown in FIG. 2, the transmission 3 includes an input shaft 21, an output shaft 22 disposed coaxially with the input shaft 21, and a countershaft 24 disposed parallel to these. The input shaft 21 is provided with an input main gear 25. A first speed main gear M1, a second speed main gear M2, a third speed main gear M3, a fourth speed main gear M4, and a reverse main gear MR are respectively supported on the output shaft 22, and a sixth speed A main gear M6 is fixed. The auxiliary shaft 24 has an input auxiliary gear 26 that meshes with the input main gear 25, a first-speed auxiliary gear C1 that meshes with the first-speed main gear M1, a second-speed auxiliary gear C2 that meshes with the second-speed main gear M2, and 3 A third speed sub gear C3 meshing with the speed main gear M3, a fourth speed sub gear C4 meshing with the fourth speed main gear M4, and a reverse sub gear CR meshing with the reverse main gear MR via the idle gear IR are fixed. In addition, a 6-speed sub gear C6 that meshes with the 6-speed main gear M6 is pivotally supported.

この変速機3によれば、出力軸22に固定されたハブH/R1にスプライン噛合されたスリーブS/R1を、リバース主ギヤMRのドグDRにスプライン噛合すると出力軸22がリバース回転し、スリーブS/R1を1速主ギヤM1のドグD1にスプライン噛合すると出力軸22が1速相当で回転する。同様に、出力軸22に固定されたハブH/23にスプライン噛合されたスリーブS/23を、2速主ギヤM2のドグD2にスプライン噛合すると出力軸22が2速相当で回転し、スリーブS/23を3速主ギヤM3のドグD3にスプライン噛合すると出力軸22が3速相当で回転する。また、出力軸22に固定されたハブH/45にスプライン噛合されたスリーブS/45を、4速主ギヤM4のドグD4にスプライン噛合すると出力軸22が4速相当で回転する。そして、副軸24に固定されたハブH6にスプライン噛合されたスリーブS6を、6速副ギヤC6のドグD6にスプライン噛合すると出力軸22が6速相当で回転する。   According to this transmission 3, when the sleeve S / R1 spline-engaged with the hub H / R1 fixed to the output shaft 22 is spline-engaged with the dog DR of the reverse main gear MR, the output shaft 22 rotates reversely, and the sleeve When S / R1 is spline-engaged with the dog D1 of the first-speed main gear M1, the output shaft 22 rotates at the first speed. Similarly, when the sleeve S / 23 that is spline-engaged with the hub H / 23 fixed to the output shaft 22 is spline-engaged with the dog D2 of the second-speed main gear M2, the output shaft 22 rotates at a speed equivalent to the second speed, and the sleeve S / 23 is spline-engaged with the dog D3 of the third speed main gear M3, the output shaft 22 rotates at the third speed. Further, when the sleeve S / 45 spline-engaged with the hub H / 45 fixed to the output shaft 22 is spline-engaged with the dog D4 of the 4-speed main gear M4, the output shaft 22 rotates at a speed equivalent to the fourth speed. When the sleeve S6 spline-engaged with the hub H6 fixed to the auxiliary shaft 24 is spline-engaged with the dog D6 of the sixth-speed auxiliary gear C6, the output shaft 22 rotates at the sixth speed.

これらの場合、出力軸22には、入力軸21から変速ギアをなす主ギアM1〜M4,M6,MRおよび副ギアC1〜C4,C6、CRを介して動力が伝達される。つまり、変速機3は、非直結ギア段にギアインされていることになる。本実施形態では、後述する5速以外は、全て非直結ギア段である。   In these cases, power is transmitted to the output shaft 22 from the input shaft 21 via the main gears M1 to M4, M6, MR and the auxiliary gears C1 to C4, C6, CR that form a transmission gear. That is, the transmission 3 is geared into the non-directly connected gear stage. In the present embodiment, all gears other than the fifth speed described later are non-directly connected gear stages.

また、スリーブS/45を、入力主ギア25のドグD5にスプライン噛合すると出力軸22が5速相当で回転する。この場合、出力軸22には、変速ギアを介すことなく入力軸21から直接動力が伝達される。つまり、変速機3が直結ギア段にギアインされていることになり、その直結ギア段では、変速ギアを介さない分だけ非直結ギア段に比べて動力伝達効率が良くなる。   Further, when the sleeve S / 45 is spline-engaged with the dog D5 of the input main gear 25, the output shaft 22 rotates at the fifth speed. In this case, power is directly transmitted from the input shaft 21 to the output shaft 22 without passing through the transmission gear. That is, the transmission 3 is geared into the directly connected gear stage, and the power transmission efficiency of the directly connected gear stage is improved compared to the non-directly connected gear stage by the amount not passing through the transmission gear.

このように本実施形態の変速機3は、動力伝達効率が異なる複数のギア段を備える。   Thus, the transmission 3 according to the present embodiment includes a plurality of gear stages having different power transmission efficiencies.

図1に戻り、変速機3にはギアシフトユニット(GSU)12が設けられ、TMCU9はこのGSU12に信号を出力し、GSU12を介して変速機3を変速制御する。変速機3には、そのギアポジションを検出するためのギアポジションセンサ23が設けられ、そのギアポジションセンサ23の検出値がTMCU9に送信される。また、変速機3には、その出力軸22(図2参照)の回転速度を検出するためのアウトプットシャフトセンサ28が設けられ、そのアウトプットシャフトセンサ28の検出値がTMCU9に送信される。TMCU9は、アウトプットシャフトセンサ28の検出値に基づいて車速を算出する。   Returning to FIG. 1, the transmission 3 is provided with a gear shift unit (GSU) 12, and the TMCU 9 outputs a signal to the GSU 12 and controls the transmission 3 through the GSU 12. The transmission 3 is provided with a gear position sensor 23 for detecting the gear position, and the detection value of the gear position sensor 23 is transmitted to the TMCU 9. Further, the transmission 3 is provided with an output shaft sensor 28 for detecting the rotational speed of the output shaft 22 (see FIG. 2), and the detection value of the output shaft sensor 28 is transmitted to the TMCU 9. The TMCU 9 calculates the vehicle speed based on the detection value of the output shaft sensor 28.

変速機3を変速する際には、TMCU9はまずクラッチアクチュエータ10に信号を出力してクラッチ2を断し、次いでGSU12に信号を出力して変速機3のギア抜き・ギアインを実行し、その後クラッチ2を接続する。なお、本実施形態では、変速機3はシフトチェンジ手段29によるマニュアル変速もできるようになっている。   When shifting the transmission 3, the TMCU 9 first outputs a signal to the clutch actuator 10 to disengage the clutch 2, and then outputs a signal to the GSU 12 to execute gear disengagement / gear-in of the transmission 3, and then the clutch 2 is connected. In the present embodiment, the transmission 3 can also be manually shifted by the shift change means 29.

本実施形態のTMCU9は、以下に述べるような変速制御を実行する。   The TMCU 9 of the present embodiment performs the shift control as described below.

まず、TMCU9は、変速機3の各ギア段毎に、変速後に現在のエンジン出力を維持したと仮定した時の仮想エンジン運転状態(具体的には、仮想トルクおよび仮想エンジン回転速度)を求める。次に、TMCU9は、それら仮想エンジン運転状態及び現在のエンジン運転状態と予め定められた燃料消費率マップとに基づいて、変速後に現在のエンジン出力を維持したと仮定したときの各ギア段の仮想燃料消費率と現ギア段の燃料消費率とを求める。   First, the TMCU 9 obtains a virtual engine operation state (specifically, a virtual torque and a virtual engine rotation speed) when it is assumed that the current engine output is maintained after the shift for each gear stage of the transmission 3. Next, based on the virtual engine operating state and the current engine operating state and a predetermined fuel consumption rate map, the TMCU 9 assumes that the current engine output has been maintained after the shift and the virtual speed of each gear stage. Obtain the fuel consumption rate and the fuel consumption rate of the current gear stage.

次に、TMCU9は、それら求められた各ギア段の仮想燃料消費率と現ギア段の燃料消費率とを、ギア段間の動力伝達効率の差に基づいて補正する。   Next, the TMCU 9 corrects the calculated virtual fuel consumption rate of each gear stage and the fuel consumption rate of the current gear stage based on the difference in power transmission efficiency between the gear stages.

補正後、TMCU9は、補正された全ギア段の補正後の燃料消費率を各々比較して、車両が失速しない範囲で(つまり、仮想トルクが、エンジンの最大トルクを超えないギア段の中で)最も燃料消費率が小さいギア段を目標ギア段として選定して、その目標ギア段へと変速機3を自動変速する。   After the correction, the TMCU 9 compares the corrected fuel consumption rates of all the corrected gears, and within a range where the vehicle does not stall (that is, in a gear where the virtual torque does not exceed the maximum torque of the engine). ) The gear stage having the smallest fuel consumption rate is selected as the target gear stage, and the transmission 3 is automatically shifted to the target gear stage.

したがって、本実施形態では、TMCU9が、エンジンの運転状態と予め定められた燃料消費率マップとに基づいて、現在のエンジン出力を維持したときの燃料消費率を変速機3の各ギア段毎に算出する燃料消費率算出手段と、算出された各ギア段の燃料消費率を、各ギア段間の動力伝達効率の差に基づいて補正する補正手段とをなす。   Therefore, in the present embodiment, the TMCU 9 calculates the fuel consumption rate when the current engine output is maintained for each gear stage of the transmission 3 based on the engine operating state and the predetermined fuel consumption rate map. A fuel consumption rate calculation means for calculating and a correction means for correcting the calculated fuel consumption rate of each gear stage based on the difference in power transmission efficiency between the gear stages.

本実施形態の自動変速制御装置の特徴は、エンジン単体の燃料消費率のみならず各ギア段の動力伝達効率をも考慮して、変速すべきギア段を選定する点にある。   The automatic transmission control device of this embodiment is characterized in that the gear stage to be shifted is selected in consideration of not only the fuel consumption rate of the engine alone but also the power transmission efficiency of each gear stage.

以下、この点について図3のフローチャートを用いて説明する。以下の説明において、TMCU9に予め格納された燃料消費率マップ(等燃費線図、例えば図4の線図A参照)の燃料消費率を標準燃料消費率とし、目標ギア段を選定する際に比較される燃料消費率を実燃料消費率とする。図3のフローチャートは、TMCU9が、所定周期毎に全てのギア段を対象として各ギア段ずつ実行するものである。   Hereinafter, this point will be described with reference to the flowchart of FIG. In the following description, the fuel consumption rate in the fuel consumption rate map (isofuel consumption diagram, for example, see diagram A in FIG. 4) stored in advance in the TMCU 9 is set as the standard fuel consumption rate, and compared when selecting the target gear stage. The actual fuel consumption rate is defined as the actual fuel consumption rate. In the flowchart of FIG. 3, the TMCU 9 executes each gear stage for every gear stage every predetermined period.

まず、ステップS0では、TMCU9に、実燃料消費率を算出する対象となるギア段(以下、対象ギア段)と、その対象ギア段の仮想トルクおよび仮想エンジン回転速度とが入力される。   First, in step S0, a gear stage (hereinafter referred to as a target gear stage) for which an actual fuel consumption rate is calculated, a virtual torque and a virtual engine rotation speed of the target gear stage are input to TMCU9.

次に、ステップS1では、TMCU9が、入力された対象ギア段が直結ギア段であるか否かを判定する。ステップS1で、対象ギア段が直結ギア段であると判定された場合、ステップS2に進む。   Next, in step S1, the TMCU 9 determines whether or not the input target gear stage is a directly connected gear stage. If it is determined in step S1 that the target gear stage is a directly connected gear stage, the process proceeds to step S2.

ステップS2では、TMCU9に予め格納された燃料消費率マップから、仮想トルクおよび仮想エンジン回転速度を基に対象ギア段の標準燃料消費率(マップ値)を読取る。その後、その標準燃料消費率に、予め設定された補正係数を乗じて実燃料消費率を算出する。補正係数は、直結ギア段と非直結ギア段の伝達効率の差を燃料消費率に換算して決定され、例えば、車両を直結ギア段で走行させた場合に非直結ギア段で走行させた場合よりも2%の燃費向上が見込める(達成できる)ときには、非直結ギア段の補正係数を1とした場合、直結ギア段の補正係数が0.98となる。したがって、直結ギア段の実燃料消費率は、標準燃料消費率に0.98を乗じたものとなる。このように直結ギア段の場合には、標準燃料消費率が、非直結ギア段に対する車両としての燃費向上分だけ減量補正される。   In step S2, the standard fuel consumption rate (map value) of the target gear stage is read from the fuel consumption rate map stored in advance in the TMCU 9 based on the virtual torque and the virtual engine rotation speed. Thereafter, the actual fuel consumption rate is calculated by multiplying the standard fuel consumption rate by a preset correction coefficient. The correction factor is determined by converting the difference in transmission efficiency between the direct gear stage and the non-direct gear stage into the fuel consumption rate. For example, when the vehicle is driven at the direct gear stage, When a fuel efficiency improvement of 2% is expected (can be achieved), assuming that the correction coefficient for the non-direct gear stage is 1, the correction coefficient for the direct gear stage is 0.98. Therefore, the actual fuel consumption rate of the directly connected gear stage is obtained by multiplying the standard fuel consumption rate by 0.98. As described above, in the case of the directly connected gear stage, the standard fuel consumption rate is corrected to be reduced by an amount corresponding to the fuel efficiency improvement as a vehicle with respect to the non-directly connected gear stage.

一方、ステップS1で、対象ギア段が直結ギア段でないと判定された場合、すなわち、対象ギア段が非直結ギア段であると判定された場合、ステップS3に進む。ステップS3では、燃料消費率マップから仮想トルクおよび仮想エンジン回転速度を基に対象ギア段の標準燃料消費率(マップ値)を読取り、標準燃料消費率をそのまま非直結ギア段の実燃料消費率とする。このように本実施形態では、非直結ギア段の補正係数が1とされ、標準燃料消費率の実質的な補正は実行しない。   On the other hand, if it is determined in step S1 that the target gear stage is not a directly connected gear stage, that is, if it is determined that the target gear stage is a non-directly connected gear stage, the process proceeds to step S3. In step S3, the standard fuel consumption rate (map value) of the target gear stage is read from the fuel consumption rate map based on the virtual torque and the virtual engine speed, and the standard fuel consumption rate is directly used as the actual fuel consumption rate of the non-directly connected gear stage. To do. As described above, in the present embodiment, the correction coefficient for the non-directly connected gear stage is set to 1, and substantial correction of the standard fuel consumption rate is not executed.

以上により、各ギア段の実燃料消費率が算出された後、それら実燃料消費率を比較することで目標ギア段が選定される。   As described above, after the actual fuel consumption rate of each gear stage is calculated, the target gear stage is selected by comparing the actual fuel consumption rates.

このように、本実施形態の自動変速制御装置によれば、直結ギア段の燃料消費率の補正係数を、非直結ギア段の燃料消費率の補正係数よりも小さくすることで、直結ギア段と非直結ギア段との動力伝達効率の差が、燃料消費率に反映されることとなる。これにより、エンジン単体の燃料消費率に加えて、変速機の動力伝達効率をも考慮することで、最も適当なギア段に変速することができ、更なる燃費向上を図ることができる。   As described above, according to the automatic transmission control apparatus of the present embodiment, the correction coefficient of the fuel consumption rate of the direct connection gear stage is made smaller than the correction coefficient of the fuel consumption rate of the non-direct connection gear stage. The difference in power transmission efficiency from the non-directly connected gear stage is reflected in the fuel consumption rate. As a result, in addition to the fuel consumption rate of the engine alone, the power transmission efficiency of the transmission is also taken into consideration, so that it is possible to shift to the most appropriate gear stage and further improve fuel efficiency.

なお、本発明は上述の実施形態に限定されず、様々な変形例や応用例が考えられるものである。   In addition, this invention is not limited to the above-mentioned embodiment, Various modifications and application examples can be considered.

例えば、本実施形態では、非直結ギア段を基準にして、直結ギア段を補正するようにしたが、これに限定されず、直結ギア段を基準にして、非直結ギア段を補正するようにしてもよい。   For example, in this embodiment, the direct gear stage is corrected based on the non-direct gear stage. However, the present invention is not limited to this, and the non-direct gear stage is corrected based on the direct gear stage. May be.

また、補正係数を、変速機の入力軸や出力軸の回転速度に応じて異なる値に設定することも考えられる。例えば、変速機の入力軸の回転速度が大きくなるほど、非直結ギア段と直結ギア段との動力伝達効率の差が大きくなる(非直結ギア段の動力伝達効率が悪化する)場合には、直結ギア段の補正係数を回転速度に応じて小さくすることも考えられる。   It is also conceivable that the correction coefficient is set to a different value depending on the rotational speed of the input shaft and output shaft of the transmission. For example, when the rotational speed of the input shaft of the transmission increases, the difference in power transmission efficiency between the non-direct gear stage and the direct gear stage increases (the power transmission efficiency of the non-direct gear stage deteriorates). It is also conceivable to reduce the gear stage correction coefficient in accordance with the rotational speed.

また、予め補正された(補正係数が乗じられた)補正燃料消費率マップを、燃料消費率マップとは別に、TMCUなどに格納することも考えられる。   It is also conceivable to store a corrected fuel consumption rate map that has been corrected in advance (multiplied by a correction coefficient) in a TMCU or the like separately from the fuel consumption rate map.

本発明の一実施形態に係る自動変速制御装置の概略図である。It is the schematic of the automatic transmission control apparatus which concerns on one Embodiment of this invention. 本実施形態の変速機の概略図である。It is the schematic of the transmission of this embodiment. 補正手段の制御内容を説明するための図である。It is a figure for demonstrating the control content of a correction | amendment means. 低燃費モードによる変速制御を説明するための図である。It is a figure for demonstrating the shift control by a low fuel consumption mode.

符号の説明Explanation of symbols

1 エンジン
2 クラッチ
3 変速機
5 アクセルペダル
6 ECU
7 エンジン回転センサ
8 アクセル開度センサ
9 TMCU(燃料消費率算出手段、補正手段、変速制御手段)
28 アウトプットシャフトセンサ
1 Engine 2 Clutch 3 Transmission 5 Accelerator Pedal 6 ECU
7 Engine rotation sensor 8 Accelerator opening sensor 9 TMCU (Fuel consumption rate calculation means, correction means, shift control means)
28 Output shaft sensor

Claims (4)

動力伝達効率が異なる複数のギア段を備えた変速機を自動的に変速制御する変速制御装置において、
エンジンの運転状態と予め定められた燃料消費率マップとに基づいて、現在のエンジン出力を維持したときの燃料消費率を上記変速機の各ギア段毎に算出する燃料消費率算出手段と、
その燃料消費率算出手段により算出された上記各ギア段の燃料消費率を、上記各ギア段間の動力伝達効率の差に基づいて補正する補正手段と、
その補正手段により補正された上記各ギア段の補正後の燃料消費率を比較して、車両が失速しない範囲で最も燃料消費率が小さいギア段を目標ギア段として選定して、その目標ギア段に上記変速機を変速する変速制御手段とを備えたことを特徴とする自動変速制御装置。
In a shift control device that automatically shift-controls a transmission having a plurality of gear stages having different power transmission efficiency,
A fuel consumption rate calculating means for calculating a fuel consumption rate for each gear stage of the transmission based on the engine operating state and a predetermined fuel consumption rate map;
Correction means for correcting the fuel consumption rate of each gear stage calculated by the fuel consumption rate calculation means based on the difference in power transmission efficiency between the gear stages;
The corrected fuel consumption rate of each gear stage corrected by the correction means is compared, and the gear stage with the lowest fuel consumption rate is selected as the target gear stage within a range where the vehicle does not stall, and the target gear stage is selected. An automatic transmission control device comprising a transmission control means for shifting the transmission.
上記補正手段は、上記燃料消費率算出手段により算出された上記各ギア段の燃料消費率に、上記各ギア段間の動力伝達効率の差に基づいて各ギア段毎に予め決定された補正係数を乗じて、上記各ギア段の燃料消費率を各々補正するものであり、
上記補正係数は、動力伝達効率の良いギア段の値が、動力伝達効率の悪いギア段の値よりも小さくなるように設定される請求項1記載の自動変速制御装置。
The correction means includes a correction coefficient predetermined for each gear stage based on a difference in power transmission efficiency between the gear stages to the fuel consumption rate of each gear stage calculated by the fuel consumption rate calculation means. To correct the fuel consumption rate of each gear stage,
The automatic shift control device according to claim 1, wherein the correction coefficient is set so that a value of a gear stage having good power transmission efficiency is smaller than a value of a gear stage having poor power transmission efficiency.
上記変速機が、入力軸の動力を変速ギアを介して出力軸に伝達する非直結ギア段と、上記入力軸の動力を上記変速ギアを介さずに上記出力軸に伝達する直結ギア段とを有し、
上記直結ギア段の補正係数が、上記非直結ギア段の補正係数よりも小さく設定された請求項2記載の自動変速制御装置。
The transmission includes a non-directly connected gear stage that transmits power of the input shaft to the output shaft via a transmission gear, and a direct connection gear stage that transmits power of the input shaft to the output shaft without passing through the transmission gear. Have
3. The automatic transmission control device according to claim 2, wherein the correction coefficient of the directly connected gear stage is set smaller than the correction coefficient of the non-directly connected gear stage.
上記変速機が、入力軸の動力を変速ギアを介して出力軸に伝達する非直結ギア段と、上記入力軸の動力を上記変速ギアを介さずに上記出力軸に伝達する直結ギア段とを有し、
上記補正手段が、上記燃料消費率算出手段により算出された上記各ギア段の燃料消費率の内、上記直結ギア段の燃料消費率にのみ1未満の補正係数を乗じて補正し、上記非直結ギア段の燃料消費率は補正しない請求項1記載の自動変速制御装置。
The transmission includes a non-directly connected gear stage that transmits power of the input shaft to the output shaft via a transmission gear, and a direct connection gear stage that transmits power of the input shaft to the output shaft without passing through the transmission gear. Have
The correction means corrects the fuel consumption rate of each gear stage calculated by the fuel consumption rate calculation means by multiplying only the fuel consumption rate of the directly connected gear stage by a correction coefficient less than 1, and the non-direct connection 2. The automatic transmission control device according to claim 1, wherein the fuel consumption rate of the gear stage is not corrected.
JP2005160494A 2005-05-31 2005-05-31 Automatic transmission control device Expired - Fee Related JP4792817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160494A JP4792817B2 (en) 2005-05-31 2005-05-31 Automatic transmission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160494A JP4792817B2 (en) 2005-05-31 2005-05-31 Automatic transmission control device

Publications (2)

Publication Number Publication Date
JP2006336714A true JP2006336714A (en) 2006-12-14
JP4792817B2 JP4792817B2 (en) 2011-10-12

Family

ID=37557447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160494A Expired - Fee Related JP4792817B2 (en) 2005-05-31 2005-05-31 Automatic transmission control device

Country Status (1)

Country Link
JP (1) JP4792817B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189461A (en) * 1989-12-18 1991-08-19 Mazda Motor Corp Speed change ratio control device for continuously variable transmission
JPH0526335A (en) * 1991-07-22 1993-02-02 Toyota Motor Corp Speed change control device for automatic transmission
JPH06294464A (en) * 1992-07-21 1994-10-21 Robert Bosch Gmbh Adjusting device for transmission driven torque or transmission output in car with continuous adjustable transmission (cvt)
JPH10329583A (en) * 1997-05-30 1998-12-15 Daikin Ind Ltd Drive control device for vehicle
JP2000033826A (en) * 1998-07-17 2000-02-02 Honda Motor Co Ltd Control device for automatic transmission of vehicle
JP2001146121A (en) * 1999-11-19 2001-05-29 Toyota Motor Corp Control device for hybrid vehicle with transmission
JP2004028280A (en) * 2002-06-27 2004-01-29 Honda Motor Co Ltd Control device of hybrid vehicle
JP2004263875A (en) * 2004-04-01 2004-09-24 Mitsubishi Electric Corp Automatic gear shifting device and control method of throttle valve
JP2005061498A (en) * 2003-08-11 2005-03-10 Toyota Motor Corp Drive device for hybrid car

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189461A (en) * 1989-12-18 1991-08-19 Mazda Motor Corp Speed change ratio control device for continuously variable transmission
JPH0526335A (en) * 1991-07-22 1993-02-02 Toyota Motor Corp Speed change control device for automatic transmission
JPH06294464A (en) * 1992-07-21 1994-10-21 Robert Bosch Gmbh Adjusting device for transmission driven torque or transmission output in car with continuous adjustable transmission (cvt)
JPH10329583A (en) * 1997-05-30 1998-12-15 Daikin Ind Ltd Drive control device for vehicle
JP2000033826A (en) * 1998-07-17 2000-02-02 Honda Motor Co Ltd Control device for automatic transmission of vehicle
JP2001146121A (en) * 1999-11-19 2001-05-29 Toyota Motor Corp Control device for hybrid vehicle with transmission
JP2004028280A (en) * 2002-06-27 2004-01-29 Honda Motor Co Ltd Control device of hybrid vehicle
JP2005061498A (en) * 2003-08-11 2005-03-10 Toyota Motor Corp Drive device for hybrid car
JP2004263875A (en) * 2004-04-01 2004-09-24 Mitsubishi Electric Corp Automatic gear shifting device and control method of throttle valve

Also Published As

Publication number Publication date
JP4792817B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
CN102287530B (en) The method of control upshift in vehicle transmission
CN104290742B (en) Controlled using the transmission clutch of inertial model is concentrated
US7740558B2 (en) Automatic transmission, control apparatus and control method for the same
JP2007198514A (en) Control device and control method for automobile
JP2004239327A (en) Speed change controller for multi-stage automatic transmission
JP4450027B2 (en) Vehicle control apparatus and control method
US8041489B2 (en) Method for controlling a transmission during acceleration from idle
CN102472387B (en) Method and device for controlling a gearbox
US8635926B2 (en) System and method for controlling a transmission
JP2009275628A (en) Apparatus and method for controlling vehicle
JP4792817B2 (en) Automatic transmission control device
JP2008069955A (en) Controlling method for damper clutch of automatic transmission and system thereof
JP2011075077A (en) Apparatus and method for controlling transmission
JP6423393B2 (en) Control device for automatic transmission
JP2008190701A (en) Method and device for controlling automatic transmission
US7207921B2 (en) Transmission cold start burst rattle reduction
JP4696692B2 (en) Automatic transmission control device
JP4712295B2 (en) Automatic transmission control device
JP4640095B2 (en) Vehicle control device
JP2002295655A (en) Automatic transmission of vehicle
JP4622234B2 (en) Automatic transmission control device
JP6595411B2 (en) Vehicle control device
JP2005133895A (en) Automatic transmission control device
JP2009168215A (en) Control device of vehicle and control method
JP2008298025A (en) Driving force control device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Ref document number: 4792817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees